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Abstract 

Pathology remains a foundational discipline in modern medicine, yet traditional microscopy workflows are 
constrained by manual slide preparation, subjective interpretation, and limited scalability. The advent of 
digital whole slide imaging has enabled seamless digitization of histological sections, though challenges 
such as inter‑observer variability and workforce shortages persist. Recently, artificial intelligence based 
decision‑support tools – powered by deep‑learning algorithms and high‑performance computing – have 
demonstrated remarkable performance in pre‑screening, case triage, and morphology segmentation. 

Artificial intelligence in diagnostic histopathology hinges on the availability of extensive, richly annotated 
image repositories. Therefore, in this chapter we introduce two important open source digital pathology 
corpora: the Temple University Hospital Digital Pathology Breast Tissue Subset (TUBR) and the Fox Chase 
Cancer Center Digital Pathology Breast Tissue Subset (FCBR). TUBR comprises 3,505 images from 296 
patients (1.2 TB of data). FCDP contributes 1,463 oncology‑focused slides from 1,397 patients (336 GB of 
data). Both corpora have been manually annotated and cover a spectrum of tissue states from normal and 
benign through premalignant intraepithelial lesions and invasive carcinomas. 

We also explore baseline performance of some well-established deep learning algorithms on an image 
classification task based on these corpora. A weighted error of 25.5% was achieved on TUBR using 
EfficientNet B7, while a weighted error of 25.0% was achieved on FCBR. We examine the challenges 
involved in training across both datasets to enhance overall system performance and assess the role accurate 
microsegmentations play in achieving clinically acceptable performance. 
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1. Introduction 

Pathology constitutes a cornerstone of modern medicine, providing essential support for accurate diagnosis, 
prognostication, and therapeutic planning across a wide range of tissue-based diseases. Traditionally, 
examination required a tedious workflow of preparing thin tissue sections on glass slides, followed by 
manual interpretation of stained tissue morphology under a microscope – an effort heavily reliant on the 
pathologist’s expertise to discern subtle architectural, spatial, and cellular features. In support of enhancing 
this process, digital whole slide imaging, which emerged in the mid-1990’s [1], enabled entire histological 
slides to be digitized into multi-resolution image pyramids. This allowed seamless, lossless zoom at 
arbitrary magnifications – unlike optical microscopes, which are limited to discrete objective lenses. This 
ensured consistent calibration, precise quantitative measurements, and preservation of cellular  architecture 
across the specimen. 
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However, despite its potential, whole slide imaging did not mitigate inter‑observer variability, a challenge 
that spans virtually all pathological subspecialties. A recent systematic review of 12 validation studies [2] 
reported that digital vs. light microscopy inter‑observer κ values ranged from 0.45 (“moderate” agreement) 
to 0.75 (“substantial” agreement) across human pathology cases. More concerning was the fact that only 
52% of pathologists report being satisfied with their career choice [3], and the U.S. pathology workforce 
declined by 17.5 % between 2007 and 2017 [4]. This decrease further worsens job satisfaction as remaining 
pathologists are being forced to increase workload, a difficult task to implement on a job requiring such 
precise analysis for each sample. To mitigate the negative impacts of the dwindling workforce, this chapter 
explores strategies for streamlining sample evaluation by equipping pathologists with advanced artificial 
intelligence (AI) based slide analysis tools. 

Among the drivers of job dissatisfaction, it is worth mentioning that the declining headcounts, an aging 
workforce, and growing case complexity [5][6], as well as insufficient exposure to pathology during 
undergraduate and medical education, have been shown to deter up to 40 % of students from considering 
the specialty [7]. In response, AI-based decision‑support tools have begun to fill critical gaps. In 2021, the 
FDA granted de novo authorization to Paige Prostate, the first AI‑based in vitro diagnostic device for 
prostate cancer detection on digitized slides [8]. By leveraging advances in high‑performance computing, 
gigapixel image storage, and deep‑learning algorithms, such systems can pre‑screen whole slide 
images (WSI), triage cases by risk, and highlight regions of interest – thereby reducing pathologist 
workload and enhancing diagnostic consistency beyond what whole slide imaging alone could achieve [9].  

Conventional microscopy is a current standard within pathology. According to a recent study [10], 65% of 
pathologists remain reluctant to use the digital alternative, considering it unsuitable for routine diagnostic 
practice. Analog microscopy has a low to medium processing speed due to the need for manual transition 
of samples, which can lead to increased processing times that vary from a few minutes to hours [11]. In 
addition to eye strain, the need to be in a laboratory setting, especially when on call, and the increasing cost 
of manual labor, has fueled the push toward digitizing pathology. Digitized slides can be accessed and 
analyzed beyond the confines of the laboratory, offering significant advantages for pathologists on call, 
particularly in time-sensitive scenarios such as organ transplantation, where rapid remote assessment is 
critical.  

The growing adoption of digital pathology within the field has provided a wealth of data that can be 
reviewed and utilized to further research into machine learning (ML) and deep learning (DL) technology. 
This technology has the potential to aid a pathologist’s workflow. Such assistive resources enable 
automated slide triage (ordering cases by suspected severity), generation of annotated heatmaps 
highlighting regions of interest, and quantitative extraction of morphological features. Indeed, many studies 
report “near‑perfect” performance: a recent meta‐analysis of 48 AI algorithms across diverse disease types 
found a pooled sensitivity of 96.3 % and specificity of 93.3 % [12]. While the introduction of DL in digital 
pathology has demonstrated remarkable performance – achieving mean sensitivities of 95% and specificity 
of 92% for multiclass tasks – this often stems from evaluation of highly curated datasets with limited 
diversity, typically from one or two institutions, which raises concerns about bias, lack of generalizability, 
and reproducibility. As the same review [12] reports, 99% of included studies had at least one domain at 
high or unclear risk of bias, often due to non-random sampling, inadequate reporting, and domain shifts 
across institutions or scanners. This makes it difficult to translate AI models into robust clinical tools across 
different healthcare settings. Hence, in this chapter, we focus on establishing a performance baseline using 
our recently released datasets from two distinct medical centers, explicitly addressing these limitations 
through cross-institutional evaluation and transparent reporting practices. 
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2. Digital Pathology Resources for Machine Learning  

To develop robust deep learning models for digital pathology, a well-curated dataset encompassing a variety 
of normal, benign, and cancerous tissue architectures is essential. At Temple University’s Neural 
Engineering Data Consortium (NEDC), two major open-source digital pathology corpora have been 
established: the Temple University Hospital (TUH) Digital Pathology Corpus (TUDP) [13][14][15] and the 
Fox Chase Cancer Center (FCCC) Digital Pathology Corpus (FCDP) [16]. As the names suggest, TUDP 
was collected at Temple Hospital in Philadelphia – the major public hospital for the city. FCDP was 
collected at FCCC – a world-recognized leader in cancer research and treatment. TUDP contains over 
100,000 high-resolution images, representing a diverse range of tissue types, including both normal and 
abnormal specimens, supporting a broad spectrum of research applications. In contrast, FCDP, with 14,276 
images, is more specifically focused on oncological studies. These corpora have been further refined 
through extensive evaluation and annotation, particularly the breast pathology subsets, ensuring precise 
classification of cancerous, non-cancerous, and pre-cancerous structures. A comparison of these datasets to 
other publicly available datasets is given in Table 1. These enhanced datasets provide a critical foundation 
for training advanced AI models in digital pathology, facilitating improved diagnostic accuracy and 
research in cancer detection. 

2.1. Slide Preparation 

Traditional histological slide preparation [17] requires tissue sections to be thin enough to be mounted while 
maintaining the structural relationship between cells and extracellular components. This necessitates careful 
handling to ensure accurate cancer diagnosis. To support tissue integrity during sectioning, specimens are 
either frozen and cut using a cryostat microtome for rapid diagnosis without chemical interference or 
infiltrated with a liquid agent such as epoxy resin or histological wax, which subsequently solidifies to 
encapsulate the sample. Before mounting, tissue specimens must be preserved using a fixative, commonly 
a formaldehyde suspension for 6-12 hours, to prevent decomposition and eliminate microorganisms. 
Specimens are then dissected into 4 mm regions and processed with a hardening agent. Once prepared, 
paraffin sections of 3-5 µm thickness are cut to ensure only a single layer of cells is captured on a glass 
slide. These sections are then placed in a warm water bath for flattening and ease of handling before being 
mounted onto individual glass slides. 

2.2. Immunostaining 

Staining is essential for visibility during imaging [18]. Cells, apart from a few natural pigments like 
melanin, are mostly colorless. The routine hematoxylin and eosin (H&E) stain is used to provide general 
cellular structure information, staining nuclei blue and other cellular components in shades of pink. If 
further diagnostic information is required, special stains targeting specific cellular components are applied. 
For example, immunohistochemical (IHC) stains utilize antibodies to mark diagnostically relevant proteins, 
offering deeper insights into cellular processes. Once stained, the slides are covered with glass. Most slides 
can be achieved for years without damage or discoloration. 

Immunostaining plays a critical role in the annotation of digital pathology datasets for machine learning 
applications, as it is capable of shifting data distribution very easily and making the model miserably fail 
the generalization test. This is because different staining protocols highlight different cellular and molecular 
features while failing to reveal others, making cross-dataset transferability challenging. As a result, 
switching between datasets becomes more complicated due to variation in immunochemistry. In digital 
pathology, immunohistochemical (IHC) stains utilize antibodies to detect specific cellular markers, such as 
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), 
which are essential in breast cancer classification [19]. These stains provide a detailed molecular profile of 
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tissues, aiding in the differentiation of neoplastic from non-neoplastic regions, which is crucial for training 
deep learning models to recognize cancerous patterns with high specificity. 

In contrast, Hematoxylin and Eosin (H&E) staining remains the gold standard for histological examination, 
offering a broad visualization of cellular and tissue structures. Hematoxylin stains cell nuclei blue-purple, 
while eosin highlights cytoplasm and extracellular matrix in pink, allowing machine learning models to 
extract key morphological features that distinguish normal, pre-cancerous, and malignant cells [20]. The 
integration of both staining techniques enhances model performance by expanding the diversity of input 
data, enabling algorithms to learn from both molecular and structural tissue characteristics. Moreover, 
computational pathology tools leveraging deep learning can process large-scale immunostained datasets 
efficiently, reducing interobserver variability and improving diagnostic consistency [20]. By incorporating 
a variety of immunostains, machine learning models gain a deeper contextual understanding of tissue 
pathology, facilitating advancements in automated cancer detection, classification, and prognostic 
assessment. 

2.3. Digitization 

Digital pathology involves converting physical glass slide samples into digital images stored using 
advanced compression techniques. This is achieved using a laser scanner that captures images at a 
resolution of 0.2 µm/pixel. Similar to a glass slide, a WSI contains one or more specimens along with the 
background space surrounding the histological sample. All scanning is performed using a Leica Biosystems 
Aperio AT2 high-volume scanner. The scanning process is described in detail in [13]. The scanner captures 
a low-resolution image and assigns multiple focus points on the tissue. A green rectangular box marks the 
scanning frame, and technicians can manually adjust the focus points and frame as needed. This manual 
review step is crucial in preventing scanning failures caused by inaccurate automatic focus placement. 

There are cases where the scanner makes errors in its placement of the focus points and in determining the 
area of the scanning region. Both cases will cause a failure in the image processing of the specimen, thus 
causing a failure in scanning. Another error modality occurs when the scanning region is too large, which 
can cause unnecessary white space to be included in the WSI. In this case, the scanner might produce an 
image that is larger than necessary. Similarly, there is a risk of producing invalid images if the scanning 
region only partially encloses the specimen of interest. These events tend to occur with slides that are lightly 
stained or slides with a significant amount of white space between tissue samples. In such cases, manual 
adjustment of focus points becomes required  

Errors caused by image blur  frequently results in resolution issues within some pathology slides. Image 
blur is a result of the attenuation of high spatial frequencies which occur when the image is compressed or 
filtered. Blur can also be a result of image acquisition [21]. This makes the pre-scan snapshot phase of the 
scanning procedure labor intensive. We find about 2% of the slides scanned are likely to experience a 
scanning failure. However, this number varies according to the quality of the stain applied to the slides. 
These failed slides were reviewed, readjusted, and rescanned. To date, we have scanned approximately 
120,000 slides using these tools. 

The scanned image produced from the Aperio AT2 is stored using a ScanScope Virtual Slide (SVS) 
format [22]. An SVS file is layered image representation that includes several thumbnails and the original 
source image. The source image is stored using JPEG compression with a quality factor of 70. (The specific 
image type in the Aperio ImageScope software is “SVS/JPEG 2”. The parameter “Image Depth” is set to 1 
and “Image Channels” is set to 3.) These parameters result in roughly an order of magnitude of compression 
over lossless compression with minimal image degradation.  
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A full resolution image, or WSI, is stored as the baseline image using a tile size of 240 x 240 pixels (an 
image is represented as a series of adjacent tiles, or blocks). The following three layers contain 
downsampled version of the image at resolutions of 4:1, 16:1 and 32:1. The final layer is a low-resolution 
thumbnail. Each of these layers is an image encoded using lossy JPEG encoding. An SVS file also contains 
a low-resolution picture of the slide’s label as metadata and stores other information such as the 
downsample and offset information. The number of layers generated depends on the size of the original 
image. Smaller images (e.g., the maximum dimension is less than 50K pixels) will generally have only two 
layers.  

Our primary software for viewing SVS files is Aperio ImageScope [23]. This open source software features 
a wide variety of tools for image editing, adjusting, and annotation. The image adjustment tools include 
brightness and contrast controls, color balance, and color curve adjustment. These can be applied to all 
channels or for individual red, green, or blue (RGB) channels. These adjustments only apply to the viewed 
image and do not modify or overwrite the stored image. The settings applied to the current session can be 
saved and applied to other scanned images. The default presets for ImageScope are always applied to the 
scanned images. Then, the image adjustment tools can be utilized to calibrate the image features according 
to the pathologist’s preferences. The stains applied on specimen images cause a specific structure to adopt 
a distinct color, and this color can be enhanced by adjusting the brightness, contrast, and the color channels 
of the image via the image adjustment tools. This is a beneficial tool for pathology diagnosis as it can be 
used to allow specific areas of investigation (such as cancerous tissue) to be more focused or to enhance 
quality of lightly stained specimens. 

As mentioned earlier, the Aperio AT2 scanner features a z-stacking option. The scanner can produce 
multiple images of a slide tissue that were scanned at different focal depths. This generates a 3D image that 
allows navigation of the image through different focal depths, which is analogous to the process 
pathologists use with an analog microscope. ImageScope features a tool that can adjust the focal depth that 
is similar to using the objective fine and coarse adjustments of a focus slider in a microscope [23]. This 
feature has yet to be explored in our work but is being used by other hospitals. The z-stacked images are 
very large in size, often several gigabytes, which poses additional challenges for machine learning 
research [13]. 

2.4. Data Organization and Anonymization  

A detailed description of the filenaming conventions and organization of the data can be found in [15]. The 
file naming convention is designed so that every file in the corpus has a unique filename, and simple UNIX 
commands can be used to locate data. 

To ensure compliance with the Health Insurance Portability and Accountability Act (HIPAA), strict 
protocols are in place to maintain patient anonymity. Protocol No. 24943, approved by TU’s Institutional 
Review Board, governs the handling of all data to prevent any exposure of patient-identifiable information. 
The deidentification process follows a methodology similar to the one used in the Temple University 
Hospital EEG Seizure Corpus [24]. Each patient is assigned a unique, randomized 8-character letter 
sequence. 

SVS files initially contain low-resolution tiled images of slide labels, which may include patient initials and 
specimen IDs. These labels are manually removed before data release. Together, these measures ensure that 
all released data is completely anonymized while maintaining the integrity required for research. 
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2.5. Annotation Guidelines 

Pathology is the primary method for the confirmation of breast cancer, assessing tumor margins, and 
evaluating cancer proliferation. Assessing these metrics can be challenging due to the diverse nature of 
pathology. The variety of different tissue architectures a pathologist needs to assess is vast, which makes 
our dataset extremely valuable among the existing alternatives, as shown in Table 1. Annotation refers to 
the manual delineation of both biological and non-biological structures by an annotator. We refer to these 
as patch-level annotations since they include a polygon defining the region and a label. Our annotation 
methodology is discussed in detail in [16][25]. Here we summarize some key issues that make our 
annotations unique and extremely valuable for machine learning. 

Annotation labels need to ensure precise margins to minimize extraneous structures such as background 
fibrous or adipose tissue. Proper margins or delineation of structures of interest are important for models 
that will be trained to do fine-grained segmentation image analysis, which we refer to as microsegmentation. 
The ability to delineate differences on a cellular level is incredibly important in pathology. Accurate 
delineation ensures that the model learns to distinguish the true boundaries of pathological structures, which 
is critical for reliable feature extraction, tissue classification and overall model performance. 

Annotation of an entire slide is extremely time-consuming and is prohibitively expensive. Therefore, 
images are partially annotated, focusing on a few instances of what we consider prominent or significant 
structures. These structures are either selected based on patient reports, which identify regions of diagnostic 
interest, or on an annotator’s decision of what would be most valuable for ML training. Selective annotation 
ensures efficient use of time and resources while still capturing clinically relevant tissue architecture. 

Areas of interest in pathological slides can vary significantly. Although it would be simple to label tissue 
as either normal or cancerous, the vast array of different structures poses a real issue for models. In addition, 
there are many non-cancerous or pre-cancerous structures that would inform a pathologist about making 
medical determinations. We use a system that includes five labels for relevant pathologies, and four labels 
for non-cancerous or anomalous tissues. The full list of labels can be found in [15] and is repeated here in 
Table 2. We briefly describe these labels below. 

Normal ductal terminal units and lobules are labeled with the symbol (NORM), which is crucial for training 
models to allow for the differentiation between normal ducts and pathological ones. One of the many things 
that makes this type of problem challenging is that a small percentage (less than 1%) of the overall slide 
area contains a cell or group of cells that represent areas of interest. Further, there can be more than one 
tissue on each slide, and each of these tissue samples can have multiple labels. Hence, the ability to segment 
images and localize where events of interest occur in the data is critical. Because of the huge imbalance in 
the frequency of occurrence of the labels in Table 2, care must be taken during training to avoid models 
from focusing on normal tissue or white backgrounds.  

2.5.1. An Overview of Anatomical and Physiological Considerations 

When we discuss how we annotate the data, it is important to understand the basis of the anatomical and 
physiological components of breast tissue and how cancerous cells develop [26][27]. The mammary gland 
parenchyma consists primarily of adipose stroma within a connective tissue matrix enriched with interstitial 
fluid. It contains lobular alveoli responsible for milk synthesis, which is transported through lactiferous 
ducts that converge and open at the nipple. The terminal ductal lobular units (TDLUs) are a primary interest 
for pathologists as most primary breast cancers originate in these regions. Lobules, derived from terminal 
duct lobular units (TDLUs), are hormonally responsive structures composed of glandular epithelial cells 
encircled by myoepithelial cells, a basement membrane, and fibrocollagenous stroma. These lobules are 
organized in clusters and play a crucial role in milk secretion. 
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The epithelial–stromal interfaces within the lobules are composed of an epithelial–myoepithelial layer 
supported by elastic fibers, fibroblasts, and capillaries, with fiber deposition varying according to hormonal 
status and age, thereby adding complexity to the interpretation process. The hormonal impacts on the ductal 
units due to menopause, adolescence, or pregnancy means a far greater variability in lobular appearance. 
Standard acini and ducts are made up of three layers: the basement membrane, myoepithelial layer, and 
epithelial lining. These ducts carry milk and are found throughout the TDLUs. The epithelial layer is usually 
only one thick cell which lines the ducts. However, multiple layers of cells, hyperplasia, is a common 
occurrence. The degree or rate of growth of these epithelial cells determines if a patient has atypical ductal 
hyperplasia or ductal carcinoma in situ. 

A significant contributor to the complexity of breast tissue analysis, particularly in pathological 
interpretation, is a dynamic and differing morphological variability of terminal ductal units driven by 
hormonal influences. Unlike other tissue architecture which may remain uniform, the breast undergoes 
structural changes depending on factors such as adolescence, menstrual cycling, pregnancy, lactation, and 
menopause. These states change the proliferative activity and differentiation status of epithelial and stromal 
components within the terminal duct units. For example, during pregnancy and lactation, lobules become 
hypertrophic, and exhibit increased acinar formation with prominent secretory activity. This makes the 
ducts look atypical and could be mistaken as non-neoplastic. Women who are going through menopause 
have reduced lobular units, atrophic epithelial lining, and increased stromal fibrosis or adipose replacement. 
These changes could pose a challenge for the development of models that can accurately analyze images 
for women of all ages and hormone levels. 

Morphological variability in pathology is also shaped by genetic and ancestral factors, contributing to 
disparities in breast cancer characteristics observed within different racial populations. It has been well 
established that the mutations in BRCA1/BRCA2 genes significantly elevate the risk of developing ductal 
and invasive carcinoma. Individuals of African-American descent tend to develop higher-grade tumors, 
more frequently present with basal-like or triple-negative subtypes, and are often diagnosed at a younger 
age. Race can also play a role in the tissue architecture of the terminal ductal units, meaning that the 
structure and image analysis of breast tissue specimens can have the same diagnosis, but may look different 
depending on a multitude of factors. This highlights the importance of data curation and diversity of data 
when developing such models. It is therefore an ethical concern to design models that uphold fairness, 
transparency, robustness, and ensure a high degree of explainability and privacy. 

2.5.2. Cancerous Structures 

The two primary labels utilized for cancerous structures are ductal carcinoma in situ (DCIS) and invasive 
ductal carcinoma (INDC). Although there is some differentiation between what constitutes ductal 
carcinoma among pathologists, cross-referencing with patient reports and metadata files ensures 
consistency and accuracy in labeling. DCIS is defined by abnormal growth of epithelial cells throughout 
the duct. DCIS presents itself in a multitude of ways. Cribriform formations look like sponges as microcysts 
from within the tumor inside the duct. Micropapillary DCIS is defined by its microcalcification on 
mammograms and range in size. Other common formations of DCIS include apocrine, comedo, with 
comedonecrosis, or papillary DCIS. All forms are characterized by abnormal cells confined within the 
ductal units of the breast, as cancer tends to proliferate along the path of least resistance. Ductal carcinoma 
in situ (DCIS) is typically graded on a scale of 1–3, and in some cases 1–5, based on the mitotic activity 
(the rate at which cells are dividing and creating new cells). 

Once DCIS breaches the basement membrane of the ductal epithelium and invades the surrounding stromal 
tissue, it is classified as INDC. The INDC label makes up 70% to 80% of breast cancer cases [28]. The 
various presentations of invasive ductal carcinoma patterns include nests, cords, or sheets of small 
squamous cells. The tumor cells often exhibit moderate to marked nuclear pleomorphism and increased 
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mitotic activity [29]. Tubule formation is a key histological feature assessed during grading. Tumors with 
more than 75% tubule formation receive a lower grade, indicating better differentiation and prognosis. 
However, many INDC occurrences display less tubule formation, correlating with higher grades and more 
aggressive behavior. The heterogeneity in the histological presentation of INDC poses challenges for AI 
models in accurately classifying and predicting outcomes, especially when rare subtypes or poorly 
differentiated forms are underrepresented in training datasets. 

Non-neoplastic (NNEO) structures is a broad term that, in a clinical context, is nonspecific and encompasses 
a wide range of structural types. In TUBR and FCBR, NNEO structures refer to a range of structures that 
may either present themselves as a benign formation, pre-cancerous, or associated with cancer. The term 
non-neoplastic can also encompass lesions with precancerous potential, such as atypical ductal hyperplasia, 
as well as benign structures like cysts that may mimic pathological features. 

A NNEO structure refers to the formation of calcium deposits, often detectable on mammograms. These 
deposits can result from abnormal cellular activity, including cancer proliferation, which increases calcium 
output that may accumulate and form solid structures [30]. These calcium microcalcifications are likely a 
byproduct of dysregulated intracellular calcium transport channels due to oncological transformations. The 
regulatory imbalance, induced by oncological cells, causes an overexpression of calcium pumps such as 
SPCA2 and PMCA2 [30], creating an environment that allows calcium to react with bone matrix proteins 
and phosphate transporters to develop a microenvironment conducive to mineralization. This results in 
microcalcification [31]. The loss of calcium homeostasis and resulting structures could be leveraged to 
improve model training. We are exploring this in ongoing research and have released a corpus to support 
this research [32]. 

NNEO labels include benign proliferative or reactive changes that could mimic cancers, improving model 
specificity. Inflammation labels (INFL) are given to areas of lymphocyte reactions to either non-neoplastic 
or cancerous structures. The distinction between these two labels allows for the distinction between an 
immune response and possible malignant progression. 

2.5.3. Non-cancerous and Ambiguous Structures 

Artifact (ARTF) refers to the identification of grease-labels or other non-biological artifact found within 
slides and serves to prevent misclassification. These artifacts, if not properly labeled, could be 
misinterpreted by the model as meaningful biological signals, potentially leading to false positives. 

Null (NULL) labels are given to areas that are considered undistinguishable tissue, either due to a blurry 
image or poor stain techniques. These regions are intentionally excluded from training to prevent 
introducing uncertainty or noise to the model.  

The suspicious (SUSP) label is given to tissues that are suspected to be precancerous or are incredibly 
ambiguous. Background labels (BCKG) serve to prevent models from learning patterns in irrelevant 
regions. Background labels are given to any structure that does not follow in the prior labeling selection 
and primarily is made up of adipose and fibrous tissue. Since a large percentage of the area of a slide is 
non-tissue (white), we provide a BCKG label so ML systems can be trained on tissue patterns that are not 
one of our five significant labels. Without this label, an ML system will tend towards modeling a white 
image as background and will confuse images of irrelevant tissue as one of the meaningful five classes. 

Maintaining balanced label distributions is essential to mitigate bias and improve model robustness. 
Although randomization and weighted labels can be utilized to mitigate label biases, the importance of 
ensuring a good label distribution is vital. Class imbalance poses a significant challenge in medical datasets, 
especially when tasked with identifying uncommon tissue architectures. In digital pathology databases, the 
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abundance of normal and background tissue is significantly more common than carcinogenic or non-
neoplastic structures. If the annotation process is not meticulous, a model would be disproportionately 
accurate on normal tissue architecture while severely underperform on cancerous structures. This 
overfitting of dominant labels can lead to models effectively ignoring minority classes. To address this 
issue, curating these datasets with sufficient representation of all relevant classes has been an important 
annotation objective, in addition to adding weighted loss functions and randomization during training. 

2.6. Typical Examples of Annotated Slides 

In Figure 1, we show normal duct and normal lobules, components of a TDLU, surrounded by stromal 
background tissue. The stroma is the pink-stained tissue found throughout the slides, which functions as 
supportive tissue around the ducts and lobules. Figure 1 illustrates fibrous stroma surrounding the regions 
of interest, with the inclusion of a few fat cells which appear as white round shapes. The NORM label is 
applied to regions where lobules remain circular with no instances of hyperplasia and where the ducts are 
clearly defined with both layers of the lining intact. The lobules around the duct are composed of small 
glands that are called acini, which are formed during puberty and represent secretory units of the breast. 
The acini and the ducts are lined by two different cell layers. The outer layer is made up of myoepithelial 
cells that are mostly just clear cytoplasm and function to contract and push milk through the breasts. The 
inner layer is made up of epithelial cells that produce breast milk and are usually where abnormal cell 
growth develops. The stroma consists of connective tissue, blood vessels and fat cells. The difference 
between fatty stroma and fibrous stroma can be seen in Figure 2.  

NNEO annotations encompass a range of structures that aid in contextualizing the interpretation of specific 
tissue architecture.  The NNEO label typically includes entities such as atypical hyperplasia, intraductal 
papilloma, calcifications, benign structures, and adenosis. Figure 3 highlights one of the most common 
NNEO structures: cysts. Cysts present as pale round spaces lined by a single layer of cuboidal epithelium 
and typically contain proteinaceous fluid. Cysts and cancer often coexist, as tumor growth can obstruct 
normal ductal drainage pathways and is frequently influenced by hormonal activity. The presence of cysts 
and other non-neoplastic features provides additional diagnostic clarity, supporting annotation of malignant 
or benign conditions. It is important to note that NNEO structures are not cancer, but rather benign or pre-
malignant findings that assist in accurate classification.  

Figure 4 represents an atypical case of DCIS, annotated due to its unique spherical nature resulting from its 
confinement within the breast ducts. Although DCIS may present itself with multiple structures within the 
same area, they are often annotated independently from one another. DCIS is identified by malignant 
epithelial cells that have not breached the basement membrane. Immunochemistry often stains these cells 
differently compared to the normal tissue. Calcifications are frequently present and may be visible present 
within the ducts. Ductal carcinoma regions were labeled based on nuclear atypia, preservation of the 
basement membrane and architectural patterns (e.g., cribriform and calcification). 

In Figure 5, we present a terminal duct lobular unit (TDLU) undergoing non-neoplastic changes. The 
annotation of this structure may include either the entire TDLU, encompassing multiple abnormal ducts 
simultaneously, or a single duct. This annotation approach is consistent across many labels, contributing to 
a more diverse and representative dataset for model training. 

To aid in this process, it is important to understand the characteristic non-neoplastic changes such as 
gynecomastia. Also known as gynecomastoid hyperplasia or gynecomastia, this condition is characterized 
by two cell layer linings instead of one within the epithelial cell wall of the lobule or duct. Those formations 
are harder to detect since they require high magnification down to the cell layer of the lobule. The cell can 
appear mushroom-like if the bi-layer juts into the lumen where it can become narrower toward the center 
of the lumen. Hyperplastic changes arise when the epithelial lining proliferates, encroaching on the lumen 
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and leaving minimal or no empty space within. An additional feature of hyperplasia is represented by 
mushroom-like, irregular expansions of the cell. It can be classified as elongated, ovoid-shaped nuclei (dot-
like particles) within the cell wall lining. Lymphocytes appearing as small dark dots can be seen, pointing 
to inflammation of the lobule. These visual markers guided annotators in consistently labeling regions 
exhibiting hyperplasia and inflammation.  

In Figure 6, we show an example of intraductal papilloma, another nonneoplastic growth. Papillary lesions 
are known to be a heterogenous group histologically and clinically, which represents a significant challenge 
in making an accurate diagnosis [33]. These lesions are annotated with the NNEO label usually 
encompassing the entire papilloma or, at a minimum, ensuring that key architectural features are 
encompassed. This group includes both benign and cancerous formations, as well as lobular neoplasia. 
Intraductal papillomas are made up of well-kept, vein-like structures that are contained, with little 
inflammation surrounding the region. Their inner epithelial walls and surrounding myoepithelial tissue are 
highly proliferated and unbroken. This region may include atypical benign tumors within. Due to its 
massive and weblike appearance, this region can be mistaken for DCIS. It is important for annotators to 
pay attention to the classic signs of DCIS when annotating similar regions, such as an unbroken border and 
or nuclear abnormalities. Lack of those in a visually similar structure is characteristic of intraductal 
papilloma and other benign papillary lesions. 

2.7. Annotation Challenges 

Producing high-quality digital pathology data for breast cancer is challenging, particularly in distinguishing 
non-neoplastic structures from early-stage carcinogenic lesions and ensuring consistency in pathology 
diagnoses. One of the most complex distinctions is between atypical ductal hyperplasia (ADH) and ductal 
carcinoma in situ (DCIS), as these lesions share overlapping morphological features, leading to high 
interobserver variability even among expert pathologists [34]. Studies have shown that agreement rates in 
diagnosing ADH versus DCIS can be as low as 48%, highlighting the subjective nature of 
classification [35]. This inconsistency extends to broader breast cancer research, where pathologists often 
disagree on borderline or pre-malignant conditions, complicating the creation of reliable training datasets 
for machine learning. Deep learning models require consistent ground truth labels, and if expert pathologists 
struggle with diagnostic uniformity, AI systems risk learning from misclassified images, reducing their 
accuracy and real-world applicability [36]. 

Rare biological structures are underrepresented and pose a significant challenge for models. The lack of 
sufficient examples of uncommon cases makes it difficult to train models. Both metaplastic breast 
carcinoma and tubular carcinoma are invasive ductal carcinomas that are representative of less than 2% of 
all breast cancers. For example, tubular carcinoma can be mistaken by models as normal ductal formation 
because they are defined by small, angulated tubules with minimal atypia. Metaplastic breast carcinoma is 
poorly differentiated. It exhibits highly variable morphology, often including spindle cells, squamous 
components or even bone or cartilage like tissue. The lack of frequency in these presentations of INDC can 
lead to significant misclassification of models. This variability in morphological presentation of carcinoma 
further complicates the task of accurately classifying these structures. 

Another issue with large datasets like this is the possibility of annotator bias. Due to the partially annotated 
nature of the data, annotation bias could pose a real issue and be translated into model. This was mitigated 
by multiple cross-reviews. Furthermore, not all breast cancer diagnoses can be determined solely through 
digital pathology. While histological analysis of stained tissue samples is fundamental for diagnosing breast 
cancer, certain molecular and genetic subtypes require additional testing beyond digital imaging. For 
example, triple-negative breast cancer (TNBC), an aggressive subtype that lacks ER, PR, and HER2 
expression, cannot be diagnosed based purely on histopathology [37]. Immunohistochemistry (IHC) and 
molecular profiling techniques such as fluorescence in situ hybridization (FISH) or next-generation 
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sequencing (NGS) are necessary to determine receptor status and guide treatment decisions [38]. This 
limitation underscores the need for multimodal diagnostic approaches, where digital pathology is 
complemented by molecular testing to provide a comprehensive assessment of breast cancer cases. 

3. Database Analysis 

Both breast tissue subsets discussed in this chapter are subsets of much larger corpora. A brief comparison 
of the full corpora from which these were extracted is given in Table 3. Because these two corpora were 
collected at different hospitals, the data is coded differently, which makes direct comparisons difficult. 
Hence, one important goal of this work was to normalize the data so they could be used simultaneously for 
technology development. Each database contains an ample amount of breast tissue data. FCDP is a bit richer 
in terms of occurrences of cancer because that is a specialty for FCCC. TUDP better reflects general 
pathology studies at a major urban public hospital. 

Annotations are created by undergraduate bioengineering or pre-health students who are trained extensively 
by senior personnel and board-certified pathologists. These students go through extensive training and 
supervision by senior annotators before they are allowed to annotate production data. In the early stages of 
the project, they were trained directly by TUH pathologists. However, once we developed adequate 
experience in house, a pipeline was developed in which senior annotators would train and supervise junior 
annotators. A significant amount of data has been reviewed by at least three annotators. Informal annotator 
agreement experiments have shown over the years that annotators have performed well and compare 
favorably to experts with a Kappa statistic above 0.8. Clinically trained pathologists have reviewed some 
of the data as part of their supervision process and provided ample feedback on our annotation process. 

In addition, to aid in the annotation process, for TUDP, anonymized patient reports are available for 
reference. The TUDP reports, which are fairly detailed, were manually anonymized and held on a secure 
server. Though there is some structure to these reports, they are difficult to parse automatically for specific 
information due to the complex nature of the language. Hence, we mainly used them to validate challenging 
cases. Data selection to create various subsets of the database is usually done based on manual review of 
the reports. 

The FCDP data was completely anonymized before we were given access. FCDP includes metadata for 
each slide that has been aggregated in a spreadsheet [15]. This spreadsheet contains a wealth of information 
about the tissue samples and diagnoses. The metadata usually do not identify non-neoplastic or abnormal 
structure but do indicate the existence of ductal carcinoma or invasive ductal carcinoma. 

A comparison of the statistics for the annotations for the two breast tissue subsets is given in Table 4. In 
both cases, we selected all the available data from the master corpora for annotation. The breast tissue 
subset within these corpora contains a larger number of WSI than most publicly available breast tissue 
datasets (see Table 1). These subsets contain 4,968 WSI annotated with the nine different labels shown in 
Table 2. The FCDP and TUDP datasets include more annotated instances than all other breast-focused 
datasets analyzed, with the exception of the SPIDER subset from HistAI initiative. While many of the 
alternative datasets rely on binary classification (e.g., cancer vs non-cancer), FCDP and TUDP adopt a more 
granular annotation framework. While binary classification may suffice for certain machine learning tasks, 
we argue that a more detailed annotation structure is essential to capture the complexities of tissue 
architecture and nuance morphological heterogeneity in breast tissue, enabling more robust and biologically 
informed model development. 
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3.1. The TUDP Breast Tissue Subset (TUBR) 

Temple University Hospital Breast Tissue Subset (TUBR) contains 3,505 high resolution images with 
various degrees of carcinogenicity, ranging from samples with healthy background, ducts, and lobules to 
samples with definitive ductal and invasive carcinoma. This subset contains 8,035 non-cancerous, 6,222 
carcinogenic, and 2,714 cancerous identified structures. This totals 22,241 labels and an average of 6.3 
annotations per slide (Table 4). The most common structures identified, aside from background, are non-
neoplastic, normal ductal structures and invasive ductal carcinoma. Due to the general nature of pathologies 
Temple Hospital investigates, a wide range of non-neoplastic changes and normal structures can be found 
in this subset. The dataset provides a unique archive of various benign non-cancerous structures such as 
papilloma, fibroadenoma, ductal and lobular hyperplasia and inflammatory lesions. The dataset is also rich 
in various samples of normal healthy ducts and lobules, with various degrees of branching and imaging 
clarity, which can be beneficial as a control for mistakenly marking healthy structures as non-neoplastic or 
carcinogenic. Each individual slide has at least one background label to equalize the difference in staining 
saturation and scanning discoloration.  

We can see that a fairly small percentage of the overall slide area has been annotated (1.96%). Fully 
annotating each slide is simply not feasible or cost-effective, so our annotation team focused on events that 
would be most meaningful for ML technology development. In Table 5, we show the average dimensions 
of an annotated region sorted by label. DCIS and NNEO are the largest, and INFL are the smallest. 
Inflammation often accompanies the carcinogenic structure because it is an immune response from the 
body. Therefore, many times we see it as an “additional layer” surrounding abnormality as the body tries 
to respond to it. In addition, lymphocytes, the cell which we label as INFL, are composed of very small 
cells. The “structure”  of inflammation is not really a structure at all but rather a clump of lymphocytes. 
Their small nature and their proximity to the structure of interest results in smaller-sized regions. 

3.2. FCCC Breast Tissue Subset  

Fox Chase Cancer Center Breast Tissue Subset (FCBR) contains 12,164 non-cancerous, 1,967 
carcinogenic, and 5,954 cancerous identified structures. This totals 20,086 labels and an average of 13.7 
annotations per slide, as shown in in Table 4. Each individual slide has at least one background label to 
allow ML to equalize the difference in staining saturation and scanning discoloration. When compared to 
TUBR, FCBR is more heavily weighted towards malignant pathology, offering a greater proportion of 
invasive ductal carcinoma (INDC). This makes it valuable for training models and validating models 
focused on identification of cancerous structures.  

The FCBR Corpus includes extensive metadata about each slide [15]. In Table 6, we show a histogram of 
the ICDO-10 codes [39] for both the tissue site and the tumor site. The breast tissue subset was the subset 
of FCDP that c50.* codes for both. A few entries did not contain tumor site codes and were assigned the 
value “cxx.x” as a placeholder.  The most common combination of values for these were c50.9 (“Malignant 
neoplasm of breast of unspecified site”) and c50.4 (“Malignant neoplasm of upper-outer quadrant of 
breast”). Over 90% of the samples are contained in the top 10 code pairs. 

FCBR metadata also contains a wealth of metadata about the diagnosis. Diagnosis from a single pathology 
slide is, of course, a challenging problem (and the reason we are investing research in these resources). In 
Table 7, we show a histogram of several important metadata fields that can be used to interpret the slides 
and guide ML. The first column contains a clustering of the slides into four values [15]: high grade (hg), 
intermediate grade (ig), low grade (lg), and unknown (UNK). These judgements were made using all the 
available metadata and manual annotations. The next three columns represent selected metadata fields that 
were used to support these judgements. Note that only the top 10 most frequent combinations are shown. 
The top 10 for “hg” covers 54% of the corpus while the top 10 for “ig” covers 29% of the corpus. Together 
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these two categories cover over 80% of the corpus. FCBR is much richer with respect to indications of 
cancer than TUBR. 

These datasets are one-of-a kind, meticulously curated, and multi-reviewed data corpora, distinguished by 
their accompanying unique annotations. Each annotation has undergone validation based on patient reports, 
and has been cross-reviewed. This thorough review enhances their reliability for training deep models in 
digital pathology, particularly for breast tissue analysis. The combination of extensive image diversity and 
precise makes the corpora invaluable resources for advancing research in cancer detection and image 
analysis. Given that the dataset originates from two entirely different sources but share the same format, 
they offer a practical framework for evaluating a model’s capacity for generalization across separate data 
domains.  

4. Baseline Experiments 

There has been rapid growth in interest in automated methods for interpretation of digital pathology images 
in recent years. Though many current models have limited capabilities in terms of the type of diagnosis 
they can provide (e.g., only making whole slide classifications), the range of analysis techniques available 
has grown significantly over the years. A generation of models first debuted with only two prediction 
classes (cancerous and non-cancerous). However, models have since evolved to detect a broader range of 
pathologies, including multiple cancer types, precancerous lesions, and various non-cancerous conditions 
(Table 1). Advances in AI-driven digital pathology enable these models to identify complex biomarkers 
and subtle histopathological features, facilitating more precise and personalized treatment options. 
Furthermore, the AI systems can integrate molecular and genomic data, providing a deeper understanding 
of disease mechanisms, prognosis, and potential therapeutic responses, thus transforming the landscape of 
diagnostic pathology. 

Accurate identification of the labeled regions described in Table 2 requires analysis of high resolution 
images at full resolution. This is a problem we refer to as microsegmentation. Since only 2% of the image 
area is annotated, the problem is further complicated by many of the usual challenges in dealing with 
imbalance in data. Also, like many healthcare related applications, false alarm rates are very important, 
since pathologists often need to report on an image even if there are only one or two areas indicated the 
potential for cancer. To avoid over-reporting, false alarm rates need to be vanishingly small, and that is 
often very difficult to achieve for modern ML systems. In this section, we provide some baseline 
experiments using common-off-the-shelf (COTS) technology to demonstrate the challenges faced in 
automatic interpretation of digital pathology images. 

The data was split into three subsets (/train, /dev and /eval) following standard practices to make the sets 
mutually exclusive from a patient perspective, and to achieve approximately a 60% train, 20% dev and 20% 
eval split. We also tried to balance the number of labels occurring in each subset, though in practice there 
are limits to what can be achieved given the number of labeled regions available in the corpus. We prefer a 
60/20/20 split so there are more instances of the less frequently occurring labels in the evaluation set. This 
gives a much more realistic measure of performance in practice. 

Evaluation of performance for this type of data is challenge and often an underappreciated problem. Since 
the vast majority of an image is BCKG, common popular measures such as the DICE score [40] that score 
every pixel are not accurate since they over-emphasize BCKG. Instead, we must use weighted 
approaches [41] that focus only annotated areas and assess the accuracy of the detected boundaries of an 
annotated patch. Factoring in the accuracy of a segmentation is extremely critical in this type of application. 

However, since the images are partially annotated, we must align hypotheses with reference annotations 
and evaluate the extent to which the partially annotated data is correctly segmented and identified. We 
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cannot really assess the accuracy of hypotheses that correspond to unannotated regions since we don’t know 
ground truth. Therefore, we have developed a modified version of the DICE measure that compares the 
degree of overlap between two comparable patches in the reference and hypothesized annotations. This 
scoring system is available as part of our open source digital pathology tools [42]. We refer to this modified 
DICE score as MDICE. It is one of two metrics we will use to analyze performance. 

We will also analyze performance using a modified F1 (MF1) score. In this case, since there is a 
predominance of images that do not contain indications of cancerous morphologies, we will use an F1 score 
averaged across 5 classes of interest (DCIS, INDC, NNEO, INFL and NORM), and one class indicating 
background (BCKG). We compute the F1 score for each of these two groups for an overall judgment about 
the image based on the annotated label, weight the averaged F1 score for the first group by 90% and the 
second group by 10%, and sum them. We ignore NULL, SUSP and ARTF. This modified metric, in our 
experience, gives a much better estimate of the clinical relevance of a hypothesis. 

In this section we will present results using several popular COTS approaches. Though we have generated 
results for a much wider range of algorithms discussed in [43][44], here we focus on three relatively robust 
and popular algorithms: 
• ResNet18: a deep convolutional neural network designed to enable training of very deep architectures by 

addressing the vanishing gradient problem through the use of residual connections [45][46][47]. 

• EB0/EB7: two variants from the EfficientNet family of convolutional neural networks developed to optimize 
both accuracy and efficiency (speed, memory, and power usage) [48]. 

• ViT-16/ViT-32: an alternative to convolutional neural networks that analyzes images using 16x16 or 32x32 pixel 
patches, serializes patches into vectors, and uses a transformer-based architecture for classification [49]. 

These algorithms were selected based on our experiences that they give good performance across a wide 
range of signal and image processing applications. The first two are based on convolutional network 
networks (CNNs), which have proven to be extremely powerful for signal and image applications. The third 
algorithm is based on a transformer architecture. Transformers, which use self-attention to model context, 
are widely considered to be a disruptive force in ML due to their ability to encode long-term sequential and 
spatial dependences [44]. We have adapted these to a variety of tasks involving EEG, digital pathology and 
cardiology applications. 

4.1. Window Size and Sub-Image Selection 

Our first set of experiments were designed to optimize the process of selecting an analysis window. The 
goal with these experiments was to understand how much spatial context was needed to accurately classify 
a patch. We evaluated two approaches to selecting an image to represent an annotated region. In the first 
approach, we drew a rectangular bounding box around the image and then experimented with different 
resampling approaches to make the resulting box a uniform size and/or square (a common shape in image 
processing applications). We refer to this as the “BBOX” method. Since annotated regions are irregularly 
shaped, this method has the potential to include significant amounts of tissue that do not share the same 
label with the reference label. This can result in divergence of a model during training.  

The second approach, which we ultimately preferred because of its simplicity and overall good 
performance, was to compute the center of mass of an annotated region, and then select a window of data 
centered around the center of mass of the region. We refer to this as the “COM” method. Since annotated 
regions can be elongated and irregularly shaped, this approach attempted to identify the most significant 
portion of the region. We included a guard band that allowed the area of the window to be expanded by a 
percentage (e.g., “g25” means we expand the area by 25%). This has the potential to account for 
imperfections in the annotations but also can have an adverse effect of including too much out-of-class data 
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adjacent to the patch of interest. Our hypothesis is that a good ML algorithm should be able to learn to 
differentiate between correctly labeled data and mislabeled data when it sees enough training data. 

The results of several experiments with the COM method are given in Table 8 for TUBR using the MF1 
metric. We see that a window of 1024x1024 pixels with no guard band (g00) gives best performance. 
Results for FCBR are comparable. The results in Table 8 somewhat validate the data in Table 5 in which 
we see that the majority of the annotated regions for labels of interest are in the 1024x1024 range in size. 
This also somewhat validates the accuracy of the manual annotations since they seem to contain enough 
information to reliably classify the window. In fact, experiments with greedy algorithms such as Random 
Forests have confirmed this in that performance on the training data when overtraining can be quite good. 
Hence, for the remainder or our experiments, we focused on the com_w1024x1024_g00 data. 

Using the com_w1024x1024_g00 data, we evaluated the three popular algorithms mentioned above. The 
results are shown in Table 9, which also uses the MF1 metric. In this case, the TUBR experiments involved 
training and evaluating on TUBR. Similarly, the FCBR results were generated by training and evaluating 
solely on FCBR. We see that EB7 performs slightly better than the other two algorithms. We also see that 
performance on the dev set generally correlates well with performance on the blind evaluation set. However, 
there is some evidence of overtraining since the error rates on the training data (closed-set testing) are 
surprisingly low. On one hand, since the datasets are reasonably large, this suggests there is ample 
information in these large windows for good classification performance. On the other hand, it suggests 
overall open-set testing performance could be improved if generalization was improved. Since ViT is a 
transformer based architecture, we expect it to outperform the other algorithms given enough training data. 
Therefore, its slightly inferior performance might be an indication the database is not sufficiently large. 

4.2. Performance on a Sequential Decoding Task Using a Frame-Based Analysis 

Whole-slide pathology images demand models that capture both fine-grained cell morphology and large-
scale tissue architecture. Traditional CNNs, which are used in ResNet18 and EB7, excel at capturing local 
texture patterns, but must rely on very deep stacks (or large filters) to model larger amounts of context. This 
is inefficient for these extremely high resolution pathology images. In contrast, vision transformers use self-
attention to flexibly integrate information across the entire image, encoding long-range dependencies that 
CNNs inherently miss. Indeed, systematic comparisons report that transformer-based models often 
outperform CNNs in cancer segmentation tasks precisely because they encode global context [50]. For 
example, virtually all pure-transformer architectures exceeded CNNs and ResNet architectures in 
histopathology segmentation, thanks to their image-wide attention [51]. This ability to “see” the whole 
tissue at once is critical for breast cancer detection, where tumor regions may only be distinguishable by 
their relationship to distant anatomical landmarks or by subtle patterns that span many cells. 

These limitations motivated our exploration of CNNs better suited for such regimes. EfficientNet offers a 
principled scaling of network depth, width, and resolution to balance representational power and 
computational demand. While larger variants like EB7, which use approximately 66M parameters, achieve 
excellent performance, their memory and FLOPS requirements render them impractical for gigapixel whole 
slide images (WSIs) without hardware acceleration or significant image downsampling. In contrast, EB0, 
which uses approximately 5.3M parameters, delivers competitive accuracy with significantly reduced 
computational overhead – an advantage confirmed in our experiments in Table 8 and Table 9, where EB0 
performance was competitive with EB7. These findings suggest that in data-scarce histopathology 
pipelines, smaller, well-scaled CNNs can generalize more reliably than their deeper, more resource-
intensive counterpart. 

In our next set of baseline experiments, we took the models from the previous experiment and integrated 
them into a frame-level classification scheme. Previously, the systems were only exposed to perfectly 
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registrated images centered around the manually derived annotation. This is often what we call an oracle 
experiment in which we ask the question how good can performance be if the segmentation is perfect. But, 
as is well known in sequential decoding tasks like speech recognition and EEG interpretation, segmentation 
is the hardest part of the problem. For this reason, state of the art algorithms often do simultaneous 
segmentation and classification, so both aspects of the algorithm can be jointly optimized. Hence, in this 
section, we explore performance when these three algorithms are inserted into a system that iterates over 
an image frame by frame, uses a 1024x1024 analysis window, and classifies each frame. 

Of course, this adds a level of complexity to the task, because these frame-level decisions must be 
aggregated into patches, and assessed against the manual annotations by comparing the similarities of these 
patches. Converting frame-level hypotheses to patch-level hypotheses is a well-studied problem and 
normally involves using a heuristic algorithm to decide which frames should be aggregated, and which 
frames should be discarded. Typical approaches to this problem include smoothing filters [52], majority 
filters [53], and morphological techniques based on edges and boundary detection [54]. Ideally, this is a 
problem best solved using another deep learning system as a postprocessor, but we often lack adequate data 
to train such systems. We have implemented a variant of these approaches known as flood-fill that uses 
morphological operations to aggregate similarly labeled frames [55]. We use this in conjunction with 
MDICE to evaluate the overall performance of a segmentation and classification algorithm. 

In Table 10, we provide results for frame-level decoders using a 256x256 frame and a 1024x1024 window, 
and using a pretrained model from Table 9. For this analysis we use a traditional micro F1 score. We see 
that EB0 is the most promising approach. Note that these results are not yet optimal because the model 
being used was only trained on the perfectly registrated images used in Table 9. The model has not been 
exposed to situations where an analysis window only partially overlaps with an annotated region. Hence, 
there is still a mismatch between training and decoding. We believe this contributed to the slight degradation 
in performance for EB7 compared to EB0. 

5. Joint Segmentation and Classification 

The emergence of powerful statistical methods such as hidden Markov Models (HHMs) in the 1990s [56] 
demonstrated the value of jointly optimizing segmentation and classification by doing an exhaustive search 
within the decoding process. These systems share encoders for both localization and diagnostic labeling, 
facilitating shared feature learning, implicit attention, and reduced error propagation from separate 
preprocessors. Their ability to localize information in the data made them extremely valuable as diagnostic 
and discovery tools. Though systems such as SWIN [57][58] and U-NET [59][60] have emerged that 
emulate this approach in a deep learning context, adapting these systems to high resolution pathology 
images has proven to be a challenge. However, our unit tests with these algorithms on smaller manageable 
datasets have shown that their performance is comparable to the algorithms previously discussed. 

As an alternative, we have implemented frame-based versions of ResNet, EfficientNet and ViT that are 
trained on large amounts of pathology data. To avoid data imbalance, we have selected approximately 
100,000 windows from each corpus that best represent the diversity of the data and balance the ratio of 
labels to background. We evaluated these systems on WSIs  and show the results in Table 11. We again see 
that a simpler system, EB0, outperforms the other systems at significantly reduced complexity. 

In Table 12, we present a complexity analysis of our three leading systems. The parameter counts inversely 
correlate with performance – the system with the least number of parameters, EB0, performs best. The 
computational complexity was compared using the same machine (AMD EPYC™ 7413 Processor 24-core 
2.65GHz 128MB Cache) and a single Nvidia A40 GPU. All jobs were run using a single GPU so we could 
generate a fair comparison. As expected, EB0 is quite fast and produces competitive performance, and the 
ViT systems use the most resources but lag slightly in performance. 
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6. Cross-Modal Training Results 

The makeup of training data strongly shapes the model architecture and training strategy. Consider two 
example datasets: a large, heterogeneous collection like TUDP (~100k images of diverse normal and 
pathological tissues) versus a focused set like FCDP (∼14k images emphasizing oncological cases, 
including a breast cancer subset with detailed annotations). These differences lead to very different learning 
problems. For instance, FCDP’s breast subset contains a high proportion of malignant tissue, whereas 
TUDP’s slides include many normal biopsies and benign findings. A model trained on TUDP would see 
many more normal patterns, risking that it learns to under-detect cancer (a majority-class bias). By contrast, 
training on FCDP might make the model sensitive to cancerous features but possibly prone to false positives 
when deployed on general data 

The origin and diversity of images also influence generalization. Models trained on the narrow domain of 
FCDP’s cancer cases might perform very well on similar breast images but poorly on new hospitals or on 
other tissue types. In contrast, a model trained on TUDP’s wide-ranging tissues might be more robust across 
subtypes. Analogously, multi-center studies (e.g. separate lung or breast histology cohorts) often find that 
stain differences or scanner artifacts shift the distribution [61]. For example, in a breast histology 
benchmark the target dataset (BreakHis) contained thousands of patches from one source and had a very 
different class balance than the small ICIAR source set. In practice, one must watch how differing dataset 
composition affects the model’s sensitivity and specificity. A model trained on high-prevalence cancer data 
might achieve high sensitivity but at the cost of specificity when applied to general screening images. 
Conversely, one trained mostly on normal tissue might under-predict disease and suffer low recall. Careful 
calibration, perhaps through threshold tuning or meta-learning of prevalence, is necessary to maintain an 
appropriate balance between false positives and false negatives given each dataset’s statistics. 

In Table 13, we present a series of experiments in which we evaluate mismatched training conditions. In 
the first two groups of experiments, each system is trained on one corpus and evaluated on both. In the third 
set of experiments, the systems are trained on the pooled data. We see that best performance is obtained 
when the training and evaluation data are drawn from the same distribution, and pooling the data results in 
a small improvement in performance in both cases. This is a lesson learned all too often in ML – learning 
how to use more data is an important part of the process of improving performance by adding new data. 
These experiments suggest that more research is needed to understand how best to leverage the pooled 
dataset into better generalization. 

7. Conclusions 

The integration of newly annotated breast tissue data from FCDP and TUDP strengthens the robustness and 
generalizability of machine learning models in digital pathology. These datasets enable training and 
validation on diverse tissue structures, disease stages, and pathological features. A dual-dataset approach 
fosters the development of resilient AI models capable of handling image variability, annotation styles, and 
disease presentations, ultimately enhancing diagnostic precision and adaptability in pathology. 

In this chapter we have introduced the science behind the annotation process so that ML researchers can 
better appreciate the challenges with this data. Improving the performance of an ML system and making 
that system clinically relevant often requires developing a good understanding of the basic science. We 
have also established baseline performance of some well-known algorithms. Even though performance has 
improved dramatically in recent years, it is clear that we have a way to go before the technology will be 
clinically acceptable. 

Going forward, we plan to develop transformer based architectures that encode long-term spatial context. 
There are numerous computational challenges associated with this since the data must be streamed into the 
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trainer because it is impossible to fit all the data in computer memory in one time. Hence, we will need to 
rethink the architecture and workflows so that we can train on the entire corpus using context lengths of 
100,000 steps. The amount of memory required to hold sufficient context for each frame is extremely large, 
so we need to explore architectures that efficiently encode context. 

For more information about the resources presented here, please refer to our project web site: 
www.nedcdata.org. 

Acknowledgements 

This material is based on work supported by several organizations over the years including the National 
Science Foundation (grants nos. CNS-1726188 and 1925494), the Temple University Catalytic 
Collaborative Funding Initiative and most recently by the Pennsylvania Breast Cancer Coalition Breast and 
Cervical Cancer Research Initiative. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not necessarily reflect the views of these 
organizations. 

References 

[1] Bacus, J. V., & Bacus, J. W. (1995). Method and apparatus for automated assay of biological 
specimens (United States Patent US-5473706-A). 
url: https://patents.google.com/patent/US5473706A. 

[2] Kusta, O., Rift, C. V., Risør, T., Santoni-Rugiu, E., & Brodersen, J. B. (2022). Lost in 
digitization – A systematic review about the diagnostic test accuracy of digital pathology 
solutions. Journal of Pathology Informatics, 13, 100136. doi: 10.1016/j.jpi.2022.100136. 

[3] Xu, H., & Remick, D. G. (2016). Pathology: A Satisfying Medical Profession. Academic 
Pathology, 3, 2374289516661559. doi: 10.1177/2374289516661559. 

[4] Metter, D. M., Colgan, T. J., Leung, S. T., Timmons, C. F., & Park, J. Y. (2019). Trends in the 
US and Canadian Pathologist Workforces From 2007 to 2017. JAMA Network Open, 2(5), 
Article 5. doi: 10.1001/jamanetworkopen.2019.4337. 

[5] Walsh, E., & Orsi, N. M. (2024). The current troubled state of the global pathology workforce: A 
concise review. Diagnostic Pathology, 19(1), Article 1. doi: 10.1186/s13000-024-01590-2. 

[6] Jhala, N. (2017). Digital Pathology: Advancing Frontiers. IEEE Signal Processing in Medicine 
and Biology Symposium (SPMB). https://doi.org/10.1109/SPMB.2017.8257013. 

[7] Holloman, A. M., Berg, M. P., Bryant, B., Dixon, L. R., George, M. R., Karp, J. K., Knollmann-
Ritschel, B. Ec., Prieto, V. G., Timmons, C. F., Childs, J. M., Lofgreen, A., Johnson, K., & 
McCloskey, C. B. (2023). Experiential exposure as the key to recruiting medical students into 
pathology. Academic Pathology, 10(2), Article 2. doi: 10.1016/j.acpath.2023.100074. 

[8] The Paige Prostate Suite: Assistive Artificial Intelligence for Prostate Cancer Diagnosis: 
Emerging Health Technologies (EH0123; p. 23). (2024). Canadian Agency for Drugs and 
Technologies in Health. url: https://www.ncbi.nlm.nih.gov/books/NBK608438/. 

[9] Matthews, G. A., McGenity, C., Bansal, D., & Treanor, D. (2024). Public evidence on AI 
products for digital pathology. Npj Digital Medicine, 7(1), Article 1. doi: 10.1038/s41746-024-
01294-3. 

[10] Bellis, M., Metias, S., Naugler, C., Pollett, A., Jothy, S., & Yousef, G. M. (2013). Digital 
Pathology: Attitudes and practices in the Canadian pathology community. Journal of Pathology 
Informatics, 4(1), Article 1. doi: 10.4103/2153-3539.108540. 



Hackel et al.: Enabling Microsegmentation: Digital Pathology Corpora … Page 19 of 43 

IEEE SPMB 2024 v3.0: August 24, 2025  

[11] Clarke, E., Doherty, D., Randell, R., Grek, J., Thomas, R., Ruddle, R. A., & Treanor, D. (2023). 
Faster than light (microscopy): Superiority of digital pathology over microscopy for assessment 
of immunohistochemistry. Journal of Clinical Pathology, 76(5), 333. doi: 10.1136/jclinpath-
2021-207961. 

[12] McGenity, C., Clarke, E. L., Jennings, C., Matthews, G., Cartlidge, C., Freduah-Agyemang, H., 
Stocken, D. D., & Treanor, D. (2024). Artificial intelligence in digital pathology: A systematic 
review and meta-analysis of diagnostic test accuracy. Npj Digital Medicine, 7(1), Article 1. 
doi: https://doi.org/10.1038/s41746-024-01106-8. 

[13] Shawki, N., Shadhin, M. G. M., Elseify, T., Jakielaszek, L., Farkas, T., Persidsky, Y., Jhala, N., 
Obeid, I., & Picone, J. (2020). The Temple University Digital Pathology Corpus. In I. Obeid, I. 
Selesnick, & J. Picone (Eds.), Signal Processing in Medicine and Biology: Emerging Trends in 
Research and Applications (1st ed., pp. 67–104). doi: 10.1007/978-3-030-36844-9. 

[14] Doshna, B., Wevodau, Z., Jhala, N., Akhtar, I., Obeid, I., & Picone, J. (2021). The Temple 
University Digital Pathology Corpus: The Breast Tissue Subset. In I. Obeid, I. Selesnick, & J. 
Picone (Eds.), Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium 
(SPMB) (pp. 1–3). IEEE. doi: https://doi.org/10.1109/SPMB52430.2021.9672275. 

[15] Shalamzari, S. S., Bagritsevich, M., Melles, Anne-Mai, Obeid, I., Picone, J., Connolly, D., Wu, 
C., Brown, B., James, J., Gong, Y., & Wu, H. (2023). Big Data Resources for Digital Pathology. 
Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 1–19. 
doi: 10.1109/SPMB59478.2023.10372721. 

[16] Bagritsevich, M., Hackel, D., Obeid, I., & Picone, J. (2024). Annotation of the Fox Chase Cancer 
Center Digital Pathology Corpus. Proceedings of the IEEE Signal Processing in Medicine and 
Biology Symposium, 1–4. doi: 10.1109/SPMB62441.2024.10842255. 

[17] Rolls, G. (2019). An Introduction to Specimen Preparation. In Leica Biosystems (p. 1). 
url: https://www.leicabiosystems.com/pathologyleaders/an-introduction-to-specimen-preparation. 

[18] Anderson, J. (2019). An Introduction to Routine and Special Staining. In Leica Biosystems (p. 1). 
url: https://www.leicabiosystems.com/pathologyleaders/an-introduction-to-routine-and-special-
staining. 

[19] Niyas, S., Bygari, R., Naik, R., Viswanath, B., Ugwekar, D., Mathew, T., Kavya, J., Kini, J. R., & 
Rajan, J. (2023). Automated Molecular Subtyping of Breast Carcinoma Using Deep Learning 
Techniques. IEEE Journal of Translational Engineering in Health and Medicine, 11, 161–169. 
doi: 10.1109/JTEHM.2023.3241613. 

[20] Madabhushi, A., & Lee, G. (2016). Image analysis and machine learning in digital pathology: 
Challenges and opportunities. Medical Image Analysis, 33, 170–175. 
doi: 10.1016/j.media.2016.06.037. 

[21] Wu, H., Phan, J. H., Bhatia, A. K., Cundiff, C. A., Shehata, B. M., & Wang, M. D. (2015). 
Detection of blur artifacts in histopathological whole-slide images of endomyocardial biopsies. 
2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society (EMBC), 727–730. doi: 10.1109/EMBC.2015.7318465. 

[22] Leica Biosystems. (2008). ScanScope SVS file format specifications. 
url: https://www.leicabiosystems.com/products/whole-slide-imaging/scanscope-svs-file-format/. 

[23] Goode, A., Gilbert, B., Harkes, J., Jukic, D., & Satyanarayanan, M. (2013). OpenSlide: A vendor-
neutral software foundation for digital pathology. Journal of Pathology Informatics, 4(1), 
Article 1. doi: 10.4103/2153-3539.119005. 



Hackel et al.: Enabling Microsegmentation: Digital Pathology Corpora … Page 20 of 43 

IEEE SPMB 2024 v3.0: August 24, 2025  

[24] Obeid, I., & Picone, J. (2016). The Temple University Hospital EEG Data Corpus. In M. A. 
Lebedev (Ed.), Augmentation of Brain Function: Facts, Fiction and Controversy. Volume I: 
Brain-Machine Interfaces (1st ed., Vol. 10, pp. 394–398). Frontiers Media S.A. 
doi: 10.3389/fnins.2016.00196. 

[25] Simons, J., Wevodau, Z., Doshna, B., Obeid, I., & Picone, J. (2021). The Temple University 
Hospital DPATH Corpus: Annotation Guidelines (p. 18). Temple University. 
url: https://isip.piconepress.com/publications/reports/2021/tuh_dpath/annotations/. 

[26] Hoda, S. A., Rosen, P. P., Brogi, E., & Koerner, F. C. (2020). Rosen’s Breast Pathology. Wolters 
Kluwer Health. url: https://shop.lww.com/Rosen-s-Breast-Pathology/p/9781496398918. 

[27] Gurcan, M. N., Boucheron, L. E., Can, A., Madabhushi, A., Rajpoot, N. M., & Yener, B. (2009). 
Histopathological Image Analysis: A Review. IEEE Reviews in Biomedical Engineering, 2, 147–
171. doi: 10.1109/RBME.2009.2034865. 

[28] Raghavendra, A. S., Bassett, R., Damodaran, S., Barcenas, C. H., Mouabbi, J. A., Layman, R., & 
Tripathy, D. (2025). Clinical Characteristics and Survival Outcomes of Metastatic Invasive 
Lobular and Ductal Carcinoma. JAMA Network Open, 8(4), e251888. 
doi: 10.1001/jamanetworkopen.2025.1888. 

[29] Cireşan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2013). Mitosis detection in 
breast cancer histology images with deep neural networks. International Conference on Medical 
Image Computing and Computer-Assisted Intervention, 16(Pt 2), 411–418. doi: 10.1007/978-3-
642-40763-5_51. 

[30] Condrescu, M., Opuni, K., Hantash, B. M., & Reeves, J. P. (2002). Cellular regulation of sodium-
calcium exchange. Annals of the New York Academy of Sciences, 976, 214–223. 
doi: 10.1111/J.1749-6632.2002.TB04744.X. 

[31] Cross, B. M., Breitwieser, G. E., Reinhardt, T. A., & Rao, R. (2014). Cellular calcium dynamics 
in lactation and breast cancer: From physiology to pathology. American Journal of Physiology-
Cell Physiology, 306(6), Article 6. doi: 10.1152/ajpcell.00330.2013. 

[32] Hackel, D., Bagritsevich, M., Dumitrescu, C., Al Mamun, Md. A., Purba, S. A., Heathcote, D., 
Obeid, I., & Picone, J. (2026). Enabling Microsegmentation: Digital Pathology Corpora for 
Advanced Model Development. In Signal Processing in Medicine and Biology: Applications of 
Artificial Intelligence in Medicine and Biology (Vol. 1, p. 50). Springer. 
url: https://isip.piconepress.com/publications/book_sections/2026/springer/dpath/. (in review). 

[33] Sapino, A., & Kulka, J. (Eds.). Breast Pathology (1st ed. 2020). Cham : Springer International 
Publishing : Imprint: Springer, 2020. url: https://link.springer.com/referencework/10.1007/978-3-
319-62539-3. 

[34] Tozbikian, G., Brogi, E., Vallejo, C. E., Giri, D., Murray, M., Catalano, J., Olcese, C., Van Zee, 
K. J., & Wen, H. Y. (2017). Atypical Ductal Hyperplasia Bordering on Ductal Carcinoma In Situ. 
International Journal of Surgical Pathology, 25(2), 100–107. doi: 10.1177/1066896916662154. 

[35] Elmore, J. G., Longton, G. M., Carney, P. A., Geller, B. M., Onega, T., Tosteson, A. N. A., 
Nelson, H. D., Pepe, M. S., Allison, K. H., Schnitt, S. J., O’Malley, F. P., & Weaver, D. L. 
(2015). Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy Specimens. 
Journal of the American Medical Association, 313(11), 1122–1132. 
doi: 10.1001/JAMA.2015.1405. 

[36] Lambert, B., Forbes, F., Doyle, S., Dehaene, H., & Dojat, M. (2024). Trustworthy clinical AI 
solutions: A unified review of uncertainty quantification in Deep Learning models for medical 



Hackel et al.: Enabling Microsegmentation: Digital Pathology Corpora … Page 21 of 43 

IEEE SPMB 2024 v3.0: August 24, 2025  

image analysis. Artificial Intelligence in Medicine, 150, 102830. 
doi: 10.1016/j.artmed.2024.102830. 

[37] Yin, L., Duan, J.-J., Bian, X.-W., & Yu, S. (2020). Triple-negative breast cancer molecular 
subtyping and treatment progress. Breast Cancer Research, 22(1), 61. doi: 10.1186/s13058-020-
01296-5. 

[38] Nong, L., Zhang, Z., Xiong, Y., Zheng, Y., Li, X., Li, D., He, Q., & Li, T. (2019). Comparison of 
next-generation sequencing and immunohistochemistry analysis for targeted therapy-related 
genomic status in lung cancer patients. Journal of Thoracic Disease, 11(12), 4992–5003. 
doi: 10.21037/jtd.2019.12.25. 

[39] “ICD-10-CM, Official Guidelines for Coding and Reporting”, Centers for Medicare & Medicaid 
Services (CMS), January 01, 2020, url: https://www.hhs.gov/guidance/sites/default/files/hhs-
guidance-documents/ICD-10-CM_Guidelines-FY2020_final.pdf. 

[40] Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., & Li, J. (2020). Dice Loss for Data-imbalanced NLP 
Tasks. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 
465–476. doi: 10.18653/v1/2020.acl-main.45. 

[41] Jadon, S. (2020). A survey of loss functions for semantic segmentation. 2020 IEEE Conference 
on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 1–7. 
doi: 10.1109/CIBCB48159.2020.9277638. 

[42] Bagritsevich, M., Picone, J., & Obeid, I. (2024). The TUH Digital Pathology Corpus. 
url: https://isip.piconepress.com/projects/nedc/html/tuh_dpath/. 

[43] Thai, B., McNicholas, S., Shalamzari, S. S., Meng, P., & Picone, J. (2023). Towards a More 
Extensible Machine Learning Demonstration Tool. Proceedings of the IEEE Signal Processing in 
Medicine and Biology Symposium, 1–4. doi: 10.1109/SPMB59478.2023.10372731. 

[44] Thundiyil, S. C., & Picone, J. (2025). Time Series Analysis from Classical Methods to 
Transformer-Based Approaches: A Review. In Signal Processing in Medicine and Biology: 
Applications of Artificial Intelligence in Medicine and Biology (Vol. 1, p. 56). Springer. 
url: https://isip.piconepress.com/publications/book_sections/2024/springer/transformers/. (in 
publication). 

[45] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 
770–778. doi: 10.1109/CVPR.2016.90. 

[46] Khalkhali, V., Shawki, N., Shah, V., Golmohammadi, M., Obeid, I., & Picone, J. (2021). Low 
Latency Real-Time Seizure Detection Using Transfer Deep Learning. In I. Obeid, I. Selesnick, & 
J. Picone (Eds.), Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium 
(SPMB) (pp. 1–7). IEEE. doi: 10.1109/SPMB52430.2021.9672285. 

[47] Alexandrov, D., & Picone, J. (2024). The Impact of ECG Channel Reduction on Multi-Label 
Cardiac Diagnosis. Proceedings of the IEEE Signal Processing in Medicine and Biology 
Symposium (SPMB), 6. doi: 10.1109/SPMB62441.2024.10842233. 

[48] Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural 
Networks. In K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of the International 
Conference on Machine Learning (ICML) (Vol. 97, pp. 6105–6114). PMLR. 
url: http://proceedings.mlr.press/v97/tan19a.html. 

[49] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, 
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An Image is Worth 



Hackel et al.: Enabling Microsegmentation: Digital Pathology Corpora … Page 22 of 43 

IEEE SPMB 2024 v3.0: August 24, 2025  

16x16 Words: Transformers for Image Recognition at Scale. Proceedings of the International 
Conference on Learning Representations (ICLR), 1–21. url: https://iclr.cc/virtual/2021/oral/3458. 

[50] Atabansi, C. C., Nie, J., Liu, H., Song, Q., Yan, L., & Zhou, X. (2023). A survey of Transformer 
applications for histopathological image analysis: New developments and future directions. 
BioMedical Engineering OnLine, 22(1), 96. doi: 10.1186/s12938-023-01157-0. 

[51] Cam Nguyen, Zuhayr Asad, Ruining Deng, & Yuankai Huo. (2022). Evaluating transformer-
based semantic segmentation networks for pathological image segmentation. Proceedings of the 
SPIE 12032, Medical Imaging 2022: Image Processing, 120323N. doi: 10.1117/12.2611177. 

[52] Gonzalez, R., & Woods, R. (2017). Digital Image Processing. Pearson Deutschland. 
url: https://elibrary.pearson.de/book/99.150005/9781292223070. 

[53] Janz, A., Jakimow, B., Thiel, F., Goswami, A., van der Linden, S., & Hostert, P. (2025, June 15). 
Generic Filter (Majority). EnMAP-Box 3 Documentation. url: https://enmap-
box.readthedocs.io/en/latest/usr_section/usr_cookbook/generic_filter.html. 

[54] ArcGIS Pro 3.5. (2025, June 15). Smoothing zone edges with Boundary Clean and Majority 
Filter. ArcGIS Pro. url: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-
analyst/smoothing-zone-edges-with-boundary-clean-and-majority-filter.htm. 

[55] Nghiem, Y., Berman, L., & Bulik, A. (2024). Machine Learning in Digital Pathology. Senior 
Design I, College of Engineering, Temple University, 1–37. 
url: https://isip.piconepress.com/publications/presentations_misc/2024/senior_design/mladp. 

[56] Picone, J. (1990). Continuous Speech Recognition Using Hidden Markov Models. IEEE 
Acoustics, Speech, and Signal Processing Society (ASSP), 7(3), 26–41. Doi: 10.1109/53.54527. 

[57] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin 
Transformer: Hierarchical Vision Transformer using Shifted Windows. 2021 IEEE/CVF 
International Conference on Computer Vision (ICCV), 9992–10002. 
doi: 10.1109/ICCV48922.2021.00986. 

[58] Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong, L., Wei, F., 
& Guo, B. (2022). Swin Transformer V2: Scaling Up Capacity and Resolution. 2022 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), 11999–12009. 
doi: 10.1109/CVPR52688.2022.01170. 

[59] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical 
Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), 
Proceedings of the International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI) (pp. 234–241). Springer International Publishing. 
doi: 10.1007/978-3-319-24574-4_28. 

[60] Cui, J., Guo, H., Wang, H., Chen, F., Shu, L., & Li, L. C. (2020). Fully-automatic segmentation 
of coronary artery using growing algorithm. Journal of X-Ray Science and Technology, 28(6), 
1171–1186. doi: 10.3233/XST-200707. 

[61] Asadi-Aghbolaghi, M., Darbandsari, A., Zhang, A., Contreras-Sanz, A., Boschman, J., 
Ahmadvand, P., Köbel, M., Farnell, D., Huntsman, D. G., Churg, A., Black, P. C., Wang, G., 
Gilks, C. B., Farahani, H., & Bashashati, A. (2024). Learning generalizable AI models for multi-
center histopathology image classification. NPJ Precision Oncology, 8(1), 151. 
doi: 10.1038/s41698-024-00652-4. 



Hackel et al.: Enabling Microsegmentation: Digital Pathology Corpora … Page 23 of 43 

IEEE SPMB 2024 v3.0: August 24, 2025  

List of Tables 

Table 1. An overview of publicly available breast histological H&E corpora  ......................................... 24 

Table 2. Labels for the TUH and FCCC breast tissue corpora  .................................................................. 25 

Table 3. A comparison of TUDP and FCDP  ............................................................................................. 26 

Table 4. A comparison of the annotations for TUBR and FCBR  ............................................................. 27 

Table 5. A comparison of annotation dimensions  ..................................................................................... 28 

Table 6. A histogram of tissue site and tumor site codes for FCBR  ......................................................... 29 

Table 7. The top 10 entries for derived grades for FCBR  ......................................................................... 30 

Table 8. Patch-level classification results (MF1) as a function of the window dimensions for TUBR  ..... 31 

Table 9. A comparison (MF1) of selected popular algorithms on window-based classification  .................. 32 

Table 10. A comparison of decoder performance (MDICE) using pretrained models  ................................ 33 

Table 11. The performance of optimized systems  .................................................................................... 34 

Table 12. Complexity analysis for three popular ML algorithms  ............................................................. 35 

Table 13. The impact of mismatched training conditions  ......................................................................... 36 

 



Hackel et al.: Enabling Microsegmentation: Digital Pathology Corpora … Page 24 of 43 

IEEE SPMB 2024 v3.0: August 24, 2025  

 

Table 1. An overview of publicly available breast histological H&E corpora 

Dataset Size 
(GB) 

Subjects Annotations No. 
Samples 

Data Origin Pixel size 
(μm/pixel) 

ACROBAT 1164 1152 Invasive Cancer, Non-
Malignant, Artefacts, Ductal 

Carcinoma, Lobular Carcinoma, 
Normal 

4212 
WSIs 

Karolinska Institutet (SE) 0.91 

BACH / ICIAR 2018 13 - Normal, Benign, InSitu, 
Invasive 

400 
slides 

30 WSIs 

 Ipatimup and INEB (PT) 0.50 

BCNB 33 1058 Coordinates of Tumor 1058 
WSIs 

Beijing University of Posts and 
Telecommunications (CN) 

- 

BRACS 1100 189 Benign, Ductal Hyperplasia (2), 
Flat Epithelial Ductal 
Carcinoma, Invasive 
Carcinoma, Normal 

547 
WSIs 

Institute for High Performance 
Computing and Networking 

(IT) 

0.25 

BreaKHist 2 82 4 Benign, 4 Malignant subtypes 7909 
slides 

P&D Lab, Federal University 
of Parana (Brazil) 

multiple 

CAMELYON16 1160 399 Tumor, Normal 400 WSI Radboud University Medical 
Center, UMC Utrecht (NL) 

0.24 

CAMELYON17 2950 200 Negative, ITC, Micro-
metastasis, Macro-metastasis 

1399 
WSIs 

Radboud University Medical 
Center, UMC Utrecht (NL) 

0.24 

CPTAC-BRCA 113 134 Cancer, Normal 642 
WSIs 

Clinical Proteomic Tumor 
Analysis Consortium (USA) 

0.25 
0.50 

GTEx-breast 80 894 Pathology (unlocated) 894 
WSIs 

Broad Institute of MIT and 
Harvard (USA) 

0.50 

HER2 / Warwick 20 86 HER2 Score 172 
WSIs 

University of Warwick, 
University of Nottingham, and 
AIDPATH consortium (UK) 

0.23 

HEROHE 820 360 Binary 500 
WSIs 

Institute of Research and 
Innovation in Health from Porto 

(PT) 

0.24 

SPIDER 85  18 morphologies 1925 
slides 

HistAI initiative 0.40 

TCGA-BRCA 1640  1098 Nuclei segmentations 3111 
WSIs 

The Cancer Genome Atlas 
(USA) 

0.25 

TIGER 169 370 Tumor, Stroma, Lymphocytes, 
Necrosis 

 

370 
WSIs 

Radboud University Medical 
Center of Nijmegen (NL), Jules 

Bordet Institut (BE) and 
TCGA-BRCA 

0.50 

TUBR 1226 296 Artifact, Background, Ductal 
Carcinoma, Invasive Ductal 
Carcinoma, Inflammation, 

Nonneoplastic, Normal, Null, 
Suspicious 

3505 Temple University Hospital 
(USA) 

0.20 

FCBR 336 1397 1463 Fox Chase Cancer Center 
(USA) 

0.20 
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 Table 2. Labels for the TUH and FCCC breast tissue corpora 

Label Description / Features 

Normal (NORM) normal ducts and lobules 

Ductal Carcinoma in Situ (DCIS) ductal carcinoma in situ, and lobular carcinoma in situ 

Invasive Ductal Carcinoma (INDC) invasive ductal carcinoma, invasive lobular carcinoma, and 
invasive mammary carcinoma 

Non-Neoplastic (NNEO) fibrosis, hyperplasia, intraductal papilloma, adenosis, ectasia, 
etc. 

Inflammation (INFL) areas of inflammation 

Artifact (ARTF) grease pen marks, stitches, foreign bodies, etc. 

Indistinguishable (NULL) indistinguishable tissue, normally due to issues with the cut/stain 

Suspected (SUSP) regions that are at risk of developing into cancerous regions 

Background (BCKG) stroma, no ducts or lobules 

 



Hackel et al.: Enabling Microsegmentation: Digital Pathology Corpora … Page 26 of 43 

IEEE SPMB 2024 v3.0: August 24, 2025  

 Table 3. A comparison of TUDP and FCDP 

Attribute TUDP (v1.0.0) FCDP (v1.0.0) 

No. Files 99,123 14,276 

Amount of Data 21.123 GB 3.497 GB 

Average File Size 456 MB 237 MB 

Approximate Composition 
(top four categories) 

C64 (  kidney): 16% 
C61 (prostate): 13% 
C34 (    lung): 10% 
C50 (  breast): 10% 

urinary/prostate: 37% 
breast: 21% 
gastro: 18% 
gyneco:  8% 
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 Table 4. A comparison of the annotations for TUBR and FCBR 

Attribute TUBR (v5.0.0) FCBR (v3.0.1) 

No. Files:    
/train 

/dev 
/eval 
TOTAL 

 
1,652 

932 
921 

3,505 

 
765 
373 
325 

1,463 

Amount of Data (Gbytes) 1.226 3.497 

No. Labels 22,283 20,085 

Avg. No. Labels Per Slide 6.36 13.73 

Annotated Area Per Slide (%) 1.96% 2.53% 

No. Labels:    
norm 
dcis 
indc 
nneo 
infl 
artf 
null 
susp 
bckg 

 
4,797 [21.53%] 
1,048 [ 4.70%] 
1,512 [ 6.79%] 
7,162 [32.14%] 

970 [ 4.35%] 
1,118 [ 5.02%] 

618 [ 2.77%] 
115 [ 0.52%] 

4,953 [22.18%] 

 
325 [ 1.62%] 

1,209 [ 6.02%] 
10,955 [54.54%] 

728 [ 3.62%] 
1,215 [ 6.05%] 

914 [ 4.55%] 
1,090 [ 5.43%] 

24 [ 0.12%] 
3,625 [18.05%] 

Area of Labels: 
    64 x     64     

       128 x    128    
    256 x    256    

       512 x    512    
      1,024 x  1,024   
      2,048 x  2,048   
      4,096 x  4,096   
      8,192 x  8,192   
     16,384 x 16,384  
     32,768 x 32,768  
     65,536 x 65,536 

 
2 [ 0.01%] 

130 [ 0.58%] 
1,132 [ 5.08%] 
4,346 [19.50%] 
6,555 [29.42%] 
4,892 [21.95%] 
3,372 [15.13%] 
1,433 [ 6.43%] 

386 [ 1.73%] 
35 [ 0.16%] 
0 [ 0.00%] 

 
    250 [ 1.24%] 

   1,001 [ 4.98%] 
   2,677 [13.33%] 
   5,051 [25.15%] 
   5,651 [28.14%] 
   3,764 [18.74%] 
   1,363 [ 6.79%] 
    304 [ 1.51%] 
     23 [ 0.11%] 
      1 [ 0.00%] 
      0 [ 0.00%] 
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 Table 5. A comparison of annotation dimensions 

Label TUBR FCBR 

dcis: 
    64 x     64     

       128 x    128    
    256 x    256    

       512 x    512    
      1,024 x  1,024   
      2,048 x  2,048   
      4,096 x  4,096   
      8,192 x  8,192   
     16,384 x 16,384  
     32,768 x 32,768  
     65,536 x 65,536 

 
0 [ 0.00%] 
0 [ 0.00%] 
5 [ 0.48%] 

137 [13.07%] 
970 [ 4.35%] 
346 [33.02%] 
91 [ 8.68%] 
7 [ 0.67%] 
0 [ 0.00%] 
0 [ 0.00%] 
0 [ 0.00%] 

 
3 [ 0.25%] 

91 [ 7.53%] 
147 [12.16%] 
311 [25.72%] 
427 [35.32%] 
210 [17.37%] 
19 [ 1.57%] 
1 [ 0.08%] 
0 [ 0.00%] 
0 [ 0.00%] 
0 [ 0.00%] 

indc: 
    64 x     64     

       128 x    128    
    256 x    256    

       512 x    512    
      1,024 x  1,024   
      2,048 x  2,048   
      4,096 x  4,096   
      8,192 x  8,192   
     16,384 x 16,384  
     32,768 x 32,768 

65,536 x 65,536 

 
0 [ 0.00%] 
4 [ 0.26%] 

47 [ 3.11%] 
179 [11.84%] 
450 [29.76%] 
551 [36.44%] 
254 [16.80%] 
26 [ 1.72%] 
1 [ 0.07%] 
0 [ 0.00%] 
0 [ 0.00%] 

 
4 [ 0.04%] 

132 [ 1.20%] 
1,031 [ 9.41%] 
3,093 [28.23%] 
3,545 [32.26%] 
2,181 [19.91%] 

790 [ 7.21%] 
169 [ 1.54%] 
10 [ 0.09%] 
0 [ 0.00%] 
0 [ 0.00%] 

nneo: 
    64 x     64     

       128 x    128    
    256 x    256    

       512 x    512    
      1,024 x  1,024   
      2,048 x  2,048   
      4,096 x  4,096   
      8,192 x  8,192   
     16,384 x 16,384  
     32,768 x 32,768 

65,536 x 65,536 

 
0 [ 0.00%] 
2 [ 0.03%] 

126 [ 1.76%] 
1,398 [19.52%] 
3,010 [42.03%] 
1,933 [26.99%] 

597 [ 8.34%] 
84 [ 1.17%] 
12 [ 0.17%] 
0 [ 0.00%] 
0 [ 0.00%] 

 
0 [ 0.00%] 
8 [ 1.10%] 

133 [18.27%] 
266 [36.54%] 
223 [30.63%] 
82 [11.26%] 
15 [ 2.06%] 
1 [ 0.14%] 
0 [ 0.00%] 
0 [ 0.00%] 
0 [ 0.00%] 

infl: 
    64 x     64     

       128 x    128    
    256 x    256    

       512 x    512    
      1,024 x  1,024   
      2,048 x  2,048   
      4,096 x  4,096   
      8,192 x  8,192   
     16,384 x 16,384  
     32,768 x 32,768 

65,536 x 65,536 

 
0 [ 0.00%] 

74 [ 7.63%] 
225 [23.20%] 
337 [34.74%] 
277 [28.56%] 
50 [ 5.15%] 
7 [ 0.72%] 
0 [ 0.00%] 
0 [ 0.00%] 
0 [ 0.00%] 
0 [ 0.00%] 

 
66 [ 0.00%] 

310 [ 0.26%] 
453 [ 3.11%] 
282 [11.84%] 

9 [29.76%] 
1 [36.44%] 
0 [16.80%] 
0 [ 1.72%] 
0 [ 0.07%] 
0 [ 0.00%] 
0 [ 0.00%] 
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 Table 6. A histogram of tissue site and tumor site codes for FCBR 

Tissue Site 
(ICDO Code) 

Tumor Site 
(ICDO Code) Count 

c50.9 c50.4 334 

c50.9 c50.8 278 

c50.9 c50.9 158 

c50.4 c50.4 155 

c50.8 c50.8 92 

c50.9 c50.2 86 

c50.9 c50.5 70 

c50.9 c50.1 62 

c50.2 c50.2 55 

c50.9 c50.3 50 

c50.5 c50.5 36 

c50.3 c50.3 26 

c50.1 c50.1 25 

c50.9 cxx.x 20 

c50.0 c50.0 3 

c50.9 c50.6 2 

c50.9 c50.0 2 

c50.1 c50.4 2 

c50.9 c63.9 1 

c50.8 c50.4 1 

c50.8 cxx.x 1 

c50.6 c50.6 1 

c50.5 c50.4 1 

c50.4 cxx.x 1 

c50.3 c50.2 1 
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 Table 7. The top 10 entries for derived grades for FCBR 

Derived 
Grade Behavior 

ICDO 
(Histology) Cancer Status Count 

hg MALIG-PRIMARY 8500/3 No Evidence of this cancer 399 
hg MALIG-PRIMARY 8500/3 Evidence of this cancer 170 
hg MALIG-PRIMARY 8500/3 Unknown, indeterminate whether this cancer present 91 
hg MALIG-PRIMARY 8522/3 No Evidence of this cancer 34 

hg MALIG-PRIMARY 8520/3 No Evidence of this cancer 31 

hg MALIG-PRIMARY 8523/3 No Evidence of this cancer 19 

hg MALIG-PRIMARY 8520/3 Evidence of this cancer 18 

hg MALIG-PRIMARY 8522/3 Evidence of this cancer 14 

hg MALIG-PRIMARY 8520/3 Unknown, indeterminate whether this cancer present 8 

hg CA IN SITU 8501/2 No Evidence of this cancer 7 

ig MALIG-PRIMARY 8500/3 No Evidence of this cancer 220 

ig MALIG-PRIMARY 8520/3 No Evidence of this cancer 65 

ig MALIG-PRIMARY 8522/3 No Evidence of this cancer 35 

ig MALIG-PRIMARY 8500/3 Evidence of this cancer 33 

ig MALIG-PRIMARY 8500/3 Unknown, indeterminate whether this cancer present 30 

ig MALIG-PRIMARY 8522/3 Evidence of this cancer 14 

ig MALIG-PRIMARY 8520/3 Evidence of this cancer 13 

ig CA IN SITU 8523/2 No Evidence of this cancer 8 

ig MALIG-PRIMARY 8524/3 No Evidence of this cancer 5 

ig MALIG-PRIMARY 8523/3 No Evidence of this cancer 5 

lg MALIG-PRIMARY 8500/3 No Evidence of this cancer 23 

lg MALIG-PRIMARY 8480/3 No Evidence of this cancer 5 

lg MALIG-PRIMARY 8500/3 Unknown, indeterminate whether this cancer present 4 

lg MALIG-PRIMARY 8523/3 No Evidence of this cancer 3 

lg MALIG-PRIMARY 8520/3 No Evidence of this cancer 3 

lg MALIG-PRIMARY 8522/3 No Evidence of this cancer 2 

lg MALIG-PRIMARY 9020/3 Evidence of this cancer 1 

lg MALIG-PRIMARY 8523/3 Unknown, indeterminate whether this cancer present 1 

lg MALIG-PRIMARY 8522/3 Evidence of this cancer 1 

lg MALIG-PRIMARY 8522/3 Unknown, indeterminate whether this cancer present 1 
UNK UNKNOWN   29 
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Table 8. Patch-level classification results (MF1) as a function of the window dimensions for TUBR 

Arch Dataset Train Dev Eval 

eb0 com_w0128x0128_g00 22.42 39.91 43.01 

eb0 com_w0128x0128_g25 13.89 35.42 39.87 

eb0 com_w0128x0128_g50 9.09 35.31 40.45 

eb0 com_w0256x0256_g00 4.13 30.45 34.56 

eb0 com_w0256x0256_g25 15.51 25.87 32.03 

eb0 com_w0256x0256_g50 8.16 28.69 35.02 

eb0 com_w0512x0512_g00 4.95 25.53 31.43 

eb0 com_w0512x0512_g25 15.77 28.22 33.94 

eb0 com_w0512x0512_g50 7.87 26.31 32.68 

eb0 com_w1024x1024_g00 8.12 22.43 28.21 

eb0 com_w1024x1024_g25 13.15 26.92 30.11 

eb0 com_w1024x1024_g50 13.03 25.33 32.56 

eb7 com_w0128x0128_g00 8.98 34.97 38.32 

eb7 com_w0128x0128_g25 13.41 34.20 39.59 

eb7 com_w0128x0128_g50 11.42 31.48 36.46 

eb7 com_w0256x0256_g00 8.28 29.36 32.52 

eb7 com_w0256x0256_g25 8.57 25.24 30.03 

eb7 com_w0256x0256_g50 6.81 28.85 33.56 

eb7 com_w0512x0512_g00 8.44 22.06 27.77 

eb7 com_w0512x0512_g25 5.71 22.23 26.57 

eb7 com_w0512x0512_g50 9.03 21.82 29.15 

eb7 com_w1024x1024_g00 4.46 21.86 25.95 

eb7 com_w1024x1024_g25 3.63 23.66 27.36 

eb7 com_w1024x1024_g50 3.48 20.58 25.31 
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Table 9. A comparison (MF1) of selected popular algorithms on window-based classification 

Arch 

TUBR FCBR 

Train Dev Eval Train Dev Eval 

ResNet18 15.03 25.51 34.01 21.46 33.73 31.91 

EB0 8.12 22.43 28.22 21.09 27.81 29.40 

EB7 0.01 22.06 25.39 3.67 26.09 24.85 

ViT-16 0.17 20.66 30.08 0.08 27.87 27.56 

ViT-32 5.28 24.94 29.54 10.55 26.28 27.33 
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Table 10. A comparison of decoder performance (MDICE) using pretrained models 

Arch 

TUBR FCBR 

Train Dev Eval Train Dev Eval 

ResNet18 45.21 41.98 39.13 51.97 45.98 48.50 

EB0 69.83 56.60 51.72 62.32 54.49 55.02 

EB7 67.17 55.67 50.72 57.98 47.00 49.39 

ViT-16 47.75 39.00 35.23 50.26 41.78 41.58 

ViT-32 57.30 48.57 43.64 52.24 43.64 44.65 
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Table 11. The performance of optimized systems (MDICE) 

Arch 

TUBR FCBR 

Train Dev Eval Train Dev Eval 

ResNet18 40.87 37.42 33.28 44.40 44.34 42.11 

EB0 62.32 55.31 51.10 66.83 49.49 46.02 

EB7 56.03 47.10 43.81 31.53 31.31 32.41 

ViT-16 62.68 48.32 44.72 26.11 24.44 25.07 

ViT-32 57.12 46.34 41.39 29.58 26.11 28.06 
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Table 12. Complexity analysis for three popular ML algorithms 

Arch No. 
Parameters 

Training 
Time 

Decoding 
Time 

ResNet18 11.69M 2,356 (1.0x) 1,597 (1.0x) 

EB0 5.30M 3,900 (1.7x) 1,520 (1.0x) 

EB7 66.35M 4,883 (2.1x) 1,735 (1.1x) 

ViT-16 86.60M 3,713 (1.6x) 1,726 (1.1x) 

ViT-32 88.20M 3,869 (1.6x) 1,623 (1.0x) 
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Table 13. The impact of mismatched training conditions (MDICE) 

Arch 
Training 
Condition 

TUBR FCBR 

Train Dev Eval Train Dev Eval 

ResNet18 TUBR 40.87 37.43 33.28 31.52 29.05 31.66 

EB7 TUBR 56.03 47.10 43.81 31.53 31.31 32.41 

ViT-32 TUBR 57.12 46.34 41.39 30.48 28.49 31.19 

ResNet18 FCBR 47.42 48.03 43.85 44.40 44.34 42.11 

EB7 FCBR 30.76 32.08 33.66 73.31 53.22 55.82 

ViT-32 FCBR 17.28 18.38 17.43 29.58 26.11 28.06 

ResNet18 TUBR + FCBR 37.99 35.12 32.18 32.72 30.05 32.87 

EB7 TUBR + FCBR 75.94 64.08 62.47 55.11 41.08 40.85 

ViT-32 TUBR + FCBR 47.97 38.93 35.75 37.62 31.52 33.88 
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Figure 1. A normal terminal duct unit surrounded by healthy fibrous stroma 
 
 



Hackel et al.: Enabling Microsegmentation: Digital Pathology Corpora … Page 39 of 43 

IEEE SPMB 2024 v3.0: August 24, 2025  

 

 

Figure 2. Examples of fatty stroma (left) and fibrous stroma (right) 
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Figure 3. Microcysts annotated as NNEO 
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Figure 4. A typical DCIS presentation of malignant epithelial cells 
confined to the ductal-lobular system 
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Figure 5. A TDLU undergoing non-neoplastic changes 
(gynecomastoid hyperplasia and benign proliferation) 
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Figure 6. A benign intraductal papilloma is annotated with  
an NNEO label that encompasses the entire papilloma. 

 
 


