LANGUAGE INDEPENDENT ACOUSTIC MODELING

1. KNOWLEDGE-BASED PHONE MAPPINGS

In some applications, it is highly desirable to be able to develop speech recognition systems
without a need for any acoustic training data. In such situations, borrowing models from other
languages for which speech recognition technology is well-developed is extremely attractive. We
refer to these well-developed languages for which data exists as source languages. The language
for which we build the new recognizer is referred to as the target language. The approaches
presented here are referred to as knowledge-based because they exploit linguistic knowledge of
the languages and their phoneme inventories, and because they have not been retrained on any
target language acoustic data. For reasons that are obvious, we did allow access to language
model training data and pronunciation dictionaries in the target language.

The goals of the work presented in this section were two-fold: (1)to develop baseline
performance for target language systems developed from our existing monolingual systems, and
(2) to minimize the amount of target language training data required by developing effective
techniques for model combination from the source languages. These goals are summarized in
Figure 1. In our case, our source languages were English (EN), Spanish (ES), Mandarin
Chinese (MD), and Russian (RN). The target language was Czech (CZ). As previously
mentioned, these languages were chosen primarily because of the existence of large amounts of
data from a similar domain: Broadcast News (BN). Russian was the only exception. Though the
Russian data consisted of read speech, Russian is acoustically very close to Czech, and hence
provided another important contrastive data point.

Through the course of our work this summer, we established some important bounds on
performance that provide a good deal of perspective on the problem. Systems requiring no target
language training data generally performed in the range of 80% WER; systems allowed some
access to target language data to determine phone-level or state-level mappings, but did not do any
acoustic retraining, performed in the range of a WER of 55%; systems allowed some amount of
retraining or systems built from large amounts of target language data achieved performance in
the range of 30%. The second goal of this work was to attempt to close the gap between the
knowledge-based systems operating at a WER of 80% and the data-driven systems operating in
the range of 55% WER. We attempted to do this only by utilizngriori information about the
proximity of the source languages to the target language, and developing intelligent methods of
model combination for the source languages.

The recognition technology employed for this study, as previously mentioned, is a standard
monophone-based continuous density hidden Markov model LVCSR system. Relevant features of
the system are summarized in Table 1. Monophone acoustic models containing approximately 20
mixtures per state were used because these gave performance very competitive with more
sophisticated context-dependent phonetic models, and were much easier to manipulate for the
experiments described below. The recognition architecture was a synthesis of a finite state
machine decoder developed at AT&T, which served as the search engine during decoding, and the
acoustic modeling capabilities of Entropic’s HTK (v2.2) system, which provided Gaussian
statistical modeling calculations. HTK was used for all acoustic training. With this architecture,
most recognition experiments required on the order of 350M of memory and less than 4x
real-time on a 450 MHz Pentium processor.
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1.1. MONOLINGUAL CROSS-LANGUAGE BASELINES

Our first set of baselines involved a simple mapping experiment in which phones from the Czech
target language were mapped to their nearest neighbor in a single source language using a
similarity measure based on feature-based descriptions of the phones. This is a manual procedure
that leverages extensive knowledge of acoustic phonetics [1]. Our approach involved first
describing the phones in both the source and target languages in terms of their articulatory
positions, a process that leads to a description of the sounds using the International Phonetic
Alphabet (IPA) [2]. A portion of this analysis is shown in Figure 1. A complete inventory, along
with several related resources, can be found in [3]. An example of such a description for a phone
is shown in Table 2. The advantage of this approach is that all languages can, in theory, be
represented within the same system. Other advantages include an ability to cluster phones for
context-dependent representations using approaches based on acoustic phonetic similarity
analogous to what is used in language-dependent recognition.

We next determined the proximity of a sound in the target language to a sound in the source
language using this representation, and developed an associated symbol-to-symbol mapping.
Examples of such mappings are given in Figure 3. While it was possible to achieve reasonable
mappings for each language, there are significant variations in the level of detail used in the
source language phonetic inventories. Spanish, for example, only used 25 phones, while Russian
used 44 phones. Since optimization of the source language systems was beyond the scope of this
project, we did not spend a lot of time fine-tuning the phonetic mappings, or designing phone
inventories particularly suited to our task. Instead, as a starting point, we used off-the-shelf
state-of-the-art existing BN systems.

We proceeded to use these mappings to obtain baseline performance of a Czech Broadcast
News (CZBN) recognition system using acoustic models from the source languages derived from
these mappings. The procedure was quite simple: represent each phone symbol in the Czech
lexicon using a corresponding source language phone located from these mappings. The
performance of systems constructed in this manner is given in Table 3. Overall, we observe that
performance is poor — in the range of 80%WER. It was a great surprise to observe that the
Russian acoustic models, though they were trained on read speech, were a close match to the
CZBN data, especially considering the differences in microphones, speaking style, and speaking
rates. As we subsequently found out, the CZBN data is relatively well-articulated, and fairly easy
to recognize at a nominal level of performance. We also observed from these experiments that
performance for English and Spanish was comparable, and performance for Mandarin lags the
other systems.

Upon observing this degradation of performance for Mandarin, we hypothesized that the phone
mapping was a major source of error. Hence, we evaluated four different phone mappings. These
mappings are summarized in Figure 3, and explained in greater detail in Figure 4. The
performance on the VOA-1 evaluation for each of these mappings is given in Table 4. Though we
achieved a very minor improvement in performance (a 0.8% absolute gain), we can conclude that
performance is not extremely sensitive to the quality of the manual phone mapping at the level of
performance our system was operating at. Hence, we turned our attention to methods for
combining multiple languages into a single system.
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1.2. MULTILINGUAL PHONE MAPPINGS

It was evident that a single source language did not provide optimal coverage of Czech.
Therefore, it was natural to explore a mapping that involved phones from all source languages
based on proximity in the IPA table. Since Russian was clearly acoustically closer to Czech than
any of the other source languages, we excluded Russian from the set of source languages for this
experiment, so that it would not mask any trends in our knowledge-based systems that might
surface. This was somewhat of a cheating experiment in that we began with our best models —
the Spanish system. We then replaced phones in cases where other languages appeared to have a
closer match. We did include Mandarin even though we had suspicions about the quality of the
models. A summary of the resulting mapping is shown in Figure 5, and the associated
performance is given in Table 5. Though we achieved modest improvements in performance
(1.6% absolute WER), we did not achieve performance comparable to data-driven mapping
methods discussed later.

Our next attempt to understand the deficiencies of the knowledge-based system was to explore a
series of experiments in which the recognition system was allowed to choose the best combination
of phones at runtime (rather than fixing these via a mapping prior to recognition). First, we
explored a parallel pronunciation approach [4] in which each item in the lexicon was allowed to
be represented as a sequence of phones from a single language. This was implemented using
pronunciation networks, and is summarized in Figure 6. Unfortunately, this approach resulted in a
slightly degraded performance, as shown in Table 6. This result was somewhat discouraging,
since we had hoped that the additional degrees of freedom would offset any systematic acoustic
bias between the two domains.

The next obvious thing to try was to allow the recognition system to mix and match phones from
all source languages. This approach, referred to as a multiphone approach, is also summarized in
Figure 6. The corresponding performance is given in Table 6. The multiphone approach was an
attempt to let the recognizer find the best realization of a phone, rather than fixing this based on
a priori linguistic knowledge. We can see that a minor improvement in performance over the
parallel pronunciation system was achieved, as expected. However, overall performance is still
below the best monolingual system, and far below the Russian system shown in Table 6. Again,
this was a discouraging result.

We proceeded with an analysis of the common error modalities for our best system. This is
summarized in Figure 7. We have observed that, though the overall WER is high, performance at
the phone-level appears to be quite good. The alignments are plausible, and a majority of the
words are only partially misrecognized. Since Czech is an inflected language, this analysis raised
some concerns that our language modeling approach was not optimal. For example, a
morphologically-based approach might pay dividends if the majority of the errors are occurring
on inflections rather than stems (it could be the case that performance at a morphological level is
good, and hence the system would be usable for information extraction tasks). This analysis also
encouraged us to consider better methods of combining phone models across source languages as
a way of making our phone models more language independent (from the previous experiments it
is clear that the models are well-tuned to the source languages and corresponding channel
characteristics).
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1.3. MODEL COMBINATION

We conducted some explorations into ways one could combine models based only on confusion
data from the source languages. Our strategy here was simple: generate confusion data by
recognizing the source language training data with multiphone systems (and tracking instances
where a phone in the reference transcription for one source language phone was modeled by a
phone from a different language). The procedure for generating this confusion data involved the
standard forced alignment approach used in HMM training, as shown in Figure 8. However, each
source language phone was allowed to be represented as any other source language phone. The
alignment process would make the best choice using the multiphone pronunciation network
previously described.

The confusion data generated by this experiment was quite interesting. The confusion matrix (an
extremely large matrix since it has N phones x M languages number of entries) is surprisingly
diagonal. An example of some of these confusions is shown in Figure 9. The diagonal nature of
this matrix shows how finely tuned the HMMs are to their specific language training data, and
most likely the channel conditions of that data as well. Such biases most likely contribute to the
lack of success we have had applying source language models to a new domain. Yet, when
confusions do occur, they occur in plausible ways (consonants are more consistent than vowels;
some vowels generate confusions with their counterparts in other languages). Nevertheless, in an
effort to approach what one might consider to be language-independent phones, or IPA phones,
we investigated ways to combine phone models using this confusion data.

It was our original intent to combine models using some sort of factor analysis or
multidimensional scaling. However, we did not have enough time to fully explore this approach.
A much simpler approach that was easier to implement and investigate, was to combine system
outputs using an approach known as ROVER [5]. The ROVER process is summarized in
Figure 10. ROVER combines hypotheses using a majority voting scheme to produce a consensus
hypothesis. It has been shown to provide modest gains in performance in LVCSR experiments.
We employed ROVER at the word level and the phone level. The results are shown in Table 7.

ROVER can be easily employed to improve WER by combining the word-level outputs of the
monolingual systems (or any group of systems for that matter). As we see in Table 7, this gave a
modest improvement in performance for the word-level systems. WER was improved from 65.2%
for the Russian system to 62.1% for ROVER system using all source language systems. The same
experiment conducted at the phone level showed a similar improvement in performance. Note that
the phone-level accuracy of our system, approximately a 35% phone error rate, is surprisingly
high given the high WER (ranging from 90% to 65% for the source language systems). Normally,
we would expect phone error rates to be higher than the WER. Again, we see this as an
encouraging result and believe it points to some language modeling interactions that are not well
understood in our experiments.

1.4. CHANNEL NORMALIZATION
Since improving the system without access to target language training data has been hard to do,

we became concerned that there were some systematic variations in channel that were preventing
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our source language models from performing well. To investigate this hypothesis, we conducted
two types of experiments: (1) investigation of the sensitivity of our phone mappings to the silence
model (which serves as an estimate of the background channel), and (2) a simple global maximum
likelihood linear regression (MLLR) [6] experiment. When mapping models from source
languages to target languages, one must make some decision about the best strategy for
synthesizing a silence model. In a cheating experiment scenario, we used an actual CZBN silence
model, as well as silence models from each of the source languages, but found no great impact on
recognition performance (for example, at most, a 1% WER improvement when using the CZBN
silence model versus the original source language silence model).

In our MLLR experiment, the source language models for English were adapted to the Czech data
by allowing a single global transformation of the model means (a transformation matrix is derived
that is applied to each mean vector in the HMM models). The results of this experiment are
summarized in Table 8. We observe that global MLLR produced a measurable improvement in
performance. However, this improvement was not great enough to offset the language mismatch.
The WER for the MLLR-adapted system was not better than that achieved with some basic
data-driven phone mapping experiments (which provide WER’s in the mid-60% range), nor was it
better than that achieved using Russian models trained from a completely different ambient
environment and speaking style. Hence, from this simple experiment we conclude that a
systematic channel variation is not the primary factor limiting performance. In fact, it seems to
suggest that there is a language-dependent shift that must be accounted for in a more complex
way.

1.5. SUMMARY

In this study, we attempted to improve speech recognition performance without access to any
target language training data. We attempted this using linguistic knowledge about the acoustic
phonetic structure of each language. We learned that proximity of the source language models to
the target language is presently a stronger correlate than anything we can do based on linguistic
knowledge and phonetic mappings. We also showed that accounting for some
language-dependent bias between the source languages and the target language is not a trivial
matter. It seems characterization of the proximity of the target language in an acoustic sense might
be a worthwhile topic for further research, as well as a more controlled study of
channel-independent acoustic representations. Data and resources related to the information
presented in this section can be found on the web at the following UWR://www.clsp.jhu.edu/
ws99/projects/asr/final_presentation/knowledge based
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Figure 1. An overview of word error rate (WER) as a function of the amount of target language data. Our
goal in exploiting linguistic knowledge to develop target language phone mappings is to approach the per-
formance of techniques that require use of target language data. In this case the difference in performance
is approximately 80% WER for knowledge-based approaches, and 55% WER for acoustically-motivated
approaches.
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IPA Conversion Chart For Consonants

Place of Articulation
Manner | Language || Biliabial Lal‘flrf'- Dantal Alvealar 4 Pm;lf | Retroflex Palatal Velar Uvular Pl|ar.5-"|- Glottal M
dental alveolar geal
English ] b t d Kk q i
Spanish i 4] | d k a i
Fiasiva Mandarin [ b t d k a i
o o b t d k a
Riesgian Pl B T o G L
Czech ] b t d o k q 8
English il i i 3
Spanish M il an 3
Mandarin m il M 3
Masal
m fi
i 4
Riuessian M N
Fzach m fi I ] g 4

Figure 2. An IPA description of the consonant portions of the phone sets used in our experiments.

CLSP WS'99

AUGUST 20, 1999



LANGUAGE INDEPENDENT ACOUSTIC MODELING

Czech

E\rl

Example

vl

English

E\rl

(ah2) bt

ah

ah

aa

(aax?) father

i oaax

aax

i aa

Poaw

[awr1) down

amwr

(1) blue

ol R e

SRl

=R

(ts:3) Yeltsin

Lrl

(chi1) chip

(417 dark

(dyd) due

oo 2 o

= =

(eh1) bet

¥

¥

(eh3) long of &

(1]

(]

(17 fix

Sl o R R R o S L f

—.

—.

—.

(g1} global

(hh:2) ahead

L]

=i

=i

{ih:17 hit

R

L = ]

-

(iy:1] he

-

— <

(1) yes

k) key

—i

(117 loom

'—'x"-::‘-'E:"Eﬂ'gcrq—hgugus:us:ugu.—ru‘%

e R E - = =4 TR I 0 Mo IV T A B

—i

—_

—i

i e

—i o

(1) meet

(1Y nonmn

. ng

(nx1) hang

nx

nx

Sisig

1

(nyd) new

ny

ZiEisi B =

ZiEisi 8

ZiEisi B

(aa2) hot

aa

aa

cifPivigiyg

[=1

(=1

(=1

= i
e

Poow

(owrl) low

s

s

(=1

[=1

(=1

(=1

(pd) power

(r:4) Rome

Hﬁnnﬁgﬁg-—rwww*—'-m—hmm._’:'n%

[ =

[ =

[ =

[ =

rsh

(r shud) nda

rch

rs

rzh

(r zhed) nda

-

rll

L]

-

-

T

(81} son

sh

(sh1) shape

&

(t:2) tornado

(tw4) state

—+
e

e B

ALl alm

SR

b2y conld

At B ]

(w1} who

w1y wictory

= iEis

=iEis

(k hh3) Loch

rigicia

rigicia

(21} zoo0

= = |

(zh1) pleasure

Figure 3. Phone mappings from Czech to our four source languages using an IPA-based feature represen-
tation. For some languages, several possible mappings are shown to demonstrate that there is some
amount of ambiguity in these mappings.

CLSP WS'99

AUGUST 20, 1999



LANGUAGE INDEPENDENT ACOUSTIC MODELING

Czech Mandawin
P vl Example - CZ IPA or Description fvl w2 N3
a (zh:2) but front allophone of faf @ e @ @
aa, (aaxd) father front allophone of faf i) = o) i
L oaw {aw:l) down schwra, mid central vnrovnded & e & &
b (b1 blue P ‘b b b b
& (t 53] Yeltsin aspirated dental affricate tz F menil w1 €
ch {ch:1) chip aspirated palatal affricate i e o q
d (d:1) dark T el el d d
dj (dy4) doe t cd i d id i ody
e {eh:l) bet e LB b=l os >
ee (eh:3) long of & lower—mid front nnrounded E E E E
f (1) fix f f mef o o f
g (g1) global k e ey
h (hh:2) ahead lanrngeal or welar fricative ih tx i h h
i {ih:1) hit barred i iy R R i
i (iy1) he i i el & i i
] (1) ves retroflexr T ¥ ¥ ¥
k (k2] key aspirated k k k k k
1 (1:13 loom 1 il e R | 1
m (1) meet m ‘m im i om m
fom (1) novn n T om n
©ong inx1) hang welar nasal ‘N N M M
Y (nd) new welar nasal ‘M N M My
] (22:2) hot roid back round Pgr epis @ 0
Cow (ow1) low roid back round ] ] ] ]
P (pd) power aspirated p ] P
Por (r:4) Rome retroflex r r
: rsh ir sh:3) nda s g | x rs
. rzh ir zh:3) nda retroflex affricate fzh | r s
C s (51} son s g aeril s s
sh {sh:1) shape voiceless retroflex fricative SECaehE 3
t (tZ) tornade t s k- t
4 (tyd) statue t RS ty
u {uh:2)y conld high back rounded e imecl W u
. {uw:1) who high back rounded 6 u
v {w1) victory f f P w o w 0
x {(khh:3) Loch laryngeal or velar fricative Ehihe i bt kb
(21} zoo dental affricate (tz) :

Figure 4. Four variations of Czech to Mandarin phone mappings that were explored to diagnose the poor
performance of the Mandarin system.
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Figure 5. A selective phone mapping that uses phones from three source languages to model Czech.
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Parallel Pronunciations:

BET:

All-Phone Approach:

BET:

(

b_EN

b_ES

eh_EN

eh_ES

eh_MD

t EN

t ES

(~-O—0O—0O—0O—

b_MD

t MD

Figure 6. Two approaches to mixing multiple source language acoustic models without the use of acoustic
training data. In the first approach, the recognizer is constrained at the lexical level to phones from a single
source language to represent a word. In the second approach, the recognizer can mix and match phones

from any source language.
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Figure 7. An analysis of the performance of our best knowledge-based system. The phonetic accuracy ap-
pears to be quite good, though the word-level performance is lacking, perhaps due to language modeling

issues (Czech is an inflected language).

THIS

TEST

Figure 8. A forced alignment approach was combined with the multi-phone pronunciation model to produce
phone confusion data for the source language training databases.
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@RN | EMD | IMD | RMD | UMD | aES | aMD | aRN | aa EN | aa RN | aax EN
@_RN 3201 0 0 0 0 0 0 0 0 0 1
E_MD 0 5639 0 0 0 7 0 0 0 0 0
|_MD 0 0 1343 0 0 0 0 0 0 0 0
R_MD 16 0 0 767 0 0 0 0 0 0 0
U_MD 0 0 0 0 1638 0 0 0 0 0 0
a_ES 0 3 0 0 0 47762 782 75 16 146 200
a_MD 1 0 0 0 0 2169 | 12120 37 16 40 309
a_RN 0 0 0 0 0 1660 315 3011 5 0 0
aa_EN 0 0 0 0 0 471 223 12 316 5 0
aa_RN 0 0 0 0 0 0 0 0 0 3346 100
aax_EN 0 0 0 0 0 0 0 0 0 0 5446

Figure 9. An example of phone confusion data generated on the source language training databases using
the multiphone approach. The vowel “a” appears to be a good example of a vowel that varies significantly
across languages, and could benefit from some sort of model combination.

Ref:
f Hyp #1.
Hyp #2:

Ref:
Hyp #1.:
Hyp #2:

(a
a

QT O W
O O T T
O o OO0
® Q Q
Q.Q.Q)

Hyp #3: Hyp #3:

ROVER:

bYc)
b|c
b|c
b|c
b|c

NN

a
a d
Figure 10. An overview of a method for combining hypotheses to improve system performance known as

ROVER. ROVER essentially using a majority voting scheme.
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System

Data

Front-End:
16 kHz Sample Frequency
10 msec frames / 25 msec window
12 Mel-Scaled Cepstral Coefficients (MFCCs)
Energy

Training:
English: VOA Broadcast News (10 hrs)
Spanish: VOA Broadcast News (30 hrs)
Mandarin: VOA Broadcast News (10 hrs)
Russian: Read Speech (4 hrs)

Acoustic Models:
Continuous Density HMMs
Three-State, Left To Right Topology
Monophones (~40)
Gaussian Mixtures (~20 per state)

Held Out: Czech Voice of America Broadcasts
Broadcast News: CZBN-1 (1.5 hrs)
Financial News: CUCFN-1 (1 hr)

Language Model:
63K Vocabulary
Bigram LM Trained on 16M Words
Approx. 6M Bigrams
Test Set Perplexity: 650

Eval: Czech Voice of America Broadcasts
Broadcast News: VOA-1 (1 hr)
Broadcast News: VOA-2 (2.5 hrs)
Broadcast News: VOA-3 (1.7 hrs)

Table 1. An overview of the speech recognition system and databases used in this study.

Phone Description
S UNVOICED ALVEOLAR FRICATIVE
F UNVOICED LABIO-DENTAL FRICATIVE

I HIGH FRONT UNROUND LONG VOWEL

Table 2. An example of a representation of a phone in terms of articulatory positions.
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Czech Broadcast News VOA-1 | VOA-2
Source Language Target Language WER WER
Czech (C2) Czech (C2) 27.6 23.6
Russian (RN) Czech (C2) 65.2 60.8
Spanish (ES) Czech (C2) 79.3 71.7
English (EN) Czech (C2) 80.9 75.5
Mandarin (MD) Czech (C2) 91.1 88.7

Table 3. Baseline monolingual system performance.

Czecthz;SSadcast VOA-1

Source Language WER Dels Subs Ins
Mandarin - v1 91.1 15.0 72.5 34
Mandarin - v2 93.7 16.2 74.3 3.2
Mandarin - v3 90.1 29.8 59.4 0.9
Mandarin - v4 89.3 28.7 59.7 0.9

Table 4. Several approaches to Mandarin phone mappings were explored in an effort to improve
performance. As we can see, performance was not greatly influenced by the nature of the manual phone

mapping.

Czecthz;SSadcast VOA-1

Source Language WER Dels Subs Ins
Spanish 79.3 10.6 63.5 5.3
Selective 7.7 9.1 63.1 5.6

Table 5. A comparison of performance using a Spanish-only system, and a system involving a mixture of
mappings from three source languages. Though there is a modest improvement in performance, the
improvement was not nearly as significant as we had hoped.
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Czech Broadcast News VOA-1

Source Language Target Language WER
Czech (C2) Czech (C2) 27.6
Russian (RN) Czech (C2) 65.2
Spanish (ES) Czech (C2) 79.3
English (EN) Czech (C2) 80.9
Mandarin (MD) Czech (C2) 91.1
Parallel Prons. Czech (C2) 83.0
Multi-Phone Prons. Czech (C2) 80.1

Table 6. Performance for two approaches as mixing phones from multiple languages. The parallel
pronunciation approach constrains words to use phones from the same language. The multi-phone
approach allows the system to mix and match phones from any language. As we can see, the latter system
resulted in a minor improvement in performance, but did not exceed the performance of the baseline

system.

Word-Level Performance:

Phone-Level Performance:

Czech Broadcast News VOA-1

Source Language Target Language WER
Czech (C2) Czech (C2) 27.6
ROVER Czech (CZ) 62.1
Russian (RN) Czech (C2) 65.2
Spanish (ES) Czech (C2) 79.3
English (EN) Czech (C2) 80.9
Mandarin (MD) Czech (C2) 91.1

Czech Broadcast News VOA-1

Source Language Target Language WER
ROVER Czech (C2) 384
Russian Czech (C2) 36.3

Table 7. A summary of word-level and phone-level error rates for a ROVER experiment.
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LANGUAGE INDEPENDENT ACOUSTIC MODELING

Czech Broadcast News VOA-2

Source Language Target Language WER
Czech (C2) Czech (C2) 27.6
English (EN) Czech (C2) 75.5
English with Global MLLR Czech (C2) 70.7

Table 8. An experiment designed to investigate the impact of any channel variations shows that a simple
global MLLR adaptation is not able to improve performance to a level where knowledge-based mappings
are competitive with data-driven techniques.
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