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Preface

This edited volume consists of the expanded versions of the exceptional papers
presented at the 2020 IEEE Signal Processing in Medicine and Biology Symposium
(IEEE SPMB) held at Temple University in Philadelphia, Pennsylvania, USA.
IEEE SPMB promotes interdisciplinary papers across a wide range of topics,
including analysis of biomedical signals and images, machine learning, data,
and educational resources. The symposium was first held in 2011 at New York
University Polytechnic (now known as NYU Tandon School of Engineering). Since
2014, it has been hosted by the Neural Engineering Data Consortium at Temple
University as part of a broader mission to promote machine learning and big data
applications in bioengineering. The symposium typically consists of 18 highly
competitive full paper submissions that include oral presentations and 12–18 single-
page abstracts that are presented as posters. Two plenary lectures are included—one
focused on research and the other focused on emerging technology. The symposium
provides a stimulating environment where multidisciplinary research in the life
sciences is presented. More information about the symposium can be found at
www.ieeespmb.org.

This volume consists of five chapters. These chapters all share common founda-
tions in artificial intelligence, signal processing, and sensing. Most use some form
of deep learning techniques to automatically extract information from electrical
signals transduced from physical signals such as electroencephalograms (EEG).
Deep learning continues to have a transformative impact on the signal processing
field. Data plays a critical role in the development of such systems. Therefore,
the Neural Engineering Data Consortium (NEDC) at Temple University, which
sponsors this symposium, has a primary goal of promoting community interest in
the development of big data resources. To learn more about these resources, please
explore the NEDC web site (www.nedcdata.org).

The first chapter, titled “Restriction Synthesis and DNA Restriction Site Analysis
Using Machine Learning,” focuses a novel synthetic deoxyribonucleic acid (DNA)
synthesis method known as Restriction Synthesis, which utilizes iterative restriction
enzyme digest and sticky-end alignment to build a target DNA sequence from
a reference DNA sequence. By synthesizing many genes from a well-curated
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vi Preface

generalized reference sequence using machine learning techniques, the efficacy and
cost of Restriction Synthesis was improved.

The second chapter, titled “Human Detection and Biometric Authentication with
Ambient Sensors,” addresses the rapidly emerging area of smart ambient sensing
and control, with a focus on elderly populations. A passive infrared (PIR) sensor
was used to monitor physical motion and chest motion. The system is attractive for
noncontact human monitoring because it is nonintrusive, inexpensive, passive, and
relatively accurate. The chapter evaluates this technology in office and residential
environments, demonstrating it is viable for human monitoring and authentication.

The third chapter, titled “Generalization of Deep Acoustic and NLP Models for
Large-Scale Depression Screening,” focuses on automatically screening patients
for depression using voice. High performance is achieved using a combination of
deep learning and transfer learning for acoustic modeling and transfer learning for
natural language processing (NLP). The area under the curve (AUC) for a binary
classification task is 0.79 and 0.83 for the acoustic and NLP models, respectively,
demonstrating the feasibility of this approach for automated depression screening.

The fourth chapter, titled “TABS: Transformer Based Seizure Detection,” intro-
duces the use of transformers to predict seizure from EEG signals. The authors
participated in the open-source Neureka™ 2020 Epilepsy Challenge. Transformers
have had a dramatic impact on machine translation technology recent years but have
not been as successful on physical signals such as EEGs. The authors use a neural
network that includes fully connected layers, convolutional layers, and most notably
a transformer layer. The system achieved a sensitivity of 9.03% and a false alarm
rate of 31.21 per 24 h when evaluated using the Time-Aligned Event Scoring metric.

The fifth chapter, titled “Automated Pacing Artifact Removal from Electrocardio-
grams,” focuses on the electrocardiogram (ECG) to evaluate the electrical activity
of the heart for pacemaker applications. An automated method for elimination of
pacing spike outliers in ECGs is proposed that uses modified Z-scores calculated
from once differenced, detrended data to locate the pacing spike outliers if they exist.
The process is effective at outlier elimination without distorting the physiological
signal or affecting non-paced ECGs.

These papers are representative of the excellent work presented at this conference
this year at a time when the community faced unprecedented challenges due to
COVID-19. A sincere thanks goes to all our authors who helped make IEEE SPMB
2020 a great success. Due to COVID-19, this year’s conference was conducted for
the first time as a virtual conference. We had our largest and most diverse group of
participants ever, with over 150 registrants. Papers, presentation slides, and videos
are available from the IEEE SPMB conference web site (www.ieeespmb.org/2020).

Philadelphia, PA, USA Iyad Obeid
Philadelphia, PA, USA Joseph Picone
Brooklyn, NY, USA Ivan Selesnick
December 2021

http://www.ieeespmb.org/2020


Contents

Restriction Synthesis and DNA Restriction Site Analysis Using
Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ethan Jacob Moyer and Anup Das

Human Detection and Biometric Authentication with Ambient Sensors . . 55
Jack Andrews and Jia Li

Generalization of Deep Acoustic and NLPModels for Large-Scale
Depression Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Amir Harati, Tomasz Rutowski, Yang Lu, Piotr Chlebek, Ricardo Oliveira,
Elizabeth Shriberg, and David Lin

TABS: Transformer Based Seizure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Jonathan Pedoeem, Guy Bar Yosef, Shifra Abittan, and Sam Keene

Automated Pacing Artifact Removal from Electrocardiograms . . . . . . . . . . . . 161
Christopher J. Harvey and Amit Noheria

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

vii



Restriction Synthesis and DNA
Restriction Site Analysis Using Machine
Learning

Ethan Jacob Moyer and Anup Das

1 Introduction

1.1 Problem

Restriction synthesis uses iterative restriction enzyme digest and sticky end align-
ment to catabolically synthesize a target DNA sequence. Typically, synthetic DNA
synthesis is an anabolic process: subsequences of different lengths are combined
one at a time to synthesize a target sequence. Conversely, restriction synthesis is a
catabolic process as restriction enzymes cleave subsequences from a larger reference
DNA sequence. Although there is an anabolic-catabolic difference between these
two processes, both of them utilize subsequence monomers as an intermediate
step to synthesize a target sequence. For instance, synthetic DNA synthesis relies
on the anabolic building of single-stranded oligonucleotides, while restriction
synthesis focuses on catabolically cutting out double-stranded subsequences from a
reference sequence. In this way, restriction synthesis requires no such mechanism of
oligonucleotide synthesis as is seen in synthetic DNA synthesis. Instead, it focuses
on identifying subsequences by parsing through a reference sequence. Therefore, a
generalized reference sequence must be well-curated before carrying out restriction
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2 E. J. Moyer and A. Das

synthesis such that only common subsequences that will contribute to the synthesis
of target sequences are included. These are classified as applicable subsequences.
Subsequences that do not satisfy this condition are labeled as inapplicable subse-
quences. Classifying subsequences based on this high-level criterion and observing
how restrictions synthesis performs when using a curated generalized reference
sequence is the main focus of this work.

1.2 Data Set

By following the synthesis of 1000 Mycobacterium tuberculosis structural genes
during restriction synthesis, a data set of about 151,000 subsequences was obtained.
These genes ranged from 1000 to 5000 base pairs and are from the National Center
for Biotechnology Information (NCBI) [1]. Each subsequence had a class label
as previously defined: applicable or inapplicable. These class labels correspond
to which subsequences were (and were not) utilized in synthesizing each of the
selected genes. The feature set of each subsequence was built using information
from the gene of interest and the subsequence itself. In total, 16 feature groups
led to 231 unique predictors in the data set. A subset of those 231 predictors
is from a one-hot encoded vector of the nucleotides in each subsequence. Other
features quantified the heterogeneity of nucleotide composition to gauge how likely
a given subsequence is to appear at random. The remaining two predictors measured
subsequence commonality and enzyme availability. These features described the
relative usability of each subsequence in the restriction synthesis process.

1.3 Models and Experiments

Six popular techniques in machine learning were applied on this data set: support
vector machine (SVM), random forest, naive bayes, k-nearest neighbor (KNN), arti-
ficial neural network, and convolutional neural network (CNN). The results of each
model were compared using 10-fold cross-validation. First, different models were
compared based on changes in hyper-parameter selection, and then the best models
for each method were compared against one another. Using the best performing
model, a generalized reference sequence was built from the classification results
of unseen data and utilized in restriction synthesis. The results from the newly
curated generalized reference sequence were compared to the that of the randomized
reference sequence to determine whether there is a substantial improvement in
synthesis efficacy and the cost of the synthesis method.
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1.4 Results

The random forest (n = 45) model led in accuracy, recall, and F1-measure
with the artificial neural network trailing closely behind. A generalized reference
sequence was built from the subsequences that the random forest model classified
as applicable. When comparing this newly curated generalized reference sequence
to that of the randomized reference sequence in restriction synthesis, the reported
percent yield of the target query sequence for a constant reference sequence size
was far higher for the former. This indicates that the efficacy of restriction synthesis
increases when using a well curated reference sequence. Additionally, the cost
decreased when using this generalized reference sequence, supporting the adoption
of machine learning in finding the most optimal reference sequence.

2 Background

2.1 DNA Synthesis

Since the 1860s, scientists have explored the biological make-up of DNA. DNA is a
large biomolecule in the cell’s nucleus composed of four chemical monomers called
nucleotides, which are composed of a deoxyribose sugar, a phosphate group, and a
nitrogenous base. These are known as adenine (A), thymine (T), cytosine (C), and
guanine (G). The sequence of monomers in a DNA molecule serves as a code for
constructing proteins out of amino acids at organelles called ribosomes [2]. For this
reason, DNA is commonly regarded as the blueprint of life.

The field of molecular biology began with the isolation of nuclein by Johann
Miescher in 1869. Nearly almost a century later in the 1950s, James Watson and
Francis Crick postulated the process of semiconservative cellular DNA synthesis,
which has long been understood as a trademark to biological studies [3, 4]. Over
the past few decades, understanding this process has led to the discovery and
development of many synthetic manufacturing methods, namely synthetic DNA
synthesis processes such as oligonucleotide synthesis [5–7]. As a result, other
areas of genomics have accumulated massive research interest allowing the field to
advance at an incredible rate. From the start of the Human Genome Project in 1990
to the discovery of the Cluster Regularly Interspaced Palindromic Repeat (CRISPR)
Cas9 system in bacteria during 2005, many researchers and scientists have attempted
to fill in the gaps behind the molecule that is responsible for all living things on
Earth. As science continues to explore these areas, the immense advancement in
genomics technologies can be attributed to the growing reservoir of information
pertaining to DNA research [8, 9]. Although humanity is on its way to adopting the
full commercialization of advanced genomics technologies, the cost of synthetically
synthesizing DNA remains as the field’s largest determinant [10].
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While cells can chemically synthesize DNA continuously through a process
known as replication, it is increasingly difficult to synthesize long continuous
sequences of DNA in vitro. For this reason, synthetic DNA synthesis often starts
with a process known as oligonucleotide synthesis. Oligonucleotides are short
single-stranded DNA molecules 13 to 25 base pairs in length [11]. These molecules
are first built using a four-step cyclic process known as phosphoramidite synthesis,
which adds one nucleotide onto a growing oligonucleotide chain attached to a solid
support [5, 7]. After these oligonucleotides are built, they are specifically aligned to
one another using complementary base pairing. Finally, an enzyme known as DNA
polymerase is used in order to add nucleotides to any empty spots on the aligned
molecule. Although this is a popular method for many biotechnology companies, it
can be expensive ranging anywhere from $0.20 to $0.30 per base pair (bp) [12].

2.2 Restriction Synthesis: Theory

The rationale behind this work begins with the introduction of a computational
model for a novel catabolic DNA synthesis method called restriction synthesis.
Originally, the motivation behind this personal endeavor was to analyze the cost
of this process as it was thought that it would be far less expensive compared
to that of traditional methods. Restriction synthesis serializes the use of iterative
restriction enzyme flanking in order to cleave, or cut out, subsequences out of a
larger ambiguous sequence in the order by which they appear in a gene of interest.
For simplicity, the ambiguous sequence is referred to as the reference sequence
and the gene of interest is referred to as the query sequence. Figure 1 displays this
process briefly.

The flanking process shown in Fig. 1 is carried out by coupling two simultaneous
instances of restriction enzyme digests. Restriction enzyme digest is a typical
laboratory procedure that utilizes a restriction enzyme and a linear or circular
DNA sequence. The function of the restriction enzyme is to recognize a particular
sequence in the DNA, which is characterized by the protein structure of the enzyme.
Depending on the structure of the given restriction enzyme, it can perform either
a highly specific or non-local predictable double or single stranded cut on the
DNA sequence [13]. Figure 2 shows an example restriction enzyme digest using
enzyme EcoR1 on a sequence containing subsequence GAATTC, and Fig. 3 shows
a second example restriction digest using enzyme SmaI on a sequence contain
subsequence CCCGGG. Both of these subsequences contain the restriction site
for their respective enzyme. Each restriction enzyme may vary with respect to the
relative position in their recognition site at which they cut the DNA sequence.
In Fig. 2, EcoR1 cuts the primary (top) strand after the first nucleotide and the
secondary (bottom) strand after the fifth nucleotide from the left-hand start site of
its restriction site, while SmaI in Fig. 3 performs a cut after the third nucleotide
from left on both the primary and secondary strands. The primary and secondary
strand can also be identified by looking at the directionality of the sequence, or
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whether the sequence is running from 5 prime (5′) to 3 prime (3′) direction or vice
versa. In molecular biology, this orientation refers to the directionality of the carbon
backbone in DNA. While these two enzymes differ by their recognition sequence
and cut sites, some restriction enzymes can be classified as isoschizomers, which
are enzymes that recognize the same restriction site but may or may not perform
identical cuts [14].

Once a subsequence has successfully been flanked out of the reference sequence,
it is connected to the end of a growing query sequence using an enzyme known
as DNA ligase. In the case of EcoR1, two sticky-ends are produced with equally
long complimentary overhangs, while SmaI produces two blunt-ends. Typically,
complementary sticky ends are much easier to ligate to one another compared to
blunt-ends. This is because for sticky-ends ligation there is no ambiguity as to which
side the two ends should be ligated. Conversely, blunt-ends provide no basis for
DNA ligation as either end of a blunt-end DNA molecule looks chemically similar
to that of a second incoming blunt-end DNA molecule [15].

Although there has been massive interest in synthetic DNA synthesis methods,
no work has proposed a technique like restriction synthesis. With that being said,
the idea of standardizing DNA subsequences is less novel but increasingly robust.
In 2008, Dr. Thomas Knight and his colleagues attempted to standardize synthetic
DNA subsequences by creating plasmids which can be targets for restriction
enzyme flanking. Their idea was for each standardized DNA subsequence to have a
highly specific biological function [16]. From this basis, they formed the BioBrick
assembly standard, which is composed of roughly 2000 BioBrick standard DNA
subsequences. Their aim for this work was to translate engineering principles to
synthetic biology by allowing researchers to isolate and test unique genetic functions
independent from the rest of the system. This is analogous to unit testing in
systems engineering. Essentially, the group created an engineering framework for
a linear system in genetic and molecular engineering. Their method of introducing
these standard DNA subsequences was based around iterative restriction enzyme
digest. Their two-step assembly process begins with flanking a standard DNA
subsequence with restriction enzymes XbaI and SpeI and the BioBrick base vector
with restriction enzyme NheI. The standard DNA subsequence is then inserted into
the open region of the BioBrick base vector. These subsequences efficiently ligate
to one another because all three restriction enzymes used in this process produce
compatible sticky-ends. In short, the BioBricks standard is a process that “employs
iterative restriction enzyme digestion and ligation reactions to assemble small basic
parts into larger composite parts” [17].

The key difference between restriction synthesis and the BioBricks standard
is that the latter only digests subsequences with the XbaI and SpeI restriction
enzymes. Restriction synthesis relies on a data set of approximately 200 restriction
enzymes from New England Biolabs [18]. In flanking a reference sequence with
many restriction enzymes, restriction synthesis builds more composite subsequences
homologous to those used in the BioBricks standard [16].

In restriction synthesis, the query sequence is the target of synthesis, and the
reference sequence is the target of restriction digest. Although this relationship is
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well-defined, the ratio of the number of query sequences used for each reference
sequence is not. There then are two extremes by which the reference sequence and
query sequence are used in restriction synthesis. On one hand, there may exist a one-
to-one correspondence between each unique query sequence and a unique reference
sequence. In this case, each query sequence is synthesized from an independent
unique reference sequence, which would require complete sequencing of all the
components. Although this approach would result in incredibly accurate synthesis
results, it would massively increase the cost of this method; the composition of
each query sequence could be tailored to a specific unique reference sequence,
but the synthesis and sequencing costs would eventually compound beyond its
benefit. Therefore, this extreme case sacrifices cost for efficacy. On the other end,
we can design one reference sequence from which many different query sequences
can be synthesized. In this case, this reference sequence would be considered a
generalized reference sequence because it is not designed for any one unique query
sequence. This solution is a less expensive alternative to the former as only one
reference sequence would need to be sequenced prior to restriction synthesis. There
would most certainly be a decrease in the efficacy of the method when using
a generalized reference sequence, but the cost would be far lower as it would
require less sequencing. In this way, there is an inherit trade-off between the cost
of restriction synthesis and its efficacy.

In order to optimize this second method, we have explored a procedure to care-
fully choose which subsequences should be included in the generalized reference
sequence. By experimentally defining which subsequences fit specific criteria, we
examined classification of DNA subsequences into two classes: applicable and
inapplicable for inclusion in the generalized reference sequence. An applicable sub-
sequence was defined as a subsequence containing a candidate fragment sequence,
one that is common amongst different query sequences, that can be flanked perfectly
by the combination of two restriction enzymes. The fragment sequence is the
region that is of interest for the query sequence, and the subsequence contains
that fragment sequence plus restriction enzyme recognition sites on either side
of it. Additionally, the restriction enzymes utilized to perform this flanking must
be commonly compatible with other restriction enzymes to support unambiguous
sticky-end ligation. An inapplicable subsequence is one that does not follow these
criteria.

2.3 Restriction Synthesis: Computational Model

We used a computational model to emulate restriction synthesis by incorporating
an iterative restriction enzyme digest and sticky end alignment process. Through
many simulations, we observed the classification results of different subsequences.
A given subsequence must have satisfied three conditions in order for it to have been
labeled as an applicable subsequence. These include a fragment match, an instance
match, and a ligation match.



Restriction Synthesis and DNA Subsequence 7

Given a query sequence and a reference sequence, the computational model
simulates restriction synthesis by first searching for fragments that exist in the
query sequence anywhere in the reference sequence. These matches are considered
fragment matches. The length of these fragments varies with each search depending
on which fragments are available in the reference sequence. It is more likely, for
instance, to find a shorter fragment match than a longer fragment match at random.
Each fragment search begins with searching for a large fragment sequence 16 bp
long. The search continues by decreasing this value until a fragment match is found.
Through this algorithm, each iteration for a fragment match ensures that the longest
possible candidate subsequence is identified. If the algorithm reaches a minimum
fragment match length of four bp, it will decide that there is no such fragment match
in the reference sequence. If this occurs, the algorithm simply continues one bp
position to the right and continues to search for the next 16 bp fragment sequence.

An instance match is based on whether two enzymes exist that can flank and
digest the candidate subsequence. This condition is critical because while there
exist many fragment matches, only a select few subsequences can be digested using
restriction enzymes in the database. Using the restriction enzyme database from
New England Biolabs, the simulation had access to 204 unique restriction enzymes
and their respective restriction sites [18]. Despite the few number of enzymes,
many of them have versatile recognition sequences, cutting a variety of DNA sites.
Access to these versatile enzymes is one of the reasons why restriction synthesis
can successfully complete on a variety of query sequences. All enzymes will be
considered for each candidate subsequence. It should be noted as well that the
process is able to use restriction enzymes from any database so long as they are
formatted in a similar object structure. If the instance match criterion is not met for
a given subsequence, the algorithm will start over and look for a fragment match
one bp to the right.

In addition to a fragment match and an instance match, a third match is required:
a ligation match. Some restriction enzymes cut DNA in a Z-like manner, where the
product of the enzymatic digest contains nucleotide overhangs, commonly referred
to as sticky-ends. Because many of the restriction enzymes create these sticky-ends
on digested fragments, a ligation match is needed to ensure that sequential fragments
are compatible. For instance, a subsequence that ends in an overhang of AGTA
on the 5′ end needs to be followed with an overhang that begins with TCAT on
the 3′ end. Also, some enzymes produce blunt-end fragments, or ends without any
overhangs. These fragments need to be followed with other fragments that have
these blunt-ends as well. This final end-to-end compatibility indicates whether a
fragment sequence can be classified as a subsequence match and how the search
process continues.

These three main conditions, a fragment match, instance match, and ligation
match, dictate whether there exists a subsequence match in the reference sequence
and whether the given subsequence is defined as applicable to be included in the
generalized reference sequence. If it is, the fragment is extracted from the reference
sequence and added to the growing query sequence.
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Restriction synthesis was first implemented with the assumption that each
fragment flanked from the reference sequence could be blunt-end ligated onto a
growing query sequence. To standardize the subsequences that are flanked from the
reference sequence, blunt-ends are created on both sides. Several enzymes, such
as T4 DNA Polymerase, S1 Nuclease, Klenow, and DNA Polymerase, are used
following the restriction enzyme digest in order to create blunt-ends from sticky-
ends. Specifically, T4 DNA Polymerase to remove 3′ overhangs, S1 Nuclease to
remove 5′ overhangs, Klenow to fill in 5′ overhangs, and DNA Polymerase and
an RNA primer to fill in 3′ overhangs [15]. Because these additional steps and
nonspecific ligation procedures are slower than that of conventional methods of
ligation and DNA synthesis, further research must be undertaken to increase the rate
at which blunt-ends can be ligated together. This manipulation of the subsequences
allows for non-compatible sticky-ends to be ligated together without any loss of
DNA. If non-compatible sticky-ends were ligated together, a DNA polymerase
would add and delete nearby nucleotides randomly, which would alter the query
sequence being synthesized. This method was changed so that only compatible
restriction digests are included. This decreases the likelihood that any given random
subsequence from the reference sequence could be used for synthesizing the query
sequence. However, sticky-end ligation is known to be much more effective than
blunt-end ligation because there is less side ambiguity due to alignment specificity.
Furthermore, blunt-end restriction sites often lead to a phenomenon known as self-
ligation, which is when one end of a subsequence ligates to its other end [19]. Taking
the rate or probability of self-ligation into account will further complicate the model.

Previously, from 2017 to 2018 restriction synthesis relied on another assumption
that the reference sequence from which query sequences are synthesized would be
effectively generated at random. For this reason, the idea of a randomized reference
sequence was coined. The model equation, L = C ∗ gns

r
, calculates the length, L,

of the randomized reference sequence, where n is the length of the query sequence.
This value must be large enough to account for all fragments found in the query
sequence, and it also needs to be short enough to keep the price of sequencing low.
Other constants, such as g, the complexity constant; C, the model constant; and r ,
the complexity rating were introduced and calculated using simple experiments.
These variables allow the length of the randomized reference sequence to be
estimated so that it is long enough to synthesize the entire strand and still be short
enough to be cost effective for an experiment. Once this length L is calculated prior
to synthesis, any sequence can be used in mutagenesis, or error-prone polymerase
chain reaction (ep-PCR), as a basis to generate a randomized reference sequence of
this length [20].

In previous computational models, a sequence containing
⌈

L
n

⌉
repeats of the

query sequence was used in the ep-PCR method, emulating a randomized reference
sequence similar in composition to the query sequence of interest. The ep-PCR
method assumes a 3.5% mutation rate because of a few assumptions. These
include an increased concentration of Taq polymerase, an increased polymerase
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extension time, an increased concentration of magnesium chloride, and an increased
concentration of dNTP substrates. Also, it is assumed that a dilution and pooling
technique is used for about 64 cycles, or 16 dilution transfers, to avoid PCR
saturation. With this degree of error for ep-PCR, 20 cycles can be used to still ensure
a seemingly randomized reference sequence [21].

2.4 Related Work

This is a novel classification problem with many criteria. Many of which are not
simply rooted directly the subsequence itself, such as the requirement for compatible
sticky-ends. One group has previously explored the classification of longer bacterial
DNA subsequences (about 500 bp in length) into their respective phylogenetic
categories at the levels of phylum, class, order, family, and genus [22]. Models such
as CNNs have been able to produce accuracies as high as 99.5% for classifying
subsequences into their respective phyla. The accuracy is observed to decrease as
the category becomes more granular with 67.6% for genus level classification. These
results help to illustrate the various levels at which DNA can be classified. This
group utilized a character-level one-hot encoding of their subsequences, resulting
in a sparse representation of their feature vectors. Other works have used this
representation in order to classify biological factors related to subsequences, such
as their susceptibility to epigenetic changes like H3K9 acetylation [23]. Other
applications of this DNA sequence encoding have seen accuracies as high as 96.23%
for classifying subsequences as promoters, which are regions of DNA that initiate
transcription. Because of the success of this method, we have adopted a similar
one-hot encoding for representing our DNA subsequences.

Another group used a k-mer spectral representation to encode DNA subse-
quences [24]. By looking at the frequency of different short subsequences k bp in
length (called k-mers) through a sliding window, a spectral representation can be
formed that encodes the relative occurrence of k-mers existing in a larger sequence.
In this case, the authors chose to abuse the “bag-of-words” model commonly seen
in natural language processing. This DNA subsequence feature encoding method is
computationally expensive as each k-mer has 4k subsequences that can be included
in the representation. Also, encoding DNA subsequences in this way requires that
a representation be built from k-mers ranging from 1 to k nucleotides in length,
leading to a sum of permutations.

Other groups have focused on fixed-length subsequence classification which
limits the classifications to subsequences of the same length [25]. In our problem,
this is incredibly limiting as not all applicable subsequences are the same size. For
this reason, we added padding on our shorter subsequences in order to classify DNA
subsequences of any length (see Sect. 3).
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3 Feature Selection

The feature set of the data included 16 unique variables. Firstly, the SEQ feature is
a vector of ordinal values corresponding to each nucleotide, where A, T, C, and
G were assigned ordinal values 1, 2, 3, and 4, respectively, and the ambiguous
base, N, was assigned an ordinal value of 0. This ambiguous base was observed
when padding shorter subsequences since we are allowing them to be variable
in length. After assigning ordinal values, one-hot encoding was used in order to
form a sparse representation of the data. This increased the dimensionality of this
feature five-fold. In this paper, we refer to the 215 values in the SEQ feature as
the nucleotide features. These features most directly relates to whether a specific
subsequence can be flanked by two enzymes due to the presence of restriction sites.
What it does not capture, however, is the relative frequency of observing those sites
and the prevalence of having two restriction enzymes to flank the subsequence.
Including these nucleotide features in the data set is what motivated the use of a
CNN. Typically, CNNs are for learning spatial relationships in data. The nucleotide
features, in a way, serve as a spatial representation of the subsequence itself.

Another feature is LEN that encodes the length of each subsequence. Because
each subsequence was padded, this information is lost in the nucleotide features.
This feature is particularly important as it may serve as a simple heuristic for the
likelihood that an enzyme could be used on the given subsequence. Considering
that longer subsequences have a greater chance of containing restriction sites, this
feature should show a clear positive relationship with the classification of the data.
In preprocessing, this feature was normalized with respect to the maximum observed
subsequence length in the data set.

Eight more features are obtained using Eq. 1. This equation describes the
proportion of each nucleotide in a given subsequence. The first four are with respect
to the subsequence itself, and the second four are with respect to the query sequence
that restriction synthesis is attempting to build. These features are represented
as P(A), P(T ), P(C), and P(G) in either the subsequence or query sequence
context. It was previously mentioned that ep-PCR was originally utilized to prepare
a randomized reference sequence by purposefully mutating a sequence similar (if
not identical) to the query sequence; these features were proposed as a simple metric
to determine the degree of similarity between the two sequences.

The next four features are related to a novel sequence metric, the complexity
rating, as shown by Eq. 2 and Eq. 3. These equations were used to accurately
summarize the nucleotide composition of all four nucleotides with a continuous
value ranging from 0 exclusive to 1 inclusive. Equation 2 is responsible for deter-
mining the deviation of an entire sequence from an equal nucleotide composition,
whereas Eq. 3 segments a sequence based on preset values ranging from b to p

and examines this deviation for each segment proportionally. In other words, the
rationale behind Eq. 3 was to sum complexity ratings from Eq. 2 in proportion to
the relative occurrence of k-mers size i in sequence size n.
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Both of these ratings determine how far a sequence deviates from an equal
nucleotide composition. A total of four features represents both the r1 and r2 values
of a given subsequence and query sequence, respectively. This implementation of
the complexity rating has a basis in the original model equation introduced in
Sect. 2.3. The complexity rating, r , is scaled from zero to one in order to represent
the complexity of a sequence. The composition of a sequence denotes whether a
sequence is more uniform (has an r value closer to 0) or more complex (has an r

value closer to 1). By rating a sequence’s complexity, and ultimately its nucleotide
composition, the metric identifies whether there exists long segments of repetitive
nucleotides. An ideally random sequence has an equal ratio of all four nucleotides.
This extreme is not biologically accurate as some sequences are AT rich and others
are CG rich, but the complexity rating serves as a type of bookkeeping for a
sequence’s relative complexity (or uniformity).

Three different algorithms were explored to calculate r . The first algorithm, the
complete calculation, assumes that the overall composition of the gene will provide
a representative complexity rating for the gene. This is displayed in Eq. 2, where
α = {A, T ,C,G}. It was discovered, however, that shorter segments within the gene
could have repetitive sequences that would bias the complexity rating. As a result,
a second algorithm was developed to correct this lack of specific consideration on
short subsequences inside of the gene. The second method, the averaged calculation,
first splits the gene into 4-mers and then averages together each of their r values.
While this does solve the problem of misrepresenting a gene with short repetitive
segments, it does not account for the other lengths of subsequences that maybe
utilized in restriction synthesis. A third method attempts to weigh individually
calculated r values by the relative occurrence of differently sized non-overlapping k-
mers. The range of subsequence lengths that restriction synthesis takes into account
are called parsing values. In an exhaustive search, the highest value for a given
query sequence is 2�log2 n�, where n is the length of the query sequence. Subsequent
values are calculated by recursively dividing the current value by two until it reaches
a base value of four. This method calculates the r value for each parsing values and
stores the number of occurrences of non-overlapping subsequences. The overall r

is calculated using a weighted metric of each r with the number of occurrences
recorded. This calculation of r is displayed in Eq. 3.

p(x, L) = occurrence of x

L
(1)

r1(L) = 1 −
∑

i∈α

(
1

4
− p(i, L))2

(2)

r2(n) =
p∑

i=b

∑n−i
j=0 r1(i) ∗ i

n∑p
k=b

k
n

(3)
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Lastly, two additional auxiliary features, C and EZY , were included to encode
the commonality of a subsequence and the relative availability of each enzyme,
respectively. The C feature represents the number of query sequences that contain
the subsequence. This feature is analogous to the frequency of a term in a document
in natural language processing. The EZY feature represents the number of available
enzymes that can digest the given subsequence. These features were incorporated to
gauge whether a particular subsequence is common in the data set and whether
there are enough enzymes available to flank it. Just like the LEN feature, it is
expected that there will be positive relationships with these two features as well.
The notion for C is that when a particular subsequence is observed in many different
query sequences, it will most likely be classified as an applicable subsequence.
Similarly, when there is a greater number of enzymes available to digest a particular
subsequence, there is a higher probability that two of those enzymes will be able to
flank a given subsequence.

4 Data Selection and Prepossessing

Based on an initial raw data set of approximately two hundred million subse-
quences across almost one thousand restriction synthesis simulations, a corpus of
99,886 subsequences was selected with a 50/50 percent distribution between the
two classes. Restriction synthesis simulations for the Mycobacterium tuberculosis
Erdman strain urease structural subunit A gene (U33011.1_cds_AAC43473.1_1)
were tracked using a randomized reference sequence 354,634 bp in length. This
gene is 3800 bp in length. The resulting restriction map is shown in Fig. 4. With a
randomized reference sequence of this size, the simulation was able to synthesize
79.87% of the query sequence on average. Even with this large, randomized
reference sequence the model was still not able to synthesize the query sequence
with 100% accuracy. This underlines one of the main motivations for the work: to
increase the accuracy of restriction synthesis by using a well-curated generalized
reference sequence. In one synthesis example, the simulation discovered 102
applicable subsequences out of a total of 33,050 candidate subsequences. For this
reason, there is a huge, unbalanced class distribution within the data. Currently, the
data is being classified under the assumption that these two classes are distributed
equally. In reality, this would be impossible to assume because the discrepancy is
too large. When this method was originally implemented, it was built with a cost
analysis feature in order to gauge the relative cost when utilizing restriction enzymes
in this way. Overall, the model calculated a price of only $0.0378 per base pair on
average, which is considerably less than most standards [26]. This example should
give some sense of scale to the second aim of this work: to decrease the cost of
restriction synthesis by favoring the selection of long common subsequences in the
generalized reference sequence.

During preprocessing, the subsequences were stratified into their respective
classes to construct a 50/50 distribution. Then, the LEN , C, and EZY features were
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normalized according to their maximum value. The other features such as P(A),
P(T ), r1, etc were not normalized as they are already inherently scaled from zero to
one. Each of the nucleotide ordinal features were encoded using one-hot encoding
where each nucleotide was assigned a vector of length five for the four nucleotides
and the ambiguous base. After these preprocessing steps, the input data contained
231 features and a single target output. The data was separated into constant groups
using 10-fold cross validation to validate each of the models.

5 Feature Analysis

Before analyzing class feature distributions, it is important to check for whether
the features are strongly correlated with one another. In order to do this, a pairwise
Pearson correlation between all non-nucleotide features was generated as shown
in Table 2. Most of the features are either weakly positively or weakly negatively
correlated with each other. This general weak correlation implies that the features
in the data set are non-redundant and add different information to the prediction.

Next, the pairwise correlations between all nucleotide features were obtained in
order to observe whether there is any nucleotide-nucleotide interaction. Because the
table is so large, the data is simply summarized in Table 3 where each nucleotide
feature is tabulated next to its highest correlated feature. This correlation test
indicated high local nucleotide-nucleotide interaction within a subsequence. One
would expect some degree of interaction due to the nature of restriction enzymes
cutting at specific restriction sites. For most of the nucleotide features, we see
that the highest correlated nucleotides tend to be those most adjacent to a given
nucleotide.

As seen in Table 3, the maximum correlation per feature tends to drastically
increase as the nucleotide feature number increases. This is because the nucleotide
features farther from the start site at Nuc1 are more likely to be confounded
with subsequence length. The first few features are the main site of the left-
sided restriction digest for any subsequence, but the right-sided restriction digest is
confounded on the last few features because the length of subsequences is variable.
In other words, when examining the last few features of a shorter subsequence they
may be confounding with the intermediate nucleotides of a longer subsequence
when considering all of the nucleotide features at once.

In order to analyze nucleotide-nucleotide interaction further with less length
confounding interactions, subsequences were stratified by length. Table 5 displays
such a test where the correlation was obtained for only those sequences that
are ten base pairs or less in length. From this table we can see that many of
the sites have relatively low correlation, which indicates low local nucleotide-
nucleotide interaction. While this might be strange at first due to the supposed
nucleotide interactions within the constant restriction sites of a given restriction
enzyme, it can be explained due to another confounding factor: the variety of
restriction enzymes used. In fact, this low correlation implies that there must be
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many different restriction enzymes applied on these subsequences. Some of the most
used restriction enzymes are those with shorter restriction sites composed of two to
four nucleotides compared to a larger restriction site with eight or more nucleotides.
This is due to the notion that shorter restriction sites are more likely to appear at
random in any given subsequence. It then follows that this low nucleotide-nucleotide
interaction displays that a variety of different restriction enzymes were utilized in
this process.

As it was originally hypothesized, Fig. 5 supports that applicable subsequences
tend to be longer on average. Not only does there appear to be a higher mean
with applicable subsequences compared to inapplicable subsequences, but the right
histogram also has a bimodal distribution whereas the left histogram has a unimodal
distribution. In the case of inapplicable subsequences, if the lengths of particular
subsequences appear at random it is easy to justify why there would only be one
mode approximately halfway between the minimum and maximum observed length.
However, a relatively apparent bimodal distribution for applicable subsequences
identifies that two subsequence length categories are favored above all else. It may
be that these two modes signify groups of subsequences that have more in common
than just their lengths. This distribution is further supported by the high correlation
between the Output feature and the LEN feature noted earlier.

In Fig. 6, P(C) and P(G) are nearly identical for instances classified as
applicable subsequences. This may indicate a high dependence between nucleotides
cytosine and guanine within each subsequence. A similar trend is observed for
P(A) and P(T ). Since both of these pairs of distributions follow each other, it is
not unlikely that the algorithm favors AT rich or CG rich subsequences. Although
this is a naturally biologically occurring phenomena, the only way this could be
incorporated into the data is if restriction synthesis favors applicable sequences
when they are AT or CG rich. This may call for more features such as P(AT ) or
P(CG) to examine whether this relationship still holds.

Also, as seen in Fig. 7, the distribution of P(C) for query sequences is nearly
identical for instances classified as an applicable (left) and as inapplicable (right).
This may indicate that at least for P(C) this feature is not very deterministic of
the classification of a subsequence. This may be the case for several reasons. The
first of which may be due to the reliance of restriction enzymes on nucleotides
other than cytosine. It might also be the case that cytosine at high proportion is
included in some restriction sites but not those of enzymes most commonly used
in restriction synthesis. For example, if restriction sites primarily include adenine,
thymine, and guanine and not cytosine, then the distribution of P(C) should be
independent of the classification like it is observed here. It follows accordingly that
we see changes in the distribution for the other three nucleotides when we stratify by
the classification. In the case of these three nucleotide proportion distributions for
the applicable classification, they appear more approximately normal than that of the
inapplicable classification. This indicates that the recognition of these nucleotides
in restriction sites is approximately normally distributed amongst all subsequences
in each class.
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Figure 8 shows that higher enzyme availability is more often observed with
applicable subsequences compared to inapplicable subsequences. In the applicable
subsequence case, the distribution quickly tappers off to the right side. The
inapplicable subsequence distribution tappers off just as quickly to the right as well
but there is a group of values between bin 0.33 and 0.36 that does not have any
visible occurrences. Normally, the frequency of these missing occurrences could
be explained by chance; however, due to the large number of instances examined
in this analysis, this is not likely the case. One possible explanation is due to the
existence of isoschizomers. If there are enough groups of restriction enzymes that
recognize the same restriction site, they would always be accounted for by the
commonality feature. For example, if there is some inapplicable subsequence A
that can be digest by restriction enzyme Z that has five or more isoschizomers, it is
very possible that all five of those isoschizomers would be counted when evaluating
this feature for that subsequence. In this way, when calculating the proportion of
enzymes that can digest any given subsequence, there is an all-or-nothing count for
many of the isoschizomers depending on the sequence. Why is this not similarly
observed for applicable subsequences? It could be that this distribution contains
other subsequences that fall under the bin that would otherwise be ignored by the all-
or-nothing isoschizomers restriction sites observed for inapplicable subsequences.

In the case of the commonality feature, C, Fig. 9 displays an unexpected
relationship with the subsequence classifications. Upon initial consideration, one
would have expected that the applicable subsequences would have a higher degree of
similarity among a list of query sequences compared to inapplicable subsequences.
A simple reason for why this is not the case is due to the distribution in subsequence
length observed in Fig. 5. As applicable subsequences tend to have a distribution
favoring higher lengths, it would follow that those longer subsequences would have
less of a chance of appearing at random in another query sequence. Therefore,
this can explain why there is not a high commonality among the applicable
subsequences. Further it is important to note that restriction synthesis is not
optimized to include the most common subsequences amongst query sequences.
If this was the case, then we would expect to see this distribution for the applicable
subsequences change dramatically with a noticeable shift to the right.

It is apparent in Fig. 10 that there is little to no difference between the
subsequences classified as applicable and inapplicable for the distribution of the
r1 feature. When comparing Figs. 10 to 11, the latter has a thinner distribution
compared to the former. This may indicate that the r2 feature for subsequences has
values more closely centered around a modal distribution compared to that of r1.
It is important to note that this distribution shape difference is also observed when
comparing Figs. 12 and 13. Because the distribution of r2 generally appears thinner
than that of r1, it may be characteristic of the r2 feature to capture a tighter spread of
values compared to the r1 feature. One possible explanation is due to the difference
in how each of these features are calculated. In Eq. 3, the r1 feature is calculated
over an entire sequence of length L, whereas r2 in Eq. 2 is averaged across different
lengths. The latter approach would introduce a tighter distribution.
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6 Metrics

Since we are dealing with a binary classification problem, we can express our
predictions with a confusion matrix as shown in Table 1. Specifically, we are
interested in metrics such as accuracy, precision, recall, and the F1-measure. The
equations for these metrics are expressed in Eq. 4-7 below.

accuracy = true positive + true negative

true positive + true negative + f alse positive + f alse negative
(4)

precision = true positive

true positive + f alse positive
(5)

recall = true positive

true positive + f alse negative
(6)

f 1 measure = 2 ∗ precision ∗ recall

precision + recall
(7)

While the accuracy metric in Eq. 4 underscores how well a give model is able to
predict classes correctly, precision displays its positive predictive value and recall
displays its true positive rate. Often in machine learning, an increase in recall implies
a trade-off with a decrease in precision and vice versa. For this reason, it is helpful
to report the F1-measure which incorporates both metrics as shown in Eq. 7. In
comparing each model, we would then favor those that score higher in accuracy and
the F1-measure.

7 Methods

7.1 Support Vector Machine

SVM is a supervised learning model that creates a separating hyperplane between
groups of data [27]. Given a set of training data and corresponding labels, the
algorithm attempts to best categorize data by measuring the distance of each data
point to the hyperplane [28]. By maximizing these distances, SVM creates highly
reliable non-probabilistic classifications [29]. If the data is in N dimensions, the
segregating hyperplane will be in N − 1 dimensions. A simple example is for data
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distributed across a two-dimensional (2D) plane. The hyperplane that separates the
data will then be a single dimensional line.

While SVM models are powerful, they still require certain input parameters
from the researcher that help to produce optimal classification results, such as the
regularization parameter, class weight, kernel coefficient, etc. Although some data
sets may not be linearly separable, kernel functions, such as the polymetric kernel,
Gaussian kernel, and sigmoid kernel, may be used to categorize different types of
data sets [30]. In addition to their versatility on different data classification patterns,
SVM models are highly efficient in higher dimension feature space and when the
number of samples is less than the dimension of the feature space. In the case of this
research, this higher dimension feature space efficiency was one of the main reasons
why SVM is used since there are a total of 231 input features.

7.2 Principal Component Analysis

In addition to the feature analysis, PCA was also used for feature reduction. PCA
is an unsupervised learning method that reduces a feature space while retaining
relationships in the data. By transforming a high dimensional feature space into a
specified number of principal components (PCs), raw data can be summarized in a
few dimensions [31].

7.3 Random Forest

Random forest is an ensemble learning model that implements a set number of
decision trees based on subsets of training data for classification and regression [32].
A decision tree is represented by a tree graph with nodes and branches. Typically,
each node is responsible for handling a subset of features, and each branch attempts
to partition the data based on those features at the associated node. The goal
of a decision trees is to implement enough nodes and branches to which data
from the root of the tree can be partitioned down into pure classes at the leaves
of the tree. However, as the maximum depth of the tree (the longest number
of connected branches) increases, the tree becomes increasingly complex, so this
metric is minimized when building a decision tree. Moreover, common operations
called pruning and boosting to shorten or grow the tree, respectively. Random forest
integrates a set number of decision trees into a model, so this is another hyper-
parameter that needs to be specified by the user.

One of the features of random forest is its use of out-of-bag data [33]. At the
construction of each tree, two-thirds of the data is included for training and the
remaining one-third is set aside for validation after the training has completed [34].
During the training process, each decision tree is generated based on a segmented
data set and a randomly selected feature set at each node of the tree [35]. When
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predicting based on new data, each tree provides a prediction, or a vote, for a certain
class. The final classification for random forest is based on which classification has
the most votes [32]. While a single decision tree may overfit data, many decision
trees in random forest allow for the overfitting to average out between trees.

Some of the advantages of the random forest model include its high accuracy
across data sets; its ability to process many features regardless if they contribute
greatly to the output; its insensitivity to outliers, noisy or missing data; and its ability
to form predictions using different variable types [36].

7.4 Naive Bayes

The naive Bayes is a probabilistic classifier that uses a strong independence
assumption in order to assign classes to instances. The key assumption of the naive
Bayes is that all of the features are perfectly independent of each other. In other
words, given an instance x with feature set D, the probability of observing that
instance in class C according to the apparently independent features in D can
be expressed as P(X = x | y = C) = ∏D

i=1 P(xi | y = C). The model
uses the following Bayesian rule: P(C = i | X = x) = P(X=x|C=i)P (C=i)

P (X=x)
,

where P(X = x) is equal for all classes so it need not be included. Therefore,
f (x) = arg max

x
P (X = x | C = i) P (C = i), finds the maximum posterior

probability for any class i given example data x [37].
Often, the naive Bayes provides accurate classifications even if the features are

not perfectly independent. This is because the predicted probabilities themselves
need not be accurate with respect to the underlying probabilities. This is because of
the fact that function f involves assigning C to x based on the arg max function,
which is simply a comparison of two probabilities. If both of the calculated
probabilities for two classes were calculated with the same changes to the equation
(or using the incorrect assumptions) and if both are affected equally, then they can
be compared to one another in order to perform a classification. This is the same
reason why P(X = x) can be removed from the denominator of the Bayesian rule
that was initially expressed [38].

7.5 K-Nearest Neighbor

KNN is a simple supervised classification model that uses the distance between
feature vectors in order to make a classification. Although this algorithm most
commonly uses the Euclidean distance to measure distance, other metrics may be
used such as the Jaccard Distance, Manhattan Distance, or cosine similarity. This
model only has one hyper-parameter k, which is responsible for denoting the number
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neighbors to use to make a classification. It is often useful to set k to an odd value
in order to avoid ambiguity.

The KNN model is first compiled with a training set. Then, a given test instance
is compared to the k nearest neighbors based on feature vector distance alone. The
given test instance will be assigned the class that is the majority for the k nearest
neighbors. This follows independently for all test instances.

Unlike some of the other machine learning models, like naive Bayes, KNN makes
no assumptions about the data and its features. Furthermore, another one of its
strengths is that it is versatile as it can be used for classification and regression. KNN
is not without its own drawbacks though. Because the model has to store all of the
training data when making each classification in the testing set, it is highly memory
intensive and computationally expensive. KNN is also sensitive to irrelevant features
as it weights the distance of all features in the data equally. Lastly, because KNN
is effectively dealing with high dimensional vectors when making comparisons,
the model may be at fault to something known as the curse of dimensionality. As
the dimension of the vector increases, the ratio of the minimum distance to the
average distance approaches a value of one. This implies that as the dimension of
the feature vector becomes large, KNN has a more difficult time forming accurate
classifications. This is something we took into account when evaluating the KNN
model since our feature vectors have 231 values each. A remedy to fix this is to
simply implement feature selection and reduction before applying KNN to shrink
the feature space [39].

7.6 Artificial Neural Network

ANN is a biologically inspired supervised learning model commonly represented
by a directed, weighted graph with layers and units like in Fig. 18 [40]. The
composition of an ANN includes an input layer, an output layer, and a specified
number of hidden layers each with their own set number of units (analogous to
neurons in the brain). While the dimensions of the input and output layer typically
match that of the input feature vector and number of classes, respectively, the
number of hidden units in each hidden layer is a hyper-parameter specified by the
user. Typically, when an ANN contains one or more hidden layers it is considered a
deep neural network (DNN).

Each unit in a given layer forms a connection with all other units in adjacent
layers [41]. A connection implies that an output from one unit is sent as an input to
the next unit. These connections are analogous to synapses in a biological neuron.
More specifically, in the network all of the inputs to a given unit are individually
weighted and then summed and sent through a (typically non-linear) activation
function as an output to the neurons in the subsequent layer. Each unit has an
associated weight that is used to adjust the impact on any given output. Thus, during
any single prediction the signal from the input layer propagates through all of the
subsequent layers. It is weighted and summed at each unit in the hidden layers until
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it reaches the final output layer in the network. These weights are one important
factor for making accurate predictions. For this reason, the error observed in the
output layer as a result of the initial propagation step is used in a second step
known as back-propagation in order to adjust the weights in the previous layers.
Different network architectures can be compiled with various error functions, or loss
functions, which influence how the output error affects the weights of the network.
Two frequently used error functions are the mean squared error (MSE) and mean
absolute error (MAE). For instance, the MSE loss function tends to punish large
differences in predictions, whereas MAE treats each error with equal weight. Often
the choice of loss function is extremely dependent on the problem and the machine
learning model.

The theory behind ANN models is that there exists some unknown function that
maps an input space to an output space. Because of the interconnections in an ANN,
it is able to form incredibly complex functions in order to best map an input space
to the respective output space. By minimizing the error on the outputs, ANN models
attempt to approach that unknown function to the best of their ability. In order to do
this, ANN models are typically trained first with example instances so the network
can learn the patterns based on data. After the ANN model has been trained with
sample instances, it can be cross validated using a validation set of unseen data.
If the composition of the validation set is not representative of the training set or
vice versa then the model will perform poorly on the validation set. Moreover, if the
model is trained on too many instances in the training set, then the ANN model will
overfit that data and not be applicable on the validation set. One of the identifiers of
overfitting is when the training accuracy is much higher than the validation accuracy.

As neural networks increase in size with a large number of layers and units
at each layer, the complexity of the network tends to increase. A network with a
lot of layers is considered to be deep, and a network with a lot of units at each
layer is considered to be wide. When designing an ANN architecture, the user
must pay attention to the selection of these hyper-parameters. A naive approach
to selecting the number of hidden layers or the number of units at each layer is
to perform a brute force of all candidate architectures. This would require a lot
of time as the complexity to train an ANN model is incredibly high. Recently,
there have been efforts to traverse and even search ANN architecture spaces in
more efficient manners. One such approach utilizes binary search in simple binary
classification problems in order to discover the most optimal number of hidden units
in a single hidden layer for large input dimensions [42]. Another approach attempts
to traverse a search space of architectures for the best k-complete architecture using
an algorithm in O(N) time instead of O(N ∗ M) time [43].

7.7 Convolutional Neural Network

A CNN model is a part of a class of DNN models that use a linear operation
called convolution in at least one of their layers. The model usually begins with
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a convolutional layer that accepts a tensor as an input with dimensions based on
the size of the data [44]. The second layer, or the first hidden layer, is formed by
applying a kernel or filter that is a smaller matrix of weights over a receptive field,
which is a small subspace of the inputs [45]. Kernels apply an inner product on
the receptive field, effectively compressing the size of the input space [46]. As the
kernel strides across the input space, the first hidden layer is computed based on
the weights of the filter. As a result, the first hidden layer is a feature map formed
from the kernel applied on the input space [44]. While the dimension of the kernel
may be much smaller in size compared to the initial inputs of the convolution
layer, the kernel must have the same depth of the input space. The inputs and
convolution layer are often followed by rounds of activation, normalization, and
pooling layers [46]. The last layer, however, is a fully connected layer where the final
outputs or categorizations are determined based on how different features fall in line
with the specific classes under study [45]. The convolution operation is commonly
identified by the following two equations:

s(t) =
∫

x(a)w(t − a)da (8)

s(t) = (x ∗ w)(t) (9)

Equation 8 explicitly denotes the equation for convolution, whereas Eq. 9 displays
how an asterisk can be used to identify the linear operation. In both equations, x

is referred to as the input. Typically, this is formatted as a multidimensional array,
or a tensor, that matches the size and dimensions of the data. The second argument
is w, representing a kernel, which stores parameters for the model also formatted
as a tensor. This argument is adapted throughout the training process of the model.
The output of both functions, s, is called the feature map of the convolutional layer.
This is what is fed into the next layer of the network [47]. Figure 19 displays the
proposed CNN for this data set.

CNN models are most commonly used for image recognition, video analysis,
natural language processing, and time series forecasting [48–51]. Recently, CNN
models have been utilized in areas of subsequence identification specifically for
finding sequence motifs, which are DNA subsequence that code for transcription
and enhance proteins in genes [52].

8 Results and Observations

Different hyper-parameters were explored in each experiment depending on the
given machine learning model. For each model and model variation, the accuracy,
precision, recall, and F1-measure were reported. The best performing model
variations for each machine learning algorithm were found and used to make a
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final comparison between all of the methods. Each set of results were based on
the averaged of 10-fold cross validation.

8.1 Support Vector Machine

For the SVM models, an analysis was completed with and without PCA. In general,
there are a few main kernels that may be used when applying SVM such as the linear
kernel, sigmoid kernel, radial basis function (RBF) kernel, and polymetric kernel.
For experiments with and without PCA, these four main kernels were explored.
Some sample plots were included in this work for when the classification can be
visualized in two dimensions with two PCs.

SVM Without PCA The results of the SVM models are displayed in Table 6. The
SVM model with a linear kernel resulted in an accuracy of 87.97%, a precision of
83.07%, a recall of 92.10%, and a F1-measure of 87.35%; the SVM model with a
sigmoid kernel resulted in an accuracy of 79.00%, a precision of 77.90%, a recall of
79.65%, and a F1-measure of 78.76%; the SVM model with a RBF kernel resulted in
an accuracy of 93.33%, a precision of 91.36%, a recall of 95.10%, and a F1-measure
of 93.19%; and SVM model with a polymetric kernel resulted in an accuracy of
94.09%, a precision of 92.80%, a recall of 95.25%, and a F1-measure of 94.01%.
As seen from the data, the polymetric kernel performed the best on this data set with
the RBF kernel trailing closely behind.

SVM Without PCA When implementing PCA the number of PCs to which the
data will be reduced also needs to be tuned. For this analysis, we explored the
results of SVM when the data is reduced into two and three PCs for each of the
four kernels. The results are summarized in Table 7. The results for these eight
models were relatively variable. The RBF three PCs SVM model ranked the highest
in terms of accuracy with 87.76%, recall with 93.27%, and the F1-measure with
86.93%, but the polymetric kernel two PCs SVM model ranked the highest in terms
of precision with 82.79%. The overall best performing model was the RBF three
PCs SVM model because of its high accuracy, recall, and F1-measure, which are
arguably the most important metrics in this analysis. A possible interpretation for
why the RBF generally performed the best is that it is able to form interpolations
in the data above and below local extrema and it more rigorously fits to the known
data compared to that of a polymetric or linear kernel [53].

When the data is reduced down to two PCs, the two classes are not easily
distinguishable from one another with a clear decision boundary. This implies that
the features are very similar to one another as PCA seemingly merges both classes
together. Since most of the features are based on the nucleotides in each subse-
quence, it is possible that this is causing this observed low dimensional similarity.
Specifically, of the 231 features included for classification, 215 of them are based on
one-hot encoded nucleotide ordinal features. It is not difficult to find subsequences
that are similar based on common short stretches of nucleotides shared between
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them. For instance, two 10-mers (10 nucleotide subsequences) may contain two sets
of 2-mers in common at similar positions along their subsequences, yet these two
2-mers may play an important role in the restriction enzyme recognition on the ends
of the subsequences. If we extrapolate this line of thought to every single similarity
that may exist between subsequences, it is possible that they might cluster and even
blend together as is observed. It is for this reason that very similar subsequences at
that dimension of the data appears similar when in reality they belong to different
classes. Now, when the data is summarized to only two PCs from 215 features
that distinction is even more difficult to make. Although this blend between similar
subsequences exists in the reduced two PCs data, PCA can still cluster most of each
class together.

When applying the polymetric kernel, the degree of the polynomial must also
be specified. The default value of this parameter in the package we used is three,
indicating that the polynomial used in Fig. 17 is at most a cubic function. Because
of the well-known trade-off between bias and variance in machine learning, we were
careful with increasing this value further.

8.2 Random Forest

As previously mentioned, the random forest model has one hyper-parameter that
specifies the number of decision trees to use when making a prediction on input data.
In this work, we began with testing the random forest model with 10 to 50 trees in
multiples of five (10, 15, . . . , 45, 50). As shown in Table 8, the most optimal number
of decision trees for random forest was 45 as that is when accuracy, precision, and
the F1-measure are all at a maximum. Although the recall metric was observed to
be a maximum at one other random forest hyper-parameter setting (n = 50), 45
decision trees appear to be the most optimal for this classification problem. Further
inspection into the number of decision trees between the values of 40 and 50 might
reveal slightly better results. Since the improvement of the metrics would appear to
be on the magnitude of the hundredths, any other optimum is assumed to be just
as good as the current best performing model. Therefore, this was the most optimal
settings for random forest in the scope of this problem.

For this given random forest model, the results are displayed in Table 12. This
model performed very well with an accuracy of 95.53%, a precision of 94.12%, a
recall of 96.86%, and a F1-measure of 95.47%. This model is currently the best
performing for this data set. This is still true when evaluating the other hyper-
parameter settings for random forest explored in Table 8. Even with a relatively
few number of decision trees (n = 10), the model still made accurate predictions.
Thus, it follows that decision trees might be the most optimal classifier for this type
of problem. It begs the question of why this model performs the best. If a collection
of decision trees is able to easily model the relationships in the data, then there
must be a subset of patterns that can be represented in a decision tree-like structure.
This is because the basic building blocks of a decision tree are feature nodes with
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relatively simple decisions, such as whether a continuous feature is above or below
a certain threshold. If we connect this underlying phenomenon to the performance
of this model, we can hypothesize that the relationships that allow the random forest
model to perform so well are relatively simple. In the scope of the feature set, a few
simple decision rules might be according to the length of a subsequence since we
have repeatedly seen a clear correlation with that feature relative to the applicability
of a subsequence. Also, there might be some simple relationships in the nucleotide
features as most of them seem to correlate highly with one another as observed in
Table 3.

8.3 Naive Bayes

Unlike the other machine learning methods, naive Bayes classification does not have
many typical hyper-parameters. Therefore, this section will not contain any hyper-
parameter selection for this model. This model did not perform well when compared
to the other methods. As shown in Table 12, the naive Bayes model resulted in an
accuracy of 78.87%, a precision of 58.84%, a recall of 98.16%, and a F1-measure of
73.58%. This architecture performed the worst overall right behind KNN. Although
KNN was the next best performing model, the jump in performance for all metrics
except for recall is around 20 to 30%.

It is important to evaluate why the naive Bayes model performed so poorly
compared to the other machine learning models. Like mentioned earlier in Sect. 7.4,
naive Bayes assumes that each feature is independent from one another when
determining the likelihood of a subsequence belonging to a class. This strong
independence assumption might be the reason why this model performed so poorly.
None of the other models assume this. On the other extreme, the ANN and
CNN models actually incorporate layers that form dependencies between different
features. As these models perform much better than naive Bayes and incorporate
feature dependence, we can conclude that feature independence is what is causing
this model to perform so poorly. Another reason why this might be the case is
because of the structure of the data. One cannot simply look at the first nucleotide
feature independently of the other nucleotide features since the recognition of
different restriction enzymes is what majorly impacted the labels of this dataset.

8.4 K-Nearest Neighbor

KNN models rely on a single hyper-parameter k that denotes the number of nearest
training instances when forming a prediction on an unseen test instance. The
majority in the k nearest neighbors denote the model’s prediction. Usually, k is
chosen among a set of only odd integers in order to remove ambiguity in binary
classification problems. If k was even, there could exist a tie when forming a
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classification for a given test instance. In other words, given an even integer k the
test instance might have k/2-nearest neighbors that belong to one class and k/2-
nearest neighbors that belong to the other. If this were to happen, the KNN model
would randomly form a classification. Therefore, k is chosen to be strictly odd in
order to avoid this.

In our case, KNN was applied with 10-fold cross validation on the 95,292
instances in the data set with k equal to 1, 3, 5, 7, 9, and 11. The results of this
experiment are displayed in Table 9. Since the F1-measure monotonically decreases
from when k = 3 to k = 11, higher odd integers of k need not be explored. The
accuracy for the KNN model is the greatest when k = 3. This model performed well
with an accuracy of 93.15%, a precision of 93.14%, a recall of 93.16%, and a F1-
measure of 93.15. Although this is the best hyper-parameter choice for KNN, when
k = 1 the model performed better in precision and recall with 93.21% and 92.81%
respectively, which is just slightly above when k = 3. The F1-measure is the highest
for this hyper-parameter value, supporting that this is the most optimal hyper-
parameter. As seen from the data, this architecture was the fourth best performing
machine model right ahead of the naive Bayes model.

This hyper-parameter selection for KNN confirms two points issued previously
in the paper. First, when looking at the two PCs data distribution for the SVM
classification it was noted that subsequences are highly similar and thus tend to
cluster together despite their different class labels. This trend was also observed
with the KNN hyper-parameter selection k = 3, indicating that only the most
adjacent neighbors are required to form a prediction. Second, the KNN algorithm
does not imply any interaction between features like ANN or DNN. Instead, it
computes a distance based on the features independently of one another. As this
KNN model simply uses the Euclidean distance measure, this can just be thought
of as vector subtraction. KNN does not assume that these features are independent
from one another like in the naive Bayes model because the total Euclidean distance
considering all features is basically what determines the classification of a test
instance relative to training instances. Instead, this algorithm relaxes some of the
independence that was assumed in naive Bayes, yet not to the degree that is observed
with ANN and CNN. As this model performs better than the naive Bayes model with
more (but not complete) dependence among the features, this further indicates that
feature dependence is necessary in order to form accurate predictions on this data
set.

8.5 Artificial Neural Network (ANN)

There are many different hyper-parameters for ANN models such as the number
of hidden layers, the number of units at each hidden layer, the learning rate,
the activation function, etc. This paper proposes an eight-layered ANN model
architecture with an input layer, output layer, and six hidden layers. Each hidden
layer has half as many units as the previous layer. This model architecture can
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be simply summarized with the vector [231, 231, 115, 57, 28, 14, 7, 1], where
each value in the vector denotes the number of units in each layer with the first
value belonging to the input layer and the last value belonging to the output layer.
The input layer is characterized by batch normalization, which is a method in
neural network architecture design in order to re-scale and re-center input data [54].
After the initial input layer, the first hidden layer is marked by a rectified linear
unit (ReLU) activation function, which scales negative outputs to zero and leaves
positive outputs untouched. The next five hidden layers contain linear activation
functions. Finally, the last layer of the network is the output layer with a single
unit and a sigmoid activation function. The model is compiled with binary cross
entropy and model optimizer Adam from Keras [55]. The ANN model architecture
is displayed graphically in Fig. 18.

For this given ANN model architecture, the results are displayed in Table 10.
The feature set is split into two groups: all features and only nucleotide features.
As explained in Sect. 8.6, this is introduced in order to determine whether only
using nucleotide features is sufficient for this classification problem. As shown in
Table 10, when trained on all of the features, this ANN model performed well with
an accuracy of 95.20%, a precision of 95.41%, a recall of 95.01%, and a F1-measure
of 95.21%. When only the nucleotide features are used to perform the classification,
the model results in an accuracy of 95.08%, a precision of 94.92%, a recall of
95.24%, and a F1-measure of 95.07%. Even though the non-nucleotide features are
removed, the ANN model is still able to make accurate predictions on the data. In the
case of recall, the nucleotide only feature model for ANN performed better than the
all-feature ANN with 92.54%. As seen from the data in Table 12, this architecture
is the second-best performing model falling right behind random forest.

8.6 Convolutional Neural Network (CNN)

CNN models have hyper-parameters similar to ANN models. Because CNN models
contain layers with the convolution operation displayed in Eq. 9, they have a few
more hyper-parameters including the number of filters, the kernel size, the stride,
etc. Moreover, depending on the input data, the convolution operation can be applied
at different dimensions. In this case, we are concerned with one-dimensional (1-D)
convolution as the input is a single vector. There are other cases in which two-
dimensional (2-D) or even three-dimensional (3-D) convolution is necessary such
as in 2-D and 3-D image processing, respectively. This work proposes a 12-layered
CNN model architecture with an input layer, output layer and ten hidden layers.
This model architecture can be simply summarized with the vector [231, 231, 115,
115, 57, 57, 28, 28, 14, 14, 7, 1], where each value in the vector denotes the number
of units in each layer with the first value belonging to the input layer and the last
value belonging to the output layer. Unlike the proposed ANN model architecture,
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this CNN model architecture begins with a 1-D convolution input layer formatted
to the size of the input vector. This layer is marked by a kernel size of three and a
number of filters equal to the length of the input layer. Following this first layer of
the network, the model continues with a 1-D maximum pooling layer with a pool
size of two and similar padding. The next eight layers are composed of four sets of
these two layers; however, similar to the ANN model architecture, each successive
1-D convolution layer has half the number of filters as the previous layer. After these
rounds of 1-D convolution and 1-D maximum pooling layers, the model finishes off
with a flatten layer that compresses the data into a single vector equal to the size
of the previous layer and a dense one-unit output layer with a sigmoid activation
function. The model is compiled with binary cross entropy and model optimizer
Adam from Keras. The CNN model architecture is displayed graphically in Fig. 19.

For this given CNN model architecture, the results are displayed in Table 11.
This model performed extremely well with an accuracy of 94.80%, a precision of
94.25%, a recall of 95.32%, and a F1-measure of 94.77%. This is the third best
performing model right behind the ANN model.

Convolution was introduced in order to recognize local and non-local nucleotide-
nucleotide interactions in the subsequences. Based off of the results, the convolution
operation is not most appropriate for forming classifications as an ANN model with
linear dense connections performed slightly better. Since CNN models are typically
applied on pattern recognition and financial time-series where the features have
either purely spatial or temporal relationship to one another, the CNN model is re-
evaluated on only the nucleotide features [56, 57]. In this way, we are removing
any confounding affects that exist between the nucleotide features and the non-
nucleotide features when applying the convolution operation. The results for this
test are shown in Table 11. This model performed well with an accuracy of 94.90%,
a precision of 94.77%, a recall of 95.02%, and a F1-measure of 94.89%. By
removing the non-nucleotide features, the CNN is able to better classify the data
in terms of accuracy, precision, and F1-measure. In reality, this implies that those
excess features need not be calculated because simply examining the subsequences
themselves provide more accurate results.

It would appear that the inclusion of the non-nucleotide features actually slightly
increased the performance of the CNN model with respect to precision. This implies
that when all features are utilized, the CNN model classified some of the false
positives from the nucleotide-only CNN model. There is no further explanation
for why the accuracy, recall, the F1-measure were higher for the nucleotide-
only CNN model other than these additional non-nucleotide features confound the
relationships important to the CNN model architecture. Regardless, as seen by this
data there is truth to the original motivation for exploring the nucleotide-only feature
CNN model. The nucleotide-only CNN model performed the best overall for this
category of machine learning models. Even though the all-feature CNN model did
not perform better than the nucleotide-only CNN model, this model was still able to
classify the instances accurately.
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8.7 Model Comparison

Table 12 tabulates the best performing model hyper-parameter settings for each
of the machine learning methods explored in this work. Overall, random forest
(n = 45) performed the best in accuracy, recall, and F1-measure with 95.53%,
96.86%, and 95.47%, respectively. The all-feature ANN model performed the best
in precision with 95.41%. Using this best performing model, we tackled the initially
presented problem of this work: classifying subsequences for their inclusion in
a generalized reference sequence. Specific metrics of restriction synthesis were
compared when using the previously adapted randomized reference sequence and
this newly curated generalized reference sequence.

9 Application

Before we explore the application of these machine learning models on the initially
presented problem, it is important to understand how the cost and efficacy of
restriction synthesis depends on the length of the randomized reference sequence
first. Cost is measured in dollars per bp (relative to the query sequence under
question) and efficacy is measured in the percent yield of the query sequence.
When efficacy is measured in this way, we can determine for any given reference
sequence length how much of a given query sequence can we expect to synthesize.
Also, it gives us insight into the marginal increase in synthesis when increasing the
length of the reference sequence by a fixed amount. While cost is thought to remain
constant over range of reference sequence lengths, the efficacy is hypothesized
to be proportional to the length of reference sequence. Another important metric
to keep in mind is the number of applicable subsequences identified. For the
restriction synthesis of a fixed query sequence length, a fewer number of applicable
subsequences implies that on average each subsequence will be longer. The opposite
is true for a greater number of applicable subsequences. When subsequences
become too short, ligation between them becomes difficult. Therefore, we favor
relatively longer subsequences on average and thus a fewer number of applicable
subsequences. The number of applicable subsequences identified is then thought to
decrease when increasing the reference sequence length. This third metric can also
be used to explain some of the other phenomena in the paper.

Figure 20 displays the trend of variable lengths of the reference sequence with
the number of applicable subsequences for each synthesis. As we thought, there
is an inverse relationship between these two variables. The number of applicable
subsequences for the longest reference sequence is half of that for the shortest ref-
erence sequence. When the reference sequence decreases in length, there are fewer
total subsequences that can be utilized for restriction synthesis and the probability of
observing a longer subsequence match decreases. Because the restriction synthesis
method is implemented without replacement and the previously mentioned trends,
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this relationship is marked by a parabolic decline instead of a strictly inversely linear
relationship. Therefore, the results in Fig. 20 are not surprising. When a longer
reference sequence is used, there is a greater chance of encountering subsequence
matches at random.

When paying attention to the scale of the y-axis in Fig. 21, it becomes clear
that the cost of synthesis is generally stable between $0.040/bp and $0.032/bp.
Although this 0.8 cent/bp difference is considered negligibly small, there does
appear to be a decrease in price as the length of the reference sequence increases.
This is unexpected because the restriction synthesis simulation is not necessarily
designed to use the least expensive restriction enzymes when performing flanking
digests. Instead, it simply chooses the first possible restriction enzyme to do the
cut. One thought is that since the number of applicable subsequences is observed
to decrease with increasing reference sequence length in Fig. 20, there are less
enzymes required on average. This would explain the observed decrease in price.
On the other hand, the number of applicable subsequences (and the number of
enzymes required) nearly doubles when comparing the longest reference sequence
to the shortest reference sequence, but the cost only changes by 0.2 cents/bp. As a
result, there must be some other phenomena at play here that explains this change
in cost.

The data in Fig. 22 is what we are most interested in. Even with the longest
reference sequence of over 350,000 bp, the recorded percent yield is around 80%.
As the reference sequence length decreases, the percent yield hovers around this
value until it drops off below 70% at a reference sequence length of about 50,000.
This figure further indicates that in order to reach a percent yield closer to 100%,
the length of the reference sequence would need to increase dramatically as this
distribution appears to plateau with an increase in length.

In order to further explore the given problem at hand, we must first compile a
data set to give the trained model. The current length of the randomized reference
sequence is 354,634 base pairs. Based on the feature analysis, the length feature
of the applicable subsequences in the complete data set of 95,292 instances is
distributed bimodally at 0.5 and 0.6. Since this length feature is obtained by dividing
the length of each subsequence by the maximum subsequence length in the data
set, we can multiply these calculated features by the maximum subsequence length
in order to obtain the nominal distribution of lengths. For the data set used in
this study, the maximum subsequence length is 43 base pairs. This implies that
most of the subsequences are approximately between 21 (21.5 = 0.5 ∗ 43) and
25 (25.8 = 0.6 ∗ 43) base pairs long. Thus, in order to build a generalized
reference sequence equal in size to the randomized reference sequence, we need
on average between 16,887 (16, 887.3 = 354, 634/21) and 14,185 (14, 185.4 =
354, 634/25) applicable subsequences and just as many inapplicable subsequences
for the classification. We compile a new data set of 78,930 instances with a 50/50
class distribution from the restriction synthesis of general Mycobacterium avium
genes ranging from 1000 to 5000 bp.

Using the random forest (n = 45) model, we built a generalized reference
sequence based on its classifications from unseen data. After the random forest
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model was trained on the entirety of the 99,886 instances that is used for 10-
fold cross validation, the 80,158 instances in the new unseen data set were fed
into the model. The classification of this new data set resulted in an accuracy
of 90.62%, a precision of 86.74%, a recall of 94.05%, and an F1-measure of
90.25%. The decrease in performance compared to what is shown in Table 8
can be attributed to the fact that this model was trained on an entirely different
species of Mycobacterium. Since we already know how well the model classifies
on Mycobacterium tuberculosis from the 10-fold cross validation in each section of
this paper, it makes more sense to evaluate the model on less related subsequences.
Despite this shift in species, the data from this test suggests that sequence data can be
partially generalized across related species. More tests would need to be conducted
in order to determine whether this problem is species specific.

As a result of this model classification, 36,964 subsequences were predicted
to be applicable for restriction synthesis. When compiled together this created a
generalized reference sequence 1,010,226 base pairs in length. From this sequence
we created one generalized reference sequence 354,634 base pairs in length and
followed its efficacy and cost. In a way, this generalized reference sequence
was compiled from subsequences of Mycobacterium avium genes. For this next
experiment, we used this generalized reference sequence in the restriction synthesis
of Mycobacterium tuberculosis Erdman strain urease structural subunit A. We do
this for two reasons. First, we want to control the variability between synthesizing
different genes so that we can directly compare these results to those conducted
with a randomized reference sequence. Second, we want to note species-specific
behavior.

When using the newly curated generalized reference sequence, we see that it
performed much better than the randomized reference sequence in terms of the
number of applicable subsequences in Fig. 23. More specifically, there are far fewer
applicable subsequences on average for the most extreme cases on the left side
of this graph compared to Fig. 20. The difference appears to be around 40 fewer
applicable subsequences. Even on the right side of the graph the distribution dives
below 100 and closer to 90 applicable subsequences whereas that of Fig. 20 never
dipped below 100.

In examining the difference in accuracy, Fig. 25 displays that restriction synthesis
with the generalized reference sequence hovers around 80% up to sequences as short
as 150,000 base pairs. This is truly incredible since when using the randomized
reference sequence, Fig. 22 shows that the method was truly never able to cross
80%. A similar note can be made about the other extreme on the left side of both
graphs where the minimum is about one and half times higher in Fig. 25 compared
to that of Fig. 22. Overall, by curating subsequences from a randomized reference
sequence and creating a generalized reference sequence, the accuracy distribution
shifted upward as a whole. Also, if the data were extrapolated to higher reference
sequence lengths, the generalized reference sequence distribution for this metric
does not appear to plateau as quickly as does that of the randomized reference
sequence in Fig. 22. Instead, it appears to further increase. This is a good identifier
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that restriction synthesis is able to provide a much higher percent yield when a
longer generalized reference subsequence is used.

The new cost trend in Fig. 24 does not have a trivial pattern. In implementing
this new generalized reference sequence, it appears that the cost shifts upwards
instead of downwards despite the overall decrease in the number of applicable
subsequences. One would have thought that this increase would imply that the
applicable subsequences would be shorter on average and thus allow the cost to
be lower as less enzymes would be required. It could be that the most popular
applicable subsequences require more expensive restriction enzymes than some
uncommon applicable subsequences. A deeper cost analysis is needed in order to
evaluate what exactly is at play here. Moreover, if this is true, then the restriction
synthesis algorithm could be altered to favor the least expensive restriction enzymes
available. This implementation would need to be compared for both the randomized
reference sequence and the generalized reference sequence.

10 Discussion

Overall, the comparison between a randomized reference sequence and a general-
ized reference sequence displays that machine learning curated sequences will allow
for restriction synthesis to perform with a higher percent yield for a given reference
sequence length. This can be partially explained by the distribution in applicable
subsequences that is observed in this work. It is presently unclear why the cost
is slightly higher for the randomized reference sequence compared to that of the
generalized reference sequence. As it was previously mentioned, a simple fix may
just be to prioritize the least expensive restriction enzymes for any given cut.

There are a few details that should be addressed in the future work of this project.
Only five nucleotides were considered with encoding them into ordinal vectors:
the four nitrogenous bases (A, T, C, G) and an ambiguous base (N). This can be
further generalized by adding more ordinal values for partially ambiguous bases.
For instance, restriction enzyme AvaI has recognition site CYCGRG. The letters Y
and R pyrimidines (C and T) and purines (A and G), respectively. There are several
other letters for these partially ambiguous bases. Since they appear frequently in
restriction enzymes, it would make sense to add them as possible ordinal values
for the nucleotide features in future work. Although these partially ambiguous
bases do not appear in genes themselves, they may add essential features if the
subsequences are encoded differently. Subsequence regions can be broken down
into the fragment included in the query sequence and the flanking regions that the
restriction enzymes recognize on either side of it. A simple implementation could
be to only encode these partially ambiguous bases in the flanking region and encode
the fragment region with only the four nitrogenous base ordinal vectors. In this way,
subsequences can be annotated with other features. For instance, two other features
could be included to identify the positions along the subsequence that break up the
subsequence into three regions: the left flanking site, the intermediate fragment, and
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the right flanking site. This would only be possible if the mapping for each enzyme
on the generalized reference sequence was determined and stored ahead of time.
Then, it would be less important for the model to identify fragment matches. This
problem definition may change the results entirely.

One of the major assumptions of this work is that the two subsequence classes
are equally distributed among the data. Realizing this is a strong assumption to
hold for any machine learning problem, we would like to include relaxing this
assumption in a future work. The methods explored in this paper cannot be applied
on independent restriction synthesis simulations until this assumption is relaxed. As
this paper attempts to address the applications of analyzing and classifying these
different subsequences, it is imperative to explore how different models can be
implemented that are specifically designed for unbalanced data. In our case, there
are far more inapplicable subsequences than there are applicable subsequences as
shown in an earlier example restriction synthesis simulation.

Identifying a way to efficiently relax this assumption is ideal for another reason
in particular. While the nucleotide features of the data are easy to obtain through
generating sample subsequences, the non-nucleotide features require context mea-
surements from restriction synthesis itself. With this in mind, we observe in
Tables 10 and 11 that when only the nucleotide features are used, they perform
almost as well as when all features are included in the prediction. Therefore, it
begs the question of whether these non-nucleotide features are needed at all. If it
is determined that they are not, then generating sample test data would be much
easier. This would be the real power in this model, because then the curation
of the generalized reference sequence would be entirely independent from any
simulations of restriction synthesis. This relies heavily on accurately representing
the class distribution of the data. In the future, this can be mathematically estimated
by identifying permutations of restriction enzyme recognition for random subse-
quences. Second, in order to implement this, we would need to strongly assume that
the generalized reference sequence is species independent, which was only briefly
explored in this work. Regardless, there are many future directions to improve the
preliminary work explored in this paper and to satisfy more scenarios of restriction
synthesis.

Appendix: Tables and Figures

See Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25 and Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
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Fig. 1 Restriction enzyme
digest of GAATTC using
EcorR1 producing two
sticky-end overhangs. In
general, DNA is represented
as a permutation of the four
nucleotides [adenine (A),
thymine (T), cytosine (C),
guanine (G)] and an
ambiguous base (N)

Fig. 2 Restriction enzyme
digest of CCCGGG using
SmaI producing two blunt
ends. In general, DNA is
represented as a permutation
of the four nucleotides
[adenine (A), thymine (T),
cytosine (C), guanine (G)]
and an ambiguous base (N)

Fig. 3 Restriction synthesis.
Reference sequence is flanked
by Enzyme A and Enzyme B.
This fragment is then ligated
to the end of the query
sequence
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Fig. 4 Restriction map for the synthesis of Mycobacterium tuberculosis Erdman strain urease
structural subunit A using restriction synthesis

Fig. 5 Subsequence length feature distributions stratified by class label for subsequences
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Fig. 6 Nucleotide proportion feature distributions stratified by class label for subsequences
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Fig. 7 Nucleotide proportion feature distributions stratified by class label for genes
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Fig. 8 Enzyme availability feature distributions stratified by class label for subsequences

Fig. 9 Commonality feature distributions stratified by class label for subsequences
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Fig. 10 R1 feature distributions stratified by class label for subsequences

Fig. 11 R2 feature distributions stratified by class label for subsequences
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Fig. 12 R1 feature distributions stratified by class label for genes

Fig. 13 R2 feature distribution stratified by class label for genes
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Fig. 14 Sample linear kernel 2 PCs SVM analysis

Fig. 15 Sample sigmoid kernel 2 PCs SVM analysis
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Fig. 16 Sample radial basis function (RBF) kernel 2 PCs SVM analysis

Fig. 17 Sample polymetric kernel 2 PCs SVM analysis
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Fig. 18 Currently optimal ANN

Fig. 19 Currently optimal CNN
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Fig. 20 Dependence of the number of applicable subsequences identified on the length of
the randomized reference sequence for the restriction synthesis of Mycobacterium tuberculosis
Erdman strain urease structural subunit

Fig. 21 Dependence of the cost of synthesis on the length of the randomized reference sequence
for the restriction synthesis of Mycobacterium tuberculosis Erdman strain urease structural subunit
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Fig. 22 Dependence of the accuracy of synthesis on the length of the randomized reference
sequence for the restriction synthesis of Mycobacterium tuberculosis Erdman strain urease
structural subunit

Fig. 23 Dependence of the number of applicable subsequences identified on the length of
the generalized reference sequence for the restriction synthesis of Mycobacterium tuberculosis
Erdman strain urease structural subunit



Fig. 24 Dependence of the cost of synthesis on the length of the generalized reference sequence
for the restriction synthesis of Mycobacterium tuberculosis Erdman strain urease structural subunit

Fig. 25 Dependence of the accuracy of synthesis on the length of the generalized reference
sequence for the restriction synthesis of Mycobacterium tuberculosis Erdman strain urease
structural subunit

Table 1 General confusion matrix

Actual true Actual false

Predicted true True positive False positive

Predicted false False negative True negative
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Table 3 Highest correlated
nucleotide features

Feature Highest correlated feature Correlation

Nuc1 Nuc4 0.114

Nuc2 Nuc1 0.066

Nuc3 Nuc6 0.047

Nuc4 Nuc1 0.114

Nuc5 Nuc8 0.049

Nuc6 Nuc9 0.064

Nuc7 Nuc10 0.109

Nuc8 Nuc9 0.138

Nuc9 Nuc10 0.197

Nuc10 Nuc11 0.241

Nuc11 Nuc12 0.351

Nuc12 Nuc15 0.405

Nuc13 Nuc14 0.433

Nuc14 Nuc15 0.439

Nuc15 Nuc16 0.506

Nuc16 Nuc17 0.549

Nuc17 Nuc18 0.59

Nuc18 Nuc19 0.602

Nuc19 Nuc18 0.602

Nuc20 Nuc21 0.639

Nuc21 Nuc20 0.639

Nuc22 Nuc21 0.635

Nuc23 Nuc24 0.682

Nuc24 Nuc25 0.695

Nuc25 Nuc26 0.726

Nuc26 Nuc27 0.733

Nuc27 Nuc28 0.779

Nuc28 Nuc27 0.779

Nuc29 Nuc28 0.725

Nuc30 Nuc29 0.702

Nuc31 Nuc29 0.561

Nuc32 Nuc31 0.51

Nuc33 Nuc32 0.439

Nuc34 Nuc35 0.509

Nuc35 Nuc36 0.563

Nuc36 Nuc37 0.656

Nuc37 Nuc38 0.723

Nuc38 Nuc37 0.723

Nuc39 Nuc40 0.638

Nuc40 Nuc41 0.886

Nuc41 Nuc40 0.886

Nuc42 Nuc41 0.757

Nuc43 Nuc42 0.755
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Table 4 Lowest correlated
nucleotide features

Feature Lowest correlated feature Correlation

Nuc1 Nuc3 −0.053

Nuc2 Nuc3 −0.018

Nuc3 Nuc28 −0.115

Nuc4 Nuc40 −0.038

Nuc5 Nuc22 −0.031

Nuc6 Nuc28 −0.053

Nuc7 Nuc30 −0.024

Nuc8 Nuc3 −0.012

Nuc9 Nuc36 −0.033

Nuc10 Nuc3 −0.03

Nuc11 Nuc3 −0.045

Nuc12 Nuc3 −0.027

Nuc13 Nuc3 −0.05

Nuc14 Nuc3 −0.065

Nuc15 Nuc3 −0.057

Nuc16 Nuc3 −0.068

Nuc17 Nuc3 −0.063

Nuc18 Nuc3 −0.087

Nuc19 Nuc3 −0.081

Nuc20 Nuc3 −0.064

Nuc21 Nuc3 −0.063

Nuc22 Nuc3 −0.07

Nuc23 Nuc3 −0.063

Nuc24 Nuc3 −0.079

Nuc25 Nuc3 −0.078

Nuc26 Nuc3 −0.094

Nuc27 Nuc3 −0.093

Nuc28 Nuc3 −0.115

Nuc29 Nuc3 −0.093

Nuc30 Nuc3 −0.101

Nuc31 Nuc3 −0.088

Nuc32 Nuc3 −0.059

Nuc33 Nuc3 −0.041

Nuc34 Nuc3 −0.016

Nuc35 Nuc4 −0.022

Nuc36 Nuc9 −0.033

Nuc37 Nuc9 −0.021

Nuc38 Nuc3 −0.024

Nuc39 Nuc4 −0.019

Nuc40 Nuc4 −0.038

Nuc41 Nuc4 −0.038

Nuc42 Nuc4 −0.033

Nuc43 Nuc4 −0.033
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Table 5 Pairwise Pearson correlation with nucleotide features for sequences 10 base pairs and less

Nuc1 Nuc2 Nuc3 Nuc4 Nuc5 Nuc6 Nuc7 Nuc8 Nuc9 Nuc10

Nuc1 1.000 0.187 −0.182 0.249 0.038 −0.030 0.148 0.135 0.207 0.199

Nuc2 0.187 1.000 −0.022 −0.059 0.117 0.136 0.163 0.127 0.138 0.133

Nuc3 −0.182 −0.022 1.000 −0.210 0.033 0.198 0.015 0.044 −0.036 −0.028

Nuc4 0.249 −0.059 −0.210 1.000 −0.158 −0.161 0.029 −0.021 0.059 0.046

Nuc5 0.038 0.117 0.033 −0.158 1.000 0.281 0.185 0.234 0.160 0.077

Nuc6 −0.030 0.136 0.198 −0.161 0.281 1.000 0.289 0.188 0.226 0.108

Nuc7 0.148 0.163 0.015 0.029 0.185 0.289 1.000 0.471 0.369 0.319

Nuc8 0.135 0.127 0.044 −0.021 0.234 0.188 0.471 1.000 0.472 0.261

Nuc9 0.207 0.138 −0.036 0.059 0.160 0.226 0.369 0.472 1.000 0.467

Nuc10 0.199 0.133 −0.028 0.046 0.077 0.108 0.319 0.261 0.467 1.000

Table 6 Support Vector Machine model results for Linear Kernel, Sigmoid Kernel, Radial Basis
Function (RBF) Kernel, and Polymetric Kernel without Principal Component Analysis

Accuracy (%) Precision (%) Recall (%) F1-measure

Linear Kernel 87.97 83.07 92.10 87.35

Sigmoid Kernel 79.00 77.90 79.65 78.76

RBF 93.33 91.36 95.10 93.19

Polymetric Kernel 94.09 92.80 95.25 94.01

Table 7 Support Vector Machine model results for Linear Kernel, Sigmoid Kernel, Radial Basis
Function (RBF) Kernel, and Polymetric Kernel with Principal Component Analysis using two and
three Principal Components (PCs). The maximum value for each metric is highlighted in bold

Accuracy (%) Precision (%) Recall (%) F1-measure

Linear Kernel (2 PC) 85.99 78.48 92.35 84.85

Sigmoid Kernel (2 PC) 76.46 76.38 76.51 76.44

RBF (2 PC) 87.63 81.40 92.99 86.81

Polymetric Kernel (2 PC) 86.20 82.79 88.85 85.71

Linear Kernel (3 PC) 86.09 78.54 92.51 84.95

Sigmoid Kernel (3 PC) 78.30 78.25 78.33 78.29

RBF (3 PC) 87.76 81.40 93.27 86.93
Polymetric Kernel (3 PC) 87.19 82.05 91.44 86.49



50 E. J. Moyer and A. Das

Table 8 Random Forest results for n = 10, 15, . . . 55, 65 with 10-fold cross validation results.
The maximum value for each metric is highlighted in bold

Accuracy (%) Precision (%) Recall (%) F1-measure

Random Forest (n=10) 94.96 93.00 96.80 94.86

Random Forest (n=15) 95.19 93.91 96.37 95.13

Random Forest (n=20) 95.31 93.65 96.87 95.23

Random Forest (n=25) 95.36 94.01 96.62 95.30

Random Forest (n=30) 95.39 93.74 96.93 95.31

Random Forest (n=35) 95.39 94.00 96.68 95.33

Random Forest (n=40) 95.44 93.93 96.86 95.37

Random Forest (n=45) 95.53 94.12 96.86 95.47
Random Forest (n=50) 95.51 93.92 97.01 95.44

Table 9 K-Nearest Neighbor results for k = 3, 5, 7, 9, 11 with 10-fold cross validation results.
The maximum value for each metric is highlighted in bold

Accuracy (%) Precision (%) Recall (%) F1-measure

KNN (k=1) 93.00 93.21 92.81 93.01

KNN (k=3) 93.15 93.14 93.16 93.15
KNN (k=5) 92.84 92.49 93.15 92.82

KNN (k=7) 92.65 92.04 93.18 92.61

KNN (k=9) 92.41 91.58 93.13 92.35

KNN (k=11) 92.23 91.16 93.16 92.15

Table 10 Artificial Neural Network results using only nucleotide features and all available
features with 10-fold cross validation results. The maximum value for each metric is highlighted
in bold

Accuracy (%) Precision (%) Recall (%) F1-measure

ANN (all features) 95.20 95.41 95.01 95.21
ANN (nucleotide features) 95.08 94.92 95.24 95.07

Table 11 Convolutional Neural Network results using only nucleotide features and all available
features with 10-fold cross validation results. The maximum value for each metric is highlighted
in bold

Accuracy (%) Precision (%) Recall (%) F1-measure

CNN (all features) 94.80 94.25 95.32 94.77

CNN (nucleotide features) 94.90 94.77 95.02 94.89
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Table 12 Best performing machine learning models with 10-fold cross validation

Accuracy (%) Precision (%) Recall (%) F1-measure

SVM (RBF 3 PC) 87.76 81.40 93.27 86.93

Random Forest (n=45) 95.53 94.12 96.86 95.47
Naive Bayes 78.87 58.84 98.16 73.58

KNN (k=3) 93.15 93.14 93.16 93.15

ANN (all features) 95.20 95.41 95.01 95.21

CNN (nucleotide features) 94.90 94.77 95.02 94.89
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1 Introduction

The geriatric population continues to increase and place a large burden on the
healthcare systems worldwide. In 2019, there were 703 million people aged 65 or
older across the globe. By 2050, this number is expected to double to an expected
1.5 billion people [1]. This increase in population is due to changes in lifestyle, the
aging Baby Boomer generation, and increasing medical advancements, among other
causes [2]. By 2030, the entire Baby Boomer generation will be older than 65 years
of age and at that point, for the first time in the history of the United States, elderly
people will outnumber the child generation. As evidence, by 2034, there will be 77
million people 65 years and older compared to 76.5 million people under the age of
18 [3]. The population older than 65 years of age currently accounts for 35% of all
medical spending in the United States, indicating how the change in the population
demographics may further impact the medical spending across the United States
federal funding and health systems [4]. Many of these individuals are admitted to
the hospital system for assistive care, as many normal activities can no longer be
performed alone due to potential falls and memory loss [2].

Neurodegenerative diseases include dementia, Alzheimer’s disease (AD),
Parkinson’s disease (PD), among various others. Largely due to these diseases,
geriatric populations require additional assistance from a caregiver or admission
to a long-term care facility site. Neurodegenerative diseases are complex in their
pathophysiology, as some diseases cause memory and cognitive impairments, where
others effect speaking and gait ability [5]. Due to this progressive degeneration in
motor stability and memory, many of those that suffer from neurodegenerative
diseases are prone to falls and memory loss effects [6]. For an insight into the
number of people who suffer from neurodegenerative diseases in the United States,
in 2015, five million suffered from AD and one million suffered from PD [7]. Aging
individuals, especially those suffering from neurodegenerative diseases, generally
require assistive care for safe long-term living.

For safe and secure living in these presented populations, a caregiver or hospital
stay is often required, which causes financial burdens on both the families and
the healthcare system. With an increasing number of people in these categories,
the financial burdens will continuously increase. There exists a need for remote
monitoring systems to aid caregivers and hospital systems to allow for greater
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independence and alleviate the burden of these populations on the healthcare
system. There exist many proposed systems for remote monitoring of geriatric
populations in at-home environments in current research and in industry. Proposed
solutions often utilize ambient sensors and artificial intelligence (AI) algorithms
for accurate monitoring of the environment. Many of these systems rely on video-
based modalities which raise privacy concerns for the monitored person. In addition,
many systems rely on expensive hardware or difficult set-up with multiple sensors
deployed throughout the home. Some systems utilize active sensors that raise
some energy and health concerns as well. An accurate, non-intrusive, passive,
inexpensive, and ubiquitous monitoring system for an at-home environment could
solve these aforementioned shortcomings.

The utilization of ambient sensors and AI extends from the need of human
monitoring applications to security and biometric authentication applications. With
the advent of the internet of things (IoT), there exists a need for an enhanced sense of
security of personal data. IoT specifically refers to the interconnection of the devices
used in everyday life including kitchen items, beds, phones, cars, and televisions [8].
IoT is expected to continue to increase as well, as in 2030 an estimated 500 billion
devices will be connected to the Internet [9]. The security of the ever-increasing
number of connected devices in our daily life remains a challenge, as potential
adversaries can take advantage of personal data, as well gain entrance to medications
or personal belongings [8]. To protect the security of IoT devices, passwords are
often utilized, but they can often be forgotten or stolen. Facial recognition and
fingerprinting technologies have become popular and have reached consumer IoT
devices as alternatives to written passwords, as seen in common Apple products.
However, these too can be unreliable and forged [10, 11]. For instance, once a
fingerprint is stolen or retrieved from a touched surface, the fingerprint will forever
be compromised [12]. A whole sector of security using biological characteristics
is referred to as biometrics and can be used for authentication and identification of
individuals for increased security of IoT devices. Where passwords can be forgotten
or stolen, biometrics are unique to one individual person and are more difficult to
replicate [8].

Biometric authentication refers to the use of a unique biological quality to
confirm one person’s identity against all other potential adversaries, while biometric
identification classifies every individual in the dataset as unique. Common biomet-
rics include previously mentioned fingerprints and facial recognition with additional
unique characteristics including iris, gait, and voice. These biometrics are used to
enhance the security of IoT devices, in comparison to written passwords or PIN
numbers. Biometrics can be captured via non-contact sensors, such as in the case
of cameras for facial recognition. Cameras, however, raise privacy concerns to the
end-user. Therefore, a non-contact sensor for biometric authentication that alleviates
the privacy intrusion to the end-user is seen as a superior modality for this purpose.
With deep learning (DL), the collected biometrics from a non-contact sensor can
be learned to differentiate a verified user against all other potential adversaries.
To summarize, there exists a need for a secure, accurate, non-contact, and non-
intrusive biometric authentication system to further enhance the security of IoT
devices. Heart-related biometrics are growing in popularity, have shown promise as
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reliable for biometric authentication and identification systems, and could fill these
mentioned shortcomings.

Various ambient sensors for non-contact sensing have been proposed for these
applications including cameras, thermal sensors, depth sensors, and passive infrared
(PIR) sensors. With the need for non-contact human monitoring and biometric
authentication systems in mind, PIR sensors are inexpensive, commercial-off-
the-shelf (COTS) components that are often utilized in monitoring and security
applications. PIR sensors work by identifying the change in infrared radiation across
its field of view (FoV) which is detected by the internal pyroelectric elements with
alternating polarity. With everything above absolute zero temperature emitting some
level of infrared radiation, theoretically any object in motion across a PIR sensor will
be detected. As a result, human subjects in motion across a traditional PIR sensor
will be detected. The major known drawback to PIR sensors, however, is the lack
of reliable and accurate detection of stationary human subjects. For accurate use
in human monitoring and biometric authentication situations, the inability to detect
stationary human occupants will first have to be addressed.

To combat these mentioned drawbacks of human detection and biometric authen-
tication systems, ambient sensors and AI have been proposed. Likewise, ambient
signals have also garnished interest for non-contact monitoring including the likes of
radio frequency (RF) and WiFi channel state information (CSI) for this purpose. DL
algorithms including artificial neural networks (ANN), recurrent neural networks
(RNN), and convolutional neural networks (CNN) have been utilized for learning
of the sensor data for human detection and biometric authentication purposes. In
our work, we propose using a PIR sensor as the ambient sensor with various
statistical learning algorithms for human detection and biometric authentication
classifications.

To address human detection and biometric authentication classifications via a
single PIR sensor modality, we introduce and propose two novel systems in this
work . . .

1. Motion induced PIR sensor (MI-PIR)
2. Chest motion PIR sensor (CM-PIR)

Both systems are proposed to address the noted major known drawback of PIR
sensors, which is the inability to reliably detect stationary human subjects [13,
14]. For MI-PIR, we extend the capabilities of this system from occupancy count
estimation, relative location classification, and human target differentiation in one
environment to precise indoor localization and human activity recognition (HAR) in
two different ambient environments. For CM-PIR, we reintroduce the initial results
of the biometric authentication system based on the chest motion data collected
from 16 subjects at nine different home environments [14]. Human monitoring and
biometric authentication via non-contact sensors and AI overall proves to have direct
applications in medicine and healthcare as identified in assistive care living and
security of private medical data from IoT devices. Accurate non-contact sensing
systems will allow for long-term living in the elderly populations and more secure
IoT devices, respectively.
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2 Related Work

For accurate comparison of the two novel systems proposed in this work, many
related systems will be introduced. For stationary human presence detection using
PIR sensors, various solutions have been introduced, primarily those that rely
on an optical shutter for accurate detection. Various additional ambient sensor
modalities have been proposed for human monitoring and biometric authentication
classifications that will also be highlighted in this section.

2.1 PIR Sensors

PIR sensors function by detecting the change in infrared radiation across its FoV.
For binary PIR sensors, the change in infrared radiation will result in a “1” for a
detected human subject and a “0” for no human subject detected. With infrared
radiation being the resultant of temperatures greater than absolute zero temperature,
other objects could potentially trigger a binary PIR sensor. For example, animals
walking across the FoV of the PIR sensor, as well as a potential ball, car, or other
object, could theoretically cause a false positive for a binary PIR sensor. When
human bodies radiate infrared radiation from their body, there is a significant energy
loss. The infrared radiation lost from a human body can be modeled by Eq. (1)
below, which relates the energy loss from a blackbody (T) with its surroundings
(Ts). In Eq. (1), the total power radiated from the human body (Wtot) is represented
by this energy loss (T4 − Ts

4) multiplied by the total surface area of the human
in question (S) and the Stefan-Boltzmann constant (σSB) [15]. Eq. (1) proves the
ambient environmental dependence on the infrared radiation of a human subject.

Wtot = SσSB

(
T 4 − T 4

s

)
(1)

Analog PIR sensors output the voltage readings of the detected infrared radiation
from a PIR sensor instead of the binary output, where an object in motion across
the FoV will trigger a sinusoidal swing for the positive and negative terminals of the
pyroelectric elements indicating human presence. For a typical human in motion,
this will cause a swing to the maximum voltage and back to the minimum voltage;
however, this sinusoidal swing is dependent on the mentioned ambient environment,
and the motion and distance of the human subject. As a result, DL was proposed as
a solution to learn from the varying outputs of the analog PIR sensor for various
classifications including differentiating ambient environments, occupancy counts,
human locations, and human subjects.

The FoV of a PIR sensor is generally expanded with the addition of a Fresnel
lens. The Fresnel lens works to distribute the FoV of a PIR sensor into many
evenly spaced fan-shaped zones with alternating polarities [16]. The Fresnel lens
also works to expand the FoV of the PIR sensor by focusing the thermal image on
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Fig. 1 Novel MI-PIR system including the (a) the Panasonic AMN24112 and (b) the full design

the internal elements, which converts the thermal energy of the image into heat.
Varying PIR sensors use different Fresnel lens and thus, there exist different FoV
ranges for each PIR sensor [17]. In our work, we utilize the Panasonic AMN 24112
PIR sensor with analog output as identified in Fig. 1(a). The Fresnel lens on the
Panasonic AMN 24112 PIR sensor expands the FoV to a recorded horizontal 93◦
and vertical 110◦.

As stated, PIR sensors rely on a change in infrared radiation for accurate
detection of a human subject. Due to this, stationary human subjects often go
undetected and result in a major drawback to the deployment of PIR sensors in
monitoring and security applications. To combat this issue, multiple designs have
been proposed for the accurate and reliable detection of stationary subjects with
a PIR sensor. Initial designs utilize additional hardware with the inclusion of an
optical shutter to periodically chop the FoV of the PIR sensor to artificially cause
a motion change for the stationary human subject [18]. In addition, Ya Wang’s
group at Texas A&M has been awarded a one-million-dollar grant to enhance an
optical shutter design for more reliable energy management solutions. The goal of
the project is the development of an advanced, low-cost occupancy sensor named
SLEEPIR that enhances industry PIR sensors for more accurate detection [19–24].
In our work, we propose two varying systems for stationary human subject detection
using a PIR sensor. MI-PIR, the first design, classifies room occupancy through a
36 s rotation to induce the motion necessary for human detection. CM-PIR, on the
other hand, relies on the chest motion from the heart to detect stationary subjects.
These two designs will be presented further throughout this chapter.

2.2 AI

AI refers to the use of a computer to mimic human knowledge. The origin of AI can
be traced to the 1950s, but overall, the field of AI is still premature [25]. Machine
learning (ML) is a subset of AI and refers to a computer’s ability to train itself
without being explicitly told how to do so. DL is a subset of ML and is referred to
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as a type of neural network, one that trains itself through multilayered networks of
data operation [26]. DL is an immensely powerful tool that can automatically learn
from unstructured datasets, learning the slight variations that exist between the data
samples while functioning like the neurons in the brain. AI is consistently used with
non-contact ambient sensors to learn from the complex scenarios that exist withing
these datasets. There exist various algorithms utilized for this purpose including ML
algorithms such as Random Forest, Support Vector Machine, and Gaussian process
regression (GPR) and DL algorithms including artificial neural networks (ANN),
recurrent neural networks (RNN), and convolutional neural networks (CNN). In our
work, we utilize GPR for precise indoor localization and ANN, RNN, and CNN as
comparison for each other classification.

A Gaussian process can be completely defined by its mean and covariance
function and is defined as a collection of random variables, with any finite number
of which have (consistent) joint Gaussian distributions. GPRs remain powerful
tools due to its probabilistic methods of predicting the output mean and variance
conditional on a specific input at a specific instance of time. GPR models differ
from classification models in that a location estimation can be predicted from GPR
models, whereas a classification algorithm outputs classification results. Various
parameters in the implementation of these models are to be optimized, including
the kernel function [27]. There exist a variety of kernels that are often used
in implementation of GPR models including Squared Exponential, Periodic, and
Matern, just to name a few [28]. Performance of these models are often indicated
with the quantification of the mean squared error (MSE) which is shown in Eq. (2).
yj refers to the observed values, y(xj) refers to the predicted values, and N is the
number of data points in the training set [15].

MSE = 1

N

N∑

j=1

(
yj − y

(
xj

))2 (2)

In terms of DL, ANNs are the most basic feedforward approaches to learning and
are used for a variety of tasks including pattern recognition, image recognition,
and natural language processing. ANNs are composed of multiple dense layers
that feedforward and do not learn recursively [29]. RNNs, on the other hand, are
a recursive approach to learning, having an internal memory and making them
particularly useful for time-series data classifications. RNNs work by taking time
and sequence into account, where the output of one layer will in turn be fed to the
input of a previous layer [30]. This approach to learning suffers from the vanishing
gradient issue and must be overcome with the use of long-short term memory
(LSTM) units in the application [31]. CNNs are often utilized for image recognition
tasks as their architecture is designed specifically for this purpose. CNNs consist of
multiple layers including fully connected layers, max pooling layers, convolutional
and non-linearity layers [29].

Adequate reporting of these algorithms is essential, and the metric used for
performance measurement often varies based on the classification task at hand.
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Broadly, Explainable AI is a new field that is based on assessing the performance of
ML algorithms to alleviate the black-box stigma surrounding AI [32, 33]. In general
cases, reporting of the performance is completed with metrics such as accuracy, F1
score, area-under-the-curve, precision, or recall. Accuracy refers to the number of
correct predictions that the statistical modeling labeled correctly divided by the total
number of predictions that were made. Classification reports are often presented as
a table that includes accuracy and various additional metrics. Visually, reporting
of the confusion matrices, visual data, and training and testing curves also aids in
the understanding of the performance. Confusion matrices visually identify the true
positive (TP), true negative (TN), false positive (FP), and false negative (FN) of each
classification by presenting the number of testing samples that were correctly and
incorrectly classified. The confusion matrix provides actual values and expected
values on the axes, and the resulting internal values are indicative of the number
of correctly labeled samples in either normalized or unnormalized form. For the
purposes of human detection and biometric authentication, we primarily rely on
accuracy, visual data, classification reports, and confusion matrices to present the
performance of the algorithms used.

2.3 Human Monitoring

There exist various methodologies for human monitoring purposes using ambient
sensors and AI in related work. Ambient sensor modalities in literature that have
been utilized for human monitoring purposes include microwave sensors, thermal
sensors, and optical sensors. In terms of utilizing microwave sensors for human
monitoring purposes, multiple sensors were distributed in the environment for multi-
person HAR using a 3D-CNN for learning [34]. Using solely ambient thermal
sensors and ML algorithms, detection of human presence was shown to be 100%
accurate, with additional classifications of occupancy count estimation and HAR
proving 100 and 97.5% accurate, respectively. The position of the thermal sensors
affected the results of this work, with three sensors being deployed in this work,
each having a horizontal FoV of 125◦ ([35]). An infrared active imaging system and
a CNN learning model were utilized for human detection with a specific application
to instances of home fires in another related work [36]. Further, image sensors were
deployed iteratively for occupancy counts in a large exhibition hall with optical
sensors deployed at entrances and exits. Learning of the occupancy counts in each
zone of the exhibition hall was accomplished with an RNN with LSTM units [37].

Worth mentioning are the commonality of utilizing ambient signals for human
monitoring purposes. In terms of leveraging ambient signals for human monitoring
purposes, related works have utilized passive radio frequency identification (RFID)
tags, passive RF signals, active RF signals, and Wi-Fi CSI. For example, a
SmartWall composed of multiple passive RFID tags were utilized for localization
and HAR purposes [38]. Similar in usage of passive RF-based signals, our group has
published work on utilizing passive RF signals for human detection in residential
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and automobile environments. This work utilizes principal component analysis
(PCA) for dimensionality reduction, recursive feature elimination with logistic
regression, and ML algorithms for accurate human detection [39]. More common in
literature are the use of active band RF signals for human monitoring applications.
State-of-the-art research performed by the MIT CSAIL group has shown the efficacy
of such approach, through the classification of human activities and their respective
locations even through walls and occlusions [40–42]. Further, a millimeter-wave
radar system was proposed for its low-cost approach in the proposed RadHAR
system for HAR of five different exercise activities using a CNN-LSTM learning
model [43]. Wi-Fi CSI via IoT devices can also prove successful at human
monitoring, for HAR was shown to achieve 97.6% accuracy using a novel DL
framework which was coined AE-LRCN [44].

In addition to the success of the previously mentioned sensor modalities, PIR
sensors also have proven successful in human monitoring applications. Through a
sensor fusion of PIR sensors and camera modalities, HeteroSense obtained accurate
classifications for presence, occupancy count, trajectory or tracking, and basic
multiclass activity recognition [45]. In HeteroSense, stereo-vision cameras are
placed at entrances and multiple PIR sensors are deployed throughout the indoor
environment for accurate classification. Sensor fusion with PIR sensors is popular
in human monitoring applications, as the binary output of the PIR sensor is used
for trajectory detection of the human subject and the other sensor modality is
traditionally used for more continuous monitoring in sedentary moments. Another
sensor fusion system can be seen with a geriatric monitoring application utilizing
eight PIR sensors in a mock apartment environment with one wearable device
connected to the thigh of the monitored subject. In this instance, a Bayesian particle
filtering sensor fusion algorithm is applied for greater indoor localization accuracy
[46]. In a similar sense, PIR sensors were deployed for early detection of dementia
based on classification of travel patterns with a CNN learning model [47]. In terms
of HAR using only PIR sensors, in the proposed system ALPAS, four activities
completed on a sofa were classified with a F-measure of 57% using only two analog
PIR sensors [48].

Although indoor localization has been classified through DL algorithms, indoor
localization via GPR models is a common approach to localization. Regression is
seen as superior in terms of indoor localization as estimation of testing data can
apply to new coordinate systems in the environment of interest. One example of such
an approach for indoor localization is coined DeepMap, a deep Gaussian process
for indoor radio map construction and indoor localization [49]. The received signal
strength (RSS) of Wi-Fi signals are used as fingerprints in this related work, for
which the deep Gaussian process is fed and learns from these RSS values and their
respective coordinates for accurate human localization. Similarly, authors in related
work utilized Wi-Fi received signal strength indicator (RSSI) fingerprinting data
for indoor localization via GPR, in which a CNN was also deployed to learn the
features from RSSI data before being fed into the GPR model. The RSSI fingerprints
were pre-processed in this case to represent images, in which such a designed
process in this work of CNN + GPR with a Matern kernel proved superior to the k-
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Nearest Neighbor algorithm in compared work [50]. A novel multi-person tracking
framework was proposed utilizing a GPR observation model through a transfer
learning approach. The prediction from the Kalman Filter feeds into the GPR model
to estimate the targets’ location and then the output of the GPR model is then used
as the measurement input into the Kalman Filter [51]. In a work completed by our
research group, the offline training phase is modeled by a 3D point cloud and the
developed GPR model learns from the RSS of Wi-Fi signals for matching completed
during the online stage. This methodology proved accurate for indoor localization
on an iOS platform [52].

For elderly monitoring, indoor localization and HAR are two applications that
significantly aid in greater independence for the monitored person. The caregiver
and hospital system will be able to check on the status of the aging individual and
monitor potentially harmful activities without being physically in their presence.
Common in many systems designed specifically for the elderly and neurodegen-
erative populations is the detection of fall events, as fall events are the leading
cause of death in these populations [53]. Many fall detection systems rely on
sensors embedded in wearable devices for accurate detection of fall events, yet
there exist ambient sensing systems that are designed for accurate classification of
fall events. One such instance is proposed where the authors used a video-based
detection system [54]. Human poses in this related work are used as features that are
fed into a CNN for feature extraction and classification, achieving high sensitivity
and specificity in comparison to other fall detection systems using raw RGB data.
In neurodegenerative monitoring, an ultra-low-power radio signal device coined
Emerald was developed and subsequently monitored seven PD patients passively
with a focus on gait, home activity, and time in bed [55].

With the presentation of related systems based on ambient sensors and statistical
learning algorithms, one can determine the shortcomings in these various systems.
For example, those systems that rely on video-based detection are prone to privacy
concerns that limit its long-term usage in at-home monitoring systems. In addition,
video-based systems can be expensive for widespread deployment in assistive
care facilities. Some systems with active sensors are prone to health and energy
concerns, such as in the case of active RF signals. Some systems that deploy
specific sensors, or PIR sensors in the traditional sense, are limited by the small
FoV, requiring multiple sensors deployed in the monitored environment. Terminal
devices used in sensor fusion with PIR sensors require the user to remember to
consistently wear the device, causing intrusion on the monitored human subject.
Therefore, as mentioned, there exists a need for inexpensive, non-intrusive, accurate,
and expanded ambient sensing systems towards the reliable monitoring of aging
individuals. A PIR sensor that extends the FoV to monitor an entire environment
and accurately detect stationary human subjects could potentially fill the gaps in
this related work.
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2.4 Biometric Authentication

Biometric authentication methodologies vary in the modality and the metric used for
classification. For instance, wearable devices have utilized biometric authentication
methodologies towards the goal of secure and implicit authentication of these
devices. One instance of this was presented with the usage of hybrid biometrics
for biometric authentication, using calorie burn and metabolic equivalent of task
(MET) metrics during sedentary and non-sedentary stages [56]. In terms of ambient,
non-contact sensing for authentication purposes, many systems rely on camera
modalities, such as in the case of imaging of fingernail plates and finger knuckles.
Utilizing rank-level fusion of the two image features, the proposed system achieved
100% accuracy from a database containing 890 total images of 178 volunteers [57].
These examples highlight the variations in methodologies for the common biometric
authentication goal. Towards biometric authentication systems that are less prone to
forgery and indicate living human presence, heart-related biometrics have garnered
much attention in recent years.

Electrocardiogram (ECG) is a measurement of the electrical activity of the
heart, which is generally dependent on surface electrodes. The waveforms that
exist in an ECG signal include the P, Q, R, S, and T waves, which are indicative
of repolarization and depolarization of various parts of the heart [15, 58]. These
collected ECG signals are commonly deployed for biometric identification and
biometric authentication purposes based on the unique QRS complex that exists
for each heartbeat of the ECG signal. More generally, these methods for biometric
identification and authentication are based on the physiological background that
everyone has a unique heartbeat due to the variations in opening and closing of
valves and varying sizes and shapes of each heart. Common methodologies for
biometric authentication and identification with ECG signals rely on DL to learn
the slight variations that often exist between the QRS complexes. For example, a
CNN was deployed to intrinsically learn the features contained within the MIT-BIH
database of ECG signal data resulting in a 99% accurate biometric identification sys-
tem. The novelty of this proposed system is such that this methodology eliminates
the usual time-extensive manual feature engineering process [59]. Likewise, another
biometric identification system based on ECG signal data was proposed, where
in this instance, the novelty was based on the QRS-resampling strategy that was
proposed to handle the variations in heart rate. This QRS-resampling strategy with a
PCANet DL architecture allowed for a 94.4% accurate identification system that is
robust to heart rate variability [60]. Towards the goal of improving the generalization
ability of ECG identification systems, a cascaded CNN was proposed for biometric
identification of ECG signal data in another related work, where the F-CNN is
used for feature extraction and M-CNN is used for classification [61]. Although
accurate enough to identify every individual included in the dataset, ECG signals
require contact with the user and are reliant on expensive hardware. To improve
biometric systems for everyday usage, such as in the case of IoT, capturing heart-
related signals with more advantageous sensor modalities is examined.
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Collecting an accurate and informative heart rate signal is more difficult with
non-contact sensors. A few solutions, however, have been proposed in recent
years on this topic. ECG signals can now be captured via wearable devices such
as an Apple Watch or in the case of capacitive coupled electrodes embedded
within clothing. In the latter example, the researchers proposed methods for
artifact reduction in such non-contact ECG monitoring examples, showing that their
proposed empirical wavelet transform with traditional wavelet transform approach
was successful at reducing motion artifacts and restoring the QRS complexes [62].
Moreover, the breathing pattern and respiratory rate (RR) has been shown to be
accurately quantified via RGB cameras [63]. Collecting these signals would allow
for a non-contact, heart-related biometric system; yet, collecting RGB images raises
privacy issues that should be avoided for a long-term monitoring solution. In more
recent work, the WiFi CSI ambient signals have shown success at estimating
the RR through high-resolution spectrogram-based CSI features for a COVID-19
monitoring application [64]. A PIR sensor would address the shortcomings of other
sensor systems and fit the needs of a long-term monitoring solution. Presented in
related work is a PIR sensor that accurately estimates the resting heart of 30 subjects
using a novel acceleration filter that is presented in Eq. (3) [65]. The magnitude
of the heart-rate signal is much greater than the respiratory signal for the applied
acceleration filter, allowing for accurate resting heart rate estimation from a PIR
sensor in this related work. The novel acceleration filter in Eq. (3) computes the
second derivative with a convolving triangular window and simple Lagrange low
pass filter to the raw PIR analog sensor data.

g
′
2 = [1 4 4 − 4 − 10 − 4 4 4 1] (3)

This acceleration filter in Eq. (3) is utilized and included as a feature for biometric
authentication in our work. In their methodology, subjects sat 1 m away from the
PIR sensor while remaining motionless, and their chest motion was collected at
a 10 Hz sampling rate [65]. Showing to be successful at extracting the heart rate
of individuals with a PIR sensor, we follow a similar methodology in our CM-
PIR system. In comparison to a proposed system using a PIR sensor for biometric
authentication, a system coined Cardiac Scan utilizes a DC-coupled continuous-
wave radar for the authentication of 78 subjects at one common location. The cardiac
motion acts as a biometric in this case, showing to be 98.61% accurate using a SVM
algorithm with RBF kernel [66]. This non-contact biometric authentication system
for an IoT device indicates the similarity to our proposed CM-PIR system.

3 Motion Induced PIR

MI-PIR was previously introduced as a novel method for stationary human presence
detection using one analog PIR sensor and an ANN DL model [13]. Additionally,
MI-PIR consists of a robotic actuator, a platform, a thermal insulator, a microcon-
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troller, and a PC. The complete set-up of MI-PIR is included in Fig. 1(b). The
thermal insulator is made of cardboard, as this material was shown to accurately
block the infrared radiation detected from the movement of the robotic actuator. A
more long-term material will be developed and replace the cardboard in this system
in a future model. The thermal insulator sits on the platform and subsequently the
robotic actuator. The robotic actuator used in the MI-PIR design is the Dynamixel
MX-28, while the platform is a Hokuyo UTM-30LX-EW which serves no other
purpose than to be used as a flat surface for the thermal insulation material. The
Elegoo Uno R3 microcontroller connects to the Panasonic AMN24112 PIR sensor
for data conversion and transmission to the PC. This full MI-PIR design classifies a
room occupancy and related parameters every 36 s due to the 26 s forward motion
and the 10 s backward motion to complete one full cycle.

In our initial work, MI-PIR was extended to classify three additional occu-
pancy parameters on top of stationary human presence detection, which included
occupancy count estimation, relative location classification, and human target dif-
ferentiation. New in this work is the addition of precise indoor localization and HAR
in both an office environment and residential environment. We utilize a GPR model
for precise indoor localization achieving 493.7 cm2 MSE in an office environment
with multiple users and 426.4 cm2 MSE for Student 1 only of Table 1. An RNN
model with LSTM units for HAR achieved 100% accuracy in the office environment
for classifying activities of Student 1 only. In the residential environment, the GPR
model achieved 131.4 cm2 MSE for precise indoor localization of one individual
and the RNN architecture achieved 98% accuracy between six total labels for HAR.
The data collection, pre-processing, and results of the MI-PIR system will be fully
addressed in this section.

3.1 Ambient Environments

The office location is in Dodge Hall, an academic office building on the campus of
Oakland University in Rochester, Michigan, USA. This office location consists of
five different PC locations labeled as “Location (L1)” through “Location 5 (L5)”,
where MI-PIR is placed for data collection at Location 1. In addition, the office
location is split into three different walking paths for HAR data collection. The
office location is 5.18 m in length and 3.96 m in width and is only accessible by key
access. As a result, student researchers are of those with access and are commonly
using the office space. Each researcher in the lab has a common workstation, but due
to fluidity in the student researchers, there does exist some variation in the student
locations. The office location has been modeled and is presented below in Fig. 2.
L1 through L5 label the locations of student researchers and W1 through W3 label
walking paths in this figure.

In relation to the office location, a residential location is more indicative of an
elderly monitoring situation, and thus the MI-PIR system was additionally tested
in an apartment bedroom. The residential environment is 4.57 m in length and
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Table 1 MI-PIR data collection in the office space location for each of the five classifications
and two regression models. The number label used for DL, along with the real label and available
samples for a 36 s rotation time is included

Classification Number label for ML Real label Available samples

Room classification 0 Unoccupied 854
1 Occupied 2803

Occupancy count
estimation

0 No people 854

1 One person 1936
2 Two people 702
3 Three people 165

Relative location
classification

0 Unoccupied 854

1 Location 1 174
2 Location 2 1240
3 Location 3 153
4 Location 4 369
6 Locations 1 and 2 105
10 Locations 2 and 3 44
11 Locations 2 and 4 100
12 Locations 2 and 5 250
15 Locations 4 and 5 203
23 Locations 2, 3, and 5 138
24 Locations 3, 4, and 5 21
25 Locations 2, 4, and 5 6

Human target
differentiation

0 Unoccupied 854

1 Student 1 1936
2 Students 1 and 2 32
3 Students 1 and 3 181
4 Students 1 and 4 386
5 Students 1 and 5 103
6 Students 1, 4, and 5 98
7 Students 1, 3, and 5 46
8 Students 1, 4, and 6 21

Indoor localization (250, 10) Unoccupied 7136
(415, 70) Location 1 279
(415, 265) Location 2 1883
(250, 265) Location 3 356
(80, 265) Location 4 699
(50, 60) Location 5 618

Indoor
localization—
Student
1

(415, 70) Location 1 174

(continued)
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Table 1 (continued)

Classification Number label for ML Real label Available samples

(415, 265) Location 2 483
(250, 265) Location 3 153
(80, 265) Location 4 369

Activity
recognition—
Student
1

0 Unoccupied 191

1 Sitting 102
2 Walking 101

Fig. 2 The model of the office space. “L1” through “L5” indicate the five stationary locations in
the office space and “W1” through “W3” indicate the three walking paths during the HAR data
collection. MI-PIR is located on the counter at L1

3.65 m in width, just smaller than that of the office environment. In this location, a
relative location classification and HAR classification are completed. In addition,
a precise indoor localization is applied to identify the results of estimating a
human occupant’s position in a residential environment. This specific residential
environment is modeled in Fig. 3. This apartment model indicates the locations
for which each activity is completed, specifically presenting Activity 1 (“A1”) of
“Working at the Desk” at Location 2 (“L2”) in Fig. 3. Further, Location 1 on Fig. 3
(“L1”) indicates the locations of Activity 2 (“A2”) and Activity 3 (“A3”), “Laying
on the Ground” and “Exercising on the Ground”, respectively. Location 3 is located
at the bed for which Activity 4 (“A4”) and Activity 5 (“A5”) are completed of
“Watching TV on Bed” and “Sleeping on Bed”, respectively.
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A4, A5
L3

A2, A3
L1

A1
L2

4.57 m

3.
65

m

Fig. 3 Model of residential environment data collection. MI-PIR is located next to the bed,
indicated by the outward signals

3.2 Data Acquisition

For data acquisition, MI-PIR scans the room every 36 s in a 130◦ motion, including
both a forward and backward trajectory. As a result, the horizontal FoV is increased
from 93 to 223◦ with the MI-PIR design. Data was collected at a 10 Hz sampling
rate. Each data sample is synced to match the ambient environment e.g., each
data collection sample starts with the MI-PIR system pointing in the farthest east
direction. For unoccupied data collection, an additional 36 s is included to copy the
data that matches the accurate situation. The data collected was copied from the
serial monitor of the Arduino integrated development environment (IDE) and then
converted to a CSV format, where it was cleaned and manually labeled. Each data
sample includes the labels for learning and the time for each classification. The data
samples are finally sent to their respective folders for each classification.

3.2.1 Office Environment

Office data collection for stationary human presence detection, occupancy count
estimation, relative location classification, and human target differentiation was
completed between August to December of 2019. This covered the change in the
summer semester to the fall semester on campus, allowing for variations in the
student researchers and their usual locations in the office environment. The ambient
environment in the data collection varied due to the sunlight changes between
seasons that existed with the open windows in the office. These changes between
locations and ambient environments allow for a more robust monitoring system.
Precise indoor localization via GPR is based on the same data collection; however,
data collection for the “walking” label of HAR was collected in March by Student 1.
HAR in this office environment is completed with Student 1 only and precise indoor
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localization is presented with a Student 1 only model and with a full data collection
model.

In terms of the office environment, the room occupants are not aware of the data
collection process while its ongoing, allowing for a data collection process that is
more representative of the workday. Data collection is a continuous process until
the room state is changed e.g., a room occupant stands up, changes seat location,
leaves the room, etc. In that case, Student 1 who runs the data collection process,
starts a new continuous data sample. Overall, Student 1 ensures the data collection
process is accurate, as this student participates in each of the data collection samples.
In terms of the unoccupied scenarios, Student 1 remains outside the office door,
ensuring no student researcher or other university employee enters the office during
this process. For the “walking” scenarios, Student 1 walked continuously in three
different specified paths as included in Fig. 2. W1 refers to the first specified location
for a continuous pacing path, W2 is the second, and W3 is the last. All classifications
include the recorded “sitting” samples of all the students, whereas the “walking”
samples of Student 1 were included for the HAR classification only.

For indoor localization, more unoccupied slots are appended to match the number
of coordinates presented in a three-person example that is needed for ML. For
example, a data sample of Location 1 and Location 3 would include the coordinates
“(415, 70), (250, 265), (250, 10)”, as the third person is not present in the data
collection process. Data for all six classifications (room classification, occupancy
count estimation, relative location classification, human target differentiation, pre-
cise indoor localization, and HAR) is presented in Table 1. This table includes the
number label or coordinate system used for ML, the actual label, and the number of
36 s samples for each label.

3.2.2 Residential Environment

Residential data collection was completed by Student 1 only for five different
activities and one unoccupied scenario. As Student 1 is the only occupant for
data collection, the subject knows data collection is ongoing in this case. The full
complete breakdown of data collection for relative location classification, HAR,
and precise indoor localization in the residential environment is included in Table
2. The five activities and their integer labels for ML are included in this table, with
the addition of the coordinate system based on the activity completed. The locations
are not provided the coordinate system in this case, as the activities differentiated
slightly at the precise location. The unoccupied scenario was given a coordinate
system close to the entrance door, like that of the office environment indoor
localization. Multiple activities are completed at the same location as to prove that
the system is not dependent on location for classification e.g., two activities at the
same location can be differentiated based on the motion of the subject. Activity 3
of “Laying on the Ground” was included in the dataset as an activity representative
of a possible fall in the geriatric population. In this instance, Student 1 remains
motionless on the ground throughout the continuous data sample collection. All
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activities in the dataset for the residential environment are completed continuously,
where each activity is roughly 2 h of data with at most three continuous data samples
for each activity.

3.3 Data Pre-processing

Collected data from MI-PIR was pre-processed in Jupyter Notebook using Python.
To increase the data samples and allow for quicker classification times, continuous
data samples were batched into 360 s samples based on the time data included in
the CSV file. The 360 s time window accounts for a 36 s complete cycle at a 10 Hz
sampling rate. Those that were less than 360 s samples at the end of the continuous
data sample were deleted. These 360 s samples were then ready to be used in
feature extraction. In total, there exists 3657 samples for the first four classifications
included in Table 1, 10,971 for precise indoor localization of the full data collection
model due to the splitting of individual labels and the appending of unoccupied
scenarios, 1179 for precise indoor localization of Student 1, and 394 samples for
the HAR classification of Student 1. For the residential environment, there are 1147
samples to be utilized for training and testing. The full complete breakdown of data
collection for relative location classification, HAR, and precise indoor localization
in the residential environment is included in Table 2. Data for each classification in
each environment is split into 70% training, 15% testing, and 15% validation for
learning purposes.

Table 2 Data collection for the MI-PIR system in a residential environment. Locations,
coordinates, and activities with their integer labels used for ML and DL are presented

Classification Number label for ML Real label Available samples

Relative location classification 0 Unoccupied 185
1 Location 1 370
2 Location 2 208
3 Location 3 384

Indoor localization (425, 50) Unoccupied 185
(290, 260) Working at desk 208
(225, 150) Laying on ground 186
(200, 150) Exercise on ground 184
(125, 260) Watch TV on bed 174
(100, 270) Sleep on bed 210

Activity recognition 0 Unoccupied 185
1 Working at desk 208
2 Laying on ground 186
3 Exercise on ground 184
4 Watch TV on bed 174
5 Sleep on bed 210
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Through various feature experimentations, the signal power of the time-series
raw MI-PIR analog voltage was found to be the most indicative of human presence.
The signal power of the raw voltage was taken for each 360 s time window, where
the absolute value of the fast Fourier transform (FFT) allowed for this calculation
to be completed. This calculation was also completed with Python in the Jupyter
Notebook. Other experimented features include discrete wavelet transform (DWT),
raw voltage, and a standard deviation statistical feature, but all of which proved
poor in stationary human presence detection using an ANN. Further, statistical
testing of stationary human presence proved inadequate due to the multiple ambient
environments collected over the multiple seasons in the office environment. The
signal power not only achieved high accuracy for room occupancy, but for each of
the other classifications. The signal power feature vector is normalized from 0 to 1
using min max normalization of the sklearn package before being used for many of
the classifications. The GPR model performed better with the raw signal power, and
in some cases the raw signal power showed better results in the neural networks,
such as in the case of the maximum sensing distance quantification that will be
presented later. Overall, the raw signal power and the normalized signal power are
both used in the statistical learning models developed for the MI-PIR system.

3.4 AI

Four different models have been developed for MI-PIR related classifications. As
mentioned, these models include three DL algorithms and one ML algorithm. An
ANN, RNN, and CNN were all utilized for the four original occupancy parameters
as comparison to identify the maximum accuracy obtained between the three neural
networks. The GPR model is utilized for precise indoor localization. The most
accurate neural network architecture will be utilized for the HAR classifications
between both environments. All models in this work were built with the Keras DL
framework in Python.

The ANN architectures used differ with the classification due to the number
of classes outputted. For example, the human target differentiation requires eight
classes, and the room occupancy classification parameter is only a binary classifi-
cation which requires two classes. With that, room occupancy classification utilizes
the binary crossentropy function as the loss function, and the other three parameters
utilize the sparse categorical crossentropy function as the loss function. The room
classification also differs in the fact that it utilizes the stochastic gradient descent
(sgd) optimizer, whereas the other four classifications utilize the Adam optimizer.
In general, the ANN model is composed of an input layer, a hidden layer, and
output layer with multiple variations in the dimensions of each due to the number of
classification output labels that are needed. For example, the ANN model for room
classification of binary output consists of two dimensions for the input layer, two for
the hidden layer, and one for the output layer. For an extensive table highlighting the
architectures of each ANN model used for room classification, occupancy count
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Fig. 4 The RNN architecture
utilized for the HAR
classification in the office
environment. The other RNN
architectures used in this
work follow a similar
structure with varying output
shapes due to the variation in
classification

estimation, relative location classification, and human target differentiation, we
direct the reader to our previous work [13].

The RNN model developed consists of two LSTM units, two dense layers, and
three dropout layers to aid in overfitting of the models. The LSTM units consist
of 128 dimensions, the dense layers of 32 for all but the output layer of the binary
classification in which a dimension of 2 is utilized, and the dropout layers utilize 0.2
and 0.1 weights. Rectified linear unit (ReLu) and softmax are utilized for activation
functions, where softmax is used as the output activation function. The Adam
optimization function and sparse categorical crossentropy function are utilized for
all four original models. Figure 4 presents the RNN architecture used for the HAR
classification, however, the other RNN architectures used follow a similar structure.
All original four occupancy classifications use 100 epochs for learning, whereas the
RNN model for HAR classification uses 50 epochs.
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The CNN developed includes two convolution layers, one dropout layer, one max
pooling layer, and two dense layers. The convolutional layers use filters of 64 and
kernel size of 3, the one dropout layers uses a weight of 0.5, max pooling layer uses
a pool size of 2, and the dense layers consists of one that is 100 dimensions, and the
output dense layer is the dimension of the number of labels. The relu and softmax
activation functions are utilized similarly for the CNN model. Sparse categorical
crossentropy is utilized for the loss function of these models and Adam is used as
the optimizer function. 10 epochs are used for the CNN.

The GPR model utilized for precise indoor localization is developed with the
sklearn package in Python. The MSE output of the GPR model was compared
with three different kernels: Matern, RBF, and ExpSineSquared. The Matern kernel
showed the best result and is thus utilized for the precise indoor localization
regression problems in this work.

3.5 Occupancy Parameter Classification

The classification reports for the four original occupancy parameters using an
ANN in the office environment (room occupancy, occupancy count estimation,
relative location classification, and human target differentiation) were reported in
our previous work [13]. The room classification occupancy parameter for detecting
human presence in an office environment achieved 99% accuracy. The occupancy
count estimation of differentiating between no people and, at maximum, three
people achieved 91% accuracy. Relative location classification at differentiating
between Location 1 through Location 5, with multiple combinations, achieved 92%.
Finally, human target differentiation of eight different combinations of people with
an unoccupied scenario achieved 93%.

For relative location classification in the residential environment, we used the
developed RNN DL model to achieve 98% accuracy. With three locations and a
constant human subject present, Student 1, the relative location classification was
less complex than that in the office location. However, for an elderly monitoring
system, it is imperative to know the location of the elderly individual in a non-
intrusive and passive manner. The location of the elderly individual can provide
peace of mind to the caregiver through the monitoring system. As such, this
classification is still essential to report towards the goal of an accurate geriatric
monitoring solution.

3.6 Expanding MI-PIR

Before applying the MI-PIR system to precise indoor localization and HAR, we
aimed to optimize and quantify the parameters of the MI-PIR system. These metrics
include the selection of an optimal DL architecture, optimal rotation time, and
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maximum sensing distance. From the results, the RNN model and 36 s rotation
time are found to be the optimal DL model and rotation time, respectively. From the
maximum sensing distance quantification, MI-PIR can accurately detect stationary
and non-stationary subjects up to 21 m. The complete results of this expansion are
included below.

3.6.1 Optimization

In the hopes of a quicker classification time, the optimal rotation time for classifica-
tion of the room occupancy parameters in the office environment was experimented
with. Three different classification times were addressed for comparison. These
include 36 s for a complete rotation of the robotic actuator, 26 s for the front scan
only, and 10 s for the backward scan only. This analysis was completed within the
developed Python code, where the batches were first developed for the 36 s rotation
time. Following, the last 10 s would be removed for the 26 s examination and vice
versa for the 26 s classification. Thirty-six seconds proved to be the most accurate
of the three times, and despite the additional time required, the relatively large
increase in accuracy outweighs the additional classification time. The results of this
optimization are included in Table 3 with reported accuracies from the previously
developed ANN.

The RNN and CNN introduced in this section were developed to compare the
reported accuracies from the ANN to more sophisticated models. The results of this
optimization are also presented in Table 3 for each of the four occupancy parameters
in the office environment. From these results, the RNN is shown to be the most
accurate DL model for MI-PIR, as indicated by the maximum accuracy obtained for
each of the occupancy classifications. The RNN performing the best in these four
classifications is expected due to the time-series nature of the input data. The RNN
model will be utilized for the rest of the work due to these results.

3.6.2 Quantification

Utilizing the RNN DL model, we aimed to quantify the maximum sensing distance
for possible extension of the design to larger environments. In addition, this metric
would allow for better comparison to existing human monitoring systems. In this
experiment, we collected data of Student 1 walking and standing at iterative linear
distances away from the MI-PIR system in three different ambient environments:
a residential hallway, a construction warehouse, and a gymnasium. Three ambient
environments were included as there was a need for greater distance away from the
sensor following the results of each environment. In the residential environment,
data was collected for an unoccupied scenario and from 1 to 12 m away from
the MI-PIR system. In the construction warehouse, data was collected for an
unoccupied scenario and 13 through 19 m away from MI-PIR at 1 m increments.
In the gymnasium, data was collected for an unoccupied scenario and distances at



Human Detection and Biometric Authentication with Ambient Sensors 77

Ta
bl
e
3

T
he

re
su

lts
of

th
e

op
tim

iz
at

io
n

of
m

et
ri

cs
us

ed
in

th
e

or
ig

in
al

M
I-

PI
R

sy
st

em
.

T
he

D
L

m
od

el
an

d
ro

ta
tio

n
tim

e
ar

e
op

tim
iz

ed
to

ad
va

nc
e

th
e

no
ve

ls
ys

te
m

O
pt

im
iz

at
io

n
m

et
ri

c
D

L
M

od
el

R
oo

m
cl

as
si

fic
at

io
n

(%
)

O
cc

up
an

cy
co

un
t(

%
)

L
oc

at
io

n
cl

as
si

fic
at

io
n

(%
)

H
um

an
ta

rg
et

di
ff

er
en

tia
tio

n
(%

)

A
N

N
99

91
93

93
R

N
N

10
0

93
95

94
C

N
N

10
0

90
93

94
R

ot
at

io
n

tim
e

T
im

e(
s)

R
oo

m
cl

as
si

fic
at

io
n

(%
)

O
cc

up
an

cy
co

un
t(

%
)

L
oc

at
io

n
cl

as
si

fic
at

io
n

(%
)

H
um

an
ta

rg
et

di
ff

er
en

tia
tio

n
(%

)
36

99
91

93
93

26
98

84
84

89
10

75
71

69
80



78 J. Andrews and J. Li

21, 41, and 43 m. For walking data collection in these environments, the human
subject paced a few meters back and forth, whereas for stationary data collection,
the human subject remained seated during the entirety of the collection. The
maximum sensing distance for a stationary individual and moving individual was
quantified by removing the data sample with the next farthest distance to quantify
the RNN accuracy. The manufacturer lists the maximum sensing distance of the
Panasonic AMN24112 PIR sensor as 10 m with the deployment of a PIR sensor
in the traditional approach. The results of this maximum sensing quantification
are compared between three different sample sets, one in which all the data is
included, one of just motionless data, and one of just walking data. The results of
this quantification are included in Table 4.

For each occupied scenario, about 3–5 min of data was collected with matching
unoccupied scenarios at each ambient environment for balanced data. Therefore, in
total, there exists 426 samples for maximum sensing distance quantification. With
motion and motionless data combined, the maximum sensing distance for 100%
accuracy was quantified as 41 m. With motionless data only, maximum sensing
distance for 100% accuracy was found to be 21 m. Finally, for motion data only, the
maximum sensing distance was also reported as 21 m.

From these reported results it is evident that MI-PIR has human detection
capabilities beyond the reported 10 m distance reported by the manufacturer.
The maximum sensing distance is quantified between three ambient environments,
causing the DL model to learn from multiple locations. For more accurate maximum
sensing quantification, data should be collected at one central location. The data
collection and results of this work is more robust however, due to the multiple
ambient environments. With the large jump between 21 to 41 m at the gymnasium
location, the maximum sensing distance could be greater than the reported 21 m for
stationary and non-stationary human subject detection. The 41 m maximum sensing
distance quantification, which includes all the data, allows for learning of double the
number of scenarios. With the additional training data, the distance of the monitored
human subject is expanded. Verification of the maximum sensing distance will be
addressed with additional data at the gymnasium location. With that being said, the
MI-PIR system has shown to expand the sensing distance of the traditional analog
PIR sensor to a recorded 21 m with motion and motionless data only, and even
further with all the data included.

3.7 Precise Indoor Localization via GPR

The GPR model was applied for a regression method of indoor localization. The
regression method, in comparison to the relative location classification, allows for
estimation of the human occupant in comparison to the ground truth coordinate
system. The coordinate system utilized for the precise indoor localization in the
office environment is presented in Table 1. Two classifications are completed for the
precise indoor localization in the office environment: one in which all stationary
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Fig. 5 Result of precise indoor localization using GPR with (a) all data (unoccupied result not
shown) and (b) Subject A

data collected is utilized and another in which only the data from Student 1 is
utilized. The Student 1 only model does not include data from Location 5 or
any unoccupied data, whereas the model including all the data does include the
unoccupied scenarios. Including two different regressions allows for a comparison
of the models in learning from the signal power from multiple subjects in the office
space to one in which there is only one person accounted for.

For multiple people, the MSE obtained is 493.7 cm2. The accuracy of this
model may be better represented visually. Figure 5(a) presents the accuracy of the
model for precise indoor localization using a GPR model with a Matern kernel
and with all the data collected for multiple variations in students present in the
office environment. This model does not visually include the clustering of the
unoccupied scenario, which is located near the door, as this data was only included
as a means of balancing the data to match the coordinate systems of three people.
With all the ground truth data for each location presented as red dots, and the
estimations presented in varying colors, one can determine that the developed GPR
model proved sufficient at clustering the testing data in their respective locations.
With the Student 1 only model, on the other hand, the model produced a MSE of
426.4 cm2. Although a better resulting MSE than the model with multiple people,
the MSE is relatively similar. Also, based on the visual representation in Fig. 5(b),
the clusters for the four respective locations of Student 1 are developed. The results
of this work indicate that MI-PIR proves to not only classify locations in an office
environment, but also estimate these locations in terms of coordinate systems. The
exact coordinates of the students were not measured during training data and the
student researchers were also free to subtly move their chairs. As a result, the
MSE is not an exact indicator of the performance of these models, but rather this
exercise proves to be a sufficient method for clustering of testing coordinates to the
ground truth coordinate system. With more precise ground truth data, the MSE is
hypothesized to decrease for both the full data collection method and for Student 1
only.
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Fig. 6 GPR model of the residential environment, where each color represents a different activity.
The yellow cluster near the entrance represents the unoccupied scenario

For precise indoor localization with a GPR model in the residential environment,
the reported MSE is 131.4 cm2. For better understanding of this reported metric, the
modeled residential environment provides the clustering of the precise locations of
each activity, as shown in Fig. 6. This model also proves accurate at clustering the
locations of the activities. As a comparison, the GPR model can be more accurate in
indoor localization as the estimation of future activities can be applied throughout
the environment, whereas the classification of locations is either classified correctly
or not. The unoccupied scenario is included in this visual display of the model, as
indicated by the small yellow cluster close to the entrance door in Fig. 6.

3.8 HAR

As a proof of concept, a simple HAR classification model was developed for the
office environment. Simple classification of sitting, walking, and an unoccupied
scenario was hypothesized to show some level of indication that MI-PIR could
accurately classify various activities in its FoV. The results of this classification
would allow for expansion to a residential environment for a HAR system more
indicative of the activities that an elderly individual would complete.

Student 1 data was only utilized in this classification. This data included
stationary moments from the original data collection that was utilized in prior
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classification and regression problems. Specifically, this stationary data included
samples from Location 2 and Location 4. In addition, this dataset includes walking
sets from all the walking patterns: W1, W2, W3. In these instances, Student 1 paced
for as long as 15 min, providing continuous data samples of walking data to classify.
Overall, there exists 394 samples to be utilized for classification as presented in
Table 1. With the 70%, 15%, 15% split of training, testing, and validation data that
is completed in all the models referenced in this work, there exists 275 samples for
training and 59 samples for testing.

The RNN model was utilized in this case for HAR classification in an office
environment. The model proved 100% accurate at differentiating unoccupied,
sitting, and walking scenarios completed by Student 1. The RNN proved its
superiority with time-series data such as in the case of the normalized absolute value
of the FFT. These results indicate that the MI-PIR system could prove accurate as
a HAR system in a geriatric monitoring situation. To prove this hypothesis, MI-PIR
was utilized in a residential environment for classification of additional activities.

Based on the success of the HAR classification in the office environment and
towards the development of an elderly monitoring system, accurate HAR classifi-
cation in a residential environment is an important task. With early success from
differentiating walking from sitting in the office environment, this classification
aims to extend the number of activities classified in a residential environment. The
developed RNN model achieved 98% accuracy in this classification of five different
activities and an unoccupied scenario. Two activities, “Exercising on Ground” and
“Laying on Ground”, were completed at Location 1, and two other activities,
“Watching TV on Bed” and “Sleeping on Bed”, were completed at Location 3. The
model proves robust to differentiating activities at the same location, indicating that
the variations in infrared radiation as indicated by the absolute value of the FFT are
suitable for an accurate HAR model in a residential environment. The classification
of the “Laying on Ground” label indicates the efficacy of detecting a potential fall
event and classifying such activity in 36 s increments. This also would allow for
greater state of mind of the caregiver in terms of an accurate elderly monitoring
system. The accuracy of the RNN model utilized for this HAR classification is
presented visually as a confusion matrix in Fig. 7. The integer labels provided on
the confusion matrix correlate to the activities highlighted in Table 2. From this
confusion matrix, one can identify high classification results, with only minimal
confusion relating to the activity number label of “3” or real label of “Exercise on
Ground”.

4 Chest Motion PIR

MI-PIR was developed as a novel system for stationary human detection utilizing
only one analog PIR sensor. Similarly, a system relying on the detection of the chest
motion of a perfectly still stationary human subject for stationary human presence
detection using one analog PIR sensor has been developed. This system is coined
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Fig. 7 Confusion matrix for HAR in the residential environment. The accuracy of HAR is reported
as 98%, and the confusion matrix serves to highlight this reported accuracy. True labels and
predicted labels are provided with integer labels that correspond to the activities provided in Table
2 for HAR in a residential environment

CM-PIR and has been previously presented in our past work [14]. CM-PIR consists
of the Panasonic AMN24112 PIR sensor, an Elegoo Uno R3 microcontroller, a
PC, and the RNN DL model for human detection and biometric authentication
classification.

CM-PIR is based on the resting heart rate estimation using a PIR sensor
methodology from related work, where the users are perfectly still 1 m away
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during the data collection process [65]. The filter to extract the heart rate from the
individuals was presented in the introduction of this work in Eq. (3). Our first step
in the human detection and biometric authentication process using CM-PIR was to
verify the accuracy of the filter and estimating the human heart rate of individuals
using a PIR sensor. After verifying this work with the heart rate monitor of the Apple
Watch Series 3, we expanded the data collection process to include 16 subjects at
nine different ambient environments. The accuracy of the model achieved 94% for
human detection and 75% for biometric authentication of Subject A against all other
potential adversaries. The results of this work are aimed to be utilized in a desk
scenario, where the human subject can be detected and authenticated for security
purposes at a 1-m distance.

4.1 Data Acquisition

CM-PIR successfully collected data for 16 subjects at nine different ambient
locations. Each subject recorded data for at least 20 min, with many collecting for
more trials and at various ambient environments. The subjects are of varying ages
and sex, with the ages of the subjects ranging from 15 to 60 years old and six females
and ten males included in the study. Some of the subjects utilized for the CM-PIR
data collection are of family relation. In each ambient environment, the CM-PIR
system would be set-up 1 m away on a surface that was on the chest level of the
subject. The full data collection for the CM-PIR system is presented in Table 5.

4.2 Data Pre-processing

Upon data acquisition of 16 subjects at nine different locations, the data was pre-
processed in Python. The overall CM-PIR flowchart is included in Fig. 8. In a similar
manner to how the MI-PIR data was batched according to the rotation time, the CM-
PIR data was batched to increase the number of data samples from the original data
files. This involved identifying the optimal window size experimentally. The optimal
window size was determined to be 90 s based on a balance between the number of
available samples to learn from and the number of data points to be learned from.
With the 90 s optimal selection in place, the next process was to apply a threshold to
the raw PIR voltage data. In terms of a human subject in motion, the raw analog PIR
voltage will spike from 5 V to 0 V as indicated by a sinusoidal swing. In terms of the
early data collection of CM-PIR, the motion of the chest from a perfectly stationary
human subject is between the ranges of 3 V to 2 V. To account for different ambient
environments, a threshold of 3.5 V to 1.5 V was applied to the 90 s batches. If
there are any data points greater than 3.5 V or less than 1.5 V in the sample, that
90 s batch would be removed. As a result, Table 5 indicates the available samples
from the collected samples after the threshold was applied. With the threshold, four
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Table 5 Data collection for the CM-PIR system including the data distribution for stationary
detection, biometric authentication, and overall subject distribution. The data included is for a
90 s window size and 3.5 to 1.5 V threshold that reduced the number of available samples from
collected to used

Category

Data
collected
(samples) Data used (samples) Integer label Real label Location

Stationary
detection

123 122 0 Unoccupied A-D

443 295 1 Occupied A-I
Biometric
authentica-
tion

123 122 0 Unoccupied A-D

219 133 1 Subject A A-D
224 162 2 Adversaries B, D-I

Individual
subject
distribution

123 122 0 Unoccupied A-D

219 133 1 Subject A A-D
40 34 2 Subject B A-C
19 19 3 Subject C B
35 32 4 Subject D B
18 14 5 Subject E E
9 7 6 Subject F E

11 11 7 Subject G B
6 0 8 Subject H F

14 0 9 Subject I G
13 11 10 Subject J G
12 6 11 Subject K B
7 0 12 Subject L H

12 0 13 Subject M I
13 11 14 Subject N F
12 7 15 Subject O F
13 10 16 Subject P D

human subjects and three ambient environments were completely removed from
the dataset. As a result, CM-PIR would then detect and classify 12 subjects and an
unoccupied scenario from six different ambient environments.

Following both the window size selection and applied threshold, feature calcula-
tions were then made on this data. As indicated by the MI-PIR system, the absolute
value of the FFT proved to be an accurate feature for human presence and related
occupancy parameters. This feature was used for the CM-PIR data, as a result.
Indicated in orange in Fig. 8, three additional steps in the CM-PIR flowchart are
included for the biometric authentication classification only. With that, two more
feature calculations are made on the CM-PIR data for concatenation to be utilized in
the biometric authentication classification of Subject A against all other adversaries.
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Fig. 8 CM-PIR flow chart. The orange is for biometric authentication only and the green is for
both human detection and biometric authentication classifications

The first additional feature to be used for biometric authentication is the acceleration
filter that models the response of the heart from the chest motion movement. The
absolute value of this feature is computed and concatenated to the signal power
value. The last feature to be utilized for the biometric authentication classification
is the absolute value of the DWT. The DWT feature allows for the frequency and
time in location of the raw PIR data to be represented in one feature and has been
utilized in related work for biometric authentication. Thus, the absolute value of the
FFT, acceleration filter, and DWT are concatenated for biometric authentication in
this work.

For the concatenated feature set to be of relative magnitude, we applied the
sklearn min max normalization to map the values from zero to one. Following
this normalization, PCA was then applied to reduce the dimensionality of the
feature set from 2700 data points to five data points. Not only does PCA reduce
the dimensionality of the normalized, concatenated feature set, but it also works
to identify the values that are representative of the entire vector. As such, PCA
increased the accuracy of the biometric authentication classification. Once PCA was
applied, the 900-sample human detection feature set and the feature set of five for
biometric authentication could be applied to the RNN DL model.

4.3 Recurrent Neural Network (RNN)

To learn the complex feature set originating from the chest motion data captured by
one analog PIR sensor, a DL model is proposed. In that case, a similar RNN model



Human Detection and Biometric Authentication with Ambient Sensors 87

to that of the MI-PIR classifications is developed. A similar RNN is proposed in
this case due to the success that the RNN shown in classifying time-series data
from the MI-PIR system. Towards this, the RNN consists of two LSTM layers,
three dropout layers, and two dense layers. The LSTM layers are composed of 128
dimensions and the dense layers are composed of 16 dimensions. The dropout layers
have a weight of 0.1 to aid in overfitting, which was initially a problem with a
relatively limited dataset for biometric authentication. All the layers of the RNN
model utilize the ReLu activation function except for the last dense layer which
utilizes the softmax activation function. In terms of the loss function and optimizer
utilized in this model, the sparse categorical crossentropy loss function and Adam
optimizer are again utilized. Both classifications underwent 125 epochs. We direct
the reader to our previous work for a visual representation of the RNN architecture
used with CM-PIR [14] The results of these classifications will be presented in the
subsequent sub-sections.

4.4 Human Detection

The human detection classification achieved 94% accuracy after training on 291
samples and testing on 63 samples as a resultant of a 70% training, 15% testing,
15% validation split. In comparison to the MI-PIR system, CM-PIR achieved
lower detection accuracy using one analog PIR sensor; however, the CM-PIR
system requires less additional architecture. Utilizing only the analog PIR sensor
and the microcontroller for data transmission, the set-up time and cost is much
lower with CM-PIR. In comparison to other proposed models for stationary human
presence detection using one PIR sensor, the CM-PIR system utilizes less additional
hardware. As a standalone PIR sensor that relies on software processing and
statistical learning for accurate classification, the novel CM-PIR system advances
the capabilities of PIR sensor human monitoring. Based on the chest motion data at
a 1-m distance, the CM-PIR system would accurately respond to a desk situation in
which the human subject was completely motionless.

4.5 Biometric Authentication

The biometric authentication system based on the chest motion data captured
by a PIR sensor achieved an accuracy of 75%. These initial results prove the
potential efficacy of using a PIR sensor for security purposes. With pre-processed
data collection of 12 individuals at six different home locations, the PIR sensor
had to differentiate the many ambient environments from the human subjects,
as well as authenticate the users based on their unique chest motion movement.
With less ambient environments collected for in the data collection process, we
hypothesize that these initial results would increase, as with related non-contact
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biometric authentication systems, data collection occurred at only one central
location. In terms of PIR sensors, multiple testing locations causes even more
ambient interference in recording of chest motion data. The CM-PIR recorded
accuracy, however, is much more robust as a biometric authentication system due
to the many ambient environments. As with many systems that rely on DL for
classification, we hypothesize that increased data collection of the subjects involved
in the study would increase the accuracy of the results. Due to the balancing of
an optimal window size selection in terms of data points and data samples, there
are limited 90 s batches to learn from. Increasing the data collection efforts could
improve the results, especially in the cases of those subjects that were completely
removed from the study due to the applied threshold.

4.6 Quantification

New in this work is the addition of the quantification of the maximum sensing
distance of the CM-PIR system for accurate detection of stationary human subjects.
As the original data collection was present at a 1-m distance, we extend the CM-PIR
system for possible detection at a 2 m and 3 m distance. In this quantification, data
was collected by Subject A at Location D for 30 min at 1 m, 2 m, and 3 m, with an
additional equal time length of unoccupied data collection. In a similar methodology
of removing the dataset of longest distance iteratively from the DL model, 3 m was
classified with 85% accuracy and 2 m was classified with 92% accuracy. At 1 m,
with one ambient environment and one subject, the CM-PIR system detected human
subjects with 96% accuracy. With these results in mind, a 1-m distance is proven
to be the maximum sensing distance for an accurate stationary human detection
system.

5 Discussion

PIR sensors are discussed as potential long-term monitoring solutions due to their
low cost, non-contact, non-intrusive, and relatively accurate and reliable results. In
terms of cost, the Panasonic AMN 24112 PIR sensor used in both systems proposed
in this work costs roughly $30 USD, whereas the Microsoft Kinect sensor used
in video-based solutions costs roughly $75 USD. This comparison in cost can
be illuminated further when systems rely on multiple video-based modalities for
accurate detection, and whereas the proposed solutions in this work require only
one sensor modality [54]. Furthermore, the Impinj RAIN RFID reader that is used
in related work can cost upwards of $1000 USD [38]. From this, one can identify
that the proposed PIR sensor-based systems for human detection and biometric
authentication are relatively inexpensive in comparison to systems proposed in
related work due to their reliance on only a single COTS sensor modality. With
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Fig. 9 FFT plot of HAR in (a) an office environment and (b) a residential environment indicating
the differences seen between activities

that, the non-contact, non-intrusive, and accurate nature of PIR sensors makes them
suitable modalities for long-term monitoring systems.

The major known drawback with PIR sensors is their inability to detect stationary
human subjects reliably and accurately in their FoV. In this work we have introduced
two novel systems to combat this major known issue with PIR sensors. MI-
PIR is a motion induced PIR sensor system that classifies an office space for
room occupancy, occupancy count, relative and precise location, human target
differentiation, and simple HAR every 36 s of rotation time. In a residential
environment, MI-PIR classified relative and precise locations of one individual
subject, as well as showed the efficacy of a more complex HAR classification. CM-
PIR on the other hand deploys one PIR sensor in the traditional sense for accurate
human detection and biometric authentication for security of IoT devices.

The signal power, or the absolute value of the computed FFT coefficients from
the raw PIR voltage data, proved to be a strong feature for the detection of stationary
human subjects using an analog PIR sensor. To alleviate the black-box stigma
that surrounds DL classification models, we present Fig. 9 which identifies one
36 s batch of each activity collected for during the MI-PIR office and residential
data collection. Figure 9(a) indicates the varying signal power for each activity
completed in the office environment and Fig. 9(b) indicates the varying signal power
for each activity completed in the residential environment. The office environment
presents the walking situation to have a greater signal power than the sitting
situation, with the unoccupied scenario showing significantly lower signal power.
The residential environment signal power comparison presents varying signals that
align with our hypotheses. During a work scenario in which the user is seated,
working, and using electronics, there would be higher levels of signal power than
during the sleep and unoccupied data collections. In a direct comparison of two
activities at the same location, “Watching TV on Bed” and “Sleeping on Bed”, the
latter activity had much less signal power due to both the lack of electronics in use,
as well as the lack of movement while sleeping.
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For comparison of these proposed systems to systems of related work, we
highlight Table 6 which includes this information. MI-PIR, CM-PIR, and related
work on using a PIR sensor for stationary human presence detection is compared
in this Table. MI-PIR through rotation of the analog PIR sensor extends the
manufacturer reported horizontal FoV from 93 to 223◦ through a 130◦ rotation.
In addition, based off the maximum sensing distance quantification, the maximum
sensing distance of a stationary human subject was found to be 21 m. For CM-PIR,
these results are the manufacturer stated 93◦ through the deployment in a traditional
sense and a 1 m maximum sensing distance. In comparison to related work, MI-PIR
extends the FoV for monitoring and extends the maximum sensing distance. For
CM-PIR, the FoV, maximum sensing distance, and accuracy is reduced. CM-PIR
is however the only solution that requires no additional hardware. As MI-PIR is
less mechanically complex than the other systems in related work that require the
development of an optical shutter for the analog PIR sensor, CM-PIR requires no
robotic actuator for accurate stationary human presence detection.

In terms of differentiating the results of the MI-PIR system with related work
in HAR classification, the MI-PIR proves superior as presented in Table 7. MI-
PIR produces a higher accuracy of differentiating unoccupied, sitting, and walking
activities than in related work. From a 100% accuracy to a 93% accuracy, one can
determine that the MI-PIR system is more accurate as a simple HAR classification.
Although classification in the related work is through a continuous data collection
with multiple people, the accuracy of the MI-PIR system with multiple activities in
a residential environment ensures the potential superior efficacy to the related work
[22]. The MI-PIR system for classification of a residential environment is compared
to the results of the ALPAS system presented earlier. This system requires two PIR
sensors for HAR classification, whereas the MI-PIR system requires only one analog
PIR sensor. The accuracy of the MI-PIR system of classifying five activities with one
unoccupied scenario achieves a significantly higher accuracy than the reported F-
measure of the ALPAS system. Although the ALPAS system classifies four activities
at one location with multiple users participating in the study, the MI-PIR system’s
significant increase in accuracy ensures the superior efficacy to the ALPAS system
[48].

For comparison of CM-PIR with other biometric authentication systems, CM-
PIR classifies one human subject against 11 other individuals that remain in the
study following an applied threshold. The 75% accuracy of CM-PIR is compared
against the introduced Cardiac Scan system of 98.6% accuracy with 78 different
subjects. Although the Cardiac Scan system achieves much greater accuracy, there
are a variety of differences between the two systems that highlights the potential
positives that CM-PIR might provide. CM-PIR collects data from nine different
ambient environments, although three of which are removed with a threshold during
pre-processing. In contrast, Cardiac Scan collects data at one central location.
The multiple ambient environments that the CM-PIR system must learn from is
hypothesized to decrease the accuracy and will be tested in future work. The PIR
sensor in which CM-PIR relies on is a passive sensor, and Cardiac Scan utilizes an
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active Doppler Scanner for biometric authentication [66]. The passive nature of the
sensor would allow for greater state-of-mind with less chance of any adverse health
and energy concerns.

6 Conclusions

Elderly monitoring remains an ever-growing challenge due to the increasing number
of individuals and the prevalence of neurodegenerative diseases found in this
population. Current systems for monitoring aging subjects often rely on camera-
based or terminal-based modalities that cause both a privacy intrusion and burden
to the end-user. Ambient sensors have been proposed to fill the gaps towards
a need for non-contact and non-intrusive monitoring systems that provide both
accurate localization and HAR classification of aging individuals in a residential
environment. Many of these current systems require expensive architecture or
multiple sensors deployed throughout the room to expand the FoV. Towards the
goal of accurate localization, HAR, and other occupancy related parameters, a novel
system coined MI-PIR was proposed in this work. CM-PIR is proposed in this work
for human detection and biometric authentication. To summarize the contributions
of these two systems, the accuracies and quantifications are included below.

In summary, MI-PIR has shown these results in an office environment utilizing
statistical learning . . .

• 100% accurate at room classification,
• 93% accurate at occupancy count estimation,
• 95% accurate at relative location classification,
• 94% accurate at human target differentiation,
• 100% accurate at simple HAR,
• 493.7 cm2 MSE was quantified for precise indoor localization with varying

subject conditions,
• 426.4 cm2 MSE was quantified for precise indoor localization of Subject 1 only.

MI-PIR has also shown accurate results in a residential environment utilizing
statistical learning . . .

• 98% accuracy at relative location classification,
• 98% accurate at differentiating five activities and an unoccupied scenario.
• 131.4 cm2 was quantified for precise indoor localization of Subject 1 only.

CM-PIR has shown to be accurate in two different classifications . . .

• 94% accurate at human detection of perfectly stationary human subjects,
• 75% accurate at biometric authentication of 13 labels at six varying environ-

ments.

These results highlight the potential success of MI-PIR as a long-term elderly
monitoring solution and CM-PIR as both a monitoring solution and biometric
authentication modality. In the case of HAR for MI-PIR, similar results to those
reported above can be obtained via the monitoring of one elderly subject, whereas
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additional tests are required to determine the efficacy of HAR with many individuals
present in an indoor environment. For each other classification, multiple subjects
were included, and the results can be directly mapped to a real-world scenario. The
only requirement for deployment of MI-PIR would be to collect initial training data
of the ambient environment.

While MI-PIR is proposed as a potential elderly monitoring system, CM-PIR
is proposed as a combined office space occupancy detection and IoT security
system. The FoV of the CM-PIR system is constrained to the manufacturer stated
FoV, as this analog PIR sensor is deployed in the traditional sense. As such, CM-
PIR is proposed to be deployed at the desk location of a human subject present
in an office scenario. Accurate detection of a human subject, even in the most
motionless of instances, would aid in smart energy management applications in
an office environment. The novelty of the CM-PIR system for stationary human
presence detection against proposed methods, including MI-PIR, is the lack of
additional hardware and set-up needed. In comparison to a state-of-the-art non-
contact biometric authentication system, CM-PIR proves less accurate, but proposes
a more adequate sensor modality for long-term monitoring. Data collection at
one central location, as well as a greater data collection effort, is hypothesized to
increase the initial results of CM-PIR for biometric authentication. CM-PIR would
be suitable for human detection in a real-world office environment, but only suitable
as a biometric authenticator in a closed room with a single individual. The CM-PIR
biometric authentication system extends the capabilities of biometric authentication
systems from traditional contact systems to an additional non-contact system. Non-
contact and non-intrusive biometric authentication systems for IoT security is a
growing need with the ever-growing field of IoT devices in our everyday life.

The summarized results also indicate the efficacy of the RNN model at classify-
ing various scenarios. The RNN proved the most accurate DL model, indicating the
temporal reliance of the signal power feature calculated in data pre-processing. With
precise indoor localization using a GPR model, MI-PIR showed to be effective at
visually clustering locations in two ambient environments, allowing for regression
of future coordinate systems during real-world deployment of the system. These
activities differentiated in the residential environment proved the potential success
as an elderly monitoring modality. In fact, classifying a “Laying on Ground” activity
proved direct translation to a potential fall event. Accurately classifying multiple
activities that are performed at the same location proves the HAR classification
accuracy is not based on the learning of the location in which the activity is
performed.

The future of monitoring is in the deployment of ambient sensors with statistical
learning algorithms for accurate localization and HAR classification. To fulfill
the needs of a non-contact, non-intrusive, low-cost, and passive sensor modality
for monitoring situations, a PIR sensor is proposed and highlighted in this work.
Solving the known drawback of PIR sensors in this work with two novel systems,
the capabilities of PIR sensors for monitoring have been extended. Future work for
progression of these two novel systems include testing the MI-PIR system for a real-
world data collection and increasing the biometric authentication accuracy of the
CM-PIR system. A more systematic data collection and increased data collection is
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proposed to increase the biometric authentication accuracy of the CM-PIR system.
These novel systems highlight the growing field of ambient sensing for human
detection and biometric authentication.
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1 Introduction and Background

1.1 Depression and Screening

Depression is one of the most common mental health disorders worldwide. It is a
prevalent, debilitating condition that is often under-diagnosed [1, 2]. In the United
States alone, 17.3 million people (7.1% of the U.S. population) have experienced
at least one episode of major depressive disorder [3]. 9.3% of primary care visits
and 9.4% of emergency department (ED) visits in the U.S. indicate depression
as the primary complaint [4]. The economic costs related to depression average
approximately $210.5 billion per year, a 21.5% increase since 2005. Medical care
received accounts for 50% of the cost, with the other 50% being workplace-related
(absenteeism and presenteeism) [5].

Depression screening, coupled with appropriate intervention, is essential for
patients to receive the right treatment. Without screening in primary care, only 50%
of patients are diagnosed with depression [6]. Two-thirds of patients present with
somatic complaints (physical issues) instead of depressive symptoms [7]. For these
reasons, screening is a vital first step to improved health outcomes that can result in
increased quality of life, decreased mortality, and decreased costs.

Traditional screening tests can be grouped into two categories: depression
assessment scales and symptom count instruments [8]. The first category includes,
among others, the Beck Depression Inventory (BDI), the Geriatric Depression
Scale (GDS), and the Hospital Anxiety and Depression Scale (HADS). The second
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category includes, among others, the Patient Health Questionnaire (PHQ-9), the
Primary Care Evaluation of Mental Disorder (PRIME-MD), and the Symptom-
Driven Diagnostic System for Primary Care (SDDS-PC). Ease of administration and
interpretability are two main factors when deciding which screening tool should be
used in clinical practice. The PHQ-9 has been suggested [8] as the screening test
of choice for primary care physicians because it measures both depression criteria
and severity; moreover, it is relatively easy to administer compared to tests such as
Hamilton Rating Scale for Depression (HAM-D), which should be administered by
trained interviewers [8].

However, self-report tests such as the PHQ-9 are not scalable, as some patients
(e.g., those with language deficiency, the very old, and the very young, among
others) require supervision, while others have difficulty completing them due to
their literacy level. In addition, due to their standardized nature, self-report tests
are not engaging due to a lack of personalization and the inability of the patient to
choose to focus upon what matters to them. Digital health technologies can address
these insufficiencies and facilitate the screening and monitoring of depression and
other behavioral health conditions to aid providers and care teams. Spoken language
technology offers potential advantages for this. Speaking is natural and engaging
for patients and does not require special equipment. As shown in a line of past
work, speech contains acoustic and language cues that can be captured by machine
learning models to predict a speaker’s behavioral health state; see e.g., Resnik et al.
[9], Cummins et al. [10], Williamson et al. [11], Pampouchidou et al. [12], Yang et
al. [13], Ringeval et al. [14], and Rutowski et al. [15].

This chapter introduces machine learning techniques applied to acoustic and
text modalities of speech signal. It then provides an analysis of the robustness of
these models over different factors concerning speaker characteristics such as age,
gender, ethnicity, and recording environment, e.g., recording time. This robustness
is impressive considering that the prior depression distribution varies with regard to
these factors.

1.2 Background on Machine Learning Approach

Feature engineering was an early and dominant approach in the domain of acoustic
models for behavioral health prediction [10, 16]. Sample features include voice
quality [17], articulation and coordination [18–20], speech rate [20], and spectral
[10], prosodic [21] and formant features [18]. Limited specificity [10, 16], non-
standard feature measurement [10], and an overall limited amount of data [10] are
among the reasons for inconsistent results and disagreement across different studies.

Conversation analysis [22], i.e. analyzing patient language, was the first type
of word-based modeling applied to the behavioral health domain. These analyses
include investigation of the meanings of words used and their implications for
patient psychological state [23–25]. There are many approaches to analyzing
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different sources of data. Some of these methods include analyzing electronic health
records [26, 27], mobile text messages [28], and forums and social media [29].

In recent years, however, end-to-end models have gained popularity. End-to-end
models directly map the input signal to target labels. Advances in deep learning
have led to improved results in a range of applications including automatic speech
recognition (ASR) [30–32], affect, and behavioral health [33–39]. In contrast to the
feature engineering paradigm, the deep end-to-end approach focuses on designing
a model that can automatically learn features from data. There has been increased
research on the application of deep learning methods for the task of depression
prediction. For example, in the natural language processing (NLP) domain, the
authors of Yang et al. [13], He and Cao [40], and Yates et al. [29] investigated
different deep convolutional networks (CNNs). In Ringeval et al. [14], a CNN
pretrained over an image classification task was used as a feature extractor.

Although deep end-to-end methods show strong performance in many appli-
cations as observed above, they also face challenges. Two major challenges are
the need for large amounts of data and the potential of overfitting. One common
approach to address some of these problems is to use transfer learning (TL). Transfer
learning has been used in emotion [33, 41–43], PTSD [44], depression [14, 45–47],
and anxiety [46] prediction problems.

1.3 Modeling and Analysis Approach

The acoustic model described in this chapter uses transfer learning from an ASR
source task to learn a useful representation of the speech signal. Application of
transfer learning and ASR tasks specifically is not new; for example, Zhao et al. [47]
proposed a hierarchical autoencoder with transfer learning from ASR. The acoustic
model described in this chapter, however, uses a simpler architecture, is trained
using a simpler procedure, and is designed to be lightweight during the inference
time, which is an important practical consideration for commercial deployment.

The NLP model was initially based on a language model pretrained on publicly-
available data. Further fine tuning was then done using publicly-available depression
corpora as well as the proprietary corpus. The model was then further trained for
classification and regression objectives. The combination of various data sets and
our training recipe enabled this model to achieve excellent performance; this is
reported in subsequent sections.

One important contribution to this work for both acoustic and NLP models is the
application of a large corpus with nearly 10,000 unique speakers and 1600 hours
of labeled speech. These speech recordings were obtained from sessions in which
users interacted with a human-computer application and answered questions about
their lives. Gold standard labels for machine predictions were based on standard
self-report instruments completed by each speaker within each session. This corpus
is several orders of magnitudes larger than the shared dataset in the community [14]
and allows proper investigation of the effect of transfer learning, effect of training
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data size, and robustness of acoustic and NLP models relative to various human and
environmental factors.

Robustness has been studied by comparing the performance of models while
controlling for an independent factor such age, gender, or ethnicity. An earlier
version of these results is also published in Lu et al. [48]. Predictions of both
acoustic and NLP models are studied for many of these factors and results indicate
that the models’ performance does not change significantly relative to these factors.
Furthermore, experimentation shows that, for the NLP model, performance does
not degrade significantly once evaluated on a corpus with different demographics
relative to the corpus used for training the model. This result is consistent with
conclusions from robustness analysis. It is acknowledged that robustness analysis
is only based on data within the same collection (or similar collections), which
includes different patients but with similar collection methodology, and therefore,
data is considered matched. However, this is a starting point for similar analysis. It
is intended that this study will be extended to multiple data collections with different
methodologies and demographics.

1.4 Chapter roadmap

The remainder of this chapter is organized as follows. Section two introduces the
data sources used in this chapter. Metrics and an overview of modeling approach
are also described. Section three describes acoustic models and presents results
and experiments using these models. Section four describes NLP models and
corresponding results and experimentation. Section five presents an analysis of
acoustic and NLP models’ robustness. Finally, section six presents a short discussion
of this chapter and conclusion.

2 Method

2.1 Data

2.1.1 General Population Corpus

A large set of depression-labeled data from speakers with different backgrounds
was needed for model training and evaluation. For this reason, proprietary data
was used instead of shared but much smaller corpora [14, 49, 50]. The data used
comprises American English spontaneous speech, with users allowed to speak
freely [51] in response to questions within a session. Users were paid for their
participation and ranged in age from 18 to over 65 years, with a mean age of
roughly 30. They interacted with a software application that presented questions
on different topics, such as “work” or “Home life”. Responses averaged about
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Fig. 1 Distribution of word lengths in the General Population

Table 1 Data characteristics.
Number of sessions and
speakers for dep+, dep−, and
total data for General
Population (GP) and Senior
Population (SP) groups are
shown. dep +/− shows
number of data points where
sessions for same speaker has
changed over time from dep+
to dep− or vice versa

GP SP
Sessions Speakers Sessions Speakers

dep+ (train) 3606 1863 – –
dep+ (dev) 326 326 – –
dep+ (test) 327 327 105 32
dep− (train) 8004 4717 – –
dep− (dev) 1253 1253 – –
dep− (test) 1172 1172 378 92
dep +/− (total) 2209 526 204 37
Total 14,688 9658 687 161
Responses GP sessions SP sessions
Length (words) ~800 ~450
Number/session 4.5 6.1

125 words—longer than some reports of turn lengths in conversation, e.g., in
Jiahong et al. [52] (see Fig. 1). Users responded to 4–6 different questions per
session (mean 4.52) using natural speech. After providing their speech responses,
users filled out eight questions from the PHQ-9 questionnaire (the ninth question,
regarding suicide, was removed, making the survey the PHQ-8). The PHQ-8 has
been clinically validated in large studies to reflect depression risk severity [53]. The
PHQ-8 score served as the machine learning target label for both the session and the
responses within it. Scores were mapped to a binary classification task, with scores
at or above 10 mapped to depressed (dep+) and scores below 10 to nondepressed
(dep−), following Kroenke et al. [53]; see Table 1. Data was partitioned into train,
development, and test subsets. The train, development, and test partitions contained
no overlapping speakers. Test and development splits were approximately the same
size and contained unique speakers; 43% of sessions in the train split were from
repeated users. The distribution of PHQ-8 values in our General Population (GP)
corpus is shown in Fig. 2.
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Fig. 2 PHQ distribution

As shown in Fig. 1, data partitions are well-matched, including nearly identical
CDFs (black lines overlap) and similar distributions for class lengths both within
and across partitions. Depression priors (i.e., dep+) differ slightly, at 28% for train
vs. 22% for test data.

The corpus contains metadata including self-reported information about the user
and automatically-generated information about session timing. User metadata under
consideration in this chapter includes gender, age group, smoking habits, ethnicity,
marital status, and location. Table 2 compares the composition of user demographics
in the General Population corpus with the US population between the ages of 18–
65 [54, 55]. Gender, age, and ethnicity compositions for the train, development,
and test sets as well as for the US population are shown. The General Population
corpus represents the US population’s ethnic and gender composition well, with the
corpus having a higher female population than male. In terms of age, the General
Population corpus is more reflective of the younger population. It contains more
people in the 26–35 category and fewer from the 46–65 category compared to the
US population.

Session metadata includes information about session administration, including
the following characteristics: local time of day, day of the week, and season during
which the session was recorded. In our collection, users were allowed to choose
their recording days and times. Interestingly, differences were found in both the
frequency of recording and the PHQ-8 value priors. As an example of the latter,
even after averaging over more than 16,000 sessions and 10,000 users, sessions that
occurred at certain times of day (local to the user’s time zone) were more likely to
be marked positive for depression (dep+) than sessions collected at other times of
day. This pattern varies relatively smoothly, as shown in Fig. 3.
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Table 2 General Population speaker demographic comparison with US population

Subset
Sub-
category Total speakers Train speakers Test speakers

US population
between age
18–65a

Total user counta 9658 6580 3078
Gender Female 58.9% 58.9% 58.7% 50.2%

Male 40.6% 40.3% 40.8% 49.8%
Other 0.7% 0.7% 0.5% N/A

Ageb 18–25 29.3% 30.0% 28.0% 17.0%
26–35 43.7% 42.9% 45.7% 22.3%
36–45 17.4% 17.7% 17.0% 20.1%
46–65 9.0% 8.8% 9.4% 40.6%

Ethnicity Caucasian 68.8% 69.4% 67.4% 73.0%
Hispanic
and Latino

7.7% 7.5% 8.2% 17.6%

Black or
African
American

7.5% 7.3% 8.0% 12.7%

More than
one race

5.5% 5.4% 5.7% 3.1%

East Asian 4.0% 4.0% 4.2% All Asian: 5.4%
South Asian 2.1% 2.8% 2.0%
Other 4.3% 4.3% 4.6% 4.8%

a The demographic composition of the GP corpus is compared against the US population of age
18–65 [54, 55]
b Percentages in each category may not add up to one due to missing data or users’ choice of not
sharing that information

Fig. 3 PHQ-8 values (mean and variance) for sessions by time of day the session was recorded
(local time), for full corpus. The colorization loosely corresponds to the time of day (daytime or
nighttime)
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2.1.2 Senior Population Corpus

A second set of data, the Senior Population (SP) corpus, was collected from
a population of older speakers. This corpus was used to further evaluate the
generalization of the word-based model. Speech elicitation and incentives for this
corpus were similar to those in Sect. 2.1.1 for the General Population corpus,
allowing for comparisons to generally focus on the characteristics of the speakers
rather than the task. Corpus statistics are given in Table 1.

The Senior Population corpus was collected in Southern California through
an Ellipsis Health partner. The partner is associated with a group practice site
comprising over 100 primary care doctors and 200 specialists caring for more than
40,000 patients. For both corpora, labels were based on self-reports using the PHQ-8
collected at the end of each session. The demographic breakdown of the population
in age and gender is given in Table 3.
A positive (dep+) sample of the General Population is provided below:

“Right now, I’m living with my husband and my two daughters and I am a stay-at-home
mom I lost my job when I was pregnant with my second daughter and honestly it’s been a
roller coaster expected to be fine at home take care kids but it’s the most stressful thing I’ve
ever done and I cannot wait to go back to work.”

A positive (dep+) sample of the Senior Population response is provided below:

“My home life is good and it with my sister we have an amazing relationship and we don’t
get upset with each other very often and when we do get upset with each other were always
able to find a medium a meeting area that we can work together to get beyond it or to just
realize that it’s okay to sometimes be different have a great home life.”

2.1.3 Pretraining Data

To take advantage of the large benefits of transfer learning methods (see Sect. 2.3),
additional data sources were obtained for the pretraining stages of the acoustic and
NLP tasks. This was also due to the proprietary labelled General Population dataset,
which in terms of size is large compared to publicly-available depression datasets
but relatively small for the deep learning methods used in this chapter.

Table 3 Senior Population
user demographics

Total: 161

Gender Male 60.0%
Female 40.0%

Age <55 16.9%
55–59 14.0%
60–64 11.0%
65–69 33.8%
≥70 24.3%
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For language model training, additional data was collected. There are many
publicly-available websites or forums wherein depressed people talk about them-
selves. Over a million such utterances were collected to further strengthen the NLP
language models; that is, such data was not used for classification purposes but only
to enrich the language model itself. In addition, for general NLP language model
training, the following two corpora were used. The first is the Wikipedia subset
from Merity et al. [56]; additional data also included part of the Schwenk et al. [57]
large data corpus.

For the acoustic model pretraining and transfer learning stage, LibriSpeech [58]
was used. LibriSpeech is an English read speech dataset that contains over 1000 h
of speech. In this chapter, it was used to train an ASR module which was used as
one of the stages in the transfer learning process discussed in the following sections.

2.2 Metrics and Significance Testing

This section describes the metrics used for measuring the performance of binary
classification and regression tasks. For the binary classification task, a threshold
of 10 was used (as suggested by Kroenke et al. [53]) to categorize the data into
dep+ and dep− classes. The quality of the classifiers was evaluated using a receiver
operating characteristic (ROC) curve showing their performances at all classification
thresholds. The ROC curve plots sensitivity of a model against its recall, which is
(1-specificity), showing the tradeoff of system performance between sensitivity and
specificity. The area under the curve (AUC) value was used as a metric of the binary
classification model ability to separate dep+ from dep− classes. In general, a good
classifier with higher separation power has its curve closer to the left upper corner
and an AUC value closer to 1. A random model has no predictive power and the
ROC curve is a straight line from the lower-left to the upper-right corner, where the
AUC value is 0.5. Specificity and sensitivity were also calculated at the equal error
rate (EER) point; the results are reported in subsequent sections.

The performance of the model across different subsets was compared using AUC
values and the DeLong test [59] was used to verify statistical significance; p ≤ 0.05
was used as the cutoff for statistical significance, i.e., to indicate that the model
performance in AUC was statistically significantly higher or lower for sessions in
the subset compared to its complement. Due to the large size of the dataset, the fast
implementation of the DeLong test [60] was used to reduce the computation time
from quadratic to linearithmic.

For regression tasks, root mean square error (RMSE), mean absolute error
(MAE), and Pearson correlation (PCC) were used. RMSE and MAE have been used
by many authors to report the results of regression tasks, e.g., in AVEC competitions
[14]. PCC is also used in some studies [61, 62] and indicates how one variable
changes in relation to the other.
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2.3 Overview of Modeling Approach

Modeling is described in detail in Sects. 3 and 4, but there are some shared aspects
which are discussed here. All models discussed in this chapter are implemented
using Pytorch [63] and need GPU for training. However, inference can be performed
using CPU.

It is commonly known that deep learning networks require large amounts of
data. Behavioral health data is often limited in size, number of positive class
examples, or both [14]. For these reasons, transfer learning (TL) is often considered
a necessary step for most deep learning tasks [64]. Some of the models described in
the following sections take advantage of transfer learning in various ways.

In the traditional machine learning scenario, each task requires a separate
learning system that is built from scratch. However, a lot of knowledge can be
learned from different related or unrelated tasks [65, p. 41]. Examples of such
knowledge include structural similarities or linguistic features for NLP models and
acoustic representation for acoustic models.

There are two main steps in the transfer learning process. The first step is to train
the model from scratch on the source task. The most common source task for NLP
models is training a language model; this is done primarily on large, commonly-
available text corpora, e.g., web crawl, Wikipedia, etc. For acoustic models, there
is no consensus on the choice of source task, so this choice is often related to the
availability of data. In this chapter, language modeling is used as the source task for
NLP modeling and ASR as the source task for acoustic modeling.

Adaptation or fine tuning is the second main step of the transfer learning
process. There are a few methods for fine tuning that can be done individually
or in a combined fashion. Adaptation may require architectural changes in the
model wherein additional blocks of the network may be added or removed. Another
method is to optimize the network, during which e.g., certain network layers may be
frozen from training. At the adaptation stage in this study, text or audio was used as
an input and PHQ-8 questionnaire scores as an output. For the purpose of depression
screening, a regression or classification function was applied.

The following sections describe details of acoustic and NLP models and then
emphasize how transfer learning is applied to these models to obtain state-of-the-art
results.

3 Acoustic Models

3.1 Method

3.1.1 Acoustic Features

In order to process raw audio signal using different machine learning algorithms,
the analog signal should first be converted to a digital signal using an appropriate
sampling scheme. Speech is a wideband signal; however, the information content is
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usually contained within a relatively narrow bandwidth of 8 kHz [66]. This means
that for most applications it is enough to use 16 kHz sampling frequency (based on
the Nyquist sampling theorem [67]). In this section, a sampling rate of 16 kHz is
used.

Theoretically, digital speech signal (i.e. raw signal) can be used as an input to
machine learning algorithms; however, processing this raw signal is computationally
expensive. The raw signal, therefore, goes through one more step of feature
extraction that reduces the amount of data that needs to be processed by machine
learning, while preserving important information.

Filter bank features [68] were computed for the acoustic models described in
this chapter. Features were computed using a 25 ms analysis window and 10 ms
frame rate over a segment length of 25 s or less. Due to GPU memory limitations,
it was not possible to include the full duration of a speaker’s session at once.
Instead, shorter time segments were created from each session. It was found that
longer segments perform better than shorter segments, but longer segments also
require more memory. After experimenting with this tradeoff, it was found that
25 s provided the best performance on the development set while staying within
hardware memory constraints. Longer durations could be explored given higher-
capacity hardware resources.

3.1.2 Acoustic Model

Encoder/Decoder architecture has been used successfully in many speech appli-
cations such as ASR [31], speaker verification [69], and emotion recognition
[70]. In this architecture, the encoder task is to map the input feature space to a
usually lower-dimensional space, and the decoder maps the representation from the
aforementioned space into predictions such as posterior probability over classes or
intensity of the continuous variable (e.g., in regression problems). The modular
architecture allows for flexible training procedures and permits more complex
models and algorithms.

This chapter describes an architecture inspired by encoder/decoder models used
in ASR applications [30, 31, 71]. In the acoustic model, the encoder consists of
a VGG [72] network followed by multiple layers of Bidirectional LSTMs [73].
The decoder (predictor) uses a Recurrent CNN (RCNN) [74] model. In order to
prevent confusion with the ASR decoder used in the subsequent section, the name
“predictor” is used for the decoder network in the acoustic model.

The input to this model is filter bank coefficients over speech segments with
maximum length of 25 s, as mentioned in Sect. 3.1.1. The output of this model is
the prediction at segment level. In order to make predictions at the session level,
another model is needed; this is discussed in Sect. 3.1.4.

An overview of the acoustic model is provided in Fig. 4 (solid arrows). The
speech signal is first divided into segments with a maximum length of 25 s. These
segments are then passed to the feature extraction module described in Sect. 3.1.1.
The resulting features then pass through the encoder and deep prediction network
to obtain a prediction for each individual segment. To compute a session-level



110 A. Harati et al.

Fig. 4 An overview of the acoustic model. Transfer learning is achieved using an ASR task
(dashed arrows). Depression prediction is performed using a pretrained encoder network (solid
arrows)

prediction, segment level outputs are aggregated using a segment fusion module,
which is discussed in Sect. 3.1.4.

3.1.3 Acoustic with Transfer Learning (Acoustic + TL) Model

Transfer learning is applied to the acoustic model by adding an ASR decoder (hence
decoder) module to the network. Results for this model are also published in Harati
et al. [75]. The most similar other work that applies transfer learning and deep
architecture to the task of predicting depression from speech signal is reported in
Zhao et al. [47]. The acoustic + TL model differs from Zhao et al. [47] in its overall
architecture, number of modules (acoustic + TL has fewer modules), training steps
(acoustic + TL has fewer steps), and transfer learning approach. In Zhao et al.
[47], the authors applied both unsupervised and supervised source tasks in their
pretraining stage and then transferred the attention weights. In contrast, for the
acoustic + TL model, only a supervised task (ASR) is applied, and then only the
weights of the encoder are transferred.

In Fig. 4, the transfer learning path is shown with dashed arrows to indicate that
it only applies to the pretraining stage. It is removed once the encoder is pretrained.
The decoder consists of an LSTM layer with attention. ASR is used as the source
task. In the pretraining stage, the encoder and decoder are trained with transcribed
speech data (unlabeled for behavioral health). After pretraining, the decoder (dashed
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arrows) is removed and the rest of the network is trained as mentioned in the
previous section using labeled data. The ASR decoder is computationally more
expensive than the encoder and predictor modules. The acoustic + TL model is
relatively lightweight during inference since the ASR decoder can be removed. This
is an important practical advantage during deployment.

The ASR sub-model is based on a hybrid CTC/attention architecture [31] and
is inspired by prior work including that in Chan et al. [30], Kim et al. [31] and
Liu et al. [71]. The LibriSpeech dataset [58] mentioned in Sect. 2.1.3 was used
to train the ASR task. Note that speaking style is unmatched with respect to the
General Population data because this data comprises spontaneous speech samples
in which users speak freely about their lives. Thus, the ASR model trained on
LibriSpeech was not expected to perform well on this data. The goal, rather, was for
the model to learn a representation for the acoustic space. Future work is planned
for the investigation of corpora in addition to LibriSpeech; this will reveal whether
style match is important for the impact of transfer learning in the behavioral health
domain.

Past work has shown that transfer learning can improve the performance of
machine learning algorithms on new tasks by leveraging data and feature representa-
tions learned from other well-studied tasks [33, 64]. It is assumed that by pretraining
the encoder, the network is forced to learn a more restrictive representation relative
to training all layers from scratch. That is, it is assumed that the first few layers act
as an advanced feature extractor for the predictor.

3.1.4 Audio Segment Fusion

The individual segments described in Sects. 3.1.2 and 3.1.3 are fused using an
additional neural network. Every segment is represented by a vector corresponding
to the last hidden layer of the prediction subnetwork (e.g., RCNN in this case). The
sequence of segments for every session is projected into a single vector by max
pooling and is then fed into a Multi-Layer Perceptron (MLP) network. The model
then can be trained for either classification or regression tasks and the output is
interpreted accordingly. The output of this sub-module is a prediction for the overall
session.

3.2 Experiments and Results

3.2.1 Results for the General Population Corpus

In this section, results for the acoustic model are presented. The final prediction
for each session was computed using the segment fusion module and evaluated
using the session PHQ-8 label, either as a binary class (dep+ versus dep−)
for classification, or directly as a PHQ-8 value for regression. Results on both
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Table 4 Binary classification results for depression prediction. Models with transfer learning are
indicated using + TL

Model AUC Specificity at EER Sensitivity at EER

Acoustic + TL-1/dev 0.78 0.70 0.70
Acosutic + TL-1/test 0.79 0.71 0.71
Acoustic + TL-2/dev 0.77 0.71 0.71
Acoustic + TL-2/test 0.79 0.72 0.72
Acoustic/dev 0.62 0.58 0.58
Acoustic/test 0.63 0.59 0.59
CNN/dev 0.60 0.59 0.59
CNN/test 0.60 0.56 0.56
LSTM/dev 0.61 0.59 0.59
LSTM/test 0.58 0.56 0.56

development and test splits are reported. Model parameters were selected using only
the development set; the test set was used only for the final evaluation.

Table 4 shows the results of the binary classification task for several models.
Specificity and sensitivity are calculated at the ERR point. AUC is reported as
the single metric for comparison of different models. The statistical significance
of differences in AUC is calculated using the DeLong test as mentioned in Sect. 2.2.

The results of an acoustic model trained from scratch are also shown. Addi-
tionally, results using CNN (with six convolutional layers and two fully connected
layers) and LSTM (with two LSTM and two fully connected layers) models are
included. CNN and LSTM models are among the most-used models and have been
applied in earlier studies of depression prediction, including Ringeval et al. [14],
Yang et al. [13], He and Cao [40], and Al Hanai et al. [76]. All the models listed
perform significantly better than chance (in a DeLong test at p < 0.05). CNN, LSTM
and the acoustic models all achieve AUC close to 0.60 and a DeLong test shows that
the difference among these models is not statistically significant. The acoustic with
transfer learning (acoustic + TL) model, however, provides a 27% relative gain
over the baseline acoustic model. The DeLong test also shows that adding transfer
learning to the acoustic model results in highly significant improvement, with a p-
value close to zero.

Two experiments were designed to better understand the effect of transfer
learning. In the first experiment (denoted by acoustic + TL-1) an ASR task was
trained in the pretraining stage by updating both encoder and decoder weights. This
resulted in a relatively “strong” source task. In the second experiment (denoted by
acoustic + TL-2), the decoder weights were not updated, resulting in a “weak”
source task. The character error rate (CER) was 30% for the first experiment and
188% for the second experiment (due to insertion errors, CER can surpass 100%).
Both ASR tasks can be considered weak relative to state-of-the-art ASR models, but
clearly one is much weaker than the other. It is evident that, for these models, the
gain from transfer learning is virtually the same (not statistically significant under
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Table 5 Regression results
for depression prediction
problem

Model RMSE MAE PCC

Acoustic/dev 5.25 4.11 0.18
Acoustic/test 5.26 4.12 0.21
Acosutic + TL/dev 4.60 3.47 0.51
Acoustic + TL/test 4.70 3.56 0.49

DeLong test); that is, interestingly, most of the gain in performance can be achieved
with even a weak ASR task for the pretraining step.

Table 5 shows the performance for the corresponding regression task, i.e.
predicting PHQ-8 results directly without class mapping. There is also an improve-
ment for regression results, with a 11% relative reduction for RMSE and 13%
relative reduction for MAE. Both binary classification and regression results show
remarkably stable performance over development and test sets. This is in contrast to
past results using smaller datasets [14, 47], in which performance changes greatly
between development and test sets.

3.2.2 Effect of Corpus Size on Transfer Learning

Previous sections introduced the acoustic model and applications of transfer learn-
ing for training the model. Results indicate that transfer learning has a significant
effect on performance. In this section, the following question is investigated: How
is transfer learning gain affected by the amount of labeled training data?

To investigate the role of training dataset size, the full training set is sampled
randomly to generate several training subsets. For each sampled subset, a model
is trained only on the subset while keeping development and test sets constant.
Sampling can be performed on different types of data units. Here, three natural units
in the data are investigated: responses, sessions, and speakers. Each speaker has one
or more associated sessions. Each session contains multiple responses.

All three sampling approaches (based on responses, sessions, or speakers) result
in approximately the same amount of speaking time, but that time is distributed
over different numbers of sessions and of speakers. For example, by sampling
over speakers, all sessions associated with a selected speaker are maintained. In
contrast, by sampling over responses, only some of the responses in a session are
preserved. In the case of sampling over responses, the following convention is used:
all responses sampled from a given session are collected and then labeled with the
label from the original full session. The resulting output sessions are always shorter
in duration than the corresponding original sessions. In contrast, for sampling over
sessions or over speakers, output sessions are equivalent to the original sessions.

Table 6 shows the amount of speech, number of sessions, and number of speakers
for each sampling scheme. For example, the 10%-responses subset contains approx-
imately 114 h of speech data, 9032 sessions, and 5404 speakers (with an average
output session length of 45 s). The 10%-sessions subset also contains 114 h of
speech but comprises 1165 sessions and 1055 speakers (with an average session
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Table 6 Data statistics for different experiments of training data size

Experiment Amount of speech (h) Number of sessions Number of speakers

10%-responses 114 9032 5404
10%-sessions 1165 1055
10%-speakers 1170 660
20%-responses 229 10,877 6249
20%-sessions 2331 1947
20%-speakers 2354 1320
40%-responses 458 11,509 6541
40%-sessions 4663 3363
40%-speakers 4568 2640
60%-responses 690 11,572 6562
60%-sessions 6994 4505
60%-speakers 6985 3960
80%-responses 920 11,603 6578
80%-sessions 9325 5623
80%-speakers 9275 5280
100% 1147 11,610 6580

Fig. 5 AUC as a function of training data size. Size ranges from 10% (114 h) to 100% (1147 h)

length of 354 s). Figure 5 shows AUC performance as a function of the amount
of training data. For each experiment, three trials (using three random subsets
discussed above) are performed and then averaged to obtain the AUC value shown.
Each experiment and trial uses data that was sampled independently, i.e. sampling
with replacement.

From Fig. 5 and Table 6, several observations can be made. First, results improve
almost linearly as more data is added, without performance saturation. Transfer
learning provides significant gain across the range of corpus sizes, e.g., 15% gain
for 10% of data. At the same time, adding more labeled data also improves model
performance. For example, using all of the data (100%) results in 8% improvement
relative to using 10% of the data.
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Second, the 10%-responses subset has a higher AUC (0.725) relative to the
10%-sessions (0.706) and the 10%-speakers (0.704) subsets. This pattern of results
suggests that, given a small amount of training data (here, less than 114 h), it is
important to include a wide diversity of sessions and speakers. For example, almost
3% relative improvement in AUC can be obtained by trading session duration for
a corresponding amount of speaking time from data representing a larger number
of unique sessions and speakers. This gain can be observed in Fig. 5 as follows: in
the first group of bars at 114 h of data, performance for the %sessions (orange) and
%speakers (gray) is suppressed, compared with results for %responses (blue). The
same pattern of suppressed performance is seen for regression results (not shown);
in that case, for the 114-h subset, error metrics such as RMSE are raised for the
%session and %speakers results.

Third, it is observed that using longer sessions during training provides only
moderate performance gain. The AUC for the 10%-responses subset is 0.725. The
average duration of sessions (output sessions after sampling) for this experiment
is 45 s, and the number of independent sessions is 9032. The AUC for the 80%-
sessions subset is 0.762, while the average duration of sessions is 354 s and the
number of independent sessions is 9325. Ignoring the small difference between the
number of independent sessions for these experiments (i.e., 9034 vs. 9325), the only
major difference between these two experiments is the amount of speech data per
session (i.e., session duration). By increasing the session duration from 45 s to 354 s
(an 8× increase), only a 5% relative gain is obtained. These findings suggest that,
for model training, relatively short sessions can be used without large degradation in
performance. However, without adequate experimentation, this observation cannot
be generalized to inference, nor to other models. For example, NLP models may be
more sensitive than acoustic models to the length of training sessions.

4 NLP Models

4.1 Method

4.1.1 SVM Baseline Model

Learning word representations has been well known for many years. One of the most
relevant approaches was based on building the representation in a vector space that
enabled grouping of similar words together. Initial research for the SVM baseline
model used word embeddings [77], an early method of NLP transfer learning. There
are two main approaches: the Word2Vec method and the Glove method [78, 79].
Early analysis used Word2Vec, which can usually be trained using two methods as
either a common bag of words or a skip-gram. The first is more suitable for large
training sets.

In the latest transfer learning developments, the whole deep learning model,
rather than particular layers, is used for further adaptation purposes. In the early
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days, the idea of Word2Vec was to use a particular layer of the network that would
represent a given word. For a corpus of N words there would be the same number
of vectors generated for further analysis.

Once the process of vectorizing words was complete, the SVM algorithm was
used for classification training. There are various ways [80, 81] of combining
vectors: average per session, p-mean, etc. For the SVM baseline model, the
difference was not material whatsoever; all such approaches were roughly the same
and inferior to the deep transfer learning methods described below.

4.1.2 Deep Learning Model

A recent focus in the NLP domain is to use the latest transfer learning methods [82]
wherein the entire language model is used for classification purposes. Currently, the
two most common topologies for language models encompass recurrent networks
and transformers. Recurrent networks have been used very extensively in the models
described in this chapter because, while they maintain very high accuracy, their
topology has a smaller memory and computation footprint. Various methods can
be used for tokenization purposes [83, 84]. In this deep learning model, the spaCy
tokenization library is used; ultimately, each word is represented by a unique ID. The
word dictionary used here contains over 20,000 individual tokens. Due to computing
limitations and the time needed to train language models from scratch, the initial
topology and tokenization technique were obtained from pretrained models. Figure
6 shows the entire flow of the NLP pipeline. As a next step, the training process
included further pretraining of a generic language model on public data (see Sect.
2.1.3) that was specifically collected in order to emphasize emotion and mental
health domain language structure. It was found that this approach stabilizes final
depression predictions. At this stage, several language models were saved based on
various hyper-parameters used to train them. Only at the end of the classification
training process was the best language model identified. For example, language
model performance metrics did not necessarily indicate the most optimal language
model for the downstream task, e.g. some higher perplexity language models
resulted in better classification results on our development test set.

The model used in this study is primarily based on LSTM topology inspired
by the AWD-LSTM [85] architecture of the core language model and ULMFiT
[86] work for model fine tuning. The approach is based on the following con-
tributions. DropConnect, used for hidden-to-hidden layers, differs from the drop
out approach by deactivating certain weights rather than activation mechanisms.
Such an approach enables handling of the overfitting problem for RNNs while
also allowing preservation of long-term dependencies. Another beneficial technique,
back-propagation through time, dynamically changes the sequence length for the
forward and backward passes. The third technique is embedding dropout, wherein
occurrences of certain words are removed during the training stage. Averaged
SGD is the last main component that improves model performance; it does so by
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Fig. 6 An overview of the NLP model. Transfer learning is achieved using a language modeling
task (dashed arrows)

averaging a number of previous iterations instead of taking SGD weight from the
current iteration.

After the language model was trained on public corpora, an adaptation step based
on proprietary data without labels was used to further train the Language Model
encoder. As a next step, additional layers were added to the encoder for classification
or regression purposes. The key mechanisms within this implementation encompass
discriminative fine tuning, wherein the different layers of the network use different
learning rates. This rate is the slanted triangular learning rate, in which the rate
of change is dependent on the stage of the training process. The remaining main
features cover gradual unfreezing and concatenated pooling of multiple time steps
from the recurrent network.

4.2 Experiments and Results

4.2.1 Results for the General Population Corpus

This section presents the results of the NLP model for the General Population
corpus. The model’s behavior on subcategories of test sets is then described to
demonstrate robustness under different conditions.

In this section, Deep Learning model performance for the General Population
corpus described in Sect. 2.1.1 is reported. Given the use of large but proprietary
datasets for both training and evaluation, it is useful to provide evidence of how
the approaches described in this chapter perform on shared corpora. Due to lack of
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Table 7 Regression results
for depression prediction
problem

Model RMSE MAE PCC

NLP/GP dev 4.21 3.14 0.61
NLP/GP test 4.27 3.20 0.61
AVEC [47]/test 5.51 4.20 –

Table 8 Binary classification results for depression prediction

Model AUC Specificity at EER Sensitivity at EER

NLP/GP dev 0.83 0.75 0.75
NLP/GP test 0.82 0.74 0.74
NLP/SP 0.76 0.69 0.69

access to benchmark corpora, indirect comparisons are provided. The comparisons
are on different datasets, but, notably, both use PHQ-8 scores as the gold standard
label. AVEC 2019 [14] was chosen as the comparison against which results are
reported here for the NLP-based system only. Since Ringeval et al. [14] does not
provide classification results, regression performance for the models is computed,
and a RMSE metric used in Ringeval et al. [14] and elsewhere for the same data
set is reported. RMSE is an error metric and is thus inversely correlated with
performance. As shown in Table 7, the results for the NLP system demonstrate lower
RMSE than the results for the system in Zhao et al. [47], again on different data.
Table 8 provides standard binary classification results for both General Population
and Senior Population test sets. It is believed that ROC AUC [87] is the best metric
for this use case wherein the data is imbalanced and class separation is relevant.
Table 8 also includes specificity and sensitivity at EER point.

Section 4.1.1 discussed SVM model performance as a simpler alternative to the
deep learning models. The SVM model performance on the General Population
corpus was AUC = 0.756, whereas performance for a single deep learning model
was AUC = 0.828.

4.2.2 Results for the Senior Population Corpus

There is an important gap in the current literature with regard to how deep learning
models generalize in the depression domain over different datasets. This chapter
explores portability over two different corpora highly mismatched in age. Work
presented in this chapter has been published in Rutowski et al. [88]. The first and
larger corpus contained younger speakers and was used to train an NLP model
to predict depression. As stated in Sect. 4.2.1, performance of AUC = 0.828 was
obtained when testing on unseen speakers from the same age distribution. This
model was then tested on the second corpus comprising seniors from a retirement
community. Despite the large demographic differences in the two corpora, only
modest degradation in performance for the senior data was observed, achieving
AUC = 0.76. Interestingly, for the Senior Population corpus, performance for the
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Fig. 7 Normalized age distribution for GP and SP corpus

subset of patients with consistent health state over time was AUC = 0.81. Implica-
tions for demographic portability of speech-based applications are discussed.

A striking difference in demographics between the corpora is age. As shown in
Fig. 7, age distributions for the two corpora are largely non-overlapping. In this
collection, most patients were expected to participate in a session once a week
for 6 weeks. In the General Population collection, participation in more than one
session was voluntary and could be conducted at any interval of at least 1 week.
Repeated speakers in the General Population set were always placed only in the
training partition. As shown in Table 1, the Senior Population dataset contains over
600 sessions. Senior Population sessions are shorter than the General Population
sessions, containing on average 450 words vs. 800 words in General Population
sessions. Thus, the mean number of responses is slightly higher (6.1 vs 5.2) for the
Senior Population corpus. Given the size of the Senior Population corpus, it is used
only for testing in this study. In addition to dep+ and dep− classes, a label dep+/−
was introduced to subjects with two or more sessions who had at least one dep+
session and one dep− session. These patients are referred to as “inconsistent” (no
judgment intended) with respect to depression class over time; patients with only
same-class sessions over time are referred to as “consistent.”

As described earlier, data labels represent PHQ-8 questionnaire results. Figure 2
shows the PHQ score label distribution of the General Population and Senior
Population dataset. They are remarkably similar, with the lower rates at very low
PHQ-8 scores being allocated somewhat evenly across the rest of the range. The
prevalence differences are small (30% in Senior Population; 26.7% in General
Population).

Figure 8 shows binary classification results for different test sets; the NLP system
is always trained on the General Population corpus training data. GP indicates model
performance when the General Population-trained model is tested on the separate
General Population test set. SP indicates performance when the General Population
model is tested on Senior Population data without retraining or tuning. As shown in
the figure, there is a performance degradation (from .828 to .761) associated with
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Fig. 8 AUC performance on various test sets for NLP model. The model is always trained on the
GP training set

the mismatch. Given the major age distribution difference, this is a better result than
expected. It suggests that patterns captured by the language model as indicators
of depression may be largely portable across these age groups without need for
significant retraining.

In the Senior Population test corpus, patients participated in a longitudinal
study as described earlier. Interestingly, classification performance of the General
Population-trained NLP model depends strongly on consistency of a patient’s self-
reported PHQ-8 scores over the multiple-session collection (with sessions roughly
1 week apart on average). Out of 161 unique patients in the Senior Population
corpus, 124 had PHQ-8 scores that were either always dep+ or always dep− over
their sessions. The remaining 37 patients had a mix (dep+/−) of sessions over the
course of their collection. The mean number of responses per session over the full
SP set was 6.1, as shown in Table 1; for the longitudinal patients, the mean number
of responses per session was 4.2. Interestingly, a large difference in the number of
responses per session was found between consistent and inconsistent longitudinal
SP users. The difference is not correlated with depression class. Consistent users
averaged 3.8 responses, whereas inconsistent users averaged 5.5. This difference is
relevant to the design of future speech elicitation applications.
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Overall, consistent patients were more concise and had fewer responses than
inconsistent patients. Figure 8 reveals a marked difference in model performance as
a function of user consistency even though each session is treated independently.
Performance for consistent SP patients is 0.82 versus 0.61 for inconsistent SP
patients. Despite the large mismatch in age as well as other factors in the two
corpora, the model surprisingly performed about as well on mismatched-age (SP)
consistent users as on matched-age (GP) users. It is intended that future work will
investigate the role of longitudinal consistency. What is clear is that there is good
portability in the NLP model, especially for consistent patients.

5 General Analysis

In Fig. 9, the AUC curve of the NLP and acoustic models are compared using
the performance of primary care providers (PCPs) as reference points. Here, the
results of a single LSTM NLP model and a single acoustic + TL model are
shown. Data points from three separate studies of PCPs are included as reference
points. These data reflect results on depression detection performance by PCPs not
specifically trained in mental health assessment. Note that these studies are not
directly comparable to ours nor to each other due to differences in data and methods
used. They do, however, provide a crude indication of human performance in the
context of a general PCP visit [6, 89, 90].

Table 9 shows the results for the acoustic and NLP models on subsets of the
test data broken down by metadata categories: session count of train and test sets,
depression rate in test set sessions, and mean PHQ-8 score of test set sessions. These
results are also published in our previous paper [48]. Notice that since each session
in the test set is contributed by a unique user previously unseen in the train set, the
depression rate of the test session and the mean PHQ-8 of test sessions is the same
as the depression rate of the test population and mean PHQ-8 of the test population.
To avoid noisy results, categories with session counts below 150 are excluded.

The following observations can be made from Table 9. Overall, both acoustic
and NLP models are robust over speaker characteristics. There are some exceptions,
as indicated by entries marked with an asterisk. A marked entry indicates that the
AUC of the category is significantly higher or lower than that of other members in
the metadata group with p < 0.05.

For the acoustic model, performance on depression classification is significantly
lower if the speaker is age 26–35 or identifies as Hispanic. There are no such
differences for the NLP model. Metadata on user location was also collected because
it is correlated with other factors such as socioeconomic status, regional accents
(relevant to ASR), and other variables. The rate of depression is similar across
locations but there are performance differences. It is premature to propose reasons
for this, but this set is included to demonstrate that not all variables result in similar
performance.
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Fig. 9 ROC curves for single acoustic and NLP models. For reference, results from human PCP
studies [6, 89, 90] are shown but are not directly comparable due to differences in data and models
used

Overall, both models are remarkably consistent. They discriminate between
positive and negative depression classes at a level that is not significantly different
from the other members of the set and is similar to the overall performance level
of the full test set, as shown in Table 9. Despite differences in priors and in
PHQ-8 distributions, the ability of the models to separate classes does not change
significantly for most user conditions, including gender, smoking, and marital status.
The AUC of the 26–35 age group is slightly lower than that of the rest of the
population and this difference is statistically significant. This result is currently
being investigated; given that this group has a large amount of training data, data
sparsity is not a concern.

Additionally, both models’ AUCs are robust over session metadata regarding
temporal information of user recording time, including local time of day, day
of week, and season. For example, in Fig. 3, changes in PHQ-8 average can be
seen over the course of the day, but the AUC for depression detection does not
change significantly over this factor. Both models are largely robust to other time-
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related session variables, including time of day, day of week, and time of year.
This performance consistency holds despite differences across categories in PHQ-8
priors.

6 Summary, Conclusions and Future Work

In this chapter, acoustic and NLP models for predicting depression from speech
were investigated using a large depression-labeled corpus. Results showed excellent
performance overall with respect to generalization over different demographic
groups, which is important when a screening tool is deployed to screen a diverse
population.

Acoustic models and applications of transfer learning to improve the perfor-
mance of models are explored thoroughly in this chapter. A transfer learning
scheme proposed in this chapter based on an ASR source task resulted in a 27%
relative performance boost for binary classification and a 10–15% relative reduction
in regression error metrics relative to baseline models without transfer learning.
Experiments also show that transfer learning works even when the performance of
the source task (e.g. ASR) is poor. It is hypothesized that the restrictions imposed
by source tasks on learnable parameters are the main reason that transfer learning
performs so well in this problem, as opposed to e.g., learning how to transcribe
speech. This hypothesis requires further investigation for which future experiments
are planned. Furthermore, it is intended that future work will study the effect of
source task performance, source task type (e.g., unsupervised tasks), and source
task data.

The effect of the training dataset size on classification performance was also
investigated by subsampling from the large training corpus. Subsamples were
created using different data units, including responses, sessions, and speakers.
Overall, it was found that adding training data results in roughly linear gains in
performance, and that even at 1200 h of training data, the acoustic + TL model
does not show signs of saturation. It was found that, even for the smallest data
subset (114 h or 10% of the training set), the addition of transfer learning led to a
sizeable (15%) gain in AUC relative to a model trained with 100% of the labeled
data but no transfer learning. In addition, it was found that for smaller training data
subsets (under about 100 h), diversity of sessions and speakers is important. In such
cases, session duration is not as important as the number of independent sessions or
speakers. More work is needed to assess a minimum viable session duration for this
finding because extremely short sessions may not provide any value in training.

In addition, a state-of-the-art depression classifier based on deep NLP and
transfer learning showed excellent portability over age, gender, and ethnicity. Using
two corpora almost non-overlapping in age but similar in collection design, only a
small degradation in binary classification performance (0.06 absolute AUC) was
found when testing speakers mismatched for age. Interestingly, this degradation
nearly disappeared for those seniors reporting consistent class labels over their
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longitudinal samples. Furthermore, many other experiments were performed which
have been omitted from this chapter. One such relevant study investigated the effect
of speech length during inference time [15], finding that the performance of the NLP
model degrades once session length is less than 2 min. Therefore, for any clinical
deployment, it is suggested that session length should be at least approximately
2 min or 120 words [15].

Robust results were obtained with no difference in performance between test and
development sets. Models introduced in this chapter were trained on a large dataset
of about 10,000 unique speakers and 1600 h of speech. This allowed for the inves-
tigation of the robustness of these models relative to different independent factors,
including user demographics and recording environments. Model performance was
measured on different subsets of test data without model retraining or optimization
for each subset. Results showed that both acoustic and NLP models generalize
well over different factors, with some small exceptions for acoustic models. This
pattern holds despite the differences in priors for both category frequencies and
PHQ-8 value distributions of metadata categories. The robustness of both models
further demonstrates that those deep learning models trained on a fixed set of
samples will generalize over specific speaker and temporal variables in unseen data,
both from comparable and from completely different demographics. Future works
should examine additional types of metadata such as recording quality, ASR quality,
recording device usage, etc.

A natural next step is to explore the fusion of these models to generate predictions
based on both acoustic and text modalities. It is expected that proper fusion
algorithms will improve the performance and robustness of these models. Another
important direction of investigation is the interpretability of predictions. Deep
learning models such as the ones explored in this chapter work as black boxes and,
little insight can be gained by only observing the predictions made. In order to make
these predictions more useful for clinical applications, some type of interpretability
and explainability is desired.

Finally, as mentioned in the introduction, the robustness analysis in this chapter is
a start but is limited because only subsets within a matched collection are examined.
It is critical to examine corpora with large demographic differences as well as with
differences in how speech is collected by an application, ideally with clinical labels
(as opposed to self-administered tests such as PHQ). This is the ultimate goal of
Ellipsis Health and is currently under investigation.

Acknowledgments This paper and the research behind it would not have been possible without
the exceptional support of the Ellipsis Health team. We specially thank our clinical team: Mike
Aratow, Farshid Haque, Tahmida Nazreen and Melissa McCool. We thank Mainul Mondal and
Susan Solinsky for their continuing support. Additionally, we thank Vanessa Lin and Nina Roth
for editing the manuscript for this chapter.



Generalization of Deep Acoustic and NLP Models for Large-Scale Depression. . . 127

References

1. Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M., Mohr, D. C., &
Schatzberg, A. F. (2016). Major depressive disorder. Nature Reviews Disease Primers, 2(1),
16065. https://doi.org/10.1038/nrdp.2016.65

2. World Health Organisation. (2017). Depression and other common mental disorders: Global
health estimates. World Health Organization.

3. NIH. (2019, February). Major depression. Retrieved January 22, 2021, from https://
www.nimh.nih.gov/health/statistics/major-depression.shtml.

4. Depression. (n.d.). Centers for Disease Control and Prevention. Retrieved January 22, 2021,
from https://www.cdc.gov/nchs/fastats/depression.htm.

5. Kuhl, E. A. (2018). Quantifying the cost of depression. Center For Workplace
Mental Health. Retrieved from http://www.workplacementalhealth.org/Mental-Health-
Topics/Depression/Quantifying-the-Cost-of-Depression.

6. Mitchell, A. J., Vaze, A., & Rao, S. (2009). Clinical diagnosis of depression in primary
care: A meta-analysis. The Lancet, 374(9690), 609–619. https://doi.org/10.1016/S0140-
6736(09)60879-5

7. Simon, G. E., VonKorff, M., Piccinelli, M., Fullerton, C., & Ormel, J. (1999). An international
study of the relation between somatic symptoms and depression. New England Journal of
Medicine, 341(18), 1329–1335. https://doi.org/10.1056/NEJM199910283411801

8. Nease, D. E., & Maloin, J. M. (2003). Depression screening: A practical strategy. The Journal
of Family Practice, 52(2), 118–124. http://www.ncbi.nlm.nih.gov/pubmed/12585989.

9. Resnik, P., Garron, A., & Resnik, R. (2013). Using topic modeling to improve prediction
of neuroticism and depression in college students. In EMNLP 2013—2013 conference on
empirical methods in natural language processing, proceedings of the conference, pp. 1348–
1353.

10. Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. F. (2015). A
review of depression and suicide risk assessment using speech analysis. Speech Communica-
tion, 71, 10–49. https://doi.org/10.1016/j.specom.2015.03.004

11. Williamson, J. R., Godoy, E., Cha, M., Schwarzentruber, A., Khorrami, P., Gwon, Y., Kung,
H.-T., Dagli, C., & Quatieri, T. F. (2016). Detecting depression using vocal, facial and semantic
communication cues. In Proceedings of the 6th international workshop on audio/visual
emotion challenge, pp. 11–18. https://doi.org/10.1145/2988257.2988263.

12. Pampouchidou, A., Simantiraki, O., Fazlollahi, A., Pediaditis, M., Manousos, D., Roniotis, A.,
Giannakakis, G., Meriaudeau, F., Simos, P., Marias, K., Yang, F., & Tsiknakis, M. (2016).
Depression assessment by fusing high and low level features from audio, video, and text.
Proceedings of the 6th international workshop on audio/visual emotion challenge, pp. 27–34.
https://doi.org/10.1145/2988257.2988266.

13. Yang, L., Sahli, H., Xia, X., Pei, E., Oveneke, M. C., & Jiang, D. (2017). Hybrid depression
classification and estimation from audio video and text information. In Proceedings of the
7th annual workshop on audio/visual emotion challenge, pp. 45–51. https://doi.org/10.1145/
3133944.3133950.

14. Ringeval, F., Messner, E.-M., Song, S., Liu, S., Zhao, Z., Mallol-Ragolta, A., Ren, Z., Soley-
mani, M., Pantic, M., Schuller, B., Valstar, M., Cummins, N., Cowie, R., Tavabi, L., Schmitt,
M., Alisamir, S., & Amiriparian, S. (2019). AVEC 2019 workshop and challenge: State-of-
mind, detecting depression with AI, and cross-cultural affect recognition. In Proceedings of
the 9th international on audio/visual emotion challenge and workshop—AVEC ‘19, pp. 3–12.
https://doi.org/10.1145/3347320.3357688.

http://doi.org/10.1038/nrdp.2016.65
https://www.nimh.nih.gov/health/statistics/major-depression.shtml
http://doi.org/10.1016/S0140-6736(09)60879-5
http://doi.org/10.1056/NEJM199910283411801
http://doi.org/10.1016/j.specom.2015.03.004
http://doi.org/10.1145/2988257.2988263
http://doi.org/10.1145/2988257.2988266
http://doi.org/10.1145/3133944.3133950
http://doi.org/10.1145/3347320.3357688


128 A. Harati et al.

15. Rutowski, T., Harati, A., Lu, Y., & Shriberg, E. (2019). Optimizing speech-input length for
speaker-independent depression classification. Interspeech, 2019, 3023–3027. https://doi.org/
10.21437/Interspeech.2019-3095

16. Cohn, J. F., Cummins, N., Epps, J., Goecke, R., Joshi, J., & Scherer, S. (2018). Multimodal
assessment of depression from behavioral signals. In The handbook of multimodal-multisensor
interfaces: Foundations, user modeling, and common modality combinations—Volume 2 (pp.
375–417). Association for Computing Machinery. https://doi.org/10.1145/3107990.3108004

17. Scherer, S., Stratou, G., Gratch, J., & Morency, L. P. (2013). Investigating voice quality
as a speaker-independent indicator of depression and PTSD. In Proceedings of the annual
conference of the International Speech Communication Association, INTERSPEECH, pp. 847–
851.

18. Helfer, B. S., Quatieri, T. F., Williamson, J. R., Mehta, D. D., Horwitz, R., & Yu, B. (2013).
Classification of depression state based on articulatory precision. In Proceedings of the annual
conference of the International Speech Communication Association, INTERSPEECH, pp.
2172–2176.

19. Stasak, B., Epps, J., & Goecke, R. (2019). An investigation of linguistic stress and articulatory
vowel characteristics for automatic depression classification. Computer Speech & Language,
53, 140–155. https://doi.org/10.1016/j.csl.2018.08.001

20. Trevino, A. C., Quatieri, T. F., & Malyska, N. (2011). Phonologically-based biomarkers for
major depressive disorder. EURASIP Journal on Advances in Signal Processing, 2011(1), 42.
https://doi.org/10.1186/1687-6180-2011-42

21. Horwitz, R., Quatieri, T. F., Helfer, B. S., Yu, B., Williamson, J. R., & Mundt, J. (2013).
On the relative importance of vocal source, system, and prosody in human depression. In
2013 IEEE international conference on body sensor networks, pp. 1–6. https://doi.org/10.1109/
BSN.2013.6575522.

22. Sacks, H. (1995). Lectures on conversation. Wiley-Blackwell. https://doi.org/10.1002/
9781444328301

23. Pennebaker, J. W., Mehl, M. R., & Niederhoffer, K. G. (2003). Psychological aspects of natural
language use: Our words, our selves. Annual Review of Psychology, 54(1), 547–577. https://
doi.org/10.1146/annurev.psych.54.101601.145041

24. Pestian, J. P., Matykiewicz, P., Linn-Gust, M., South, B., Uzuner, O., Wiebe, J., Cohen, K. B.,
Hurdle, J., & Brew, C. (2012). Sentiment analysis of suicide notes: A shared task. Biomedical
Informatics Insights, 5, BII-S9042. https://doi.org/10.4137/BII.S9042

25. Ramirez-Esparza, N., Chung, C. K., Kacewicz, E., & Pennebaker, J. W. (2008). The psychology
of word use in depression forums in English and in Spanish: Testing two text analytic
approaches. Retrieved from www.aaai.org.

26. Huang, S. H., LePendu, P., Iyer, S. V., Tai-Seale, M., Carrell, D., & Shah, N. H. (2014a).
Toward personalizing treatment for depression: Predicting diagnosis and severity. Journal
of the American Medical Informatics Association, 21(6), 1069–1075. https://doi.org/10.1136/
amiajnl-2014-002733

27. Perlis, R. H., Iosifescu, D. V., Castro, V. M., Murphy, S. N., Gainer, V. S., Minnier, J., Cai, T.,
Goryachev, S., Zeng, Q., Gallagher, P. J., Fava, M., Weilburg, J. B., Churchill, S. E., Kohane,
I. S., & Smoller, J. W. (2012). Using electronic medical records to enable large-scale studies in
psychiatry: Treatment resistant depression as a model. Psychological Medicine, 42(1), 41–50.
https://doi.org/10.1017/S0033291711000997

28. Cook, B. L., Progovac, A. M., Chen, P., Mullin, B., Hou, S., & Baca-Garcia, E. (2016). Novel
use of Natural Language Processing (NLP) to predict suicidal ideation and psychiatric symp-
toms in a text-based mental health intervention in Madrid. Computational and Mathematical
Methods in Medicine, 2016, 8708434. https://doi.org/10.1155/2016/8708434

29. Yates, A., Cohan, A., & Goharian, N. (2017). Depression and self-harm risk assessment
in online forums. In Proceedings of the 2017 conference on empirical methods in natural
language processing, pp. 2968–2978. https://doi.org/10.18653/v1/D17-1322.

http://doi.org/10.21437/Interspeech.2019-3095
http://doi.org/10.1145/3107990.3108004
http://doi.org/10.1016/j.csl.2018.08.001
http://doi.org/10.1186/1687-6180-2011-42
http://doi.org/10.1109/BSN.2013.6575522
http://doi.org/10.1002/9781444328301
http://doi.org/10.1146/annurev.psych.54.101601.145041
http://doi.org/10.4137/BII.S9042
http://www.aaai.org
http://doi.org/10.1136/amiajnl-2014-002733
http://doi.org/10.1017/S0033291711000997
http://doi.org/10.1155/2016/8708434
http://doi.org/10.18653/v1/D17-1322


Generalization of Deep Acoustic and NLP Models for Large-Scale Depression. . . 129

30. Chan, W., Jaitly, N., Le, Q., & Vinyals, O. (2016). Listen, attend and spell: A neural network
for large vocabulary conversational speech recognition. 2016 IEEE international conference
on acoustics, speech and signal processing (ICASSP), pp. 4960–4964. https://doi.org/10.1109/
ICASSP.2016.7472621.

31. Kim, S., Hori, T., & Watanabe, S. (2017). Joint CTC-attention based end-to-end speech
recognition using multi-task learning. In 2017 IEEE international conference on acous-
tics, speech and signal processing (ICASSP), pp. 4835–4839. https://doi.org/10.1109/
ICASSP.2017.7953075.

32. Narayanan, A., Prabhavalkar, R., Chiu, C.-C., Rybach, D., Sainath, T. N., & Strohman, T.
(2019). Recognizing long-form speech using streaming end-to-end models. In 2019 IEEE
automatic speech recognition and understanding workshop (ASRU), pp. 920–927. https://
doi.org/10.1109/ASRU46091.2019.9003913.

33. Deng, J., Zhang, Z., Marchi, E., & Schuller, B. (2013). Sparse autoencoder-based feature
transfer learning for speech emotion recognition. In 2013 Humaine association conference
on affective computing and intelligent interaction, pp. 511–516. https://doi.org/10.1109/
ACII.2013.90.

34. Huang, Z., Dong, M., Mao, Q., & Zhan, Y. (2014b). Speech emotion recognition using CNN.
In Proceedings of the 22nd ACM international conference on multimedia, pp. 801–804. https:/
/doi.org/10.1145/2647868.2654984.

35. Huang, Z., Epps, J., & Joachim, D. (2020). Exploiting vocal tract coordination using dilated
CNNS for depression detection in naturalistic environments. In ICASSP 2020—2020 IEEE
international conference on acoustics, speech and signal processing (ICASSP), pp. 6549–6553.
https://doi.org/10.1109/ICASSP40776.2020.9054323.

36. Kahou, S. E., Bouthillier, X., Lamblin, P., Gulcehre, C., Michalski, V., Konda, K., Jean, S.,
Froumenty, P., Dauphin, Y., Boulanger-Lewandowski, N., Chandias Ferrari, R., Mirza, M.,
Warde-Farley, D., Courville, A., Vincent, P., Memisevic, R., Pal, C., & Bengio, Y. (2016).
EmoNets: Multimodal deep learning approaches for emotion recognition in video. Journal on
Multimodal User Interfaces, 10(2), 99–111. https://doi.org/10.1007/s12193-015-0195-2

37. Lim, W., Jang, D., & Lee, T. (2016). Speech emotion recognition using convolutional
and recurrent neural networks. In 2016 Asia-Pacific Signal and Information Processing
Association annual summit and conference (APSIPA), pp. 1–4. doi:https://doi.org/10.1109/
APSIPA.2016.7820699.

38. Mao, Q., Dong, M., Huang, Z., & Zhan, Y. (2014). Learning salient features for speech emotion
recognition using convolutional neural networks. IEEE Transactions on Multimedia, 16(8),
2203–2213. https://doi.org/10.1109/TMM.2014.2360798

39. Yang, L., Jiang, D., & Sahli, H. (2020). Feature augmenting networks for improving depression
severity estimation from speech signals. IEEE Access, 8, 24033–24045. https://doi.org/
10.1109/ACCESS.2020.2970496

40. He, L., & Cao, C. (2018). Automated depression analysis using convolutional neural net-
works from speech. Journal of Biomedical Informatics, 83, 103–111. https://doi.org/10.1016/
j.jbi.2018.05.007

41. Coutinho, E., Deng, J., & Schuller, B. (2014). Transfer learning emotion manifestation across
music and speech. International Joint Conference on Neural Networks (IJCNN), 2014, 3592–
3598. https://doi.org/10.1109/IJCNN.2014.6889814

42. Coutinho, E., & Schuller, B. (2017). Shared acoustic codes underlie emotional communication
in music and speech—Evidence from deep transfer learning. PLoS One, 12(6), e0179289.
https://doi.org/10.1371/journal.pone.0179289

43. Li, Q., & Chaspari, T. (2019). Exploring transfer learning between scripted and spontaneous
speech for emotion recognition. In 2019 international conference on multimodal interaction,
pp. 435–439. https://doi.org/10.1145/3340555.3353762.

44. Du, W., Morency, L.-P., Cohn, J., & Black, A. W. (2019). Bag-of-acoustic-words for mental
health assessment: A deep autoencoding approach. Interspeech, 2019, 1428–1432. https://
doi.org/10.21437/Interspeech.2019-3059

http://doi.org/10.1109/ICASSP.2016.7472621
http://doi.org/10.1109/ICASSP.2017.7953075
http://doi.org/10.1109/ASRU46091.2019.9003913
http://doi.org/10.1109/ACII.2013.90
http://doi.org/10.1145/2647868.2654984
http://doi.org/10.1109/ICASSP40776.2020.9054323
http://doi.org/10.1007/s12193-015-0195-2
http://doi.org/10.1109/APSIPA.2016.7820699
http://doi.org/10.1109/TMM.2014.2360798
http://doi.org/10.1109/ACCESS.2020.2970496
http://doi.org/10.1016/j.jbi.2018.05.007
http://doi.org/10.1109/IJCNN.2014.6889814
http://doi.org/10.1371/journal.pone.0179289
http://doi.org/10.1145/3340555.3353762
http://doi.org/10.21437/Interspeech.2019-3059


130 A. Harati et al.

45. Martinez-Castaño, R., Htait, A., Azzopardi, L., & Moshfeghi, Y. (2020). Early risk detection of
self-harm and depression severity using BERT-based transformers: iLab at CLEF eRisk 2020.
CEUR Workshop Proceedings, 2696.

46. Salekin, A., Eberle, J. W., Glenn, J. J., Teachman, B. A., & Stankovic, J. A. (2018). A weakly
supervised learning framework for detecting social anxiety and depression. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(2), 1–26. https://
doi.org/10.1145/3214284

47. Zhao, Z., Bao, Z., Zhang, Z., Deng, J., Cummins, N., Wang, H., Tao, J., & Schuller, B. (2020).
Automatic assessment of depression from speech via a hierarchical attention transfer network
and attention autoencoders. IEEE Journal of Selected Topics in Signal Processing, 14(2), 423–
434. https://doi.org/10.1109/JSTSP.2019.2955012

48. Lu, Y., Harati, A., Rutowski, T., Oliveira, R., Chlebek, P., & Shriberg, E. (2020). Robust speech
and natural language processing models for depression screening. In The 2020 IEEE signal
processing in medicine and biology symposium, pp. 1–5.

49. Valstar, M., Gratch, J., Schuller, B., Ringeval, F., Lalanne, D., Torres Torres, M., Scherer, S.,
Stratou, G., Cowie, R., & Pantic, M. (2016). AVEC 2016: Depression, mood, and emotion
recognition workshop and challenge. In Proceedings of the 6th international workshop on
audio/visual emotion challenge, pp. 3–10. https://doi.org/10.1145/2988257.2988258.

50. Valstar, M., Schuller, B., Smith, K., Almaev, T., Eyben, F., Krajewski, J., Cowie, R., &
Pantic, M. (2014). AVEC 2014: 3D dimensional affect and depression recognition challenge.
In Proceedings of the 4th international workshop on audio/visual emotion challenge—AVEC
‘14, pp. 3–10. https://doi.org/10.1145/2661806.2661807.

51. Stasak, B., Epps, J., & Goecke, R. (2017). Elicitation design for acoustic depression clas-
sification: An investigation of articulation effort, linguistic complexity, and word affect. In
Proceedings of the annual conference of the international speech communication association,
INTERSPEECH, pp. 834–838. https://doi.org/10.21437/Interspeech.2017-1223.

52. Jiahong, Y., Liberman, M., & Cieri, C. (2006). Towards an integrated understanding of
speaking rate in conversation. Proceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH, 2, 541–544.

53. Kroenke, K., Strine, T. W., Spitzer, R. L., Williams, J. B. W., Berry, J. T., & Mokdad, A. H.
(2009). The PHQ-8 as a measure of current depression in the general population. Journal of
Affective Disorders, 114(1–3), 163–173. https://doi.org/10.1016/j.jad.2008.06.026

54. National population by characteristics: 2010–2019. (n.d.). Retrieved from https://
www.census.gov/data/tables/time-series/demo/popest/2010s-national-detail.html.

55. ACS demographic and housing estimates—2011–2015. (n.d.). Retrieved from https:/
/www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-
changes/2015/5-year.html.

56. Merity, S., Xiong, C., Bradbury, J., & Socher, R. (2016). Pointer sentinel mixture models.
In 5th international conference on learning representations, ICLR 2017—Conference track
proceedings. http://arxiv.org/abs/1609.07843.

57. Schwenk, H., Wenzek, G., Edunov, S., Grave, E., & Joulin, A. (2019). CCMatrix: Mining
billions of high-quality parallel sentences on the WEB. CoRR, abs/1911.0. Retrieved from
http://arxiv.org/abs/1911.04944.

58. Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: An ASR
corpus based on public domain audio books. In 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp. 5206–5210. https://doi.org/10.1109/
ICASSP.2015.7178964.

59. DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under
two or more correlated receiver operating characteristic curves: A nonparametric approach.
Biometrics, 44(3), 837. https://doi.org/10.2307/2531595

60. Sun, X., & Xu, W. (2014). Fast implementation of DeLong’s algorithm for comparing the
areas under correlated receiver operating characteristic curves. IEEE Signal Processing Letters,
21(11), 1389–1393. https://doi.org/10.1109/LSP.2014.2337313

http://doi.org/10.1145/3214284
http://doi.org/10.1109/JSTSP.2019.2955012
http://doi.org/10.1145/2988257.2988258
http://doi.org/10.1145/2661806.2661807
http://doi.org/10.21437/Interspeech.2017-1223
http://doi.org/10.1016/j.jad.2008.06.026
https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-detail.html
https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2015/5-year.html
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1911.04944
http://doi.org/10.1109/ICASSP.2015.7178964
http://doi.org/10.2307/2531595
http://doi.org/10.1109/LSP.2014.2337313


Generalization of Deep Acoustic and NLP Models for Large-Scale Depression. . . 131

61. Mundt, J. C., Snyder, P. J., Cannizzaro, M. S., Chappie, K., & Geralts, D. S. (2007). Voice
acoustic measures of depression severity and treatment response collected via interactive voice
response (IVR) technology. Journal of Neurolinguistics, 20(1), 50–64. https://doi.org/10.1016/
j.jneuroling.2006.04.001

62. Ray, A., Kumar, S., Reddy, R., Mukherjee, P., & Garg, R. (2019). Multi-level attention network
using text, audio and video for depression prediction. In Proceedings of the 9th international on
audio/visual emotion challenge and workshop—AVEC ‘19, pp. 81–88. https://doi.org/10.1145/
3347320.3357697.

63. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019). PyTorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems.

64. Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the 28th international conference
on machine learning, ICML 2011, pp. 513–520.

65. Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41–75. https://doi.org/
10.1023/A:1007379606734

66. Zadeh, L. M., Silbert, N. H., Sternasty, K., Swanepoel, D. W., Hunter, L. L., & Moore, D. R.
(2019). Extended high-frequency hearing enhances speech perception in noise. Proceedings
of the National Academy of Sciences of the United States of America.https://doi.org/10.1073/
pnas.1903315116

67. Lüke, H. D. (1999). The origins of the sampling theorem. IEEE Communications Magazine,
37(4), 106–108. https://doi.org/10.1109/35.755459

68. Ravindran, S., Demiroglu, C., & Anderson, D. V. (2003). Speech recognition using filter-bank
features. In The thirty-seventh Asilomar conference on signals, systems & computers, 2003, pp.
1900–1903. https://doi.org/10.1109/ACSSC.2003.1292312.

69. Ravi, V., Fan, R., Afshan, A., Lu, H., & Alwan, A. (2020). Exploring the use of an unsupervised
autoregressive model as a shared encoder for text-dependent speaker verification. Interspeech,
2020, 766–770. https://doi.org/10.21437/Interspeech.2020-2957

70. Parthasarathy, S., & Busso, C. (2018). Ladder networks for emotion recognition: Using
unsupervised auxiliary tasks to improve predictions of emotional attributes. Interspeech, 2018,
3698–3702. https://doi.org/10.21437/Interspeech.2018-1391

71. Liu, A. H., Sung, T.-W., Chuang, S.-P., Lee, H., & Lee, L. (2020). Sequence-to-sequence
automatic speech recognition with word embedding regularization and fused decoding. In
ICASSP 2020—2020 IEEE international conference on acoustics, speech and signal process-
ing (ICASSP), pp. 7879–7883. https://doi.org/10.1109/ICASSP40776.2020.9053324.

72. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale
image recognition. In 3rd international conference on learning representations, ICLR 2015—
Conference track proceedings.

73. Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks, 18(5–6), 602–610. https://
doi.org/10.1016/j.neunet.2005.06.042

74. Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent convolutional neural networks for text
classification. In Proceedings of the national conference on artificial intelligence, pp. 2267–
2273.

75. Harati, A., Shriberg, E., Rutowski, T., Chlebek, P., Lu, Y., & Oliveira, R. (2021). Speech-
based depression prediction using encoder-weight-only transfer learning and a large corpus.
In ICASSP 2021—2021 IEEE international conference on acoustics, speech and signal
processing (ICASSP), pp. 7273–7277.

76. Al Hanai, T., Ghassemi, M., & Glass, J. (2018). Detecting depression with audio/text
sequence modeling of interviews. Interspeech, 2018, 1716–1720. https://doi.org/10.21437/
Interspeech.2018-2522

http://doi.org/10.1016/j.jneuroling.2006.04.001
http://doi.org/10.1145/3347320.3357697
http://doi.org/10.1023/A:1007379606734
http://doi.org/10.1073/pnas.1903315116
http://doi.org/10.1109/35.755459
http://doi.org/10.1109/ACSSC.2003.1292312
http://doi.org/10.21437/Interspeech.2020-2957
http://doi.org/10.21437/Interspeech.2018-1391
http://doi.org/10.1109/ICASSP40776.2020.9053324
http://doi.org/10.1016/j.neunet.2005.06.042
http://doi.org/10.21437/Interspeech.2018-2522


132 A. Harati et al.

77. Bengio, Y., Ducharme, R., & Vincent, P. (2001). A neural probabilistic language model.
Advances in Neural Information Processing Systems, 3, 1137–1155.

78. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representa-
tions of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems
(Vol. 26, pp. 3111–3119). Curran Associates. https://proceedings.neurips.cc/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

79. Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word
representation. In EMNLP 2014—2014 conference on empirical methods in natural language
processing, proceedings of the conference, pp. 1532–1543. https://doi.org/10.3115/v1/d14-
1162.

80. Arora, S., Liang, Y., & Ma, T. (2017). A simple but tough-to-beat baseline for sentence
embeddings. In 5th international conference on learning representations, ICLR 2017—
Conference track proceedings. Retrieved from https://github.com/PrincetonML/SIF.

81. Rücklé, A., Eger, S., Peyrard, M., & Gurevych, I. (2018). Concatenated power mean
word embeddings as universal cross-lingual sentence representations. ArXiv. Retrieved from
http://arxiv.org/abs/1803.01400.

82. Mou, L., Meng, Z., Yan, R., Li, G., Xu, Y., Zhang, L., & Jin, Z. (2016). How transferable
are neural networks in NLP applications? In Proceedings of the 2016 conference on empirical
methods in natural language processing, pp. 479–489. https://doi.org/10.18653/v1/D16-1046.

83. Kudo, T. (2018). Subword regularization: Improving neural network translation models with
multiple subword candidates. In Proceedings of the 56th annual meeting of the association
for computational linguistics (Volume 1: Long Papers), pp. 66–75. https://doi.org/10.18653/
v1/P18-1007.

84. Sennrich, R., Haddow, B., & Birch, A. (2016). Neural machine translation of rare words with
subword units. In Proceedings of the 54th annual meeting of the association for computational
linguistics (Volume 1: Long Papers), 3, pp. 1715–1725. https://doi.org/10.18653/v1/P16-1162.

85. Merity, S., Keskar, N. S., & Socher, R. (2018). Regularizing and optimizing LSTM language
models. In 6th international conference on learning representations, ICLR 2018—Conference
track proceedings.

86. Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification.
In Proceedings of the 56th annual meeting of the association for computational linguistics
(Volume 1: Long Papers), pp. 328–339. https://doi.org/10.18653/v1/P18-1031.

87. Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of
performance measures for classification. Pattern Recognition Letters, 30(1), 27–38. https://
doi.org/10.1016/j.patrec.2008.08.010

88. Rutowski, T., Shriberg, E., Harati, A., Lu, Y., Chlebek, P., & Oliveira, R. (2021). Cross-
demographic portability of deep NLP-based depression models. In 2021 IEEE spoken language
technology workshop (SLT).

89. Carey, M., Jones, K., Meadows, G., Sanson-Fisher, R., D’Este, C., Inder, K., Yoong, S. L.,
& Russell, G. (2014). Accuracy of general practitioner unassisted detection of depression.
Australian & New Zealand Journal of Psychiatry, 48(6), 571–578. https://doi.org/10.1177/
0004867413520047

90. Vermani, M., Marcus, M., & Katzman, M. A. (2011). Rates of detection of mood and anxiety
disorders in primary care: A descriptive, cross-sectional study. The Primary Care Companion
for CNS Disorders, 13(2). doi:https://doi.org/10.4088/PCC.10m01013.

https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
http://doi.org/10.3115/v1/d14-1162
http://doi.org/10.18653/v1/D16-1046
http://doi.org/10.18653/v1/P18-1007
http://doi.org/10.18653/v1/P16-1162
http://doi.org/10.18653/v1/P18-1031
http://doi.org/10.1016/j.patrec.2008.08.010
http://doi.org/10.1177/0004867413520047
http://doi.org/10.4088/PCC.10m01013


TABS: Transformer Based Seizure
Detection

Jonathan Pedoeem, Guy Bar Yosef, Shifra Abittan, and Sam Keene

1 Background

A seizure is a sudden electrical disturbance in the brain. Symptoms include loss of
consciousness, jerking movements of the extremities, and uncontrollable changes
in emotional state. There are many types of seizures ranging in severity, locality in
the brain, and reason for occurring. The temporal duration of seizures also varies,
most lasting from 20 s to 2 min. Epilepsy, the fourth most common neurological
disease plaguing approximately 2.2 million people worldwide, is characterized by
unexpected, recurrent seizures. Thus, seizures are an ailment with tremendous scope
[1, 2].

Correctly identifying seizures is of paramount importance. Firstly, misdiagnosis
can wreak havoc on a patient’s physical and emotional wellbeing. Medication is
often used to treat a seizure; however, there are no clear guidelines on dosage. A
doctor will administer medication and slowly increase the dosage, until the seizure
stops. Moreso, proper identification of seizures is critical to prevent overdosing a
patient. Secondly, if a patient is declared epileptic, his or her driver’s license is
revoked. This is one example of how seizures not only physically harm a person’s
body, but severely infringe on lifestyle. Finally, if a seizure is not identified, it will

J. Pedoeem
The Cooper Union, Electrical Engineering ‘20, West Orange, NJ, USA

G. Bar Yosef (�)
The Cooper Union, Electrical Engineering ‘20, Miami, FL, USA
e-mail: bar@cooper.edu

S. Abittan
The Cooper Union, Electrical Engineering ‘20, Woodmere, NY, USA

S. Keene
The Cooper Union, Harrington Park, NJ, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Obeid et al. (eds.), Biomedical Sensing and Analysis,
https://doi.org/10.1007/978-3-030-99383-2_4

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99383-2_4&domain=pdf
mailto:bar@cooper.edu
https://doi.org/10.1007/978-3-030-99383-2_4


134 J. Pedoeem et al.

go untreated. These are just three of the reasons why proper seizure identification is
critical.

Electroencephalograms, or EEGs, are the primary means by which physicians
diagnose brain-related illnesses such as epilepsy and seizures. An EEG is a tool
for monitoring the brain’s electrical activity. Electrodes are placed on a patient’s
scalp to record the electrical waves emanating from the brain. The configuration of
electrode placement can vary. The most common configuration is the International
10/20 Classifying Seizures in EEG Data System. In this system, 21 electrodes
are evenly distributed over the scalp. The distance between electrodes is either
10 or 20% of the total distance from front (nasion) to back (inion). The 10/20
system utilizes four anatomical landmarks for positioning: the point between the
forehead and nose (nasion), the lowest point of the back of the skull (inion), and the
preauricular areas anterior to the ears [3]. See Fig. 1.

Voltage is always recorded relative to a reference point. Therefore, the next
design decision in assembling EEG electrodes is the reference used. Two common
choices are generally utilized. The first is AR, Average Reference, whereby the
average of all the electrodes is used as reference. This can be unstable, so another

Fig. 1 The International 10/20 System for Placing EEG Electrodes on the Scalp. To record the
electrical waves emanating from the brain, EEG electrodes are placed on the patient’s scalp. The
configuration of electrode placement can vary; this figure depicts the most commonly used system.
In this configuration, the international 10/20 system, 21 electrodes are evenly distributed over the
scalp. The distance between electrodes is either 10 or 20% of the total distance from front (nasion)
to back (inion). The 10/20 system utilizes four anatomical landmarks for positioning: the point
between the forehead and nose (nasion), the lowest point of the back of the skull (inion), and the
preauricular areas anterior to the ears
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popular choice is LE, Linked Ears Reference. In LE, a lead adapter links electrodes
behind the left and right ears as a reference point. LE is believed to reduce artifacts
[3].

Currently, a doctor must, either in real-time or subsequently, look through the
EEG data to identify seizure occurrence. The doctor does not look at the raw
EEG electrical signal. Instead, a montage is imposed on the data. A montage is
a particular differencing scheme of the electrode channels in order to increase
visibility of seizures and other abnormalities, while at the same time also reducing
noise. The most common montage used is the bipolar montage. This montage is
considered optimal for human detection of seizures [3].

Physician productivity and efficiency will increase significantly if a system could
be built to automatically detect seizures. All current models that attempt this task
have unacceptably high false positive rates. Therefore, hospitals do not utilize these
automated systems.

Patients in hospitals are often hooked up to many different machines that must be
monitored. The doctors and nurses do not want to be bothered by a seizure detection
system that is constantly ringing for no reason. As such, only a system with a very
low false positive rate would be useful.

2 Problem Statement

Properly identifying seizures from EEG data is a difficult problem. Even doctors
with advanced training and a tremendous amount of experience, often disagree on
the exact start and end times of a seizure. Seizures do not have a uniform waveform
and can take on different shapes depending on the medication that the patient is
taking. When a patient blinks, coughs or sleeps, the electrical signals collected by
the EEG can either obscure or mimic a seizure.

Doctors spend hours every day reviewing EEG data in order to diagnose seizures.
This is a tremendous drain on a doctor’s time. Automating seizure detection
could free doctors to spend more time at patient’s bedsides, as well as care for
more patients at a time. In addition, one doctor often reviews multiple patients’
EEG files at a time. They stand in front of a computer as a couple of EEG
montages fly across the screen. This is because for most of the file, no seizure is
occuring. Because doctors review a few files at once, it is possible that they miss
seizures.

Automating seizure detection is clearly important. However, in order for a
detection model to be useful, it would need to have a very low false alarm rate.
One doctor is often responsible for 12 patients hooked up to EEG machines. If each
machine makes two false alarms in a 24 h period, the doctor would be required
to come back to the hospital 24 times in one day. This model would be more of
a burden than a help to the doctor. The current state-of-the-art machine learning
seizure detection model has a false alarm rate of 7 per 24 h.
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Therefore, we set out to build a machine learning seizure detection model with
a very low false positive rate. While working on this project, Temple University
teamed up with Neureka and created a competition to drive the research in this area
forward. The scoring system in the competition placed a high importance on the
false alarm rate, which aligned nicely with our goals.

3 Related Works

There have been several different attempts to algorithmically detect seizures in EEG
data, spanning from signal processing to statistical analysis [4–12]. Deep learning
has recently achieved state-of-the-art in image and pattern recognition [13, 14], and
natural language processing [15–17] making it a great choice for this problem.

However, modern deep learning requires a tremendous amount of data to build
reliable models. Historically, there was not enough labeled data available to apply
these techniques to seizure detection. The Neural Engineering Data Consortium at
Temple University set out to solve this data problem. They collected and compiled
approximately 14 years of EEG data from patients at Temple Hospital and curated
a corpus for research.

Version 1.5.1 of the corpus, released in March 2020, contains 642 subjects with
a total of 1423 sessions [18]. 447 of these sessions contain seizures. There is a total
of 922 h of data. Seizure events comprise about 63 h, or 6.8% of the annotated data.
The data set also includes metadata, in the form of physician’s notes. These notes
include patient demographics and medication.

One great difficulty in building a seizure detection system, even if limitless
amounts of data are available, is that seizures do not have a precisely defined
waveform. Even while hand-labeling the data, the annotators often debate whether
or not a particular signal qualifies as a seizure. Additionally, seizures often lack
discrete start and stop times.

The current state-of-the-art model, developed by Temple University, achieves
a false positive rate of 6 per 24 h with sensitivity of 30.83% and a specificity of
97.10% [19]. This model is made up of a time-distributed convolutional neural
network (CNN) and a long short-term memory network [20] (LSTM) Fig. 2. They
also applied pre-processing and post-processing stages, before and after the deep
learning model.

The pre-processing stage takes the raw EEG files and extracts features from
them, while keeping the EEG channels separate. To construct each feature data
point, nine time samples were utilized, each 0.1 s long. The features extracted
included linear frequency cepstral coefficients, differential energy terms and first
and second derivative terms. The model input was a matrix of size 22 channels × 26
features. Each model input consisted of 210 time samples. Every time-sample was
then passed through a convolutional neural network in a time distributed manner.
These values were then recombined before being passed into a bidirectional LSTM.
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Fig. 2 The previous state-of-the-art model developed by Temple University. This model achieves
a false positive rate of 6 per 24 h with sensitivity of 30.83% and a specificity of 97.10%. The
model is made up of a time-distributed convolutional neural network (CNN) and a long short-term
memory network (LSTM). Temple also applied pre-processing and post-processing stages, before
and after the deep learning model. The pre-processing stage takes the raw EEG files and extracts
features from them, while keeping the EEG channels separate. The model input was a matrix of size
22 channels × 26 features. Each model input consisted of 210 time samples. Every time-sample
was then passed through a convolutional neural network in a time distributed manner. These values
were then recombined before being passed into a bidirectional LSTM. LSTMs are helpful when
working with sequential data. Finally, post-processing was applied, including a regression model,
thresholding and filtering

Finally, post-processing was applied, including a regression model, thresholding and
filtering.

The results of this model improved by two orders of magnitude from the post-
processing alone. We believe that this suggests that the deep learning portion of
this model is not accomplishing what it set out to do, with the majority of the
detection falling on post-processing techniques. In our work, we hoped to leverage
the deep learning model to its full capacity and eliminate as much of the pre and
post processing as possible.

4 Motivation

Over the last several years, a team of researchers, based out of the Signal and
Information Processing (ISIP) Lab at Temple University, have been working on
automated seizure detection [21]. We began this project by familiarizing ourselves
with the work that this group, led by Dr. Joseph Picone, has already accomplished.
We met with the lab and learned about both their experiences and EEG data in
particular, the primary source that they have been using in their research.
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While getting introduced to seizure detection in EEG data and the work Temple
University has already accomplished, the aspect that most intrigued us was the need
for a model that will err on the side of caution when classifying a seizure; in other
words, have a low false alarm rate. We felt that this requirement distinguished this
project from anything we have dealt with before, and therefore we felt that a firm
background in EEGs and the data they produce would be critical to our success.

In order to better understand what characteristics would be necessary for a
good solution to EEG-based seizure detection, we first tasked ourselves with
understanding why this is such a difficult problem. Because we did not have robust
domain knowledge, as we are not neurologists that view EEG data on a daily basis, it
was important for us to familiarize ourselves with the data through data exploration.
We were keen to develop as much intuition as we could, believing that without
doing so our contributions would be severely hindered. We wanted to avoid treating
the data as a black box.

By doing this, we began appreciating the difficulty of the task. We scrutinized
many EEG files using Temple University’s visualization tool [22]. Although some
seizure cases can be clearly recognized by an untrained observer such as ourselves,
seizure and non-seizure labels may also be very difficult to discern. No matter
how hard we tried to analyze the signal, there were seizure labels that were
indistinguishable from background noise. By performing data exploration, we got
to see firsthand that seizures and background noise can be nearly indiscernible.
This is because EEGs are composed out of multiple voltage differences between
the different electrode readings that are placed throughout a patient’s head [19].
Technically speaking, the voltage difference used in EEGs leads to a very low signal-
to-noise ratio (SNR).

Another interesting observation that we found while exploring the data was that
even to the untrained eye one patient’s EEG data could look very different from
another patient’s. Moreso, when referencing the accompanying doctor’s notes, we
learned that certain medications affect the brain waves, which causes very different
looking EEG signals. Many medications suppress brain activity, causing the overall
signal power to be much lower. A seizure, therefore, has many different waveforms,
partially dependent on the particular medications that the patient may be taking.

After performing data exploration, we approached experts and tried to understand
what heuristics they use in order to classify a seizure. We found that most successful
professionals do not claim to have a set of heuristics, but rather a learnt intuition of
what is and is not a seizure. We were surprised by the manner in which professionals
scanned EEG files. They do not scrutinize each time sample, but instead go through
most of the EEG in a cursory manner, almost as if skimming a book.

In hindsight, this preliminary data exploration phase of the project was a great
way for us to become acquainted with EEG data in general, as well as the specific
challenges inherent to seizure detection. After clarifying the problem at hand, we
were tasked with choosing which machine learning techniques to leverage in our
solution. We chose to focus on Deep Learning algorithms.

Deep learning methods solve optimization problems where gradient descent is
utilized to optimize complicated functions with a large number of variables. Not
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only is this the subfield of machine learning that our team has the most expertise in,
but it is also the class of functions that enabled Temple’s laboratory to achieve their
best results.

Deep Learning is an example of “Bottom Up” Artificial Intelligence (AI), as
opposed to “Top Down” AI. “Bottom Up” AI describes an approach where the
algorithm teaches itself how to make decisions. In a “Top Down” approach a
researcher hard codes a series of hand-crafted heuristics. We posited that just as the
professionals are using their own intuition to identify seizures, a machine should
also be able to “learn” how to solve the problem, and as such a “Bottom Up”
approach would be a great fit. This means that to replicate human performance,
the model would have to learn an intuition of its own.

When deciding how to approach this project, our team decided to look specif-
ically at the Deep Learning literature pertaining to Natural Language Processing
(NLP). This is because there were several key similarities between an EEG channel
and a paragraph of text. Firstly, both require context for understanding. In order
for a reader to understand the meaning of a text, he or she can not look at an
isolated letter or word—an entire line, and sometimes even paragraph, must be
consumed. Similarly, one time sample from an EEG file does not provide enough
information to identify whether the patient is currently suffering from a seizure. The
surrounding time samples, or its context, is required. Secondly, both types of data
have a sequential ordering. A sentence in English is read from left to right, while an
EEG is read with increasing time. Thirdly, both EEG files and text can have variable
lengths. Just as sentences are each a different length, EEG files are not of a fixed
length either.

We felt that these similarities between language and EEG data strongly indicated
that successful NLP models should also be successful in the EEG domain. However,
we also identified some key differences between the two problem classes. Firstly,
natural language is discrete, while an EEG is modeling a continuous variable
(brain waves). Secondly, natural language has several delimiters, for example letters,
words, sentences, paragraphs and chapters. Meanwhile, EEG’s do not have any of
these delineations, instead continuously transitioning from one value to the next.

At the time of our research, many of the state-of-the-art NLP models were using a
Transformer-based architecture [23]. Due to both these recent successes and the fact
that to our knowledge a Transformer had not yet been applied to the domain of EEG-
based problems, we decided to utilize Transformers in our research. Transformers
will be explored in a further section.

5 Data Pipeline

Over the course of our work we tried many different architecture types, experi-
menting with different deep learning elements and also tweaking hyperparameters
such as their depth and width. We started our process with a hypothesis of what
we intuitively thought made sense and then tried out several iterations of such a
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model with different hyperparameters to test not only if our intuition was correct,
but also attempt to rule out bad hyperparameter choices as the reason a certain model
architecture was not successful.

While we initially relied on our intuition and used it as a starting point for a
hypothesis, we tried not to rely too heavily on it. Our intuition is only based on a
few years of experience, so we tried to avoid letting it lead us into false biases of
what we thought “should make sense.”

In an ideal setting, we would have an infinite set of computing resources.
This would allow us to use a “spray and pray” approach, where we would be
able to try any and every combination of architecture types, depths, widths and
hyperparameters we could think of. Nevertheless, this was not our reality so we
were left with trying to discern and rationalize which potential architecture type
was the most promising to hedge our bets on.

In order to help facilitate our experimentation in this project, we developed a data
pipeline that includes the following stages: pre-processing, training, validation, and
evaluation. We built our pipeline using Pytorch [24], Facebook’s Machine Learning
framework. The final two stages of our pipeline, validation and evaluation, also
include a post-processing stage.

Although one of our goals was to avoid a pre-processing stage and to defer
any signal enhancing techniques to our machine learning model, preliminary
data exploration revealed that for our purposes at least some pre-processing was
necessary.

As previously mentioned, we used the TUH EEG Corpus [18] to train our model.
This corpus is the first collection of EEG data large enough to train robust deep
learning models. As is the case with many datasets, however, it is not normalized.
Specifically, different EEG files exhibited different channel combinations and were
sampled at different sampling rates. This means that both the number of channels
between files was different, as well as the channels themselves that were included.
Additionally, each channel has multiple labels so that even if the same channel
appears in different files, its name could be different in the two files.

We felt that these factors necessitated at least a minimal amount of pre-
processing. We decided to compromise with our original goal and attempt to
normalize the aforementioned aspects of the Corpus.

Firstly, we set out to resample the data to a uniform sampling rate. By running
through the Corpus, we were able to compile sums of the number of files for each
sampling rate. Our results are shown in Fig. 3.

We chose to uniformly resample all files in the Corpus to 250 Hz. Not only is
it the obvious choice, being the smallest sampling rate in the Corpus, but we were
cognizant of potential data bottlenecks we were going to encounter when loading
the data into our model. We agreed that this was an effective compromise between
retaining as much of the signal as possible, while still compressing the sheer amount
of data we would need to compute.

We next set out to normalize the channel combinations by finding the overlapping
set of channels among the files. Although all the files in the Corpus had at least 26
channels, the overlapping set among the entire corpus only consisted of 20 channels.
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Fig. 3 The different sampling rates in the TUH EEG Corpus. The TUH EEG Corpus is the first
collection of EEG data large enough to train robust deep learning models; however, it is not
normalized—EEG files were sampled at different sampling rates. This figure is a compilation of the
number of files present in the dataset, for each sampling rate. To normalize the data, we uniformly
resampled the data to 250 Hz. This was an obvious choice, as it is the smallest sampling rate used
in the Corpus. Additionally, this was an effective compromise between retaining as much of the
signal as possible, while still compressing the sheer amount of data we would need to compute to
avoid data bottlenecks when loading the data into our model

However we also decided to discard one of these, because many files had this
channel zeroed out. Therefore we settled on a 19 channel set:

EEG FP1-REF EEG F7-REF EEG P3-REF EEG T3-REF
EEG FP2-REF EEG F8-REF EEG P4-REF EEG T4-REF
EEG F3-REF EEG C3-REF EEG O1-REF EEG T5-REF
EEG F4-REF EEG C4-REF EEG O2-REF EEG T6-REF
EEG FZ-REF EEG CZ-REF EEG PZ-REF

Additionally, by using Temple’s corpus [18] we were able to map and identify
all the possible names used for each channel. Our end result on the input data was
a 2D input matrix with 19 rows (one for each channel) and a column for each time
stamp (with 250 columns per 1 s of time).

After analyzing the data we also found an undersampling of the majority
class, with only 6.8% of the samples in the corpus being seizures. This is highly
undesirable from a deep learning standpoint as it encourages the model to overfit
and classify all inputs as non-seizure (what is sometimes referred to as the Accuracy
Paradox [25]). Such a model would have an accuracy of 93.2% and would be
useless. Given this problem we brainstormed several solutions, one of which was to
use a different model like logistic regression which does not deal with this issue or to
re-sample the training data to achieve a 50–50 split between seizure and non-seizure
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data. Some sources [26] strongly argue against re-sampling the data. However, as we
were interested in using a deep learning model we nevertheless chose to go with this
solution. The main argument against re-sampling is that the distribution between
the training and real-world data will be different. However this was exactly our
intention; we wanted the model to be more confident in its predictions of seizures.

The TUH EEG Corpus represented the ground truth in the form of a text
annotation file which lists the start and end time for each background/seizure
window. We converted this text file into a 1D binary output array with a 0
representing background noise and a 1 representing a seizure classification. This
was done by generating an all 0 s array the same length as the resampled input
matrix and then running through the annotations file and changing the ground truth
from a 0 to a 1 during the ‘seizure’ labeled windows (multiplying start and end times
by 250, the uniform sampling frequency we used).

Finally, we utilized Python’s Pickle library [27] to convert the data into a binary
format for more efficient processing. Each pickle file included:

• A 2D matrix of input data, with the rows representing channels and the columns
representing time samples.

• A 1D array of channel labels (length 19).
• A 1D binary array of output data, with a 0 representing background noise and a

1 representing a seizure.
• A string that contains the doctor’s notes corresponding with the current patient.

While this was not actually used, we hoped to leverage NLP techniques on this
string to better improve our model. While we were not able to perform any
data visualizations on the data or confirm its usefulness, we hypothesize that the
doctor’s notes section contains a treasure trove of relevant data. One hypothetical
example of this would be the medication that a patient is prescribed: it is very
possible that certain medications alter the form that seizures exhibit in a typical
EEG file, and that utilizing this information would improve a deep learning model
significantly.

With our data preprocessed, we moved on to designing a flexible data loader
that could be used in the training, validation, and evaluation stages by our
machine learning models. We built our custom data loader by deriving from the
torch.utils.data.Dataset class. Our initial implementation randomly sampled EEG
data without taking into consideration which EEG file each sample belongs to. We
did this because it allows the model to get its training data in the most random way
possible, leading to a more robust model. However when we conducted empirical
tests on our training stage, we noticed it was bottlenecked by I/O, with the data
loader spending most of its time loading EEG files in and out of memory.

Our compromise was for the data loader to keep in memory a certain amount of
files and sample data from these files only, until a percentage threshold is reached
from each file. When a file’s percentage threshold is reached, for example when
25% of the file was sampled, then that file would be swapped for a new one. While
providing data that is less randomized to the model, it turned out to be more than an
order of magnitude faster than our original brute-force data loader implementation.



TABS: Transformer Based Seizure Detection 143

Finally, we also designed data loaders to be able to input the data sequentially, for
validation and testing purposes.

We trained our model in epochs of size 1,000,000. At the end of each epoch,
we would calculate the training accuracy and checkpoint the model if we got a
new best score. Additionally, every 5 epochs we would validate our model on a
validation set kept separate from the training set. We then calculated the validation
accuracy, sensitivity, specificity, and loss, and persisted a checkpoint of the all-time-
best of each. Our checkpoint names included the hyperparameters used in the model
that was being trained, allowing us to test out different hyper-parameters and easily
save/load checkpoints based on them, as well as training and validation accuracy,
sensitivity, and specificity values.

To increase our model’s robustness, we used a data-focused regularization tech-
nique called mixup [28]. Mixup is a technique in which two pairs of training samples
and truth values are taken and combined into one using a convex combination. This
allows our truth value to change from a binary {0,1} (background or seizure) to
the range [0,1]. We intended this to discourage our model from overfitting. The
coefficient for the convex combination we used was taken from a beta distribution
with its alpha parameter set to 0.6. This essentially kept beta around 0 or 1.

After our model was trained, we would test its efficacy on a separate evaluation
set. We built a model agnostic script that accepts any model and associated
checkpoint, running the post-processing scripts on the model outputs and finally
scoring the result using Temple University’s scoring script.

Due to both the practical importance of keeping the false alarm rate low and
the large penalty attributed to it in the Neurika 2020 challenge, we experimented
with several different post-processing heuristics including thresholding, vote-based
smoothing, moving averages, and smoothing polynomial filters.

The first iteration of post-processing included a simple threshold followed by a
vote-based smoothing system. The threshold converted the data from floating-point
values to boolean seizure/background labels. For the vote-based smoothing system,
we used a parameterized window size. Then, the middle value in the window was set
to the most common classification within that window. Both the threshold value and
window size were selected via quantitative experimentation. This post-processing
technique improved our results by an order of magnitude.

After more experimentation, we found that if we smoothed the model outputs
prior to applying the thresholding, our results improved even more. This intuitively
makes sense because by smoothing the output before thresholding, a lot of the false
positive jitter and oscillation in the output is eliminated. Then, the thresholding
function can more accurately label each timestep.

For the pre-threshold smoothing task, we tested two types of low-pass filters: (1)
moving-average and (2) Savitzky-Golay filter [29]. The Savitzky-Golay filter is a
generalized moving average filter; it smoothens data by locally fitting polynomials
of a specified order to it. After experimentation, we found that the Savitzky-Golay
filter worked better than the moving-average, specifically with a polynomial of order
18. The dramatic improvement gained by our post-processing methods can be seen
in Fig. 4.
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Our finalized post-processing pipeline consisted of the Savitzky-Golay filter
followed by a thresholding vote filter. Although not tested due to time constraints,
we hoped to experiment with penalization when the model changes its prediction
from one time sample to the next during the training stage.

After post-processing the model outputs, we were ready to score our results.
Evaluating seizure detection models is not a trivial task. This is because the
ground truth and predicted labels identify temporal events that span over many time
steps; there is not a clear-cut answer as to how to consider and enumerate errors.
Our problem is one of binary classification: seizure or background. All two-class
problems have four possible types of errors: true positives, true negatives, false
positives and false negatives. A true positive (TP) is when a seizure is properly
identified as such by the model. A true negative (TN) is when a background label is
properly identified by the model. A false positive (FP) is when a background label is
identified as a seizure, and a false negative (FN) is when a seizure is identified as a
background label. Based on these 4 definitions it is common to define the Sensitivity
of a set of results as T P

T P+FN
, and the Specificity as T N

T N+FP
.

As defined by the Neureka 2020 Challenge, the “worst” type of error in seizure
detection is a false positive and is heavily penalized in their scoring metric.
This decision has practical roots, because when an automated seizure-detection
technology is being used by a doctor or a health-care professional, many false
positives will waste the medical personnel’s time—exactly what the models set

Fig. 4 The Effects of our Post-Processing. (a) Ground truth signal (b) Raw model output prior
to post-processing. A lot of oscillation is visible. (c) Model output after applying post-processing
(smoothing and filtering). Oscillation is now gone
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out to solve. Therefore, although we of course hoped to have as high a sensitivity
as possible, the main aspect we paid attention to in regards to our model’s output
statistics was to reduce the false positives.

Additionally, counting the errors in a predicted sequence is not straightforward.
Often, the seizures identified in the ground truth and the predicted sequence overlap.
Based on different criteria there is an array of different evaluation metrics available
to treat this. The two that we focused on are Any-Overlap Method (OVLP) and the
Time-Aligned Event Scoring (TAES) [30].

OVLP is the metric we initially worked to optimize. This metric is term-based
and not frame-based, meaning that each individual seizure event is what matters,
rather than a comparison of the label at each individual time sample. In OVLP, a
true positive is counted any time the hypothesis overlaps in any way with the ground
truth seizure annotation. Accordingly, a false positive is attributed any time where a
prediction does not overlap at all with a ground truth seizure. The length of a seizure
event as well as how much or how little it overlaps with the ground truth is ignored
in the scoring. As such OVLP is considered a relatively permissive scoring metric.

The other scoring metric we considered, TAES, was the metric used in the
Neureka 2020 Challenge [31]. This metric considers the percentage of overlap
between events in the ground truth and prediction sequences and uses it to weigh
the error. The true positive count is the total duration of a detected seizure divided
by the total duration of the ground truth seizure. The false negative score is the
fraction of the time that the ground truth seizure was missed divided by the total
duration of the ground truth seizure. The false positive score is the total duration of
the incorrect seizure in the predicted sequence divided by the total amount of time
this seizure was incorrect according to the ground truth annotation. Temple presents
a full description for each type of metric in [30].

When comparing Temple University’s state-of-the-art model [19] under OVLP
versus TAES, it is clear that TAES is a significantly stricter metric. The model
achieves 30.83% sensitivity and 6.75 false alarms per 24 h using OVLP, while only
12.83% sensitivity and 7.54 false alarms per 24 h with TAES. We saw a similar gap
in our own model scores when comparing the two metrics.

6 Results

When we initially started work on this project, we focused on implementing our data
pipeline and general infrastructure. As such, our initial models were used purely
for testing purposes. We created a model that classified every output as a seizure,
another that classified every input as a background, and third that would randomly
classify either or, with a 50% probability.

Following this stage, we created several exploratory models using only fully
connected and convolutional layers. This allowed us to continue testing the data
pipeline, while also seeing how robust of a model we can achieve without the use



146 J. Pedoeem et al.

of any recurrent layers. A table of our different preliminary models can be seen in
Fig. 5.

In this initial stage we evaluated our model outputs on a time-sample basis,
comparing each of our outputs with its corresponding ground truth. As described
earlier, this direct 1-1 comparison is not how the literature typically evaluates a
seizure detection model. Moreso, this exploratory evaluation was conducted on
only a subset of the full validation set that was released with the Neureka 2020
Challenge. This preliminary evaluation technique was used because we did not have
our post-processing stage ready for use early on in our model development, however
in hindsight the speed-up achieved by getting early results was likely hindered by
these results not being directly correlated with how the Neureka contest evaluates
model outputs.

When we finished building out our post-processing stage we were able to get
a better understanding of our models using the OVLP metric. Although this was
not the metric that ended up getting chosen for the Neureka challenge, our decision
was made before the contest was announced with the motivation being that [19]
described it as the most popular choice in the neuroengineering community.

Including the post-processing stage into our pipeline allowed us to both scale
and add complexity to our models in the form of a recurrent layer. Using the OVLP
metric as our discriminator we eventually settled on two models, which we call
transformerModel6 and transformerModel7, which we used for the final evaluation.
These two models are nearly identical and so we expect results between them to be
very similar. A table listing our model experiments can be found below Fig. 6. Some
points about the table in Fig. 6:

• The sensitivity, specificity, and false alarms per 24 h (FA/24 h) are reported for
the OVLP metric.

• Dataset column

– contest—50-50: The training dataset provided by the Neureka 2020 contest,
after we have normalized the number of seizures such that there is roughly the
same amount of seizures as non-seizures in the data.

– resampled: The dataset was resampled to a uniform 250 Hz.

• Smoothing column

– 5000-1 x2: Refers to our smoothing function that sums the 5000 elements
before a current time sample and 5000 elements after a current time sample
and sets the output of the current time sample to a ‘seizure’ classification if
the sums are both above the threshold of 1, otherwise to a ‘background’. This
very aggressive smoothing function was found to significantly improve our
results.

– sg: ws:fileLen, poly:18 → threshold: Refers to the Savitzky-Golay filter being
used with the parameters set to:
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Model Description Highest 

Train 

Accuracy

Validation 

Accuracy 

3 Fully Connected Layers (FC3) 86 74

FC3 + CNN 85 78

FC3_WIDE + CNN 76 85

FC3 + CNN3 88 68.9

FC2 + CNN3 90.9 72.3

FC2 + CNN3 (all the following have larger windows 300 samples) 92.7 70.5

FC2 + CNN3 bigger batch size 90.7 71.1

CNN + FC2 + CNN3 (collapse channel dimension early) 88.6 64.1

CNN + FC2 + CNN3 (larger kernels) 90.1 69.4

FC2 + CNN3 (larger kernels) 92.6 73.4

FC2 + CNN3 w/ dropout 90.4 73.8

FC2 + CNN3 w/ Batch Normalization 95.7 73.4

FC2 + CNN3 w/ bn & dropout 90.8 77.9

FC2 + CNN3 w/ bn & dropout & l2 reg (0.1)  (= + REG) 90.8 79.2

FC2 + CNN3 w/ bn & dropout & l2 reg (0.01) 92.2 77.8

Fig. 5 Our preliminary models and their results. This table summarizes the exploratory models
we created using only fully connected and convolutional layers. This allowed us to test the data
pipeline that we built, while also determining how robust of a model we could achieve without the
use of any recurrent layers. The model outputs were evaluated on a time-sample basis, comparing
each of our outputs with its corresponding ground truth. This direct one-to-one comparison is
not how the literature typically evaluates a seizure detection model. In addition, the exploratory
evaluation was conducted on only a subset of the full validation set that was released with the
Neureka 2020 Challenge. We used this evaluation technique, because we did not have our post-
processing stage ready for use early on in our model development
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FC2 + CNN3 w/ bn & dropout & l2 reg (0.5) 86.1 77.1

FC2 + CNN3 + REG with more context (predict on 300 context of 600) 90 68.3

FC2 + CNN3 + REG w/ more context and more files in memory 96.7 49.4

FC2 + CNN3 + REG w/ more context, files & bigger epoch 83.5 64.3

FC2 + CNN3 + REG + MIXUP (0.2) 92.3 83.8

FC2 + CNN3 + REG + MIXUP (0.4) 91.3 83.6

FC2 + CNN3 + REG + MIXUP (0.6) 89.9 84.8

Replicated TU Model (CNN4 + LSTM) 93.4 81.0

Fig. 5 (continued)

a window size the length of the file
A polynomial of degree 18.
After the data passes through the Savitzky-Golay filter, it gets thresholded.

Surprisingly, our best results were achieved with the non-resampled training set,
achieving a sensitivity of 30% and a false positive rate of 26.9 per 24 h.

On the official contest test set we used 19 channels and scored a sensitivity of
9.03% and a FA per 24 h of 31.21, giving us a score of −76.50. This placed us ninth
place out of 14 contestants in the Neureka 2020 competition. The first place winners
achieved a score of 12.37% sensitivity and a FA per 24 h of 1.44.

These results also demonstrate that our model is not as accurate as Temple’s.
We attribute several reasons for this. The first was our choice to minimize the pre-
processing as much as possible. We believe that the low signal-to-noise ratio (SNR)
of seizures in EEGs makes it tough for deep learning models to learn a strong
feedback signal and that signal boosting pre-processing techniques are particularly
useful in such cases. Secondly, due to time and computational constraints we were
not able to fully tune our hyper-parameters.

Although our results do not beat Temple’s state-of-the-art model, they are
comparable. As such we argue that traditional signal processing pre-processing
techniques, such as signal-boosting and denoising, can be delegated to a deep
learning model. Alongside this, we also encourage more research into deep learning
architectures with low SNR data.
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Model

Description
Dataset Checkpoint Smoothing Threshold Sensitivity Specificity

FA per 24

hours

Transformer

Model 6

contest—

50-50
maxSensitivity 5000-1 x2 0.8 24.2 0.67 35131

Transformer

Model 6

contest—

50-50
maxSensitivity 5000-1 x2 0.5 26 0.73 32073.6

Transformer

Model 7

contest —

50-50
maxSensitivity

sg: ws:fileLen,

poly:18 ->

threshold

0.3 30.86 86.7 33.85

Transformer

Model 7

contest —

50-50
maxSensitivity

sg: ws:fileLen,

poly:18 ->

threshold->

500-1 -> 50-1

0.3 30.04 88.86 27.38

Transformer

Model 7

contest —

50-50
maxSensitivity

sg: ws:fileLen,

poly:18 ->

threshold

0.2 47.61 70.21 88.61

Transformer

Model 7

contest —

50-50
maxSensitivity

sg: ws:fileLen,

poly:18 ->

threshold->

500-1 -> 50-1

0.2 47.61 74.28 69.92

Transformer

Model 7

contest —

50-50
maxSensitivity

sg: ws:fileLen,

poly:18 ->

threshold->

1000-1

0.3 30.04 89.02 26.93

Transformer

Model 7

contest —

50-50
maxSensitivity

sg: ws:fileLen,

poly:18 ->

threshold ->

50-1

0.3 30.04 88.75 27.67

Transformer

Model 7

contest —

50-50,

resampled

maxSpecificit

y

sg: ws:fileLen,

poly:18 ->

treshold ->

50-1

0.2 26 83.83 43.11

Transformer

Model 7

contest —

50-50,

resampled

maxSpecificit

y

sg: ws:fileLen,

poly:18 ->

threshold ->

50-1

0.3 14.7 89.05 28.18

Fig. 6 Description of some more advanced models experiments and their results. We used the
OVLP metric as a discriminator to select two models, which we call transformerModel6 and
transformerModel7. These two models are nearly identical, and so we expect results between them
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7 TABS: Design Details

Our final model consisted of a stage of Convolutional Neural Networks (CNN), a
Transformer Stage, another CNN stage, and a two layer dense network ending with
cross entropy. Between each dense and CNN layer we had a ReLU [32]. We also
used batch normalization [33] and dropout [34] as regularization techniques after
the CNN stage and after each dense layer. These architectures and techniques will
be expanded upon further on, and can be seen visually in Fig. 7.

The first CNN layer consisted of a 1D convolution with an input size of 19
channels and an output size of 50 channels, a kernel of size of 5 and a padding of
12. Following the 1D convolution we apply 1D batch normalization, dropout with
probability 0.7 and finally pass the output through a ReLU layer.

This CNN layer allows us to create a latent representation of the channels and
have the model learn contextual information around each time sample of the EEG.
This was inspired by the modern software that neurologists use, in which certain
combinations for EEG channels are taken to provide a more coherent representation
of a time sample than if all the channels had been displayed beside one another.
We hypothesized that the model would be able to learn the optimal combination of
channels on its own using this CNN layer. To continue the analogy between EEG
and NLP, this layer can be seen as learning a “word” vector representation for each
time sample of the signal.

As the name suggests, a CNN is based on the mathematical operation of
convolution. Convolution is operated on two functions. Mathematically, convolution
is defined as:

(f ∗ g) (t) :=
∫ ∞

−∞
f (τ) g (t − τ) dτ

�
Fig. 6 (continued) to be very similar. The sensitivity, specificity, and false alarms per 24 h
(FA/24 h) listed in the table are reported as measured by the OVLP metric. The dataset column
includes two possible values: contest—50-50 & resampled. Contest—50-50 refers to the training
dataset provided by the Neureka 2020 contest, after we normalized the number of seizures so
that there were roughly the same number of seizures and non-seizures in the data. Resampled
means that the dataset used was resampled to a uniform 250 Hz. The smoothing column includes
two possible values: 5000-1 x2 and sg: ws:fileLen, poly:18 → threshold. 5000-1 x2 refers to the
smoothing function that sums the 5000 elements before and after a current time sample and sets
the output of the current time sample to a ‘seizure’ classification if the sums are both above the
threshold of 1, otherwise to a ‘background.’ This very aggressive smoothing function was found to
significantly improve our results. sg: ws:fileLen, poly:18 → threshold refers to the Savitzky-Golay
filter with the parameters: (1) a window size the length of the file, (2) polynomial of degree 18,
(3) thresholding applied after the data passes through the filter. Surprisingly, our best results were
achieved with the non-resampled training set, achieving a sensitivity of 30% and a false positive
rate of 26.9 per 24 h



TABS: Transformer Based Seizure Detection 151

Fig. 7 Our Final Model Architecture. Our final model consisted of a stage of Convolutional Neural
Networks (CNN), a Transformer Stage, another CNN stage, and lastly a two layer dense network
ending with cross entropy. Between each dense and CNN layer we had a ReLU. We also used batch
normalization and dropout as regularization techniques after the CNN stage and after each dense
layer. The first CNN layer consisted of a 1D convolution with an input size of 19 channels and an
output size of 50 channels, a kernel of size of 5 and a padding of 12. Following the 1D convolution
we apply 1D batch normalization, dropout with probability 0.7 and finally pass the output through
a ReLU layer. This CNN layer allows us to create a latent representation of the channels and have
the model learn contextual information around each time sample of the EEG. Following the CNN
layer, our model had a 16 head Transformer with a hidden dimension of 20. After the transformer
stage we had the second CNN stage, where we used another 1D convolutional layer to form a linear
combination of the 50 input channels, resulting in a single output channel. In this layer the kernel
is of size 1, the dilation is of size 2, and the padding is of size 10. Similar to the first CNN layer,
we pass this layer’s output through batch normalization, dropout with probability 0.7, and finally
a ReLU layer. The purpose of this set of CNNs was to combine all of the features that the model
learned into a one-dimensional vector so that it could be passed through fully connected layers.
The fully connected (FC) layers, making up the final stage of our model, were used to present our
model’s output in the correct dimensions required for evaluation. We wanted to project our model
outputs down to two dimensions, so that we could use one dimension to describe seizures while the
other labels background noise. The first FC layer goes from 340 to 128 dimensions, followed by
batch normalization, a dropout of 0.7, and a Relu. The second and final FC layer takes the output
dimension from 128 to 2

In English, to convolve means to roll together, which is exactly our purpose with the
convolutional layers. To convolve two signals means to mix them by overlapping
them and look at the result. More concretely, convolving a unit filter function with
an input signal can be seen as a low pass filter, averaging out the signal locally.
Visualizing convolution is a good way to get an intuition of why it is useful, and
indeed in neural networks the goal of convolutions is often to provide spatial context.

In signal processing, convolving in the time domain is equivalent to multiplica-
tion in the frequency domain. As such, performing a convolution in the time domain
can be interpreted as a scaling in the frequency domain.

This is useful in many different signal processing applications when one has a
signal in hand and is only concerned about certain parts of it. It also allows the
model to take into consideration context and filter out the unimportant parts of a
signal. Instead of looking at a specific point in the signal, the model looks at the
overlap within a window of points.

CNNs were first developed by Yann Lecun in order to recognize handwritten
zip codes in 1989 [35]. He used back propagation to have his model learn the filter
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function directly from the data. His work set the stage for Deep Learning to break
records in image processing, although it was not until Imagenet 2012 [36], 23 years
later when this prophecy was completely fulfilled.

CNN is a slightly modified version of convolution where the learned filter
function, or in the case of deep learning literature the ‘kernel’, is learned through
gradient descent. In addition to performing convolution, a CNN layer usually
consists of a pooling layer where neighboring values are combined, along with some
form of non-linearity and often also dropout.

In Deep Learning the second signal is not flipped when convolving and the
integral turns into a finite sum, as we are dealing with discrete signals. Otherwise
the process is the same as mathematical convolution.

In our models we used a 1-dimensional convolutional layer, which acted upon
the EEG signal’s time dimension. With the first CNN layer we used the 19 common
electrodes as channels and projected them out to 50 channels. Our intuition for this
was to allow the model to learn different combinations of electrodes in addition to
allowing it to just pass some of the electrodes through without combining it with
other electrodes. If we were to project to less than 19 channels we would not have
had this option. While this was our intuition, we have not confirmed if this is actually
what the model learned.

The second convolutional layer in our model, following the transformer, took
those 50 channels and merged them into 1 channel. This allowed us to prepare the
latent layers to be passed through the final fully connected stage. Conceptually, it
can be seen as the stage of the model where it picks the best latent features and
projects them back down to a lower dimension.

Following the CNN layer our model had a 16 head Transformer with a hidden
dimension of 20. Through empirical observation we found that increasing the hidden
dimension layer beyond this caused our model to overfit.

Transformers are a Deep Learning model architecture introduced in 2017 in
the hallmark paper Attention is all you need [23] by the team at Google Brain.
Transformers were introduced as a model that can be parallelized more than
recurrent models such as Long Short Term Memory (LSTM). This allows for the
model to be trained more quickly, as it does not require the symbols to be introduced
sequentially.

Transformers are based on Attention mechanisms. The novelty of a Transformer
is that it uses a variation called Multi-Head Self-Attention. Attention is a function
that allows an input sequence to be scaled based on importance. It is commonly
understood as allowing the relevant parts of the input sequence to be attended
to. Mathematically, attention (sometimes also clarified as ‘scaled dot product
attention’) is defined as:

Attention (Q,K, V ) = sof tmax

(
QK ′
√

d

)
V

Here Q is a query matrix, K is a key matrix, V is a value matrix, and d is the
dimension of K. By taking the dot product of Q and K′ we are loosely taking
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the cross-correlation between them. We then take the softmax of this dot product
normalized by the square root of the dimension of K. This scaling is done so as to
keep the values in a region where the softmax has a high gradient. Each row in the
resulting matrix is a probability distribution which we then take the product of with
the V matrix. All in all, attention can be thought of as attending to the parts of V that
are the probabilistically most important, based on the Q and K matrices.

While the above paragraph describes attention, transformers use a variant called
Multi-head self-attention. Self-attention means that all 3 inputs to the attention
function are the values matrix (V). As such, it can be thought of as attending to
the value matrix based on the value matrix.

Multi-head introduces multiple W projections that are learned through gradient
descent.

Multihead (V, V, V ) = Concat (head1, head2, . . . , headh) Wo

headi = Attention
(
V Wa

i , V Wb
i , V Wc

i

)

The addition of the W projection matrices allows for the model to essentially learn
its own query and key matrices through gradient descent.

A Transformer (Fig. 8) consists of an encoder and decoder segment that is
composed of multi-head attention units. The encoder consists of one multi-head
attention unit followed by a fully connected layer while the decoder consists of two
multi-head attention units followed by a fully connected layer. The second multi-
head of the decoder takes as input for the query and key matrices the output of the
encoder. In addition the decoder takes in outputs that are shifted to the right.

The input to the encoder is usually embeddings of symbols and not the symbols
directly. In the NLP case this could be an embedding that is learned as part of an
earlier part of the model or a pre learned word vector. In our case, it is the 50-
dimensional latent representation of our 19 input channels.

Transformers have been a key part of the recent improvements in Natural
Language Processing. Models such as Bert, GPT-2, GPT-3 [37–39], among others
all use Transformers as the core part of their architecture. Often, it has been used
in lieu of recurrent elements such as LSTMs [20]. It allows our model to take a
large sequence of the signal in context, which we believed was very important for
the seizure detection task. We therefore saw this as a great opportunity to try and
experiment with them.

After the transformer stage we had the second CNN stage, where we used another
1D convolutional layer to form a linear combination of the 50 input channels,
resulting in a single output channel. In this layer the kernel is of size 1, the dilation
is of size 2, and the padding is of size 10. Similar to the first CNN layer, we pass
this layer’s output through batch normalization, dropout with probability 0.7, and
finally a ReLU layer.
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Fig. 8 Block Diagram of a
Transformer. A transformer
consists of an encoder and
decoder segment that is
composed of multi-head
attention units. The encoder
consists of one multi-head
attention unit followed by a
fully connected layer while
the decoder consists of two
multi-head attention units
followed by a fully connected
layer. The second multi-head
of the decoder takes as input
for the query and key
matrices the output of the
encoder. In addition, the
decoder takes in outputs that
are shifted to the right. The
input to the encoder is usually
embeddings of symbols and
not the symbols directly. In
the NLP case this could be an
embedding that is learned as
part of an earlier part of the
model or a pre learned word
vector. In our case, it is the
50-dimensional latent
representation of our 19 input
channels

This set of CNNs purpose was to combine all of the features that the model
learned into a 1-dimensional vector which could then be passed on to fully
connected layers.

The fully connected (FC) layers, making up the final stage of our model, are used
to present our model’s output in the correct dimensions required for evaluation. We
wished to project our model outputs down to 2 dimensions, so that we can label one
dimension as a seizure while the other as background noise. The first FC layer goes
from 340 to 128 dimensions and is followed by batch normalization, a dropout of
0.7, and a ReLU, and the second and final FC layer takes the output dimension from
128 to 2.

Fully connected layers are one of the oldest neural network model architectures.
A fully connected layer consists of only a matrix multiplication, yet it is almost
always followed by some form of non-linearity to normalize the outputs and keep
the model from overfitting.

In our model we used two back-to-back fully connected layers at the tail-end of
our model. The first layer went from a width of 340 units to 128 units and the second
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layer went from 128 units to 2 units. We used a Rectified Linear Unit (ReLU) as our
non-linear activation function after each FC layer.

A ReLU is defined as:

ReLU(x) = Max (x, 0)

Concretely, a ReLU zeros out all negative values. The benefit of having a non-
linearity is to allow the model to learn non-linear projections of the data. If it were
not for non-linearities, the best a FC model could do is create linear boundaries and
there would be no use in having multiple layers, as they could all have been folded
into a single matrix.

The ReLU is a favorite in the deep learning community for its simplicity and
because of its empirically superior performance when compared to other activation
functions. This is perhaps surprising, because the ReLU as defined above is not
differentiable at zero. Nevertheless, the non-differentiability is solved by defining
the derivative at the origin as either 0 or 1.

We also used dropout with a probability of 0.7 and batch normalization as
regularization techniques in between these last two layers. These techniques were
also used after each of our CNN layers. Regularization techniques are a common
way to prevent deep learning models from overfitting on data.

Dropout is a technique in which with some probability each value in the
projection matrix is zeroed out. One intuition is for there to be several different
valid models that are contained within the main model. In our model we only exper-
imented briefly with the dropout probability hyperparameter, but empirically found
encouraging results when employing a very aggressive 70% dropout probability.

Batch Normalization [33] was introduced by Sergey Ioffe and Christian Szegedy
in 2015 to prevent what they called internal covariate shift. What they observed
was that due to randomness in the initialization of model parameters, the mean and
variance of inputs to layers vary greatly. They claimed that this caused exploding
and vanishing gradients. Exploding and vanishing gradients are the phenomena
when the gradient is either really large, causing the model to ping-pong between
outputs and unable to grow confident on any set of values (underfit), or the gradient
is very small and the model learns almost nothing. Their solution, which they named
batch normalization, is to normalize each training batch to have a mean of 0 and
variance of 1. During model evaluation, the model would use a calculated shift from
the training data to shift the test data as well.

After our FC layers projected our model’s results into two dimensions, we used
cross entropy as our loss function. This was done to create a probability distribution
over the results and calculate a loss of how far our model was from the correct
answer.

The loss function is used to come up with a final number that embodies how
well our model is doing. Deep learning models then use a technique called back-
propagation to ‘learn’ with respect to this loss value. Back-propagation takes the
derivative of the model with respect to the loss and alters the model in the opposite



156 J. Pedoeem et al.

direction of the gradient, which has the effect of minimizing it. In the case of cross
entropy, a perfect model would have a loss of zero.

Cross entropy loss is defined as follows:

loss (x, class) = −log

(
exp (x [class])
∑

j exp (x [j ])

)

Where x is the output vector and class is the dimension of the correct class. What
the cross entropy loss does is take the negative log likelihood of the softmax-ed
model output. The softmax function transforms the output vector of the model into
a probability distribution. It changes the output of the model into a confidence.
The output of the softmax can be seen as the confidence that the model thinks this
specific input belongs to a particular output class.

The desired outcome of the softmax function is to have a class with a value as
close to 1 as possible, i.e. the model should be confident with its choice. As a sanity
check, with a value close to 1, the output of the cross-entropy is, log(1) = 0, which
aligns with our definition of a perfect model—if the model is correct we should not
be updating it during back-propagation. For inputs in the range (0,1], the logarithmic
function is a strictly increasing function whose output is in the range (−infinity, 0].
As such, if the model is very wrong it will incur a high loss. Taking the negative
of the log makes (0,1] go from (infinity, 0], changing a maximization problem to a
minimization problem, which was our desire.

8 TABS: Design Motivation

Our motivation is a combination of intuition and grid search. We started with several
different assumptions of why CNNs and Transformers would be good models to
use for this task. We then tried several different combinations and hyperparameter
variations to see the highest accuracy we can achieve. We took careful notes of each
iteration and compared results trial after trial to motivate our model changes. Figures
5 and 6 demonstrate part of this process.

9 Future Work

There are a few possible adjustments and additions that could improve the accuracy
of Tables A general bottleneck in our development was training time, as we had
access to only a limited number of GPUs. Due to a lack of time and resources, we
were not able to fully explore these possibilities.
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Firstly, initial values impact the stability of the model. By retraining the model
many times, we can search the initial value space to find the most stable and fruitful
set of values.

Secondly, hyperparameter tuning is in order. Proper hyperparameters in deep
learning can often improve results significantly. Although we did do a significant
amount of hyperparameter adjustment, there may be room for improvement in this
area [40].

Thirdly, we hoped to experiment with penalization when the model changes its
prediction from one time sample to the next during the training stage. That is, add a
penalty to the model when the prediction switches from a seizure to a background
and vise-versa. We hypothesize that this would decrease the amount of jitter in the
model, leading to a smaller reliance on post-processing techniques.

Another small change we wished we had implemented was to run our post-
processing and evaluation scripts during model validation as well, instead of only
for model evaluation. We validated our model after every epoch, and kept the
checkpoints with the best accuracy, sensitivity, and specificity values. As such,
by not running our full post-processing pipeline during these validation steps we
potentially chose less-than-optimal checkpoints.

Finally, we would have liked to incorporate data from the doctor’s notes, such
as patient medication, weight and gender. This information dictates the shape of the
patient’s brain waves and may help the model distinguish between seizures and
background and could be used as a multi-modal approach [41]. For example, a
patient who is already taking several medications may exhibit relatively subdued
brain waves.

10 Conclusion

In this chapter we presented TABS, a novel model for EEG-based seizure detection.
The design specification that was most important when developing TABS was
achieving a very small false positive rate. The model architecture draws from
cutting-edge, contemporary deep learning research: we built a hybrid architecture
of convolutional layers, fully connected layers, and a transformer. Importantly, the
only data preprocessing we use is grouping the data into uniform channels and
resampling the time steps to a uniform sampling rate. This is noteworthy as it is
significantly less preprocessing than what appears in Temple University’s state-of-
the-art model.

Our results are comparable to the SOTA and therefore suggest that much of the
preprocessing used by Temple and others can be delegated to a more comprehensive
deep learning model.

To view our code, please visit: github.com/guybaryosef/TABS-Transformer-
Based-Seizure-Detection

Our conference paper can be found: isip.piconepress.com/conferences/
ieee_spmb/2020/papers/l02_01.pdf

http://github.com/guybaryosef/TABS-Transformer-Based-Seizure-Detection
http://isip.piconepress.com/conferences/ieee_spmb/2020/papers/l02_01.pdf
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Automated Pacing Artifact Removal
from Electrocardiograms

Christopher J. Harvey and Amit Noheria

Abbreviations

CRT Cardiac resynchronization therapy
ECG Electrocardiogram
LoG Laplace of Gaussian
RMS Root-mean-squared
VTIQRS-3D QRS 3D-voltage-time-integral

1 Introduction

The electrical activity from normal or abnormal cardiac muscle during cardiac
excitation is recorded from the body surface in a standard fashion called 12-lead
electrocardiogram (ECG). ECGs have been used to study the hearts in healthy
and diseased patients for over a century. Cardiologists are adept in interpreting
ECGs to diagnose cardiac structure and rhythm disorders. The main components
of ECG, for every cardiac cycle, include the P wave from activation/depolarization
of the upper chambers or atria, the QRS complex from depolarization of the main
pumping chambers or ventricles, and the T wave from repolarization of ventricles.
An example of a routine signal from one of the 12 ECG leads is shown in Fig. 1a.
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Fig. 1 (a) Example of non-paced routine ECG lead V6. The different parts of the ECG are
highlighted in green (P wave), orange (QRS Complex), and red (T wave). The blue parts in between
is the electrical baseline where no electrical activity is happening within the heart. (b) Example of
ECG lead V6 in a patient with cardiac resynchronization therapy (CRT) pacemaker demonstrating
pacing spike artifacts shown in green

Standard algorithms automatically quantify voltages and durations of the P wave,
the QRS complex and the T wave [1].

The QRS complex captures the abnormal ventricular activation during intrinsic
electrical disease, e.g. left bundle branch block, or ventricular pacing from a simple
artificial pacemaker. This results in a prolonged QRS duration and increased QRS
voltage, and sometimes results in heart failure [2]. The QRS 3D-voltage-time-
integral (VTIQRS-3D) or 3D QRS area is a novel summary measure of the electrical
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activity across the ventricles and has been validated as a superior measure of
electrical dysfunction in patients with heart failure [2–4]. Sophisticated pacemaker
systems called cardiac resynchronization therapy (CRT) can improve the ventricular
activation with biventricular pacing, resulting in reductions in QRS duration and
voltage [2, 5]. Recently, VTIQRS-3D, after CRT is instituted, has been shown
to provide improved prognostic information and may be clinically valuable in
individually fine-tuning CRT system programming selections [3, 4].

Artificial pacemakers, including CRT, introduce large, short-duration, high-
frequency artifacts, or “spikes”, on the ECG recording when they deliver an
electrical impulse to stimulate the heart. These large amplitude pacing spikes skew
the ECG data [3]. The spikes that occur with atrial or ventricular pacing can often
be ignored when performing signal analysis as the spike falls before the start of
the signal of interest, P wave or QRS complex respectively. In these instances,
the calculations would only be affected if performing analysis on the entire signal,
rather than limiting analysis to the P wave or QRS complex, which are temporally
consequent and distinct from the pacing spike. However, it is problematic if pacing
spikes fall inside of the P wave or QRS complex as they skew any analysis
on the data. This is especially relevant for CRT as there can be more than one
temporally separated pacing spike generated within the QRS, with some likely to
fall not at the onset but within the QRS complex itself (see example of biventricular
paced ECG signal in Fig. 1b where the second pacing spike occurs within the
QRS complex). Once a CRT pacemaker is active, such spikes can invalidate the
automated calculation of various ECG parameters, e.g. VTIQRS-3D. Thus, these
outliers need to be removed from the ECG signal to automate meaningful and
accurate calculations. This paper attempts to improve the measurement of post-
CRT VTIQRS-3D by tackling the problem of pacing spikes. We will compare the
performance of our described process with other traditional filtering methods for
the measurement of VTIQRS-3D in CRT paced and non-paced ECGs.

There have been a number of different approaches to fix pacing spike artifacts
[6–8]. The most common approach is low pass filtering [9]. Low pass filters retain
the signal components below a certain frequency threshold and remove everything
above the threshold. Correspondingly, high pass filters remove everything below a
certain threshold. Band pass filters remove signal frequencies both above and below
a certain band or a set of high and low thresholds. Band pass filtering works on
ECG because the physiological ECG signal has a characteristic frequency range, and
noise of higher or lower frequency can be filtered out. Most ECG systems therefore
band pass the ECG recording at 0.05–1.5 Hz for high pass and 30–150 Hz for low
pass. Additionally, alternating current electrical power supply noise (60 Hz in North
and Central America, 50 Hz in most other parts of the world) is filtered out using
a notch filter that eliminates a very narrow frequency range surrounding the local
power supply frequency. Unfortunately, these standard filters do not do a very good
job of filtering out pacing spikes in the ECG (as an example, the ECG in Fig. 1b is
filtered 0.05–150 Hz with residual large pacing spikes).

To remove the pacing spikes, we need a new approach to find and eliminate the
spikes in the signal. The approach we created builds off of Whitaker and Hayes’s
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work on despiking artifacts from cosmic rays in Raman spectroscopic data [10]. We
present our two-step approach to deal with spike outliers with (1) using modified Z-
scores calculated from detrended data to locate and delete the large pacing spike
outliers, if they exist, and replace the resulting gap using a hyperbolic cosine
function, (2) followed by a median filter for lower-level artifacts. We customized the
filter parameters for the ECG data with auto-adjustments to remove spikes without
distorting the true physiological and non-paced ECG signals.

2 Data and Methods

2.1 Data Samples

The data for this paper was recorded on a Philips ECG machine with a standard
150 Hz low pass filter and a 0.05 Hz high pass filter. The sampling rate was
1000 Hz, meaning the temporal resolution of our data was one data point for
every millisecond. The sample duration was 10 s. The Philips system generates an
averaged beat from representative normal cardiac cycles in the 10 s recording. The
averaged normal beat was used for all our calculations. The ECGs were recorded
both before and after CRT. There was a large voltage artifact from the pacing spike
in every CRT paced ECG. We included 90 patients who were diverse in age, race,
sex, and height/weight. For each patient we included 16 ECG signals—12 standard
leads (leads I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6), 3 spatial leads
(X, Y, Z) reconstructed using Kors regression matrix [11], and a root-mean-squared
(RMS) ECG signal made from the reconstructed X, Y, and Z signals. We thus had
over 1400 ECG leads from 90 patients both without pacing and with CRT pacing.
The RMS signal is used to obtain the QRS 3D-voltage-time-integral (VTIQRS-3D).

2.2 Development of Our Filtering Approach

Outlier detection and removal: The first step of our approach was an outlier
detection and removal process. Our process was built on work already done by
Whitaker and Hayes on despiking Raman spectra [10]. Their approach involved
creating an algorithm to detect outliers using a modified Z-score of once differenced,
detrended data and then applying a simple moving average to remove outliers.

The Z-score in statistics describes how far from the mean a data point is by the
number of standard deviations it is from the population mean. The standard Z-score
is calculated as follows:

Zi = (xi − μ) /σ (1)
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Where μ is the population mean, σ is the standard deviation, and xi is any data point
in the population. When using Z-scores for outlier detection, a standard threshold is
3.5 according to the American Society of Quality Control [12]. This value, however,
may not be prudent for data signals that have long baseline periods of zero signal
which exaggerates the Z-scores of the signals of interest. With ECG data, there
are long periods of time between the T wave, the P wave, and the QRS complex
where the heart has no electrical activity. These electrical baseline periods skew
the population mean and make the QRS complex signal fall out of that 3.5 Z-
score threshold. Furthermore, Z-scores are inconsistent as the mean and standard
deviation of data are heavily influenced by large outliers. Whitaker and Hayes fixed
this issue by using a modified Z-score approach which uses the median absolution
deviation (MAD). The median value is much less impacted by outliers than the mean
value. This makes it a better choice for outlier detection. The modified Z-score is
defined by:

Zi = 0.6745

(
xi − ∼

X

)
/MAD (2)

Where
∼
X is the population median, and MAD or median absolute deviation is the

median of the absolute deviations from the population median.

MAD = median

(∣∣∣
∣xi − ∼

X

∣∣∣
∣

)
(3)

The use of a modified Z-score is recommended by the National Institute of
Standards and Technology (NIST) as an outlier detection method [13]. However,
a fixed cutoff threshold value may not be optimized for the precise characteristics
of the artifact needing to be filtered. Furthermore, every heart is different and can
have various structural or electrical diseases or scar tissue, and different spatial
positioning relative to the body-surface that can drastically change the amplitude
and relative frequencies of the QRS complex. Further, differences in heart rate affect
the distribution of the modified Z-scores. This made ECG data unpredictable and
impossible to have a set threshold to detect pacing spike artifacts for every ECG.
Some ECGs need a modified Z-score threshold of 8 and others a threshold of 300 to
accurately distinguish the pacing spike artifact from the physiological QRS complex
signal.

To address this, we created an automatically adjusting threshold. This approach
involved first calculating the modified Z-score distribution of the once differenced,
detrended data. Next, we needed to identify the peak of the physiological signal
within the QRS complex of the modified Z-score that was lower than a flexible
criterion. Everything above this criterion should be spike outliers. The criterion
depends on the type of data being introduced to the filter. If the data is non-paced,
or does not have an outlier that is taller than the peak of the QRS complex, the
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Fig. 2 Example of modified Z-scores of once differenced, detrended lead V4 data with automatic
threshold detection just above non-outlier peak of QRS complex. The yellow line is the deletion
threshold for outliers

threshold needs to be above the highest point in the modified Z-score distribution
as anything above it will be identified as spike outliers. With paced ECGs that have
an outlier taller than the peak of the QRS complex, we need the criterion to be just
above the peak of the QRS complex. That way, the entire physiological signal would
be spared and only the spike outliers would be identified.

The average maximum modified Z-score in non-paced ECGs is usually less than
70 and paced ECGs typically range 180–600 due to extreme outliers. If the largest
value of the modified Z-score was at or above 150 we classified the ECG as “paced”
as opposed to likely “non-paced”. For ECGs classified as “paced”, the criterion we
selected was the value of the 98th percentile of the modified Z-score distribution,
plus 40. This selection ensures the criterion to be greater than all the modified Z-
scores from the physiological signal. The peak of the modified Z-score distribution
that is below the criterion then identifies the highest physiological signal. We set the
filter threshold to plus 1 above the peak within the QRS complex that was less than
the criterion (Fig. 2). Everything above this threshold was thus identified as spike
outliers.

We could not just set the filter threshold to the highest peak within the QRS
complex, as pacing spike outliers can occur within the QRS complex itself. Instead,
we used the criterion to find the non-outlier peak of the QRS complex. The selection
choice of the 98th percentile in the criterion for “paced” ECGs was due to the
nature of the outliers. They are typically the tallest datapoints in the dataset and
are above this criterion whereas the entire physiological QRS signal falls below the
criterion. We wanted a robust process that enabled automated identification of the
pacing outliers but never included any data from the physiological QRS signal. The
usual range of the peak of the modified Z-score of the physiological signal itself is
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10–20 above the 98th percentile, though this can be a bit higher in ECGs with fast
heart rates. We therefore selected the flat value to plus 40 to ensure the criterion was
reliably above the peak modified Z-score of the physiological signal.

ECGs with a maximum modified Z-score of less than 150 were classified as
“non-paced”. Based on the typical distribution of modified Z-scores for non-paced
ECGs, we selected the criterion to be the value of the 99.2th percentile of the data
plus 55. We similarly set the threshold to plus one above the peak value within the
QRS complex that is below the criterion. In the absence of outliers from pacing
spikes, the 99.2th percentile (rather than the 98th percentile) as the cutoff brings
the threshold closer to the peak physiological signal score. The flat value of plus 55
ensures that any non-paced ECG will not be affected by the filter.

The different distribution patterns of the modified Z-scores with and without
the presence of pacing spike outliers is the reason why we do not have the same
percentile and flat value cutoff for both paced and non-paced ECGs. If we were
to use the 98th percentile for non-paced ECGs it would not work as efficiently as
we would need a higher flat value especially for ECGs at faster heart rates. On the
other hand, a higher percentile and larger flat value cutoff in paced ECGs would
not effectively filter out all of the outliers. The 150 cutoff value to classify paced vs.
non-paced does allow for some paced patients to be considered “non-paced”, but the
paced ECGs with max modified Z-score less than 150 tend to respond better to the
99.2th percentile method than the usual paced method. This allows us to be more
robust in our overall process and allow some leeway to address any spike outliers in
the “non-paced” group. In some cases, the margins between the pacing artifact and
the physiological signal modified Z-scores can be quite small (e.g., modified Z-score
of artifact is 72 and QRS peak is 69). In such ECG signals the outlier filtering step
will only eliminate the tip of the spike artifact, and the remainder of the spike will
be addressed by the second step median filter. The flat values and percentile values
should be stable at 1000 Hz and 500 Hz ECGs. If the filter is used for other sampling
rates or for other types of signal data, the user should look at the distribution of the
Z-scores and adjust both the flat and percentile values accordingly.

We finally use a search method to find the peak of the non-outlier modified Z-
score within the QRS complex that is below the criterion, ensuring that any extreme
pacing spike outlier in the beginning of the QRS is not chosen. We initiate the search
at the onset of the QRS complex and scan the QRS complex for the max modified
Z-score. If we find a max modified Z-score that is above the criterion (percentile
plus flat value), we redo the scan, this time initiating scanning 10 ms after the QRS
onset. We repeat the process, each time starting the scan incrementally 10 ms further
out from QRS onset through QRS offset. This process continues until we find a max
modified Z-score that is below the criterion. We use a small value (5–10 ms) to
iterate through the data as it helps to precisely avoid the pacing outliers when they
occur in the beginning of the QRS complex and allow identification of a subsequent
peak that fits our criterion. Once we find this non-outlier peak, we set the threshold
that identifies pacing spike outliers to the value of the data point plus 1. This process
is shown in Fig. 3.
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Fig. 3 (a) Demonstration of scanning process to identify non-outlier peak of QRS complex. Initial
scan starts from QRS onset (red section) and then the max modified Z-score is found after the
starting point (green line). The highest datapoint (max Z-score) within the QRS complex (purple
line) from this initial scan is taller than the criterion (orange line), so the filter will reset and scan
again further into the signal. (b) Demonstration of scanning process iteration. Subsequent scan(s)
start from Q onset + 10 ms. The max modified Z-score (purple line) after the starting point is still
above the criterion so the filter will reset and scan again further into the signal. (c) Demonstration
of scanning process iteration. This time the max modified Z-score representing the physiological
QRS signal (purple section) is found is below the criterion (orange line), and the threshold is set to
plus one above this peak (yellow line). Everything above the threshold will then be deleted
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Fig. 3 (continued)

Once the spike outliers are identified, Whitaker and Hayes removed the spike by
the neighbor interpolation method. Which is interpolating the mean of the values of
the immediate data points before and after the spike that are below the threshold.
This eliminates the spike outlier and smooths out the signal while introducing a
negligible amount of noise to Raman spectra data. When this approach was done
for ECG data, it did not work nearly as well because pacing spike outliers within
QRS complexes have much higher Z-scores and longer duration of the artifact as
compared to Raman spectra. The neighbor interpolation method diminished the
outlier spikes without completely eliminating them and the spikes were still large
enough to invalidate analyses on the data (see Fig. 4 at 400 ms). A median filter was
applied after despiking to help with this problem. It achieved improved results but
was still not completely satisfactory.

Our novel approach to this problem was to instead just simply delete all the data
points above the threshold and fill in the remaining gap that is left behind with a
hyperbolic cosine function (see Fig. 5 around 1700 ms) [14]. This is similar to the
cubic spline interpolation method with a small difference in how the function fills in
the gap. Deleting the spike outlier data completely removed any trace of the spike,
and it is relatively easy to interpolate the presumed physiological signal from distant
points. There are a number of ways to interpolate the missing data. We chose the
hyperbolic cosine function to map the distance between the data points and create a
slow building curve to connect them.

The hyperbolic cosine function is defined by

CosH(x) = 1

2

(
ex–e−x

)
(4)
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Fig. 4 Whitaker and Hayes algorithm on lead V4. Much of the outlier isn’t removed because the
filter uses moving averages

Fig. 5 Demonstration of novel filter on the same lead V4 from Fig. 4. The novel filter removes the
data first and then interpolates which makes it much closer to the physiological signal

The whole function we used is described by four equations

α = (y2 − y1)

CosH (τ ∗ x2) − CosH (τ ∗ x1)
(5)

β = y1 − α ∗ CosH (τ ∗ x1) (6)

γ = Range (x1, x2, ε) (7)
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δ = α ∗ CosH (τ ∗ γ ) + β (8)

Where y2 and y1 are the Y-axis coordinates and x2 and x1 are the X-axis coordinates
of the two data points on either side of the deletion. τ is a small constant that
determines how quickly the curve will build, where τ < 1. We used a small constant
(0.2) as we wanted our curve to slowly build up to better match traditional ECG
signals. ε is a constant that determines the fidelity of the curve produced. We set ε

to the distance between the two points on the X-axis. If it is not set to the distance
between points it will result in the interpolation to have too much or too little data
thereby impacting regression analysis and other techniques. The range function is
a method that produces datapoints artificially so we can back fill the correct X-axis
coordinates. It will produce ε number of datapoints starting from x1 and ending
at x2.

The choice of the hyperbolic cosine spline, over a more traditional sine curve or
polynomial spline, was due to the nature of the ECG data. ECG data typically ramps
up voltage slowly, so polynomial curves are too aggressive to be natural on ECGs.
The hyperbolic cosine curves are more gradual and follow the trend of the data
much more closely compared to sine and polynomial curves. They do not need to
have any data between the data points in order to operate. This makes them very fast
but can be less accurate than more intensive methods. If the desired intermitted data
points can be easily made from the type of data being used, then a polynomial spline
is preferred. It proved quite difficult to create the intermitted data points for ECG
data. So, we used the hyperbolic cosine function. Figure 5 shows an example of how
our novel outlier filter works. It deletes all of the original information between the
orange lines and backfills them with a hyperbolic cosine spline (green).

Second-step median filter: After extreme outlier deletion and interpolation, as
a second step, a median filter is applied to eliminate any residual noise in the
signal. This essentially acts as an intelligent band pass filter that filters out the high
frequency outliers with dynamic precision and robustly cleans up low frequency
noise. Median filtering is a non-linear digital filtering technique. It works by using
a rolling median window across the data and replaces the data as it moves. The
window size is determined based on the size of the signal being filtered as well as
the size, shape, and amount of noise and outliers in the data. It is one of the simplest
filtering methods and turned out to be most consistent among the multiple methods
we tested as will be discussed subsequently. Based on the nature of ECG data and
outliers, we used a window of 12 datapoints (12 ms) for the rolling median for this
paper.

After filtering we added another check as a redundancy to ensure robustness
of our process. Since the pacing spikes are very narrow, when they are deleted it
should improve the accuracy of the QRS 3D-voltage-time-integral calculation but
should not substantially change its value. If the change in voltage-time-integral is
quite large, it would be likely that the physiological QRS complex was truncated by
erroneous identification of the physiological signal as an outlier. We added a clause
in the algorithm to revert the filtering process if the change in QRS voltage-time-
integral between the original and filtered data was greater than 15% and flag the
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particular signal for manual assessment. The use of 15% as the cut off was decided
by the average and standard deviation of change in the voltage-time-integral in all
our paced ECG samples.

If the use of reconstructed spatial (X, Y, Z) or RMS ECG data is desired for
analysis, filtering is more effective when done on the original 12 lead ECG data
before doing any spatial reconstruction or the root-mean-square of the spatial data
and was done in this way for this paper. This is because the outliers are not at the
same location (X-axis) in each lead. These outliers are averaged when the X, Y, Z
and especially the RMS is conducted, resulting in attenuation of the amplitude, and
widening of the spike artifact, making it more difficult for our filter to eliminate and
replace.

The step by step summary of our filtering algorithm is listed in Table 1.

Table 1 Stepwise summary of the novel algorithm to remove pacing spike outliers from ECG

Step Action Details

1. Outlier filter

(a) Obtain modified Z-scores Calculate the modified Z-scores of the once
differenced, detrended data

(b) Identify if paced or non-paced If the max modified Z-score is ≥150 classify
as ‘paced’
If the max modified Z-score is <150 classify
as ‘non-paced’

(c) Set criterion Criterion for ‘paced’ is 98th percentile of data
+ 40
Criterion for ‘non-paced’ is 99.2th percentile
of data + 55

(d) Identify peak non-outlier signal
within QRS complex

Initiate at the beginning of the QRS complex
with threshold value equal to 0
Look for the max modified Z-score value from
starting point to end of QRS complex
If the max value is less than criterion, set
threshold value to +1 above that max value.
If the max value is more than criterion, restart
scanning process 5/10 ms further into QRS
complex
Repeat scanning steps until a threshold value
has been found

(e) Delete outlier data points Delete all data points with a modified Z-score
above the threshold value

(f) Interpolation Locate gaps left behind by deletion of outlier
data points
Fill in gaps using hyperbolic cosine spline
interpolation

2. Median filter Apply median filter
3. Verify for unexpected truncation

of physiological QRS complex
If change in QRS voltage-time-integral is
above 15%, revert changes and flag for manual
review
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We have subsequently applied our novel filtering process to a diverse set of over
10,000 non-paced and 10,000 paced ECG lead recordings for further validation. The
results were consistent with what is presented in this paper.

2.3 Other Filtering Methods

Other methods that are typically used in signal processing, that we tried, include
median filtering as already discussed, Hampel filtering, Laplace of Gaussian (LoG)
filtering, and Butterworth filtering. There are other methods that we tried on our data
that did not give as good of results compared to the methods discussed in this paper.
We have omitted these other methods.

Hampel filter: Hampel filtering also uses MAD to detect outliers but it does not
use Z-scores. It finds the rolling median and rolling MAD of the signal data and
creates a threshold to target the outliers. The general equations used in Hampel
filtering is as follows.

Rolling_Median = Median (Rolling (x, k)) (9)

Rolling_MAD = MAD (Rolling (x, k)) (10)

T hreshold = L ∗ σ ∗ Rolling_MAD (11)

Diff erence =| x − Rolling_Median | (12)

Outliers = Diff erence > T hreshold (13)

Where x is the data signal. K is equal to the window size of the rolling functions.
Because the window is before and after the center point, k is equal to 2 * window
size +1. The size of k depends on the total length of the signal and how wide outliers
typically are. σ is the number of standard deviations away we want to use for the
function. For this paper we used a σ of 3 to target extreme outliers. L is the scale
factor for Gaussian distributions (1.4826). We also used a k of 100 for both of the
rolling windows. Hampel filtering is very good at targeting outliers and can be used
with a very large signal to noise ratio. It tends to suffer when used on data with
little to no noise though. This is more apparent in non-paced fast-heartbeat ECG
data. The filter is more likely than others to treat the high frequency QRS complex
as an outlier and remove it. The filter otherwise is very good. It does not have any
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parameters to tune other than window size and it is able to filter out very noisy
environments.

Laplace of Gaussian filter: LoG filtering is a second derivative Laplacian
convolution-based filter that uses Gaussian smoothing to deal with noise. Laplacian
filtering is very sensitive to noise, so we use a Gaussian smoothing function to
eliminate as much low-level noise as possible. For one dimensional signal data it
is defined as such:

F(s) =
∫ ∞

0
f (t)e−st dt (14)

s = α + i ∗ β (15)

Gaussian = e
− 1

2

(
k
σ

)2

(16)

ω = Gaussian (k, σ ) (17)

Z = F

(
x,

ω
∑

ω

)
(18)

Where F(s) is the Laplace transform function, which is a variant of the Fourier
transform. We use the Laplace function to transform the Gaussian window and
the signal data together into a single vector. S is the complex number frequency
parameter with α and ß being real numbers. K is the window size. For this paper
we used a window size of 12. σ is the number of standard deviations away we want
to use for the function. x is the data point we are working with. ω is the Gaussian
weighted window. Z is the filtered signal output.

LoG has an exponential decay function for the weights of the convolution.
This means that the points closer to the center of the Gaussian window get more
importance than points later on in the signal. As new data points enter into the
window, the data is convolved together with the weights and filters the data. A
weighted exponential decay function is used in the convolution to help deal with
a lot of noise or large outliers. If only the moving average is taken, only a small
amount of noise can be filtered out. Using the moving average also only works
if there is a large amount of data. With limited data and lots of noise, something
else is needed in order to filter out all the noise or outliers. A larger window size
helps, but it can also lead to other problems if the signal changes drastically from
the middle point of the window to the end of the window. For example, there is a
big spike 90 data points away from the center and the window size is 100. If all the
data before that spike is relatively flat, then the average for the whole signal will be
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skewed. So instead, it is better to use an exponential decay function based on the
distance from the center of the window. It can also be the case that the future or past
signal has rather different values not because of noise or outliers but just because
the signal changes itself. Much like how the QRS complex skews an ECG signal.
We would not normally want to take a large moving average with data such as ECG,
but with the exponential decay function we can use larger windows. LoG also has
the advantage that it does not have any parameters to tune or adjust. It is a filtering
technique that works ‘out of the box’. It is traditionally used for two-dimensional
data such as images, but we wanted to try and use it for one dimensional signal data
as well.

Butterworth bandpass filter: The Butterworth filter is widely used in signal
processing. This is because the filter is maximally flat in the passband and
approaches zero in the stopband. Meaning that it will filter out all data above
or below the cutoff frequency range. The aggressiveness of the filter is based on
the order. The higher the order the more quickly the stop band will tend towards
zero (Fig. 6). A Butterworth bandpass filter transfer function with no filter gain is
described by:

|Low(jw)| = 1
√

1 +
(

ω
ωc

)2n
(19)

Fig. 6 Phase Bode plot comparing effect of order size on Butterworth filter
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|High(jw)| = ωn

√
1 + ω2n

(20)

Where ω is the angular frequency of the filter. ωc is the cutoff frequency of the filter.
n is the filter order. In the method we used, we did a forward and backward pass of
the Butterworth digital filter. We had a frequency of 1000 Hz, an order of 3, and
tried a cutoff frequency of 60, 90, 120, and 150 Hz.

All of these filter parameter selections have tradeoffs. Each selection is either
good for paced or good for non-paced ECGs. The general tradeoff is a simple
question. Do we want to better remove the outlier, or do we want to ensure the
QRS complex is left unimpacted? The only filter that does not have this question
applicable to it is the Hampel filter. The Hampel filter does well with large pacing
spike outliers. It just fails to perform with a high standard with non-paced ECGs as it
treats the QRS complex as an outlier. For median filtering, if we made the window
larger for the rolling median to remove more of the outlier it would also start to
flatten out the QRS complex. If we made the window smaller it would not distort
the QRS complex, but it would also barely diminish the amplitude of the outlier.
There is also the issue of the width of the outlier. If the outlier is wider than the
window used in LoG, Median, Whitaker and Hayes, or Hampel filtering, the filters
will either break or suffer heavily. So, we cannot use too small of a window because
it will become ineffectual, but we also cannot use too big of a window or it will
change the QRS complex. This tradeoff is also evident in filtering techniques that
do not use rolling windows such as the Butterworth filter. A low cutoff frequency
of 60 Hz will greatly diminish the outlier, but it will also change the fundamental
structure of the QRS complex for both paced and non-paced ECGs. If a higher low
cutoff frequency of 150 Hz is selected, the QRS complex remains untouched but so
does the outlier, which can even be exaggerated. This tradeoff is the main problem
that limits the traditional filtering methods for pacing spike removal. We developed
the novel process described in this paper, as a solution to this problem.

2.4 Outcome Measures and Statistical Testing

We evaluated the area of the outlier spike as the voltage-time-integral encompassed
above a straight line connecting the physiological signal before and after the spike
artifact. A % reduction in the spike area was thus obtained when comparing the
filtered signals to the original unfiltered signal. The QRS 3D-voltage-time-integral
(VTIQRS-3D) was obtained from the RMS of the reconstructed X, Y, Z leads
obtained from the 12-lead ECG signals that were processed using the respective
various filtering methods. We evaluated the impact of the various methods for
filtering pacing spike artifacts on calculation of VTIQRS-3D as the absolute change
in VTIQRS-3D in both CRT paced and non-paced ECGs. For this we used pairwise
t-tests comparing the filtered versus unfiltered ECGs.
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3 Results

We studied 90 ECGs with CRT pacing artifacts within the QRS, and 90 normal
ECGs without pacing artifacts as controls. The same filter parameters were used for
all tables and figures.

In the paced group, the unfiltered VTIQRS-3D was 67.9 ± 32.7 μVs and decreased
with outlier filtering to 67.2 ± 32.5 μVs (p = 0.001). In the non-paced control
group, the outlier filter did not affect VTIQRS-3D (both 41.8 ± 10.4, p = 0.7). With
subsequent median filtering, the paced VTIQRS-3D slightly changed to 67.6 ± 32.5
(p = 1 × 10−9) and the control VTIQRS-3D to 41.4 ± 10.4 (p = 2 × 10−6).
This indicates that the first step of outlier filtering only changes the paced ECGs
and does not affect the non-paced ECGs. The second step median filtering does
change both because of the nature of the filter but the overall change in area was
negligible in both groups. The noise was smoothed out with only minor changes to
the physiological signal.

Figure 7 shows how each step of the filter affects the data. The leads in the
figure are the root-mean-square of our reconstructed spatial (X, Y, Z) ECG. The two
examples are among the hardest paced and non-paced ECGs we found in our dataset
to effectively filter using various filtering methods. We compare all of the filtering
techniques on this data to show the differences between them using different filtering
methods (Figs. 8, 9, 10, 11, 12, 13, 14, 15, and 16).

We can see in Fig. 7 that the novel filter removes a majority of the first main
outlier but not the second spike that is within the QRS complex or the QRS complex
itself. The outlier filter also does not change any of the non-paced control signal.
This shows that this filter only targets outliers with dynamic precision. The second
step median filter further smooths out both outliers in the paced ECG and the low-
level noise before and after the QRS in the non-paced ECG. The median filter works
well in this case as the major spike has already been removed making the outlier
closer to the true signal. We can also see that the median filter barely changes the
non-paced signal as the peak amplitude is trivially reduced and low-level noise is
filtered out. This is the best result we have gotten on this data with batch filtering
algorithmically and not selecting parameters individually for these cases. If we were
to tune this filter for individual use, we could perfectly remove the outlier and leave
the non-paced ECG unchanged. However, the idea is to have an automated filter
that should be able to be applied on hundreds of thousands of ECGs without human
intervention.
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Fig. 7 Two examples of novel two-step filter on a cardiac resynchronization therapy (CRT) paced
and a non-paced (control) RMS ECG signal. The novel filter successfully filters out the paced
outliers while not augmenting the non-paced ECG

Compare this with Fig. 8 which is only the median filter applied. We can see
that there is basically the same change to the control group. When we compare the
paced ECG, it is a different story. The median filter only removes 1.32 μVs of the
spike area compared to 7.22 μVs for our novel method. We can see that the removal
of the major spike before median filtering in our filtering process makes a massive
difference in the overall quality of filtering.

The Hampel filtering (Fig. 9) is second-best only to our novel method for paced
ECGs, but too aggressive with non-paced ECGs. It has a 3.33 μVs reduction in area
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Fig. 8 Same two examples with median filter on a cardiac resynchronization therapy (CRT) paced
and a non-paced (control) RMS ECG signal

Fig. 9 Same two examples with Hampel filter on a cardiac resynchronization therapy (CRT) paced
and a non-paced (control) RMS ECG signal
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Fig. 10 Same two examples with Laplace of Gaussian (LoG) filter on a cardiac resynchronization
therapy (CRT) paced and a non-paced (control) RMS ECG signal

Fig. 11 Same two examples with 60 Hz Butterworth low pass filter on a cardiac resynchronization
therapy (CRT) paced and a non-paced (control) RMS ECG signal
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Fig. 12 Same two examples with 90 Hz Butterworth low pass filter on a cardiac resynchronization
therapy (CRT) paced and a non-paced (control) RMS ECG signal

Fig. 13 Same two examples with 120 Hz Butterworth low pass filter on a cardiac resynchroniza-
tion therapy (CRT) paced and a non-paced (control) RMS ECG signal
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Fig. 14 Same two examples with 150 Hz Butterworth low pass filter on a cardiac resynchroniza-
tion therapy (CRT) paced and a non-paced (control) RMS ECG signal

Fig. 15 Same two examples with Whitaker and Hayes filter on a cardiac resynchronization
therapy (CRT) paced and a non-paced (control) RMS ECG signal
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Fig. 16 Same two examples with Whitaker and Hayes followed by median filter on a cardiac
resynchronization therapy (CRT) paced and a non-paced (control) RMS ECG signal

for the paced ECG but completely removes the QRS complex for the non-paced
ECG. It also slightly alters the P wave in the paced ECG which is not favorable.

The LoG filter (Fig. 10) does the third best at removing the outliers, but it also
changes the morphology of the QRS complexes. There is a data shift leftward of the
second outlier. It also adds some area to the first outlier as it combines the two thin
spikes into one shorter but thicker spike. We saw this effect across the board with
LoG and not just the difficult case examples as can be seen in Fig. 21.

The Butterworth filters (Figs. 11, 12, 13, and 14) have mixed results. The 60 Hz
cutoff frequency (Fig. 11) suffers the same problem as LoG. It shortens the two
thin outliers at the start of the QRS complex, but it combines them into one even
thicker outlier that adds area to the outlier. It does fully remove the second smaller
outlier, which is the only filter to completely smooth that outlier out, but it also
shifts the data to the left again like LoG. We can see that it also changes the end
of the QRS complex and the P wave before the QRS complex. The same holds true
for the non-paced ECG. It greatly reduces the amplitude of the QRS complex and
removes the physiological high-frequency components from the QRS morphology.
It also smooths out the P wave and the noise surrounding the QRS complex. As we
use higher and higher low-pass cutoffs we get worse results in removing the pacing
spikes but maintain the integrity of the QRS complex better. The 90 Hz cutoff (Fig.
12) is reasonably balanced. It barely changes the P wave and QRS complex in both
the paced and non-paced. It adds width to the first outlier while reducing amplitude.
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The 120 Hz and 150 Hz (Figs. 13 and 14 respectively) cutoff frequencies add area
to the paced ECG instead of removing area.

Whitaker and Hayes filter (Figs. 15 and 16) does not work on this lead. The
threshold that is needed for this outlier to work without removing the QRS complex
is 1150. At this high of a threshold none of the outliers fall outside of the threshold,
so nothing is filtered. If a smaller threshold is used, more of the outlier is removed
but enough data is removed to not allow the rolling median to work for the neighbor
interpolation method. As the window for the rolling median is smaller than the
outlier and it throws back an error as no data is present. When we applied the
median filter after the Whitaker and Hayes filter, it achieved the same results as
just the median filter (Fig. 15). This demonstrates the need for a dynamic filter to be
able to precisely target outliers.

Among all the filtering methods tested, our novel filter was the most effective at
removing pacing spikes in the discussed example (Table 2). The results exemplified
by the examples discussed above hold true across our dataset with % spike area
reduction of 99.6 ± 8.03 (Table 3).

Table 4 shows the impact of various filtering methods on the VTIQRS-3D
calculation. The original paced ECG average VTIQRS-3D was 67.87 ± 32.73
μVs. Hampel and median filtering removes the most area from the outliers on
average, 67.68 ± 32.65 μVs and 67.67 ± 32.66 μVs, respectively. LoG is third at
67.87 ± 32.73 μVs. The Whitaker and Hayes filter did not remove any area without
the median filter being implemented. This is due to the fact that the threshold had
to be higher for these types of patients as the 90 ECGs we used were difficult cases.
Whitaker and Hayes’s algorithm does work on easier samples but still not as well
as the novel filter (Fig. 18a–d). The Butterworth filters had insignificant change at
scale except 60 Hz which actually added more area on average, 67.98 ± 32.76 μVs,
and gave a worse signal back than the original paced signal. All of these signals
preformed worse than the novel filter at 67.2 ± 32.5 μVs VTIQRS-3D.

The average non-paced VTIQRS-3D was 41.79 ± 10.43 μVs. Hampel preformed
the worst by far on non-paced ECGs at 26.73 ± 13.52 μVs. This is mainly due to
the fact that Hampel filters are overly sensitive to high frequency data and deletes
the QRS complex in most of the non-paced ECG signals. The next worse were
Butterworth filters. At every cutoff frequency, they added area to the signal. The
two best filters for non-paced ECGs are the median filter at 41.68 ± 10.4 μVs and
LoG filter at 41.76 ± 10.43 μVs. The LoG and median filter removed noise from the
signal while barely altering the original QRS complex. The median filter removed
more noise from the signal though which is part of the reason why the overall
VTIQRS-3D is lower for the median filter. Whitaker and Hayes and our novel filter
did not change the non-paced ECGs at all until median filtering was applied. For
the Whitaker and Hayes’s method, this was due to the threshold being abnormally
high. If we selected a smaller threshold more of the QRS complex would have been
deleted much like the Hampel filter.

These results can be shown even more clearly from Table 2. This table shows
the adjusted area reduction by each filter on the hardest leads from Figs. 8, 9, 10,
11, 12, 13, 14, 15, and 16. The original area of the first spike was reduced by 2385
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to account for the area below the curve under the outlier that would normally exist
anyway. The original area of the second spike was reduced by 6600 for the same
reason. The original data in this case was 10,047.9 μVs and 390.5 μVs for the first
and second spikes. The Hampel filter was able to reduce 67.3% of the area of the
first spike while not filtering the second spike at all. This was the best result from
all the filters other than the novel filter. The next best result was from the median
filter which was able to filter out 29.7% of the area of the first spike and 81% of the
second spike. LoG was third best at 3% and 32.3% for the first and second spikes.
This shows that while the amplitude of the spike was greatly decreased, the overall
area remained mostly the same as it widened the outlier. All of the Butterworth filters
did very poorly. Only the 60 Hz did not add area to the first spike, but it morphed
the physiology of the QRS complex enough to make the area removed 170.9%. We
want a result as close to 100% as possible and going over too much is just as bad
as not changing at all. The Whitaker and Hayes filter was omitted on this table as it
did not change at all. The novel filter preformed the best with both steps on the first
spike and the best with the second step focused median filter on the second spike.
The final reduction in area was 109% and 104.2%. This is as close to perfect as we
could get without fine tuning a filter for this specific ECG.

This demonstrates the need for the two-step filter and how just one filter does
not fully filter out outliers while also keeping the non-outlier data intact. The novel
filter is able to successfully filter out all outliers on every ECG we have without
adjusting the non-paced ECGs other than smoothing out noise. It is strong in every
situation where each of the above filters are at their best while also being strong
when the other filters are not. The novel filter can also be applied at a wide variety
of amplitudes and heart conditions.

Figure 17a–f show the novel filter working on extremely large pacing spikes
compared to Whitaker and Hayes’ method. The amount of outlier left behind by the
Whitaker and Hayes’ method is still more than enough to invalidate any regression,
distance, or area calculation done on these ECGs. This shows the limitation of just a
median filter. It works well with very noisy data and even small amplitude outliers,
but for the massive outliers that are fairly common among CRT patients it no longer
works. The novel filter on the other hand is able to either completely remove the
outliers or remove the overwhelming major of its area. Figure 17f shows that the
filter can remove both small and large outliers in the same signal. Figure 18a-c
show that the novel filter also works very well on low amplitude outliers. This is
most clear in Fig. 18a which has three outliers that are all smaller than the QRS
complex by a significant amount and yet they are still completely removed. Figure
18d-f show the normal amplitude range of outliers on ECGs with patients that have
narrow QRS complexes. Normally in this situation it is hard to filter out the outliers
because the QRS complex has a similar modified Z-score as the outliers. We can
see that the novel filter is able to filter out these outliers while not augmenting any
of the QRS complex even when the QRS complex has a larger amplitude jump than
the outlier such as in Fig. 18d.

Figures 19, 20, 21, and 22 are more examples of how the other filters we tested
compare to the novel filter on non-RMS ECG signal data. We used a different lead
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Fig. 17 (a) An example comparing the novel filter with Whitaker and Hayes filter on large
amplitude outliers on lead V1. The novel filter can deal with outliers of any size and frequency
without the need of extreme fine tuning. (b) Another example comparing the novel filter with
Whitaker and Hayes filter on large amplitude outliers on lead V1. This is a very wide and tall
outlier and the filter is able to deal with it without distorting the physiological signal. (c) Another
example comparing the novel filter with Whitaker and Hayes filter on large amplitude outliers on
lead V1. (d) Another example comparing the novel filter with Whitaker and Hayes filter on large
amplitude outliers on lead V1. (e) An example comparing the novel filter with Whitaker and Hayes
filter on large amplitude outliers on lead V3. This is a case where the hyperbolic cosine function
doesn’t interpolate the signal very well as can be seen from the sharp deflection of the signal at
the Q onset. In this case a cubic spline would be better to interpolate the signal. (f) An example
comparing the novel filter with Whitaker and Hayes filter on large amplitude outliers on lead V2.
This is a case where the filter couldn’t completely delete the outlier in front of the QRS complex.
This is due to the QRS complex having a similar Z-score to that part of the outlier. So, when the
deletion happens any data point close to the QRS complex will be left behind. We can see that the
outlier was still greatly diminished compared to Whitaker and Hayes’ filter, but more precise fine
tuning would be needed to completely filter out this example
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Fig. 17 (continued)

for the Butterworth filters to better show how the filters compare as it was not easy
to see with the lead used on the Hampel, LoG, and median filters. Again, we see the
same results with one big change. This lead was one we found in which the Hampel
filter did not perform as well as the others on the paced ECGs. None of the three
filters preform as well as the novel filter. The median was actually the best in this
case which holds true from what we saw in Table 2. It goes back and forth with
median or Hampel being the best on paced and median being the best on non-paced
ECGs. The Butterworth filters also were consistent on these leads. 60 Hz causes the
amplitude of the outlier to be much smaller, but the outlier widens and the QRS
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Fig. 17 (continued)

complex is deformed. While 150 Hz causes a minor reduction in outlier amplitude
while not changing much of the physiological QRS complex signal.

Figures 23, 24, 25, and 26 are examples of the filters on a very narrow non-paced
ECG. The results are as expected. Hampel completely filters out the QRS complex.
Median and LoG both filter out perfectly all the noise in the signal while slightly
diminishing the QRS complex with the median being the best on the non-paced data.
All the Butterworth filters slightly deform the QRS complex which is important as
there is so little data in the QRS complex as it is so narrow that all data needs to be
as unchanged as possible.
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Fig. 18 (a) An example comparing the novel filter with Whitaker and Hayes filter on small
amplitude outliers on lead V2. (b) An example comparing the novel filter with Whitaker and
Hayes filter on small amplitude outliers on lead II. The novel filter can even filter out similar
frequencies and voltages as can be seen in this example. (c) An example comparing the novel
filter with Whitaker and Hayes filter on small amplitude outliers on lead I. (d) Another example
comparing the novel filter with Whitaker and Hayes filter on normal amplitude outliers on lead I.
This example shows that the filter can remove outliers that are similar shape and smaller voltage
compared to the QRS complex without fine tuning. (e) An example comparing the novel filter with
Whitaker and Hayes filter on normal amplitude outliers on lead V6. (f) An example comparing the
novel filter with Whitaker and Hayes filter on normal amplitude outliers on lead V4

We have subsequently applied our novel filtering algorithm to a large set of both
CRT paced and non-paced (over 10,000 each) respectively. The first-step outlier
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Fig. 18 (continued)

algorithm was very robust in cleanly removing the large problematic pacing spikes,
though not infrequently smaller pacing spikes were not picked up at the first step.
These were however effectively tackled by the second-step median filter. On the
other hand, for rare normal non-paced ECGs (approximately 20–30 ECG leads out
of 10,000) with sharp QRS complexes at notably elevated heart rates, the algorithm
erroneously detected the sharp peak of QRS complex as outlier. This was however
appropriately flagged as an erroneous truncation of the physiological signal at our
algorithm’s last verification step, and the filter was automatically reverted. The cases
in which our filter struggles are fast, sharp non-paced ECGs as mentioned above and
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Fig. 18 (continued)

outliers located directly near the peak of the QRS complex. Both are rare, and most
ECGs will be filtered successfully.

This filtering process allows us to dynamically filter all outliers with extreme
precision. This also allows for near instantaneous processing at 7.53 ms per lead
averaged over 4632 leads (time was taken on a desktop PC with a Ryzen 7 1700X
CPU and 16 GB of 2400 Hz DDR4 RAM).
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Fig. 19 A cardiac resynchronization therapy (CRT) paced example comparing novel filter with
median filter on lead I. The novel filter was able to remove both of the outliers and smooth out the
noise at the end of the signal

Fig. 20 Same CRT paced ECG comparing novel filter with Hampel filter on lead I

4 Summary

We present a new dynamic filter to process spike outliers that improves upon the
Whitaker and Hayes’s despiking algorithm [10] and apply it to ECG data. The
outlier detection is done using the modified Z-score of detrended data. The filter
interpolates the new signal from the gap generated from deleting data above the
dynamic threshold. It then applies a median filter to smooth out the remaining noise.
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Fig. 21 Same CRT paced ECG comparing novel filter with Laplace of Gaussian (LoG) filter on
lead I

Fig. 22 (a) A cardiac resynchronization therapy (CRT) paced example comparing novel filter with
60 Hz Butterworth low pass filter on lead I. We can see that 60 Hz removes the most amount of
the outlier, but it also distorts the physiological signal in a way that the novel filter does not. (b)
Same paced ECG comparing novel filter with 90 Hz Butterworth low pass filter on lead I. (c) Same
paced ECG comparing novel filter with 120 Hz Butterworth low pass filter on lead I. (d) Same
paced ECG comparing novel filter with 150 Hz Butterworth low pass filter on lead I

The novel filtering is very effective and reduces the pacing spike artifact area on
average by 99.63% compared to unfiltered paced ECGs. Of the other filters tested,
Hampel was the second best for paced ECGs at 75.8%, median filtering was third
at 27.7%, 60 Hz Butterworth was fourth at 17.9% (but that included a good amount
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Fig. 22 (continued)

of QRS complex augmentation), LoG was fifth at 7.4%. Higher cut off Butterworth
filters were less effective, 90 Hz reduced area only 3.8%, while 120 Hz at −1.5%
and 150 Hz at −2.5% both added area to the spike artifacts (Table 3).

The filtering has been demonstrated to be robust and reliable on 12 lead ECG
data in many patients spanning a variety of cardiovascular conditions. This filter is
computationally inexpensive, fast (7.53 ms per lead, on AMD Ryzen 7 1700x CPU),
and can be applied on any platform. This filter can also be applied for any type of
signal or time series data and can be applied generally across domains with only
tuning of the percentile of Z-scores and the flat value of the filter and changing the
starting point of the scan.
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Fig. 22 (continued)

Fig. 23 An example of median filter applied to a non-paced ECG lead II. This outlier does very
well for non-paced ECG even with narrow QRS complexes
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Fig. 24 An example of Hampel filter applied to the same non-paced ECG lead II. The QRS
complex signal is destroyed

Fig. 25 An example of Laplace of Gaussian (LoG) filter applied to the same non-paced ECG lead
II. Slightly worse than median filtering but still better than most methods
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Fig. 26 (a) An example of 60 Hz Butterworth low pass filter applied to the same non-paced ECG
lead II. 60 Hz works well for paced ECG but not nearly as well for non-paced. The signal is also
distorted before the QRS complex. (b) An example of 90 Hz Butterworth low pass filter applied to
the same non-paced ECG lead II. (c) An example of 120 Hz Butterworth low pass filter applied to
the same non-paced ECG lead II. (d) An example of 150 Hz Butterworth low pass filter applied to
the same non-paced ECG lead II. 150 Hz works as well as median filtering on non-paced ECG but
not as well for outliers
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Fig. 26 (continued)
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