
LANGUAGE INDEPENDENT ACOUSTIC MODELING
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1. KNOWLEDGE-BASED PHONE MAPPINGS

In some applications, it is highly desirable to be able to develop speech recognition sy
without a need for any acoustic training data. In such situations, borrowing models from
languages for which speech recognition technology is well-developed is extremely attractiv
refer to these well-developed languages for which data exists as source languages. The la
for which we build the new recognizer is referred to as the target language. The appro
presented here are referred to as knowledge-based because they exploit linguistic knowle
the languages and their phoneme inventories, and because they have not been retrained
target language acoustic data. For reasons that are obvious, we did allow access to la
model training data and pronunciation dictionaries in the target language.

The goals of the work presented in this section were two-fold: (1) to develop bas
performance for target language systems developed from our existing monolingual system
(2) to minimize the amount of target language training data required by developing effe
techniques for model combination from the source languages. These goals are summar
Figure 1. In our case, our source languages were English (EN), Spanish (ES), Man
Chinese (MD), and Russian (RN). The target language was Czech (CZ). As previ
mentioned, these languages were chosen primarily because of the existence of large amo
data from a similar domain: Broadcast News (BN). Russian was the only exception. Thoug
Russian data consisted of read speech, Russian is acoustically very close to Czech, and
provided another important contrastive data point.

Through the course of our work this summer, we established some important bound
performance that provide a good deal of perspective on the problem. Systems requiring no
language training data generally performed in the range of 80% WER; systems allowed
access to target language data to determine phone-level or state-level mappings, but did not
acoustic retraining, performed in the range of a WER of 55%; systems allowed some amo
retraining or systems built from large amounts of target language data achieved performa
the range of 30%. The second goal of this work was to attempt to close the gap betwee
knowledge-based systems operating at a WER of 80% and the data-driven systems opera
the range of 55% WER. We attempted to do this only by utilizinga priori information about the
proximity of the source languages to the target language, and developing intelligent metho
model combination for the source languages.

The recognition technology employed for this study, as previously mentioned, is a stan
monophone-based continuous density hidden Markov model LVCSR system. Relevant featu
the system are summarized in Table 1. Monophone acoustic models containing approxima
mixtures per state were used because these gave performance very competitive with
sophisticated context-dependent phonetic models, and were much easier to manipulate
experiments described below. The recognition architecture was a synthesis of a finite
machine decoder developed at AT&T, which served as the search engine during decoding, a
acoustic modeling capabilities of Entropic’s HTK (v2.2) system, which provided Gaus
statistical modeling calculations. HTK was used for all acoustic training. With this architec
most recognition experiments required on the order of 350M of memory and less tha
real-time on a 450 MHz Pentium processor.
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1.1. MONOLINGUAL CROSS-LANGUAGE BASELINES

Our first set of baselines involved a simple mapping experiment in which phones from the C
target language were mapped to their nearest neighbor in a single source language u
similarity measure based on feature-based descriptions of the phones. This is a manual pro
that leverages extensive knowledge of acoustic phonetics [1]. Our approach involved
describing the phones in both the source and target languages in terms of their articu
positions, a process that leads to a description of the sounds using the International Ph
Alphabet (IPA) [2]. A portion of this analysis is shown in Figure 1. A complete inventory, alo
with several related resources, can be found in [3]. An example of such a description for a
is shown in Table 2. The advantage of this approach is that all languages can, in theo
represented within the same system. Other advantages include an ability to cluster phon
context-dependent representations using approaches based on acoustic phonetic si
analogous to what is used in language-dependent recognition.

We next determined the proximity of a sound in the target language to a sound in the s
language using this representation, and developed an associated symbol-to-symbol ma
Examples of such mappings are given in Figure 3. While it was possible to achieve reaso
mappings for each language, there are significant variations in the level of detail used
source language phonetic inventories. Spanish, for example, only used 25 phones, while R
used 44 phones. Since optimization of the source language systems was beyond the scop
project, we did not spend a lot of time fine-tuning the phonetic mappings, or designing p
inventories particularly suited to our task. Instead, as a starting point, we used off-the
state-of-the-art existing BN systems.

We proceeded to use these mappings to obtain baseline performance of a Czech Bro
News (CZBN) recognition system using acoustic models from the source languages derived
these mappings. The procedure was quite simple: represent each phone symbol in the
lexicon using a corresponding source language phone located from these mappings
performance of systems constructed in this manner is given in Table 3. Overall, we observ
performance is poor — in the range of 80%WER. It was a great surprise to observe th
Russian acoustic models, though they were trained on read speech, were a close match
CZBN data, especially considering the differences in microphones, speaking style, and sp
rates. As we subsequently found out, the CZBN data is relatively well-articulated, and fairly
to recognize at a nominal level of performance. We also observed from these experimen
performance for English and Spanish was comparable, and performance for Mandarin la
other systems.

Upon observing this degradation of performance for Mandarin, we hypothesized that the p
mapping was a major source of error. Hence, we evaluated four different phone mappings.
mappings are summarized in Figure 3, and explained in greater detail in Figure 4.
performance on the VOA-1 evaluation for each of these mappings is given in Table 4. Thoug
achieved a very minor improvement in performance (a 0.8% absolute gain), we can conclud
performance is not extremely sensitive to the quality of the manual phone mapping at the le
performance our system was operating at. Hence, we turned our attention to metho
combining multiple languages into a single system.
CLSP WS’99 AUGUST 20, 1999
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1.2. MULTILINGUAL PHONE MAPPINGS

It was evident that a single source language did not provide optimal coverage of C
Therefore, it was natural to explore a mapping that involved phones from all source lang
based on proximity in the IPA table. Since Russian was clearly acoustically closer to Czech
any of the other source languages, we excluded Russian from the set of source languages
experiment, so that it would not mask any trends in our knowledge-based systems that
surface. This was somewhat of a cheating experiment in that we began with our best mod
the Spanish system. We then replaced phones in cases where other languages appeared
closer match. We did include Mandarin even though we had suspicions about the quality
models. A summary of the resulting mapping is shown in Figure 5, and the assoc
performance is given in Table 5. Though we achieved modest improvements in perform
(1.6% absolute WER), we did not achieve performance comparable to data-driven ma
methods discussed later.

Our next attempt to understand the deficiencies of the knowledge-based system was to ex
series of experiments in which the recognition system was allowed to choose the best comb
of phones at runtime (rather than fixing these via a mapping prior to recognition). First
explored a parallel pronunciation approach [4] in which each item in the lexicon was allowe
be represented as a sequence of phones from a single language. This was implemente
pronunciation networks, and is summarized in Figure 6. Unfortunately, this approach resulte
slightly degraded performance, as shown in Table 6. This result was somewhat discour
since we had hoped that the additional degrees of freedom would offset any systematic ac
bias between the two domains.

The next obvious thing to try was to allow the recognition system to mix and match phones
all source languages. This approach, referred to as a multiphone approach, is also summa
Figure 6. The corresponding performance is given in Table 6. The multiphone approach w
attempt to let the recognizer find the best realization of a phone, rather than fixing this bas
a priori linguistic knowledge. We can see that a minor improvement in performance ove
parallel pronunciation system was achieved, as expected. However, overall performance
below the best monolingual system, and far below the Russian system shown in Table 6. A
this was a discouraging result.

We proceeded with an analysis of the common error modalities for our best system. T
summarized in Figure 7. We have observed that, though the overall WER is high, performa
the phone-level appears to be quite good. The alignments are plausible, and a majority
words are only partially misrecognized. Since Czech is an inflected language, this analysis
some concerns that our language modeling approach was not optimal. For exam
morphologically-based approach might pay dividends if the majority of the errors are occu
on inflections rather than stems (it could be the case that performance at a morphological l
good, and hence the system would be usable for information extraction tasks). This analys
encouraged us to consider better methods of combining phone models across source langu
a way of making our phone models more language independent (from the previous experim
is clear that the models are well-tuned to the source languages and corresponding c
characteristics).
CLSP WS’99 AUGUST 20, 1999



LANGUAGE INDEPENDENT ACOUSTIC MODELING

fusion
ata by
tances
d by a
d the
each
ne. The
twork

rix (an
ingly

ure of
, and
o the
when

owels;
s, in an
hones,

or
ach.
ystem

ed in
sensus

ents.
e 7.

f the
ave a
5.2%
e same
te that
singly

ally,
as an
ot well

to do,
venting
1.3. MODEL COMBINATION

We conducted some explorations into ways one could combine models based only on con
data from the source languages. Our strategy here was simple: generate confusion d
recognizing the source language training data with multiphone systems (and tracking ins
where a phone in the reference transcription for one source language phone was modele
phone from a different language). The procedure for generating this confusion data involve
standard forced alignment approach used in HMM training, as shown in Figure 8. However,
source language phone was allowed to be represented as any other source language pho
alignment process would make the best choice using the multiphone pronunciation ne
previously described.

The confusion data generated by this experiment was quite interesting. The confusion mat
extremely large matrix since it has N phones x M languages number of entries) is surpris
diagonal. An example of some of these confusions is shown in Figure 9. The diagonal nat
this matrix shows how finely tuned the HMMs are to their specific language training data
most likely the channel conditions of that data as well. Such biases most likely contribute t
lack of success we have had applying source language models to a new domain. Yet,
confusions do occur, they occur in plausible ways (consonants are more consistent than v
some vowels generate confusions with their counterparts in other languages). Nevertheles
effort to approach what one might consider to be language-independent phones, or IPA p
we investigated ways to combine phone models using this confusion data.

It was our original intent to combine models using some sort of factor analysis
multidimensional scaling. However, we did not have enough time to fully explore this appro
A much simpler approach that was easier to implement and investigate, was to combine s
outputs using an approach known as ROVER [5]. The ROVER process is summariz
Figure 10. ROVER combines hypotheses using a majority voting scheme to produce a con
hypothesis. It has been shown to provide modest gains in performance in LVCSR experim
We employed ROVER at the word level and the phone level. The results are shown in Tabl

ROVER can be easily employed to improve WER by combining the word-level outputs o
monolingual systems (or any group of systems for that matter). As we see in Table 7, this g
modest improvement in performance for the word-level systems. WER was improved from 6
for the Russian system to 62.1% for ROVER system using all source language systems. Th
experiment conducted at the phone level showed a similar improvement in performance. No
the phone-level accuracy of our system, approximately a 35% phone error rate, is surpri
high given the high WER (ranging from 90% to 65% for the source language systems). Norm
we would expect phone error rates to be higher than the WER. Again, we see this
encouraging result and believe it points to some language modeling interactions that are n
understood in our experiments.

1.4. CHANNEL NORMALIZATION

Since improving the system without access to target language training data has been hard
we became concerned that there were some systematic variations in channel that were pre
CLSP WS’99 AUGUST 20, 1999
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our source language models from performing well. To investigate this hypothesis, we cond
two types of experiments: (1) investigation of the sensitivity of our phone mappings to the si
model (which serves as an estimate of the background channel), and (2) a simple global ma
likelihood linear regression (MLLR) [6] experiment. When mapping models from sou
languages to target languages, one must make some decision about the best strat
synthesizing a silence model. In a cheating experiment scenario, we used an actual CZBN
model, as well as silence models from each of the source languages, but found no great imp
recognition performance (for example, at most, a 1% WER improvement when using the C
silence model versus the original source language silence model).

In our MLLR experiment, the source language models for English were adapted to the Czec
by allowing a single global transformation of the model means (a transformation matrix is de
that is applied to each mean vector in the HMM models). The results of this experimen
summarized in Table 8. We observe that global MLLR produced a measurable improvem
performance. However, this improvement was not great enough to offset the language mis
The WER for the MLLR-adapted system was not better than that achieved with some
data-driven phone mapping experiments (which provide WER’s in the mid-60% range), nor w
better than that achieved using Russian models trained from a completely different am
environment and speaking style. Hence, from this simple experiment we conclude t
systematic channel variation is not the primary factor limiting performance. In fact, it seem
suggest that there is a language-dependent shift that must be accounted for in a more c
way.

1.5. SUMMARY

In this study, we attempted to improve speech recognition performance without access t
target language training data. We attempted this using linguistic knowledge about the ac
phonetic structure of each language. We learned that proximity of the source language mo
the target language is presently a stronger correlate than anything we can do based on lin
knowledge and phonetic mappings. We also showed that accounting for s
language-dependent bias between the source languages and the target language is not
matter. It seems characterization of the proximity of the target language in an acoustic sense
be a worthwhile topic for further research, as well as a more controlled study
channel-independent acoustic representations. Data and resources related to the info
presented in this section can be found on the web at the following URL:http://www.clsp.jhu.edu/
ws99/projects/asr/final_presentation/knowledge_based.
CLSP WS’99 AUGUST 20, 1999
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Figure 1. An overview of word error rate (WER) as a function of the amount of target language data. Our
goal in exploiting linguistic knowledge to develop target language phone mappings is to approach the per-
formance of techniques that require use of target language data. In this case the difference in performance
is approximately 80% WER for knowledge-based approaches, and 55% WER for acoustically-motivated
approaches.
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Figure 2. An IPA description of the consonant portions of the phone sets used in our experiments.
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Figure 3. Phone mappings from Czech to our four source languages using an IPA-based feature represen-
tation. For some languages, several possible mappings are shown to demonstrate that there is some
amount of ambiguity in these mappings.
CLSP WS’99 AUGUST 20, 1999
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Figure 4. Four variations of Czech to Mandarin phone mappings that were explored to diagnose the poor
performance of the Mandarin system.
CLSP WS’99 AUGUST 20, 1999
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Figure 5. A selective phone mapping that uses phones from three source languages to model Czech.
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Parallel Pronunciations:

All-Phone Approach:
Figure 6. Two approaches to mixing multiple source language acoustic models without the use of acoustic
training data. In the first approach, the recognizer is constrained at the lexical level to phones from a single
source language to represent a word. In the second approach, the recognizer can mix and match phones
from any source language.
CLSP WS’99 AUGUST 20, 1999
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Figure 7. An analysis of the performance of our best knowledge-based system. The phonetic accuracy ap-
pears to be quite good, though the word-level performance is lacking, perhaps due to language modeling
issues (Czech is an inflected language).
DH IH S IH Z EY T EH S T

THIS IS A TEST
Figure 8. A forced alignment approach was combined with the multi-phone pronunciation model to produce
phone confusion data for the source language training databases.
CLSP WS’99 AUGUST 20, 1999
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@_RN E_MD I_MD R_MD U_MD a_ES a_MD a_RN aa_EN aa_RN aax_EN

@_RN 3201 0 0 0 0 0 0 0 0 0 1

E_MD 0 5639 0 0 0 7 0 0 0 0 0

I_MD 0 0 1343 0 0 0 0 0 0 0 0

R_MD 16 0 0 767 0 0 0 0 0 0 0

U_MD 0 0 0 0 1638 0 0 0 0 0 0

a_ES 0 3 0 0 0 47762 782 75 16 146 200

a_MD 1 0 0 0 0 2169 12120 37 16 40 309

a_RN 0 0 0 0 0 1660 315 3011 5 0 0

aa_EN 0 0 0 0 0 471 223 12 316 5 0

aa_RN 0 0 0 0 0 0 0 0 0 3346 100

aax_EN 0 0 0 0 0 0 0 0 0 0 5446

R
H
H
H

Figure 9. An example of phone confusion data generated on the source language training databases using
the multiphone approach. The vowel “a” appears to be a good example of a vowel that varies significantly
across languages, and could benefit from some sort of model combination.
ef: a b c d
yp #1: a b c d f
yp #2: b c d e
yp #3: a b c

Ref: a b c d — —
Hyp #1: a b c d — f
Hyp #2: — b c d e —
Hyp #3: a b c — — —
ROVER: a b c d
Figure 10. An overview of a method for combining hypotheses to improve system performance known as
ROVER. ROVER essentially using a majority voting scheme.
CLSP WS’99 AUGUST 20, 1999
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System Data

Front-End:
16 kHz Sample Frequency
10 msec frames / 25 msec window
12 Mel-Scaled Cepstral Coefficients (MFCCs)
Energy

Training:
English: VOA Broadcast News (10 hrs)
Spanish: VOA Broadcast News (30 hrs)
Mandarin: VOA Broadcast News (10 hrs)
Russian: Read Speech (4 hrs)

Acoustic Models:
Continuous Density HMMs
Three-State, Left To Right Topology
Monophones (~40)
Gaussian Mixtures (~20 per state)

Held Out: Czech Voice of America Broadcasts
Broadcast News: CZBN-1 (1.5 hrs)
Financial News: CUCFN-1 (1 hr)

Language Model:
63K Vocabulary
Bigram LM Trained on 16M Words
Approx. 6M Bigrams
Test Set Perplexity: 650

Eval: Czech Voice of America Broadcasts
Broadcast News: VOA-1 (1 hr)
Broadcast News: VOA-2 (2.5 hrs)
Broadcast News: VOA-3 (1.7 hrs)
Table 1. An overview of the speech recognition system and databases used in this study.
Phone Description

S UNVOICED ALVEOLAR FRICATIVE

F UNVOICED LABIO-DENTAL FRICATIVE

II HIGH FRONT UNROUND LONG VOWEL
Table 2. An example of a representation of a phone in terms of articulatory positions.
CLSP WS’99 AUGUST 20, 1999



LANGUAGE INDEPENDENT ACOUSTIC MODELING

Czech Broadcast News VOA-1 VOA-2

Source Language Target Language WER WER

Czech (CZ) Czech (CZ) 27.6 23.6

Russian (RN) Czech (CZ) 65.2 60.8

Spanish (ES) Czech (CZ) 79.3 71.7

English (EN) Czech (CZ) 80.9 75.5

Mandarin (MD) Czech (CZ) 91.1 88.7
Table 3. Baseline monolingual system performance.
Czech Broadcast
News

VOA-1

Source Language WER Dels Subs Ins

Mandarin - v1 91.1 15.0 72.5 3.4

Mandarin - v2 93.7 16.2 74.3 3.2

Mandarin - v3 90.1 29.8 59.4 0.9

Mandarin - v4
89.3

28.7 59.7 0.9
Table 4. Several approaches to Mandarin phone mappings were explored in an effort to improve
performance. As we can see, performance was not greatly influenced by the nature of the manual phone
mapping.
Czech Broadcast
News

VOA-1

Source Language WER Dels Subs Ins

Spanish 79.3 10.6 63.5 5.3

Selective 77.7 9.1 63.1 5.6
Table 5. A comparison of performance using a Spanish-only system, and a system involving a mixture of
mappings from three source languages. Though there is a modest improvement in performance, the
improvement was not nearly as significant as we had hoped.
CLSP WS’99 AUGUST 20, 1999
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Czech Broadcast News VOA-1

Source Language Target Language WER

Czech (CZ) Czech (CZ) 27.6

Russian (RN) Czech (CZ) 65.2

Spanish (ES) Czech (CZ) 79.3

English (EN) Czech (CZ) 80.9

Mandarin (MD) Czech (CZ) 91.1

Parallel Prons. Czech (CZ) 83.0

Multi-Phone Prons. Czech (CZ) 80.1
Table 6. Performance for two approaches as mixing phones from multiple languages. The parallel
pronunciation approach constrains words to use phones from the same language. The multi-phone
approach allows the system to mix and match phones from any language. As we can see, the latter system
resulted in a minor improvement in performance, but did not exceed the performance of the baseline
system.
Word-Level Performance:

Phone-Level Performance:

Czech Broadcast News VOA-1

Source Language Target Language WER

Czech (CZ) Czech (CZ) 27.6

ROVER Czech (CZ) 62.1

Russian (RN) Czech (CZ) 65.2

Spanish (ES) Czech (CZ) 79.3

English (EN) Czech (CZ) 80.9

Mandarin (MD) Czech (CZ) 91.1

Czech Broadcast News VOA-1

Source Language Target Language WER

ROVER Czech (CZ) 38.4

Russian Czech (CZ) 36.3
Table 7. A summary of word-level and phone-level error rates for a ROVER experiment.
CLSP WS’99 AUGUST 20, 1999
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Czech Broadcast News VOA-2

Source Language Target Language WER

Czech (CZ) Czech (CZ) 27.6

English (EN) Czech (CZ) 75.5

English with Global MLLR Czech (CZ) 70.7
Table 8. An experiment designed to investigate the impact of any channel variations shows that a simple
global MLLR adaptation is not able to improve performance to a level where knowledge-based mappings
are competitive with data-driven techniques.
CLSP WS’99 AUGUST 20, 1999
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