
Abstract
• Neural network architectures are highly sensitive to 

the random initialization of their parameters, which 
in turn, means they are highly sensitive to the 
ordering of the data.

• Performance can vary by over 100% with the 
ordering of the data, and there is no systematic way 
to find the optimal ordering of the data.

• Curriculum learning (CL) orders the input data based 
on the level of difficulty.

• We explore the sensitivity of this bootstrapping 
process for two hybrid systems used to order the 
data: HMM-SdA and CNN-LSTM.

• Performance of the CNN-LSTM system using CL is 
32.13% sensitivity with 9.90 false alarms per 24 
hours, which is very close to the best published 
results for our manually-tuned system, known as 
AutoEEG (30.83% Sens. with 7.13 FAs). 

• The main benefit of CL is that we can automate the 
training process and reach near-optimal 
performance. This reduces the time and cost of 
creating an optimized system for new applications.

Curriculum Learning Based Sample Selection Using Posterior Probabilities
S. Ziyabari, V. Shah, I. Obeid and J. Picone

The Neural Engineering Data Consortium, Temple University

College of Engineering
Temple Universitywww.nedcdata.org

Results
• The experiments were conducted on TUSZ v1.1.1 – a 

subset of publicly available TUH EEG Corpus 
(www.isip.piconepress.com/projects/tuh_eeg).

• Performance on TUSZ:

• The results reported here are using Any-Overlap 
metric (OVLP). Correct detection is considered if 
hypothesis event fully/partially overlaps with 
reference events. False positives (FPs) are assigned 
when there is no overlap between reference and 
hypothesis event.

• Full DET curve (on the left) compares performance of 
the CNN-LSTM system with and without CL. Training 
with CL significantly outperforms our best baseline 
system for high FPRs.

• The expanded DET curve (on the right) shows that 
our best baseline system performs better for 
extremely low FPRs.

• However, over the range [0.0,0.4], CL (AUC = 0.5580) 
outperforms the baseline (AUC = 0.4432).

• Posterior seizure confidence of the system with CL is 
higher (μ = 95.16, σ = 4.12) than of the system 
without CL (μ = 91.27, σ = 4.01)

Conclusions and Future Work
• The CL approach maximizes learning efficiency by 

providing the system with increasing rates of 
prediction accuracy on fewer attempts of training.

• This study suggests that CL can significantly 
accelerates the training process of deep learning 
architectures for applications similar to EEG event 
recognition.

• Future work is focused on the development of 
automated versions of curriculum learning (i.e. self-
paced curriculum learning (SPCL), student-teacher 
learning) that automate the ordering and the 
distribution of input data.

Acknowledgements
• Research reported in this poster was supported 

by National Human Genome Research Institute of the 
National Institutes of Health under award number 
3U01HG008468-02S1.

• The content is solely the responsibility of the authors 
and does not necessarily represent the official views 
of the National Institutes of Health.

Deep Learning Convergence Issues
• The performance of a generic deep learning system 

varies significantly with the ordering of the data. 
Error rates can often fluctuate by over 100% 
depending on the ordering of the data.

• It takes significant amounts of time and money to 
find the optimal ordering of the data, and this 
ordering is data specific.

• The majority of
deep learning
systems use
optimizers which
are variants of 
gradient descent
methods (i.e., SGD, ADAM, AdaGrad).

• Common approaches to deal with such convergence 
issues are:
§ Annealing Learning (AL): Start with a higher 

learning rate for a few epochs to explore the 
parameter space and then start reducing the 
learning rate until convergence is reached.

§ Snapshot Ensembling (SE): Use a cyclic learning 
rate, converging & escaping multiple minima to 
create multiple models. During the prediction 
stage, take a majority vote using a manager 
model. 

§ Stochastic Weight Averaging (SWA): Average the 
weights collected by multiple (N-best) models. 

§ Curriculum Learning (CL): Change the ordering of 
the data from easy to hard to gradually/smoothly 
train the model.

• In this study, we focus on CL by reordering EEG 
epochs after the self prediction stage.

Curriculum Learning Using Self-prediction

CNN-LSTM Sensitivity Specificity FAs/24 Hrs.
Without CL 30.83% 97.10% 7

With CL 32.13% 95.13% 10

Deep Learning Architectures for Seizure Detection

CL Scoring on 
PosteriorsBootstrap 

Segments

HMM-SdA:
• First pass: uses a simple 3-state left-to-right 

hidden Markov model topology (HMM) with 8 
Gaussian mixture components per state and 
Baum-Welch training to segment the signal.

• Using HMMs, the recognition task is performed 
on each channel independently. For each 
epoch, a supervector is created by 
concatenating output probabilities of the 
individual channels.

• Second pass: spatial context is learned using 
channel-based posteriors which are input to a 
3-layer SdA system. PCA is performed prior to 
feeding data to the SdA system.

• A stochastic grammar is applied to the output 
of SdA to learn temporal context.

CNN-LSTM:
• The CNN-LSTM system uses a combination of 

three 2D CNN layers, one 1D CNN and one 
2-layer LSTM network.

• 2D CNN layers are followed by a maxpooling 
layer and a flattening layer is applied prior to 
the 1D CNN.

• Exponential Linear Units (ELU) are used as 
activation functions except for the last layer, 
which uses a sigmoid.

Approach:
• Curriculum design as a continuation method: we use a heuristic 

approach to order the data by performing closed loop 
pretraining using our one of the hybrid architectures Hidden 
Markov Models (HMM) + Stacked Denoising Autoencoders (SdA).

• Algorithms which are not sensitive to the random initialization 
such as HMMs, Random Forests and other Bayesian approaches 
are good fits for the CL data preparation block.

• Posteriors for each 1-second epoch are evaluated based on 
whether its label was correctly detected and based on the 
strength of the output probability.

• The training data is then split into multiple segments ordering 
data from easiest to most difficult. Training the system on 
these ordered sequences gradually makes error surface less 
smooth with time. 

• After the self-prediction stage, CL is applied to generate the 
bootstrapping sequences. CNN-LSTM is used as the training 
architecture used is with an epoch window size of 21 secs.

• Approximately 10% of each bootstrapping segment is replaced 
with other segments to better generalize the training examples 
and increase overall entropy of the segment.

Justification:
• The surface generated by the easier examples are smoother. (i.e. 

convex). Training models in these smooth spaces is easy and
convergence is quick.


