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SPECTRUM ESTIMATION USING AN ANALYTIC SIGNAL REPRESENTATION !+2
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Naperville, Illinois 60566

Joseph L. LoCicero
Department of Electrical And Computer Engineering
Illinois Institute of Technology
Chicago, lllinois 60616

ABSTRACT

High resolution spectrum estimation algorithms
traditionally are constrained to process a finite amount of
data, assuming the data to bc zero outside the analysis
interval. These assumptions ultimatcly limit the resolution
that can be achicved by these estimators. Analytic signals
provide an alternate signal representation whereby long-
term phase information can be incorporated into the
analysis data: Analytic signal-based estimators are shown
to achieve higher resolution than their real signat
counterparts, due to the phasc-invariance property of an
analytic signal, The linear predictive estimates of
stationary signals in additive white Gaussian noise, using a
complex linear predictor, are shown to be more consistent
than those obtained using a comparable real linear
predictor.

INTRODUCTION

Since the advent of digital signal processing in the late
1950s, the goal of producing the digital equivalent of the
analog spectrum analyzer has spawned literally hundreds
of digital spectral estimation techniques, Some of these fall
in the category of "high resolution spectral cstimators"
while others are simply derivatives of the analog Fourier
transform. - These .. techniques and their relative
shortcomings: have ' been ' well documented in the
litérature:[1), The common. thread among all the digital
techniques' is that they involve the estimation of the
spectrum of a sampled, bandlimited, stationary time scries
from a finite number of samples of that process.

In this paper, the conventional approach of processing
a single set of samples of a onc-dimensional signal is
discarded in favor of opérating on an analytic
representation of this signal. Throughout this work, it is
assumed that a continuous. stream of data is available to
form the analytic signal, as is typically the case in such
applications as speech processing. The analytic signal is
shown to incorporate the long-term phase information of
the signal into the analysis interval. Surprisingly, the
computational ‘burden required by the complex, or two-

. 1. This research ‘was supported in full by the Advanced
..-Switching Services -Laboratory, AT&T Bell
i Laboratories, Naperville, Illinois,
' 2, This work was submitted in partial fullillment of the
requirements for: the degree of Doctor of
Philosophy..in Electrical Enginecring in the
Graduate Sc¢hool of 11T, Chicago, Illinois.

'THO167-7/86,/0000-0172 $1. 00 (©) 1886 I1EEE

172

dimensional, sequence is comparable to its real, or one-
dimensional, equivalent.

Analytic signal processing of one-dimensional signals
such as speech is not an entirely new idea. Hartwell [2]
proposed the analytic signal as a basis for conventional
FFT analysis. In [3], some basic issues of frequency
estimation and linear prediction are explored. The notions
of the Hilbert transform envelope have been used in pitch
detection [4]. In [5), anatytic signals are applied to speech
processing.

This paper presents a unified view of conventional time
domain window theory and its relation to analytic signal
processing. In the second section of this paper, the phase
invariance property of analytic signal is derived in the
context of windowed analog signals. In the third section,
the phase invariance property is extended to linear
predictive spectral cstimation, In the fourth section, the
performance of the analytic signal based estimator is
compared to an equivalent real signal estimator for the
problem of two sinewaves in additive noise,

ANALYSIS OF WINDOWED ANALOG SIGNALS

The inherent advantages in using an analytic signal
representation result from the constraint of a finite length
analysis interval, This is best illustrated by considering the
effects of a rectangular window upon an analog signal
consisting of a sum of two sinewaves of arbitrary
frequencies and phases, Suppose the signal of interest, s(t),
is defined as

s(t) = cos(wlt + ¢ + ¢1) +
cosluyt + ¢ + ¢,) (1)

The phase angle, ¢, common to both sinewaves,  will
denote the general phase of the signal with respect to-the
window. The spectrum of the rectangularly windowed
version of this signal,sw(w), is given by

Sw(w) mr{ed (¢+¢'1 )Sinc (x-xl)
~J(o+,)
e J(¢ 1 S:an(x+xl)}
wr{eJ ‘(¢+¢2)Sinc(x-x2)
e'J(¢+¢2)Sinc(x+x2)} s

(2)

+ + +




where x = wr/2, x| -wlr/2, and x, =w,r/2, The peak in
the spectrum for each sinewave “will be shilted due to
aliasing. There are two contributing lactors to this peak
shifting, First, there is the usual aliasing between positive
and negative frequency components of the signal. Second,
there is additional "in-band" aliasing between the two
positive frequency components, and the two ncgative
frequency components, more traditionally termed
leakage [6]. Note that both types of aliasing are a function
of the phase angle, ¢. The spectral errors associated with
real signals arise from the windowing process itself, and
ultimately limit the resolution which can be achieved with
a particular window.

The obvious remedy to completely eliminate the
aliasing between positive and negative frequency
components is to remove the negative frequency
components via an analytic signal representation [5]. Let
sa(t) be an analytic signal that satisfics the Diricklet
conditions [5]. The window, w(t), can represent any type
of real or complex window function, provided it is of finite
duration, and its Fourier translorm exists; in general, let

w(t) = £(t), =~-t/2 ¢t < /2, (3)
=0 , elsewhere . 3
Let s_ (t) be a phase rotated version of s_(t), where phase

rotntcac? implies some fixed phase shiflt is added to the
Fouricr phase spectrum, such that

Je
8p(t) = & 8,(8) (4)
and,
Jeo
Sap(w) =e 8, (w) . (5)

Then the magnitude spectrum of the windowed version of
this signal, snpw(t)' given by

|8, . (w)]= IS, (w) * W(w)| , (6)

apw
is independent of the phase rotation.

This phase invariance does not hold [or real windowed
signals., The real signal corresponding to sap(t) can be
written as

~J¢
s

Jé )
sp<t)=(1/2){sa(t)e + 8,(t)e 'y

*
where s (t) is the complex conjugate of 5_(t). The
spectrum of the windowed version of this signal s
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s (w) = (1/2)(e S,(w)*W(w) +

pw

e st L (@)

The aliasing between positive and negative frequency
components appears in the presence of the exponential
term ¢ and its conjugate. The magnitude spectrum of
this signal is a function of the angle ¢,

In the case of sums of periodic signals, as in Eq, 1, this
phase invariance implies the magnitude spectrum of an
analytic signal will be constant versus time, since this
phase shift is equivalent to a time delay. For other signals,
this phase shift can significantly change the appearance of
the signal. An interesting example is shown in Fig I,
where an ideal impulse function is shown for various
values of the phase. In time series analysis, where
continuous signals are always represented by as small a
segment of the signal as possible, the analytic signal
becomes a natural choice {or improved resolution.

LINEAR PREDICTION USING ANALYTIC SIGNALS

The phase invariance property of analytic signals
developed in the previous sections can be extended to the
case of linear prediction. Let the phase rotated analytic
sequence, s (nT), be defined as the sampled data
sequence corfesponding to Eq. 4, The linear prediction
coefficients, {a}), for a complex time series can be
computed from ihc Yule-Walker equation [1]:

P %
R(0,r) = £ a,R (r,1), 1 ¢ r < p, (9)
1=1

where R(r,i), the short-term autocorrefation function of a
complex sequence s(nT), is defined as

N-1 *
R(r,i)= ¢ s((m-0)T)s ((m-1)T). (10)
m=0
The short-term autocorrelation function of sap(nT),
computed from Eq, 10, is found to be

N-1
Ryp(rs1) = & ed%s_ ((m-r)T) x

=0
N e'“’s;( (m-1)T)

= 1

The short-term autocorrelation function for the analytic
phase shifted signals is thus independent of the phase
angle, 4, This result is not altogether unexpected, as linear
prediction, by design, is blind to the phase of the signal,
The LPC parameters determine an FIR [ilter whose
inverss, when stable, is constrained to be of minimum
phase [1}. It is easy to show [5] that the real signal
cquivalent of Eq, 4 is dependent on the phase angle, ¢.




EREQUENCY ESTIMATES OF TWO SINEWAYVES

While the analytic signal can provide an exact estimate of
the frequency of a single sinewave [5], that is, independent
of both phase and window length, this is just a special
case. A more interesting case involves two sinewaves
embedded in noise. Let the real signal to be estimated,
s(nT), be defined as the sum of two cosinewaves plus
additive noise,

s(nT) = cos(uw,nT + $1) +
cos (w,nT + $5) + Gv(nT).

(12)

The sequence v(nT) represents additive, zero mean, white
Gaussian noise whose variance is unity. The signal-to-
noise ratio is given by

SNR = 1/G° (13)

assuming independent sinewaves. Since this is actually a
two-pole signal, a fourth order real estimator and a second
order complex estimator will be used. The LPC
polynomial will be computed as the (requency estimates
taken as the values of the zero frequencies.

In Figs. 2 through 5, the variance of the estimators are
compared for the first frequency. The data was obtained
using the Burg. algorithm, The frequencies of the
sinewaves are 367 Hz and 859 Hz, while the phases are set
to zero. The frame length is 20 points at an 8 KHz
sampling rate for the real signal, and the signal-to-noise
ratio is 40 dB. Because the analytic signal occupies half
the bandwidth of the real signal, the complex signal is
downsampled for LPC analysis. In this case, the window
length for the complex signal (sampled at 4 kHz) is
10 samples.

In. Fig. 2, the variance of the frequency estimate for the
first sinewave is plotted versus window length, while in
Fig. 3, the variance is plotted versus signal-to-noise ratio.
In Fig. 4, the variance is plotted versus » while =, is
zero. . Finally, in Fig, 5, these experiments were repedted
for the autocorrelation method. In this case, the sinewaves
were more closely spaced, at frequencies of 414 Hz and
671 Hz, It should be emphasized that the reasons for the
improvement in performance gained by using the analytic
signal are, ‘in general, independent of the particular LPC
analysis algorithm,

.-Another reason for the superior performance of the
analytic signal, as observed by Jackson, ct. al, [3), is related
t. transform process. A sincwave travels

to the Hilbei
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through various zero crossings, which in the presence of
additive noise, provide little information, since the
"localized" signal-to-noise ratio at a zero crossing is very
small. The analytic signal, which in this case is sum of
complex exponentials, manages to stay above the nojse
level, allowing more data to make a consistent contribution
to the LPC analysis process,

CONCLUSIONS

This paper has presented a new result concerning analytic
signals. The analytic signal representation has been shown
to be a natural choice for time series analysis. A property
of the analytic time series, called phase invariance, allows
analytic signal-based spectral estimators to achieve higher
resolution than their real signal counterparts, This
property implies that the magnitude spectrum of a periodic
analytic signal computed from a frame-based spectrat
analysis will not vary as a function of time, or equivalently,
a8 a function of the position of the window. Thus, the
spectral estimates obtained from parametric spectral
estimates are more consistent, especially in the presence of
additive noise.
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THE SENSITIVITY OF
BEAMFORMING PROBLEMS

George Cybenko

Department of Computer Sclence
Tufts Unlversity
Medford, MA 02155

1. ABSTRACT

So-called elgenanalysls technlques hold great promise
for solving high resolution beamformling and harmonic
retrleval problems. At present however, 1t s not well
understood how array geometrles or speclfic problem
Instances affect the sensitlvity of the frequency
retrieval problem.

In this paper, we summarize results about the sensl-
tivity of frequency retrleval as a function of the prob-
lem lnstance. It 1s seen that two factors are most
important - the ratlo of maximal to minlmal sinusold
amplitudes and the value of the Vandermonde deter-
minant based on the complex frequencles that make
up the slgnal. Examples lllustrate these findings.

2. INTRODUCTION

Elgenanalysls methods for the harmonic retrleval
problem are extremely attractive In array processing
and beamforming appllcations. In theory (assuming
perfect-and exact signal Informatlon), these technlques
generate exact solutlons.  An lmportant property of
any numerlcal problem however Is the solutlon’s sensl~
tivity to perturbations In the Input data.

In thls paper we summarlze work showlng that for a
simple model problem, namely that of a slgnal com-
posed of a sum of slnusolds with varylng amplitudes
and frequencles, we can determine the solution’s sensl-
tlvity using a posterlorl Information. It 13 seen that
the ratlo of amplitudes between maxlmal and minimal
energy harmonlc components together with a certaln
determlinant effectlvely characterlze the sensltivity of
a problem:

3. PROBLEM STATEMENT
Our: basic::-problem .. formulatlon 15 -taken from

Pisarenko's fundamental, work [1]. Suppose we
observe a signal

85 for —00 < g < oo.
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p .
§; = kE o exp(ify 5) + n; (1)
=1
where o, are complex constants and 01: are real and
distinct. Here 7; 18 additlve white nolse with vari-
ance o2, Forming the asymptotlc slgnal correlations
N

1 -
= llm = 18
2 Neo 2Nk=E—NSJ i+n (2)
it can be shown that
P
P = | | %exp(ifyn) + 65 0% (3)
k=1
Now defining the correlation matrix, T,, , according to
T, = () with 1<4,§ <pt+1 (1)
with
tl’j = p'._j

The fundamental questlon we address here ls

Suppose that T, and T,
correspond vla the above construc-
tlons to two signals ¢ and %, with
the same p and o2 Ir T, and Tp

are close to one another, say
“ Tp - Tp ” =€

how small should we expect,
| exp(i6) ) — exp(ib; )|

to be (assuming an optimal ordering
of these quantities)?

4. SUMMARY OF RESULTS

It can be shown that two factors characterize the
sensitivity of the reconstructed frequencies and ampli-
tudes:

1. the ratlo”



max | a; |
1

min | o |
H

of largest to smallest amplitudes;

2. the conditlon number of
matrix, V, where

the Vandermonde

vy == exp(if; (k -1))

Recall that the condltlon number of a nonslngu-
lar matrlx A 1s the product of norms

wAd)=[A] [47]

‘While the relatlve sizes between the slgnal ampll-
tudes 1s predletably an Important factor in solu~
tlon sensltivity, the conditlon number of the Van-
dermonde matrix 1s perhaps surprising.

Some detalls of the derlvatlon were presented In
(2] and the reader Is referred to that paper for a more
complete treatment.

5. DISCUSSION

The two factors we have identlfied as playlng an
lmportant role In the sensltlvity of beamformling prob-
lems are amplitude ratlos and frequency dlstribution.
Note that In the case where the sinusoidal frequencles
are uniformly distributed around the unit circle, the
Vandermonde matrlx 1s preclsely the DFT matrlx and
s withiln a normallzation constant, a unltary matrix,
Thus In that case, the conditlon number is one and
the problem s optlmally conditloned. The Vander-
monde matrix will have arbltrarly large condltion
number as the frequencles coalesce or cluster.

There are two Interpretations or uses for these
observatlons:

1. Any technlque for solving beamforming problems
can monitor the Vandermonde matrix of the fre-
quencies and compute lts conditlon number. If
thls number 1s large, the solutlon can be flagged
as being possibly unreliable. If the number ls
small, the solutlon Is probably highly accurate,

2. Even In the presence of exact Informatlon, the
basic beamforming problem can glve unrellable
results because of fnlte observation records,
Hence, there 1s a fundamental llmitatlon to the
accuracy of any technlque for solving harmonle
retrieval problems.
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