
Springer Series in Bio-/Neuroinformatics 4

Artificial Neural
Networks

Petia Koprinkova-Hristova
Valeri Mladenov
Nikola K. Kasabov Editors

Methods and Applications
in Bio-/Neuroinformatics

Springer Series in Bio-/Neuroinformatics

Volume 4

Series editor

Nikola K. Kasabov, Auckland University of Technology, Auckland, New Zealand
e-mail: nkasabov@aut.ac.nz

Aims & Scope

Springer Series in Bio-/Neuroinformatics publishes content on fundamental princi-
ples as well as state-of-art theories, methods and applications in the rapidly evolv-
ing fields of bioinformatics and neuroinformatics. The series is unique in that it
integrates three interdependent disciplines, namely information science, bioinfor-
matics and neuroinformatics. The series covers general informatics methods and
techniques, like data mining, database management systems, machine learning, ar-
tificial neural networks, evolutionary computation, chaos theory, quantum compu-
tation, statistical methods, and image and signal processing, as well as their appli-
cations to different areas of research, including big data, functional analysis of the
brain, computational systems biology, computational systems neuroscience, health
informatics, personalized medicine, rehabilitation medicine, industrial biotechnol-
ogy, and many more. The series publishes monographs, contributed volumes and
conference proceedings, as well as advanced textbooks.

Advisory Board

Shun-ichi Amari, RIKEN Brain Science Institute, Japan
Paolo Avesani, Fondazione Bruno Kessler, Trento, Italy
Lubica Benuskova, University of Otago, New Zealand
Chris M. Brown, University of Otago, New Zealand
Richard J. Duro, University of Coruña, Spain
Petia Georgieva, University of Aveiro, Portugal
Kaizhu Haung, Chinese Academy of Sciences, Beijing, China
Zeng-Guang Hou, Chinese Academy of Sciences, Beijing, China
Giacomo Indiveri, ETH and University of Zurich, Switzerland
Irwin King, The Chinese University of Hong Kong
Hiroshi Kojima, Tamagawa University, Japan
Robert Kozma, The University of Memphis, USA
Andreas König, Technical University of Keiserlautern, Germany
Danilo Mandic, Imperial College London, United Kingdom
Francesco Masulli, University of Genova, Italy
Martin McGinnity, University of Ulster, N. Ireland
Heike Sichtig, University of Florida, Gainesville, Florida, USA
Jean-Philippe Thivierge, University of Ottawa, Canada
Shiro Usui, RIKEN Brain Science Institute, Japan
Alessandro E.P. Villa, University of Lausanne, Switzerland
Jie Yang, Shanghai Jiaotong University, China

More information about this series at http://www.springer.com/series/10088

Petia Koprinkova-Hristova · Valeri Mladenov
Nikola K. Kasabov
Editors

Artificial Neural Networks
Methods and Applications
in Bio-/Neuroinformatics

ABC

Editors
Petia Koprinkova-Hristova
Institute of Information and Communication

Technologies
Bulgarian Academy of Sciences
Sofia
Bulgaria

Valeri Mladenov
Technical University Sofia
Sofia
Bulgaria

Nikola K. Kasabov
Auckland University of Technology
Auckland
New Zealand

ISSN 2193-9349 ISSN 2193-9357 (electronic)
ISBN 978-3-319-09902-6 ISBN 978-3-319-09903-3 (eBook)
DOI 10.1007/978-3-319-09903-3

Library of Congress Control Number: 2014945765

Springer Cham Heidelberg New York Dordrecht London

c© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The edited book includes chapters that present selected and extended papers from
the International Conference on Artificial Neural Networks (ICANN) 2013. Founded
in 1991, the ICANN become the Premier annual conference of the European Neural
Network Society. Its main goal is to bring together and to facilitate contacts between
researchers from information sciences and neurosciences and to provide a high-level
international forum for both academic and industrial communities.

The selected and invited to the present book chapters were selected among
ICANN papers that received highest scores during the strong peer review assess-
ment (almost 40% rejection rate) and among selected by session chairs best presen-
tations.

The collected in the book chapters are presented in topical sections that cover
wide range of contemporary topics varying from neural network theory and
models, machine learning and learning algorithms, brain-machine interaction and
bio-inspired systems, pattern recognition and classification as well as various appli-
cations.

The book chapters include new theoretical developments in recurrent neural net-
works and reservoir computing, new and improved training algorithms for Deep
Boltzmann Machines (DBM), tapped delay feedforward architectures and kernel
machines, reinforcement learning and Adaptive Critic Designs (ACD), new bio-
inspired models and architectures related to cell assembly mechanisms, visual
perception and natural language understanding, new and improved algorithms for
pattern recognition with applications to gesture classification, handwritten digit
recognition and time series forecasting.

The book will be of interest to all researchers and postgraduate students in the
area of computational intelligence, applied mathematics, computer science, engi-
neering, neuroscience, and other related areas.

June 2014 Editors

Sofia and Auckland Petia Koprinkova-Hristova
Valeri Mladenov

Nikola K. Kasabov

Contents

Neural Networks Theory and Models

Recurrent Neural Networks and Super-Turing Interactive
Computation . 1
Jérémie Cabessa, Alessandro E.P. Villa

Image Classification with Nonnegative Matrix Factorization Based on
Spectral Projected Gradient . 31
Rafał Zdunek, Anh Huy Phan, Andrzej Cichocki

Energy-Time Tradeoff in Recurrent Neural Nets . 51
Jiří Šíma

An Introduction to Delay-Coupled Reservoir Computing 63
Johannes Schumacher, Hazem Toutounji, Gordon Pipa

Double-Layer Vector Perceptron for Binary Patterns Recognition 91
Vladimir Kryzhanovskiy, Irina Zhelavskaya

Local Detection of Communities by Attractor Neural-Network
Dynamics . 115
Hiroshi Okamoto

Learning Gestalt Formations for Oscillator Networks 127
Martin Meier, Robert Haschke, Helge J. Ritter

Analysing the Multiple Timescale Recurrent Neural Network for
Embodied Language Understanding . 149
Stefan Heinrich, Sven Magg, Stefan Wermter

Learning to Look and Looking to Remember: A Neural-Dynamic
Embodied Model for Generation of Saccadic Gaze Shifts and Memory
Formation . 175
Yulia Sandamirskaya, Tobias Storck

VIII Contents

New Machine Learning Algorithms for Neural Networks

How to Pretrain Deep Boltzmann Machines in Two Stages 201
Kyunghyun Cho, Tapani Raiko, Alexander Ilin, Juha Karhunen

Training Dynamic Neural Networks Using the Extended Kalman
Filter for Multi-Step-Ahead Predictions . 221
Artem Chernodub

Learning as Constraint Reactions . 245
Giorgio Gnecco, Marco Gori, Stefano Melacci, Marcello Sanguineti

Baseline-Free Sampling in Parameter Exploring Policy Gradients:
Super Symmetric PGPE . 271
Frank Sehnke, Tingting Zhao

Sparse Approximations to Value Functions in Reinforcement
Learning . 295
Hunor S. Jakab, Lehel Csató

Neural Networks Solution of Optimal Control Problems with Discrete
Time Delays and Time-Dependent Learning of Infinitesimal Dynamic
System . 315
Tibor Kmet, Maria Kmetova

Pattern Recognition, Classification and Other Neural
Network Applications

Applying Prototype Selection and Abstraction Algorithms for
Efficient Time-Series Classification . 333
Stefanos Ougiaroglou, Leonidas Karamitopoulos, Christos Tatoglou,
Georgios Evangelidis, Dimitris A. Dervos

Enforcing Group Structure through the Group Fused Lasso 349
Carlos M. Alaíz, Álvaro Barbero, José R. Dorronsoro

Incremental Anomaly Identification in Flight Data Analysis by
Adapted One-Class SVM Method . 373
Denis Kolev, Mikhail Suvorov, Evgeniy Morozov, Garegin Markarian,
Plamen Angelov

Inertial Gesture Recognition with BLSTM-RNN . 393
Grégoire Lefebvre, Samuel Berlemont, Franck Mamalet,
Christophe Garcia

Online Recognition of Fixations, Saccades, and Smooth Pursuits for
Automated Analysis of Traffic Hazard Perception 411
Enkelejda Kasneci, Gjergji Kasneci, Thomas C. Kübler,
Wolfgang Rosenstiel

Contents IX

Input Transformation and Output Combination for Improved
Handwritten Digit Recognition . 435
Juan M. Alonso-Weber, M. Paz Sesmero, German Gutierrez,
Agapito Ledezma, Araceli Sanchis

Feature Selection for Interval Forecasting of Electricity Demand Time
Series Data . 445
Mashud Rana, Irena Koprinska, Abbas Khosravi

Stacked Denoising Auto-Encoders for Short-Term Time Series
Forecasting . 463
Pablo Romeu, Francisco Zamora-Martínez, Paloma Botella-Rocamora,
Juan Pardo

Author Index . 487

Recurrent Neural Networks
and Super-Turing Interactive Computation

Jérémie Cabessa and Alessandro E.P. Villa

Abstract. We present a complete overview of the computational power of recurrent
neural networks involved in an interactive bio-inspired computational paradigm.
More precisely, we recall the results stating that interactive rational- and real-
weighted neural networks are Turing-equivalent and super-Turing, respectively. We
further prove that interactive evolving neural networks are super-Turing, irrespective
of whether their synaptic weights are modeled by rational or real numbers. These
results show that the computational powers of neural nets involved in a classical or
in an interactive computational framework follow similar patterns of characteriza-
tion. They suggest that some intrinsic computational capabilities of the brain might
lie beyond the scope of Turing-equivalent models of computation, hence surpass the
potentialities every current standard artificial models of computation.

1 Introduction

Understanding the computational and dynamical capabilities of biological neural
networks represents an issue of central importance. In this context, much interest
has been focused on comparing the computational powers of diverse theoretical
neural models with those of abstract computing devices. Nowadays, the computa-
tional capabilities of neural models is known to be tightly related to the nature of
the activation function of the neurons, to the nature of their synaptic connections,
to the eventual presence of noise in the model, to the possibility for the networks to
evolve over time, and to the computational paradigm performed by the networks.

Jérémie Cabessa
Laboratory of Mathematical Economics (LEMMA), University of Paris 2 – Panthéon-Assas,
4 Rue Blaise Desgoffe, 75006 Paris, France
e-mail: jcabessa@nhrg.org

Alessandro E.P. Villa
Neuroheuristic Research Group, Faculty of Business and Economics, University of Lausanne,
CH-1015 Lausanne, Switzerland
e-mail: alessandro.villa@unil.ch

c© Springer International Publishing Switzerland 2015 1
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_1

2 J. Cabessa and A.E.P. Villa

This comparative approach has been initiated by McCulloch and Pitts who pro-
posed a modeling of the nervous system as a finite interconnection of logical de-
vices [43]. For the first time, neural networks were considered as discrete abstract
machines, and the issue of their computational capabilities investigated from the
automata-theoretic perspective. In this context, Kleene and Minsky proved that
recurrent neural networks with Boolean activation functions are computationally
equivalent to classical finite state automata [38, 44]. In Minsky’s own words [44]:

It is evident that each neural network of the kind we have been considering is a finite-
state machine. [. . .] It is interesting and even surprising that there is a converse to this.
Every finite-state machine is equivalent to, and can be simulated by, some neural net.

The simulation of finite state machine by various kinds of recurrent neural networks
has further been studied for instance in [2, 27, 3, 39, 31, 48].

These foundational works opened up the way to the theoretical approach to neural
computation. But the purely discrete and mechanical approach adopted by McCul-
loch and Pitts quickly appeared too restrictive, far from the biological reality. The
neurons that they considered were too similar to classical logic gates, and the struc-
ture of the networks was too rigid to allow a biologically plausible implementation
of learning.

In 1948, Turing made a step forward by showing the possibility of surpassing
the capabilities of finite state machines and reaching Turing universality via neu-
ral networks called B-type unorganized machines [65]. The networks consisted of a
specific interconnection of NAND neurons, and the consideration of infinitely many
such cells could simulate the behavior of a Turing machine. The Turing universal-
ity of neural networks involving infinitely many binary neurons has further been
investigated in many directions, see for instance [49, 28, 20, 19, 52].

Moreover, in the late 50’s, von Neumann proposed a particularly relevant
approach to the issue of information processing in the brain from the hybrid per-
spective of digital and analog computation [47]. He considered that the non-linear
character of the operations of the brain emerges from a combination of discrete and
continuous mechanisms, and therefore envisioned neural computation as something
strictly more powerful than abstract machines, in line with Turing’s positions.

Almost at the same time, Rosenblatt proposed the perceptron as a more gen-
eral computational neural model than the McCulloch-Pitts units [51]. The essential
innovation was the introduction of numerical synaptic weights and a special pat-
tern of interconnection. This neural model gave rise to an algorithmic framework of
learning achieved by adjusting the synaptic weights of the neuronal connections ac-
cording to some specific task to be completed. The computational capabilities of the
perceptron were further analyzed by Minsky and Papert [45]. These results repre-
sent the main achievements concerning the computational power of neural systems
until the mid 90’s.

In 1995, Siegelmann and Sontag proved the possibility of reaching Turing univer-
sality with finite neural networks. By considering rational synaptic weights and by
extending the activation functions of the cells from Boolean to linear-sigmoid, the
corresponding neural networks have their computational power drastically increased

Recurrent Neural Networks and Super-Turing Interactive Computation 3

from finite state automata up to Turing machines [60, 32, 46]. Kilian and Siegelmann
then generalized the Turing universality of neural networks to a broader class of sig-
moidal activation functions [37]. The computational equivalence between so-called
rational recurrent neural networks and Turing machines has now become standard
result in the field.

Moreover, following von Neumann considerations, Siegelmann and Sontag as-
sumed that the variables appearing in the underlying chemical and physical phe-
nomena could be modeled by continuous rather than discrete (rational) numbers,
and therefore proposed a precise study of the computational power of recurrent neu-
ral networks from the perspective of analog computation [56]. They introduced the
concept of an analog recurrent neural network as a classical linear-sigmoid neu-
ral net equipped with real- instead of rational-weighted synaptic connections, and
proved that such analog recurrent neural networks are computationally equivalent to
Turing machines with advices, hence capable of super-Turing computational power
from polynomial time of computation already [59, 58]. This analog information pro-
cessing model turns out to be capable of capturing non-linear dynamical properties
that are most relevant to brain dynamics, such as rich chaotic behaviors [35, 62, 63],
as well as dynamical and idealized chaotic systems that cannot be described by the
universal Turing machine model [55]. According to these considerations, they for-
mulated the so-called Thesis of Analog Computation – an analogous to the Church-
Turing thesis, but in the realm of analog computation – stating that no reasonable
abstract analog device can be more powerful than first-order analog recurrent neural
networks [59, 55]. A proper internal hierarchical classification of analog recurrent
neural networks according to the Kolmogorov complexity of their underlying real
synaptic weights has further been described in [5].

Besides, central in neural computation is the issue of noise, and a natural question
to be addressed concerns the robustness of the computational power of neural net-
works subjected to various kinds of noise. In this context, it has been shown that the
presence of analog noise would generally strongly reduce the computational power
of the underlying systems to that of finite state automata, or even below [40, 41, 6].
On the other hand, the incorporation of some discrete source of stochasticity would
rather tend to increase or maintain the capabilities of the neural systems [57].

But the neural models considered up to that point were generally oversimplified,
lacking many biological features which may be essential to the information process-
ing in the real brain. In particular, the evolving capabilities of biological networks
had not been taken into consideration in the studies of the computational capabilities
of neural models.

In fact, it is nowadays widely admitted that biological mechanisms like synap-
tic plasticity, cell birth and death, changes in connectivity, etc., are intimately
related to the storage and encoding of memory traces in the central nervous sys-
tem, and provide the basis for most models of learning and memory in neural net-
works [1, 42]. More precisely, the embryonic nervous system is initially driven
by genetic programs that control neural stem cell proliferation, differentiation and
migration through the actions of a limited set of trophic factors and guidance
cues. After a relatively short period of stable synaptic density, a pruning process

4 J. Cabessa and A.E.P. Villa

begins: synapses are constantly removed, yielding a marked decrease in synaptic
density due to apoptosis – genetically programmed cell death – and selective axon
pruning [34]. Overproduction of a critical mass of synapses in each cortical area may
be essential for their parallel emergence through competitive interactions between
extrinsic afferent projections [15]. Background activity and selected patterns of af-
ferent activity are likely to shape deeply the emergent circuit wiring [53]. Synapses
can change their strength in response to the activity of both pre- and post-synaptic
cells following spike timing dependent plasticity (STDP) rules [50]. Developmen-
tal and/or learning processes are likely to potentiate or weaken certain pathways
through the network by affecting the number or efficacy of synaptic interactions
between the neurons [33]. Despite the plasticity of these phenomena, it is ratio-
nale to suppose that whenever the same information is presented in the network, the
same pattern of activity is evoked in a circuit of functionally interconnected neu-
rons, referred to as cell assembly [29]. In cell assemblies interconnected in this way,
some ordered sequences of interspike intervals will recur. Such recurring, ordered,
and precise (in the order of few ms) interspike interval relationships are referred
to as spatiotemporal patterns of discharges or preferred firing sequences. Several
evidence exist of spatiotemporal firing patterns in behaving animals, from rats to
primates [74, 54], where preferred firing sequences can be associated to specific
types of stimuli or behaviors.

In the context of AI, the consideration of such evolving neural architectures in
so-called Evolving Connectionist Systems (ECoS) has proven to be fruitful, and sig-
nificantly increased in applications in the recent years [36, 76]. From a theoretical
perspective, Turova and Villa showed that neural networks with embedded spike
timing-dependent plasticity are able to exhibit a sustained level of activity under
special choice of parameters [66, 67]. More recently, Cabessa and Siegelmann, in-
troduced and studied the computational capabilities of a biologically oriented neural
model where the synaptic weights, the connectivity pattern, and the number of neu-
rons can evolve rather than stay static [10]. They proved that the so-called evolving
recurrent neural networks are super-Turing, equivalent to static analog networks,
irrespective of whether their synaptic weights are modeled by rational or real num-
bers. Consequently, the consideration of architectural evolving capabilities in a basic
neural model provides an alternative and equivalent way to the incorporation of the
power of the continuum towards the achievement of super-Turing computational
capabilities.

Besides, in the general context of modern computation, the classical computa-
tional approach from Turing [64] has been argued to “no longer fully corresponds to
the current notion of computing in modern systems” [73] – especially when it refers
to bio-inspired complex information processing systems. In the brain (or in organic
life in general), information is rather processed in an interactive way [78, 23], where
previous experience must affect the perception of future inputs, and where older
memories may themselves change with response to new inputs.

In fact, the cerebral cortex is not a single entity, but an impressive network formed
by an order of tens of millions of neurons, most of them excitatory, and by about
ten times more glial cells. Ninety percent of the inputs received by a cortical area

Recurrent Neural Networks and Super-Turing Interactive Computation 5

come from other areas of the cerebral cortex. As a whole, the cerebral cortex can be
viewed as a machine talking to itself, and could be seen as one big feedback system
subject to the relentless advance of entropy, which subverts the exchange of mes-
sages that is essential to continued existence [79]. This concept of interdependent
communications systems, also known as systems theory, coupled with Wiener’s as-
sertion that a machine that changes its responses based on feedback is a machine
that learns, defines the cerebral cortex as a cybernetic machine. Therefore, the focus
of investigation is shifted from communication and control to interaction. Systems
theory has traditionally focused more on the structure of systems and their models,
whereas cybernetics has focused more on how systems function, that is to say how
they control their actions, how they communicate with other systems or with their
own components. However, structure and function of a system cannot be understood
in separation, and cybernetics and systems theory should be viewed as two facets of
the neuroheuristic approach [4, 61, 75].

Following these considerations, Cabessa and Villa initiated the study of the com-
putational power of recurrent neural networks from the perspective of interac-
tive computation [12]. They proved that various kinds of Boolean recurrent neural
networks involved in a reactive computational scenario are computationally equiv-
alent to Büchi and Muller automata. From this equivalence, they deduced a transfi-
nite hierarchical classification of Boolean recurrent neural networks based on their
attractor properties [12, 8]. Cabessa and Villa also provided a description of the
super-Turing computational power of analog recurrent neural networks engaged in
a similar reactive computational scenario [13]. Besides, Cabessa and Siegelmann
provided a characterization of the Turing and super-Turing capabilities of rational
and analog recurrent neural networks involved in a more bio-inspired interactive
computational paradigm [11].

Finally, Cabessa proved that neural models combining the two crucial features of
evolvability and interactivity were actually capable of super-Turing computational
capabilities, irrespective of whether their synaptic weights are modeled by rational
or real numbers [9, 14].

In this chapter, we first review the main results concerning the Turing and super-
Turing capabilities of classical and interactive recurrent neural networks, and next
provide a detailed proof of these last results stated in [9, 14].

2 Preliminaries

Given some finite alphabet Σ , we let Σ∗, Σ+, Σn, and Σω denote respectively the
sets of finite words, non-empty finite words, finite words of length n, and infinite
words, all of them over alphabet Σ . We also let Σ≤ω = Σ∗ ∪Σω be the set of all
possible words (finite or infinite) over Σ . The empty word is denoted λ .

For any x ∈ Σ≤ω , the length of x is denoted by |x| and corresponds to the number
of letters contained in x. If x is non-empty, we let x(i) denote the (i+ 1)-th letter
of x, for any 0 ≤ i < |x|. The prefix x(0) · · ·x(i) of x is denoted by x[0:i], for any
0 ≤ i < |x|. For any x ∈ Σ∗ and y ∈ Σ≤ω , the fact that x is a prefix (resp. strict prefix)
of y is denoted by x ⊆ y (resp. x � y). If x ⊆ y, we let y− x = y(|x|) · · ·y(|y| − 1)

6 J. Cabessa and A.E.P. Villa

be the suffix of y that is not common to x (if x = y, then y− x = λ). Moreover, the
concatenation of x and y is denoted by x · y.

Given some sequence of finite words {xi : i ∈N} such that xi ⊆ xi+1 for all i ≥ 0,
one defines the limit of the xi’s, denoted by limi≥0 xi, as the unique finite or infinite
word which is ultimately approached by the sequence of growing prefixes {xi : i ≥
0}. Formally, if the sequence {xi : i ∈ N} is eventually constant, i.e. there exists
an index i0 ∈ N such that x j = xi0 for all j ≥ i0, then limi≥0 xi = xi0 , meaning that
limi≥0 xi corresponds to the smallest finite word containing each word of {xi : i ∈N}
as a finite prefix; if the sequence {xi : i∈N} is not eventually constant, then limi≥0 xi

corresponds to the unique infinite word containing each word of {xi : i ∈ N} as a
finite prefix.

A function f : Σ∗ → Σ∗ is called monotone if the relation x ⊆ y implies f (x) ⊆
f (y), for all x,y ∈Σ∗. It is called recursive if it can be computed by some Turing ma-
chine. Throughout this paper, any function ϕ : Σω → Σ≤ω mapping infinite words
to finite or infinite words will be referred to as an ω-translation.

Note that any monotone function f : {0,1}∗ → {0,1}∗ induces “in the limit” an
ω-translation fω : {0,1}ω →{0,1}≤ω defined by

fω (x) = lim
i≥0

f (x[0:i])

for all x ∈ {0,1}ω . The monotonicity of f ensures that the value fω (x) is well-
defined for all x ∈ {0,1}ω . In words, the value fω (x) corresponds to the finite or
infinite word that is ultimately approached by the sequence of growing prefixes
{ f (x[0:i]) : i ≥ 0}.

According to these definitions, an ω-translation ψ : {0,1}ω → {0,1}≤ω will be
called continuous1 if there exists a monotone function f : {0,1}∗ → {0,1}∗ such
that fω = ψ ; it will be called recursive continuous2 if there exists a monotone and
recursive (i.e. Turing computable) function f : {0,1}∗ → {0,1}∗ such that fω = ψ .

3 Interactive Computation

3.1 Historical Background

Interactive computation refers to the computational framework where systems may
react or interact with each other as well as with their environment during the com-
putation [78, 23]. This paradigm was theorized in contrast to classical computa-
tion [64] which rather proceeds in a function-based transformation of a given input

1 The choice of this name comes from the fact that continuous functions over the Cantor
space C = {0,1}ω can be precisely characterized as limits of monotone functions. We
extend this definition in the present broader context of functions from {0,1}ω to {0,1}≤ω

that can also be expressed as limits of monotone functions.
2 Our notion of a recursive continuous ω-translation ψ : {0,1}ω → {0,1}≤ω is a transpo-

sition to the present context of the notion of a limit-continuous function ϕ : {0,1}ω →
{0,1}ω defined in [68, Definition 12] and [72, Definition 13].

Recurrent Neural Networks and Super-Turing Interactive Computation 7

to a corresponding output (closed-box and amnesic fashion), and has been ar-
gued to “no longer fully correspond to the current notions of computing in mod-
ern systems” [73]. Interactive computation also provides a particularly appropriate
framework for the consideration of natural and bio-inspired complex information
processing systems [69, 73, 14].

Wegner first proposed a foundational approach to interactive computation [78].
In his work, he claimed that “interaction is more powerful than algorithms”, in the
sense that computations performed in an interactive way are capable of handling a
wider range of problems than those performed in a classical way, namely by stan-
dard algorithms and Turing machines [77, 78].

In this context, Goldin et al. introduced the concept of a persistent Turing ma-
chine (PTM) as a possible extension of the classical Turing machine model to
the framework of interactive computation [21, 22]. A persistent Turing machine
consists of a multi-tape machines whose inputs and outputs are given as streams
of tokens generated in a dynamical and sequential manner, and whose work tape
is kept preserved during the transition from one interactive step to the next. In
this sense, a PTM computation is sequentially interactive and history dependent.
Goldin et al. further provided a transfinite hierarchical classification of PTMs ac-
cording to their expressive power, and established that PTMs are more expressive
(in a precise sense) than amnesic PTMs (an extension of classical Turing machines
in their context of interactive computation), and hence also than classical Turing
machines [21, 22].

All these consideration led Goldin and Wegner to formulate the so-called Sequen-
tial Interaction Thesis, a generalization of the Church-Turing Thesis in the realm of
interactive computation, claiming that “any sequential interactive computation can
be performed by a persistent Turing machine” [22, 24, 25, 26]. They argue that
this hypothesis, when combined with their result that PTMs are more expressive
than classical TMs, provides a formal proof of Wegner’s conjecture that “interac-
tion is more powerful than algorithms” [22, 24, 25, 26], and hence refutes what they
call the Strong Church-Turing Thesis – different from the original Church-Turing
Thesis –, stating any possible computation can be captured by some Turing ma-
chine, or in other words, that “models of computation more expressive than TMs are
impossible” [24, 26].

Driven by similar motivations, Van Leeuwen and Wiedermann proposed a slightly
different interactive framework where a general component interacts with its en-
vironment by translating an incoming input stream of bits into a corresponding
output stream of bit in a sequential manner [68, 72]. In their study, they restrict
themselves to deterministic components, and provide mathematical characteriza-
tions of interactively computable relations, interactively recognizable sets of inputs
streams, interactively generated sets of output streams, and interactively computable
translations.

In this context, they introduced the concept of an interactive Turing machine
(I-TM), a relevant translation of the classical Turing machine model in their interac-
tive framework [69]. They further introduced the concept of interactive Turing ma-
chine with advice (I-TM/A) as a relevant non-uniform computational model in the

8 J. Cabessa and A.E.P. Villa

context of interactive computation [69, 70]. Interactive Turing machines with advice
were proven to be strictly more powerful than interactive Turing machines without
advice [70, Proposition 5] and [69, Lemma 1], and were shown to be computa-
tionally equivalent to several other non-uniform models of interactive computation,
like sequences of interactive finite automata, site machines, web Turing machines
[69, 70], and more recently to interactive analog neural networks and interactive
evolving neural networks [9, 11, 14].

These considerations led van Leeuwen and Wiedermann to formulate an Inter-
active Extension of the Church-Turing Thesis which states that “any (non-uniform
interactive) computation can be described in terms of interactive Turing machines
with advice” [70].

As opposed to Goldin and Wegner, van Leeuwen and Wiedermann consider that
interactivity alone is not sufficient to break the Turing barrier, and rather consists
of a different instead of a more powerful paradigm than the classical computational
framework [69, 71, 73]. They write [73]:

“From the viewpoint of computability theory, interactive computing e.g. with I-TMs
does not lead to super-Turing computing power. Interactive computing merely extends
our view of classically computable functions over finite domains to computable func-
tions (translations) defined over infinite domains. Interactive computers simply com-
pute something different from non-interactive ones because they follow a different
scenario.”

Here, we follow this point of view and adopt a similar approach to interactive
computation as presented in [68, 72].

3.2 The Interactive Paradigm

The general interactive computational paradigm consists of a step by step exchange
of information between a system and its environment [68, 72]. In order to capture
the unpredictability of next inputs at any time step, the dynamically generated input
streams need to be modeled by potentially infinite sequences of symbols (indeed,
any interactive computation over a finite input stream can a posteriori be replayed
in a non-interactive way producing the same output) [78, 25, 73].

Here, we consider a basic interactive computational scenario similar to that de-
scribed for instance in [72]. At every time step, the environment first sends a non-
empty input bit to the system (full environment activity condition), the system next
updates its current state accordingly, and then answers by either producing a corre-
sponding output bit or remaining silent. In other words, the system is not obliged to
provide corresponding output bits at every time step, but might instead stay silent
for a while (to express the need of some internal computational phase before pro-
ducing a new output bit), or even staying silent forever (to express the case that it has
died). Consequently, after infinitely many time steps, the system will have received
an infinite sequence of consecutive input bits and translated it into a corresponding
finite or infinite sequence of not necessarily consecutive output bits. In the sequel,
we assume that every interactive system is deterministic.

Recurrent Neural Networks and Super-Turing Interactive Computation 9

Formally, given some interactive deterministic system S , for any infinite input
stream s ∈ {0,1}ω , we define the corresponding output stream os ∈ {0,1}≤ω of S
as the finite or infinite subsequence of (non-λ) output bits produced by S after
having processed input s. The deterministic nature of S ensures that the output
stream os is unique. In this way, any interactive system S realizes an ω-translation
ϕS : {0,1}ω → {0,1}≤ω defined by ϕS (s) = os, for each s ∈ {0,1}ω .

An ω-translation ψ is then called interactively deterministically computable, or
simply interactively computable iff there exists an interactive deterministic system
S such that ϕS = ψ . Note that in this definition, we do absolutely not require for
the system S to be driven by a Turing program nor to contain any computable com-
ponent of whatever kind. We simply require that S is deterministic and performs
ω-translations in conformity with our interactive paradigm, namely in a sequential
interactive manner, as precisely described above.

3.3 Interactive Computable Functions

The specific nature of the interactive computational scenario imposes strong con-
ditions on the ω-translations that can be performed by interactive deterministic
systems in general. In fact, it can be proven that any interactively computable ω-
translation is necessarily continuous. This result will be used in the sequel.

Proposition 1. Let ψ be some ω-translation. If ψ is interactively computable, then
it is continuous.

Proof. Let ψ be an interactively computable ω-translation. Then by definition, there
exists a deterministic interactive system S such that ϕS = ψ . Now, consider the
function f : {0,1}∗ → {0,1}∗ which maps every finite word u to the unique corre-
sponding finite word produced by S after exactly |u| steps of computation over in-
put stream u provided bit by bit. Note that the deterministic nature of S ensures that
the finite word f (u) is indeed unique, and thus that the function f is well-defined.

We show that f is monotone. Suppose that u ⊆ v. It follow that v = u · (v− u).
Hence, according to our interactive scenario, the output strings produced by S after
|v| time steps of computation over input stream v, namely f (v), simply consists of
the output strings produced after |u| time steps of computation over input u, namely
f (u), followed by the output strings produced after |v−u| time steps of computation
over input v− u. Consequently, f (u)⊆ f (v), and therefore f is monotone.

We now prove that the ω-translation ϕS performed by the interactive system S
corresponds to the the “limit” (in the sense of Section 2) of the monotone function
f , i.e., that ϕS = fω . Towards this purpose, given some infinite input stream s ∈
{0,1}ω , we consider in turn the two possible cases where ϕS (s) is either an infinite
or a finite word.

First, suppose that ϕS (s) ∈ {0,1}ω . By definition, the word ϕS (s) corresponds
to the output stream produced by S after having processed the whole infinite input
s, and, for any i ≥ 0, the word f (s[0:i]) corresponds to the output stream produced
by S after i+ 1 time steps of computation over the input s[0:i]. According to our
interactive scenario, f (s[0:i]) is a prefix of ϕS (s), for all i ≥ 0 (indeed, once again,

10 J. Cabessa and A.E.P. Villa

what has been produced by S on s after infinitely many time steps, namely ϕS (s),
consists of what has been produced by S on s[0:i] after i+ 1 time steps, namely
f (s[0:i]), followed by what has been produced by S on s− s[0:i] after infinitely
many time steps). Moreover, since ϕS (s) ∈ {0,1}ω , it means that the sequence of
partial output strings produced by S on input s after i time steps of computation
is not eventually constant, i.e., limi→∞ | f (s[0:i])| = ∞. Hence, the two properties
f (s[0:i]) ⊆ ϕS (s) ∈ {0,1}ω for all i ≥ 0 and limi→∞ | f (s[0:i])| = ∞ ensure that
ϕS (s) is the unique infinite word containing each word of { f (s[0:i]) : i ≥ 0} as
a finite prefix, which is to say by definition that ϕS (s) = limi≥0 f (s[0:i]) = fω (s).

Secondly, suppose that ϕS (s) ∈ {0,1}∗. By the very same argument as in
the previous case, f (s[0:i]) is a prefix of ϕS (s), for all i ≥ 0. Moreover, since
ϕS (s) ∈ {0,1}∗, the sequence of partial output strings produced by S on input
s after i time steps of computation must become stationary from some time step
j onwards, i.e. limi→∞ | f (s[0:i])| < ∞. Hence, the entire finite output stream ϕS (s)
must necessarily have been produced after a finite amount of time, and thus ϕS (s)∈
{ f (s[0:i]) : i ≥ 0}. Consequently, the two properties f (s[0:i])⊆ ϕS (s) ∈ {0,1}∗ for
all i ≥ 0 and ϕS (s)∈ { f (s[0:i]) : i ≥ 0} ensure that ϕS (s) is the smallest finite word
that contains each word of { f (s[0:i]) : i ≥ 0} as a finite prefix, which is to say by
definition that ϕS (s) = limi≥0 f (s[0:i]) = fω (s). Consequently, ϕS (s) = fω (s) for
any s ∈ {0,1}ω , meaning that ϕS = fω .

We proved that f is a monotone function satisfying ϕS = fω . This means by
definition that ϕS is continuous. Since ϕS =ψ , it follows that ψ is also continuous.
	

3.4 Interactive Turing Machines

An interactive Turing machine consists of an interactive abstract device driven by a
standard Turing machine program. It receives an infinite stream of bits as input and
produces a corresponding stream of bits as output, step by step. The input and output
bits are processed via corresponding input and output ports rather than tapes. Conse-
quently, at every time step, the machine can no more operate on the output bits that
have already been processed.3 Furthermore, according to our interactive scenario,
it is assumed that, at every time step, the environment sends a non-silent input bit
to the machine, and the machine either answers by producing some corresponding
output bit, or rather chooses to remain silent.

Formally, a deterministic interactive Turing machine (I-TM) M is defined as a
tuple M = (Q,Γ ,δ ,q0), where Q is a finite set of states, Γ = {0,1,λ , �} is the
alphabet of the machine, where � stands for the blank tape symbol, q0 ∈ Q is the
initial state, and

δ : Q×Γ ×{0,1}→ Q×Γ ×{←,→,−}×{0,1,λ}
3 In fact, allowing the machine to erase its previous output bits would lead to the considera-

tion of much more complicated ω-translations.

Recurrent Neural Networks and Super-Turing Interactive Computation 11

is the transition function of the machine. The relation δ (q,x,b) = (q′,x′,d,b′) means
that if the machine M is in state q, the cursor of the tape is scanning the letter
x ∈ {0,1, �}, and the bit b ∈ {0,1} is currently received at its input port, then M
will go in next state q′, it will make the cursor overwrite symbol x by x′ ∈ {0,1, �}
and then move to direction d, and it will finally output symbol b′ ∈ {0,1,λ} at its
output port, where λ represents the fact the machine is not outputting any bit at that
time step. An interactive Turing machine is illustrated in Figure 1.

According to this definition, any I-TM M induces an ω-translation ϕM : {0,1}ω →
{0,1}≤ω mapping every infinite input stream s to the corresponding finite or infinite
output stream os produced by M . An ω-translation ψ : {0,1}ω → {0,1}≤ω is said
to be realizable by some interactive Turing machine iff there exists an I-TM M such
that ϕM = ψ .

Van Leeuwen and Wiedermann also introduced the concept of interactive Turing
machine with advice as a relevant non-uniform computational model in the context
of interactive computation [69, 70].

Formally, a deterministic interactive Turing machine with advice (I-TM/A) M
consists of an interactive Turing machine provided with an advice mechanism,
which comes in the form of an advice function α : N → {0,1}∗. In addition, the
machine M uses two auxiliary special tapes, an advice input tape and an advice
output tape, as well as a designated advice state. During its computation, M has the
possibility to write the binary representation of an integer m on its advice input tape,
one bit at a time. Yet at time step n, the number m is not allowed to exceed n. During
the computation, if the machine happens to enter its designated advice state at some
time step, then the string α(m) is written on the advice output tape in one time step,
replacing the previous content of the tape. The machine has the possibility to repeat
this process as many time as needed during its infinite computation. An interactive
Turing machine with a advice is illustrated in Figure 2.

Once again, according to our interactive scenario, any I-TM/A M induces an
ω-translation ϕM : {0,1}ω → {0,1}≤ω which maps every infinite input stream s
to the corresponding finite or infinite output stream os produced by M . Finally, an
ω-translation ψ : {0,1}ω → {0,1}≤ω is said to be realizable by some interactive
Turing machine with advice iff there exists an I-TM/A M such that ϕM = ψ .

1· · ·
Finite

Program
 state qa

work tape

0 1 10 01

1 0 01
input
port

output
port 0 1 λ 0 0 · · ·

Fig. 1 An interactive Turing machine

12 J. Cabessa and A.E.P. Villa

10 11 1 110 00 0

α(n)

Finite
Program
state qadv

0 1 10 01

1 0 011· · · 0 1 λ 0 0 · · ·

01 1 01 1

n

advice input tape

advice output tape

work tape

input
port

output
port

Fig. 2 An interactive Turing machine with advice

For sake of completeness, we provide a proof that I-TM/A are strictly more pow-
erful than I-TM. Accordingly, we say that I-TM/A are super-Turing. The result has
already been mentioned in [70, Proposition 5] and [69, Lemma 1]

Proposition 2. I-TM/As are strictly more powerful than I-TMs.

Proof. We prove that there exists an ω-translation ψ which is realizable by some
I-TM/A, yet by no I-TM. Consider a non-Turing computable function α : N →
{0,1}∗. Note that such a function obviously exists since there are 2ℵ0 (i.e. uncount-
ably many) distinct functions of that form whereas there are only ℵ0 (i.e. count-
ably many) possible Turing machines. Consider the ω-translation ψ : {0,1}ω →
{0,1}≤ω which maps every infinite input stream s, necessarily writable of the
form s = 0∗b00+b10+b20+b3 · · · where bi’s denote the blocks of 1’s occurring
between the 0’s, to the corresponding finite or infinite word given by ψ(s) =
α(|b0|)α(|b1|)α(|b2|)α(|b3|) · · · (if s has suffix 0ω , then ψ(s) is finite).

The ω-translation ψ is clearly realizable by some I-TM/A M with advice func-
tion α . Indeed, on every input stream s ∈ {0,1}ω , the machine M stores the suc-
cessive blocks b0,b1,b2, . . . of 1’s occurring in s, and, for every such block bi, first
computes the length |bi|, writes it in binary on its advice tape, then calls the advice
value α(|bi|) (or waits enough time steps in order to have the right to call it), and
finally outputs the value α(|bi|), before reiterating the procedure with respect to the
next block bi+1. In this way, M realizes ψ .

On the other hand, the ω-translation ψ is not realizable by any I-TM. Indeed,
towards a contradiction, suppose it is realizable by some I-TM M . Then, consider
the classical Turing machine M ′ which, on every finite input r of the form r = 1k,

Recurrent Neural Networks and Super-Turing Interactive Computation 13

proceeds exactly like M would have on any infinite input beginning by r, thus
outputs α(k), and diverges on every other finite input. The existence of this classical
TM M ′ shows that the function α is Turing computable, a contradiction. 	

Moreover, a precise characterization of the computational powers of I-TMs and
I-TM/As can be given. In fact, the I-TMs and I-TM/As realize precisely the classes
of recursive continuous and continuous ω-translations, respectively. The following
results are proven in [11]. Since these proofs can be easily deduced from those of
previous Proposition 1 and forthcoming Lemma 1, we can include them hereafter.

Proposition 3. Let ψ be some ω-translation.

a) ψ is realizable by some I-TM iff ψ is recursive continuous.
b) ψ is realizable by some I-TM/A iff ψ is continuous.

Proof. The proofs of points (a) and (b) rely on previous Proposition 1 and forth-
coming Lemma 1.

Point (a). Let ψ be some ω-translation realized by some I-TM M . This means
that ψ = ϕM . Now, consider the function f : {0,1}∗ → {0,1}∗ which maps every
finite word u to the unique corresponding finite word produced by M after exactly
|u| steps of computation over input stream u provided bit by bit. Since M is driven
by a classical TM program, f is recursive. Moreover, by the exact same argument
as in the proof of Proposition 1, f is monotone, and fω = ϕM = ψ . Consequently,
ψ is recursive continuous.

Conversely, let ψ be a recursive continuous ω-translation. Then there exists some
recursive monotone function f : {0,1}∗ → {0,1}∗ such that fω = ψ . Now consider
the forthcoming infinite Procedure 1 (proof of Lemma 1) where the three instruc-
tions “decode s[0:i] from x”, “access to the value qi+1”, and “decode f (s[0:i]) from
qi+1” are replaced by the following one: “compute f (s[0:i])”. Since f is recursive,
this slightly modified version of Procedure 1 can clearly be performed by an I-TM
M . The machine M outputs the current word v− u bit by bit every time it reaches
up the instruction “output v− u bit by bit”, and otherwise, keeps outputting λ sym-
bols while simulating any other internal computational steps. By the exact same
argument as the one presented in the proof of Lemma 1, one has that ϕM = fω = ψ ,
meaning that ψ is realized by M .

Point (b). Let ψ be some ω-translation realized by some I-TM/A M . By defini-
tion, ψ is interactively computable. By Proposition 1, ψ is continuous.

Conversely, let ψ be a continuous ω-translation. Then there exists some mono-
tone function f : {0,1}∗ → {0,1}∗ such that fω = ψ . First of all, we consider the
function α : N → {0,1}∗ which maps every integer n to the finite binary word wn

described in the beginning of the proof of forthcoming Lemma 1. Now consider the
forthcoming infinite Procedure 1 (proof of Lemma 1) where the three instructions
“decode s[0:i] from x”, “access to the value qi+1”, and “decode f (s[0:i]) from qi+1”
are replaced by the two following ones: “query α(i+ 1) = wi+1” and “extract the
subword f (s[0:i]) from wi+1”. This slightly modified version of Procedure 1 can
clearly be performed by an I-TM/A M with advice function α . Every time M en-
counters the instruction “query α(i+ 1) = wi+1”, it makes an extra-recursive call

14 J. Cabessa and A.E.P. Villa

to its advice value α(i+ 1); otherwise, M simulates every other recursive step by
means of its classical Turing program. Moreover, M outputs the current word v−u
bit by bit every time it reaches up the instruction “output v−u bit by bit”, and other-
wise keeps outputting λ symbols while simulating any other internal computational
steps. By the exact same argument as the one presented in the proof of forthcoming
Lemma 1, one has that ϕM = fω = ψ , meaning that ψ is realized by M . 	

4 Interactive Recurrent Neural Networks

4.1 Recurrent Neural Networks

In this work, we consider a classical model of a first-order recurrent neural network,
as presented for instance in [59, 60, 55, 56].

A (first-order) recurrent neural network (RNN) consists of a synchronous net-
work of neurons (or processors) related together in a general architecture. The net-
work contains a finite number of neurons (xi)

N
i=1, M parallel input neurons (ui)

M
i=1,

and P designated output neurons among the N. The input and output neurons are
used to transmit the information from the environment to the network or from the
network to the environment, respectively. At each time step, the activation value of
every neuron is updated by applying a linear-sigmoid function to some weighted
affine combination of values of other neurons or inputs at previous time step.

Formally, given the activation values of the internal and input neurons (x j)
N
j=1

and (u j)
M
j=1 at time t, the activation value of each neuron xi at time t + 1 is then

updated by the following equation

xi(t + 1) = σ

(
N

∑
j=1

ai j · x j(t)+
M

∑
j=1

bi j ·u j(t)+ ci

)
, i = 1, . . . ,N (1)

where ai j, bi j, and ci are numbers describing the weighted synaptic connections
and weighted bias of the network, and σ is the classical saturated-linear activation
function defined by

σ(x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

x if 0 ≤ x ≤ 1,

1 if x > 1.

Besides, Cabessa and Siegelmann introduced the model of an evolving recurrent
neural network (Ev-RNN) as a RNN whose synaptic weights have the possibility to
evolve over time rather than remaining static [10]. Formally, an evolving recurrent
neural network (Ev-RNN) consists of an RNN whose dynamics is given by the
following equation:

xi(t + 1) = σ

(
N

∑
j=1

ai j(t) · x j(t)+
M

∑
j=1

bi j(t) ·u j(t)+ ci(t)

)
, i = 1, . . . ,N (2)

Recurrent Neural Networks and Super-Turing Interactive Computation 15

where ai j(t), bi j(t), and ci(t) are bounded and time-dependent synaptic weights, and
σ is the classical saturated-linear activation function.

The time dependence of the synaptic weights determines the evolving capabili-
ties of the network. The boundedness condition expresses the fact that the synaptic
strengths are confined into a certain range of values imposed by the biological con-
stitution of the neurons. It formally states that there exist an upper and a lower bound
s and s′ such that ai j(t),bi j(t),ci(t) ∈ [s,s′] for every t ≥ 0.

Note that this evolving neural model can describe important dynamics other than
the sole synaptic plasticity. For instance, creation or deterioration of synapses can
be modeled by switching the corresponding synaptic weights on or off, respectively,
and cell birth and death are modeled by simultaneously switching on or off the
adjacent synaptic weights of a given cell, respectively.

According to these definitions, four models of RNNs can be considered according
to whether their underlying synaptic weights are either rational or real numbers of
either static or evolving nature. More precisely, a network will be called rational if
all its weights are rational numbers, and real if all its weights are real numbers. It
will also be called static if all its weights remain static over time, and evolving if
its weights are time dependent. According to these definitions, the corresponding
notions of static rational (St-RNN[Q]), static real (St-RNN[R]), evolving rational
(Ev-RNN[Q]), and evolving real (Ev-RNN[R]) recurrent neural networks will be
employed.

Observe that since rational numbers are included in real numbers, any rational
network is also a real network by definition. Moreover, since static weights are par-
ticular cases of evolving weights where the evolving patterns remain constant over
time, it follows that any static network is also an evolving network. The converses of
these two affirmations are obviously not true. Hence, the class of St-RNN[Q]s corre-
sponds precisely to the intersection of the classes of St-RNN[R]s and Ev-RNN[Q]s,
and all the latter three classes are included in the class of Ev-RNN[R]s, as illustrated
in Figure 3.

4.2 Recurrent Neural Networks and Interactive Computation

In order to stay consistent with the interactive scenario presented in Section 3.2, we
define a model of an interactive recurrent neural network (I-RNN) which adheres
to a rigid encoding of the way inputs and outputs are interactively processed be-
tween the environment and the network. This model has already been considered
in [11, 9, 14].

An interactive recurrent neural network (I-RNN) consists of RNN provided with
a single input cell u as well as two binary output cells4, a data cell yd and validation
cell yv. The role of the input cell u is to transmit to the network the infinite input
stream of bits sent by the environment. At each time step t ≥ 0, the cell u admits
an activation value u(t) belonging to {0,1} (the full environment activity condition

4 The binary requirement of the output cells yd and yv means that the network is designed
such that for every input and every time step t, one has yd(t) ∈ {0,1} and yv(t) ∈ {0,1}.

16 J. Cabessa and A.E.P. Villa

St-RNN[Q]s

St-RNN[R]s

Ev-RNN[Q]s

Ev-RNN[R]s

Fig. 3 Inclusion relations between the four classes of St-RNN[Q]s, St-RNN[R]s, Ev-
RNN[Q]s, and Ev-RNN[R]s

forces that u(t) never equals λ). Moreover, the role of the data cell yd is to carry
the output stream of the network to the environment, while the role of the validation
cell yv is to describe when the data cell is active and when it is silent. Accordingly,
the output stream transmitted by the network to the environment will be defined as
the (finite or infinite) subsequence of successive data bits that occur simultaneously
with positive validation bits.

Formally, any I-RNN N will be supposed to have its initial activation values set
to zero, i.e. xi(0) = 0, for i = 1, . . . ,N. Then any infinite input stream

s = s(0)s(1)s(2) · · · ∈ {0,1}ω

transmitted to input cell u induces via equations (1) or (2) a corresponding pair of
infinite streams transmitted by cells yd and yv

(yd(0)yd(1)yd(2) · · · ,yv(0)yv(1)yv(2) · · ·) ∈ {0,1}ω ×{0,1}ω.

The output stream of N associated to input s is then given by the finite or infi-
nite subsequence os of successive data bits that occur simultaneously with positive
validation bits, namely

os = 〈yd(i) : i ∈ N and yv(i) = 1〉 ∈ {0,1}≤ω .

Hence, any I-RNN N naturally induces an ω-translation ϕN : {0,1}ω →{0,1}≤ω

defined by ϕN (s) = os, for each s∈ {0,1}ω . Finally, an ω-translation ψ : {0,1}ω →
{0,1}≤ω is said to be realizable by some I-RNN iff there exists some I-RNN N
such that ϕN = ψ .

In this work, four models of I-RNNs will be considered according to whether
their underlying synaptic weights are either rational or real numbers of either static
or evolving nature. More precisely, the four notions of an interactive static rational

Recurrent Neural Networks and Super-Turing Interactive Computation 17

(I-St-RNN[Q]), interactive static real (I-St-RNN[R]), interactive evolving rational
(I-Ev-RNN[Q]), interactive evolving real (I-Ev-RNN[R]) recurrent neural networks
will be employed. An I-RNN is illustrated in Figure 4.

Fig. 4 An interactive recurrent neural network (I-RNN). The single neuron at the very left
side represents the input cell. The two little neurons at the very right side represent the output
data and validation cells. The forward and recurrent synaptic connections are represented in
blue and red, respectively. The background activity connections are represented in red also.
The shaded style of the synaptic connections illustrate the fact that the synaptic weights might
evolve over time, in the case of an evolving interactive RNN.

5 Computational Power of Classical Neural Networks

For the sake of clarity, we recall the main results concerning the computational
powers of recurrent neural networks in the case of classical (i.e. non-interactive)
computation. In this context, static rational RNNs were proven to be Turing equiva-
lent [60], whereas static real (or analog) RNNs were proven to be super-Turing [59].
Furthermore, evolving RNNs were shown to be also super-Turing, irrespective of
whether their synaptic weights are modeled by rational or real numbers [10]. The
three following theorems state these results in details. We now focus on particular
each result.

First of all, rational-weighted RNNs were proven to be computationally equiva-
lent to Turing machines (TMs) [60]. Indeed, on the one hand, any function deter-
mined by Equation (1) and involving rational weights is necessarily recursive, and
thus can be computed by some TM. On the other hand, it was shown that any Turing

18 J. Cabessa and A.E.P. Villa

machine can be simulated in linear time by some rational RNN. The result can be
expressed as follows.

Theorem 1. St-RNN[Q]s are Turing equivalent. More precisely, a language L ⊆
{0,1}+ is decidable by some St-RNN[Q] if and only if L is decidable by some TM,
i.e., if and only if L is recursive.

Secondly, real-weighted (or analog) RNNs were shown to be super-Turing,
namely strictly more powerful than Turing machines, and hence also than rational
RNNs. More precisely, real RNNs are capable of deciding all possible languages
in exponential time of computation. When restricted to polynomial time of com-
putation, real RNNs are computationally equivalent to Turing machines with poly-
nomial advice5 (TM/poly(A)), and hence decide the complexity class of languages
P/poly [59]. Since P/poly strictly includes the class P and contains non-recursive
languages, it follows that the real networks are capable of super-Turing computa-
tional power already from polynomial time of computation. Consequently, the trans-
lation from the rational- to the real-weighted context does add to the computational
power of the RNNs. These results are summarized in the following theorem.

Theorem 2. St-RNN[R]s are super-Turing. More precisely, any language L⊆{0,1}+
can be decided in exponential time by some St-RNN[R]. Moreover, a language
L ⊆ {0,1}+ is decidable in polynomial time by some St-RNN[R] if and only if L
is decidable in polynomial time by some TM/poly(A), i.e., if and only if L ∈ P/poly.

Thirdly, evolving RNNs were shown to be also super-Turing, irrespective of
whether their synaptic weights are modeled by rational or real numbers [10]. Hence,
the translation from static rational to the evolving rational context does also bring
up additional computational power to the networks. However, as opposed to the
static context, the translation from the evolving rational to the evolving real does
not increase further the capabilities of the networks.

Theorem 3. Ev-RNN[Q]s and Ev-RNN[R]s are super-Turing equivalent. More pre-
cisely, any language L ⊆ {0,1}+ can be decided in exponential time by some Ev-
RNN[Q] or by some Ev-RNN[R]. Moreover, a language L ⊆ {0,1}+ is decidable
in polynomial time by some Ev-RNN[Q] or by some Ev-RNN[R] if and only if L is
decidable in polynomial time by some TM/poly(A), i.e., if and only if L ∈ P/poly.

The computational capabilities of classical RNNs stated in previous theorems 1,
2, and 3 are summarized in Table 1 below.

5 We recall that a Turing machine with advice (TM/A) consists of a classical Turing machine
provided with an additional advice function α :N→{0,1}+ as well as an additional advice
tape, and such that, on every input u of length n, the machine first copies the advice word
α(n) on its advice tape and then continues its computation according to its finite Turing
program. A Turing machine with polynomial-bounded advice (TM/poly(A)) consists of a
TM/A whose advice length is bounded by some polynomial. The complexity classes P and
P/poly represents the set of all languages decidable in polynomial time by some TM and
some TM/poly(A), respectively.

Recurrent Neural Networks and Super-Turing Interactive Computation 19

Table 1 Computational power of static and evolving RNNs according to the nature of their
synaptic weights

Static RNNs Evolving RNNs

Q Turing super-Turing

R super-Turing super-Turing

6 Computational Power of Interactive Static Neural Networks

Cabessa and Villa initiated the study of the computational power of RNNs involved
in a reactive computational context [13]. They proved that deterministic and non-
deterministic real RNNs working on infinite input streams are strictly more expres-
sive than Turing machines equipped with Büchi or Muller conditions, respectively.
More recently, Cabessa and Siegelmann studied the computational power of RNNs
involved in an interactive computational framework similar the one presented here.

First, they proved that interactive rational RNNs are Turing-equivalent, and hence
realize the class of recursive continuous ω-translations [11]. The results is formally
expressed as follows.

Theorem 4. I-St-RNN[Q] are Turing-equivalent. More precisely, for any ω-translation
ψ : {0,1}ω →{0,1}≤ω , the following conditions are equivalent:

a) ψ is realizable by some I-St-RNN[Q];
b) ψ is realizable by some I-TM;
c) ψ is recursive continuous.

Second, they showed that interactive real RNNs are super-Turing. They are
computationally equivalent to I-TM/A, and realize the class of continuous ω-
translations [11]. Hence, similarly to the classical case, the translation from the
rational- to the real-weighted context does bring additional computational power
to the neural networks.

Theorem 5. I-St-RNN[R] are super-Turing. More precisely, for any ω-translation
ψ : {0,1}ω →{0,1}≤ω , the following conditions are equivalent:

a) ψ is realizable by some I-St-RNN[R];
b) ψ is realizable by some I-TM/A;
c) ψ is continuous.

Theorems 4 and 5 provide a generalization of theorems 1 and 2 to the interac-
tive context. Note that the equivalences between point b and c of theorems 4 and 5
are given by Proposition 3. According to these results, for the classical as for the
interactive computational framework, the translation from the static rational- to the
static real-weighted context, or in other words, the incorporation of some power of
continuum in the model, does bring additional capabilities to the neural networks.

20 J. Cabessa and A.E.P. Villa

7 Computational Power of Interactive Evolving Neural
Networks

In this section, we prove that interactive evolving RNNs are super-Turing, irrespec-
tive of whether their synaptic weights are modeled by rational or real numbers.
More precisely, both models of interactive rational and interactive real RNNs are
computationally equivalent to interactive Turing machines with advice, and realize
the class of continuous ω-translations. Consequently, in both classical and interac-
tive frameworks, the translation from static rational to the evolving rational context
does bring additional computational power to the networks. Once again, the trans-
lation from the evolving rational to the evolving real does not increase further the
capabilities of the networks. These results provide a generalization of Theorem 3 to
the context of interactive computation. They show that the power of evolution pro-
vides the possibility to break the Turing barrier of computation. A concise form of
these results has already appeared in [9, 14]. The results are proven here in details.

Theorem 6. I-Ev-RNN[Q]s and I-Ev-RNN[R]s are super-Turing. More precisely,
for any ω-translation ψ : {0,1}ω →{0,1}≤ω , the following conditions are equiva-
lent:

a) ψ is realizable by some I-Ev-RNN[Q];
b) ψ is realizable by some I-Ev-RNN[R];
c) ψ is realizable by some I-TM/A;
d) ψ is continuous.

Proof. The implication “a → b” holds by definition. The three implications “a →
d”, “b → d”, and “c → d” are given by Proposition 1. The equivalence “d ↔ c”
is provided by Proposition 3(a). The implication “d → a” is given by forthcoming
Lemma 1. By combining all these implications and equivalences, the equivalences
between points a, b, c and d are obtained. 	

Lemma 1. Let ψ : {0,1}ω → {0,1}≤ω be some continuous ω-translation. Then ψ
is realizable by some I-Ev-RNN[Q].

Proof. Let ψ be a continuous function. Then there exists some monotone function
f : {0,1}∗ → {0,1}∗ such such that fω = ψ . We begin by encoding all possible
values of f into successive distinct rational numbers. Towards this purpose, for any
n > 0, we let wn,1, . . . ,wn,2n be the lexicographical enumeration of all binary words
of length n, and we let wn ∈ {0,1,2}∗ be the finite word given by wn = 2 · f (wn,1) ·
2 · f (wn,2) ·2 · · ·2 · f (wn,2n) ·2. Then, we consider the following rational encoding of
the word wn

qn =
|wn|
∑
i=1

2 ·wn(i)+ 1
6i .

Note that qn ∈]0,1[for all n > 0. Also, the encoding procedure ensures that qn �=
qn+1, since wn �= wn+1, for all n > 0. Moreover, it can be shown that the finite word
wn can be decoded from the value qn by some Turing machine, or equivalently,

Recurrent Neural Networks and Super-Turing Interactive Computation 21

by some rational recurrent neural network [59, 60]. In this way, for any n > 0, the
number qn provides a rational encoding of the images by f of all words of length n.

Now, we consider the infinite Procedure 1 described below. This procedure re-
ceives as input an infinite stream s = s(0)s(1)s(2) · · · ∈ {0,1}ω provided bit by
bit, and eventually produces as output a corresponding finite or infinite stream of
bits. The procedure consists of two infinite subroutines running in parallel. The
first subroutine stores each input bit s(t) occurring at every time step t. The second
subroutine performs an infinite loop. More precisely, at stage i+ 1, the procedure
considers the value f (s[0:i+1]). By monotonicity of f , the word f (s[0:i+1]) ex-
tends f (s[0:i]). If this extension is strict, the procedure output the difference word
f (s[0:i+1])− f (s[0:i]) bit by bit. Otherwise, the procedure simply outputs the empty
word λ . Note that the only non-recursive instruction of Procedure 1 is “access to the
value qi+1”.

Procedure 1.

input: infinite input stream s = s(0)s(1)s(2) · · · ∈ {0,1}ω provided bit by bit
initialization: i ← 0, x ← λ , u ← λ , v ← λ

SUBROUTINE 1:
for all t ≥ 0 do

x ← x · s(t) // concatenation of the current bit s(t) to x
end for

SUBROUTINE 2:
loop

decode s[0:i] from x
access to the value qi+1 // non-recursive instruction
decode f (s[0:i]) from qi+1
v ← f (s[0:i])
if u � v then

output v−u bit by bit
else

output λ
end if
i ← i+1
u ← v

end loop

We now show that there indeed exists some I-Ev-RNN[Q] N which performs
Procedure 1. The network N consists of one evolving and one static rational sub-
network connected together. The evolving sub-network will be in charge of the exe-
cution of the only non-recursive instruction “access to the value qi+1”, and the static
sub-network will be in charge of the execution of all other recursive instructions of
Procedure 1.

More precisely, the evolving rational-weighted part of N is made up of a
single designated processor xe. The neuron xe receives as sole incoming synaptic

22 J. Cabessa and A.E.P. Villa

connection a background activity of evolving intensity ce(t). The synaptic weight
ce(t) successively takes the rational bounded values q1,q2,q3, . . ., by switching from
value qk to qk+1 after every Nk time steps, for some large enough Nk > 0 to be de-
scribed. In this way, every time some new value qi+1 appears as a background ac-
tivity of neuron xe, the network stores it in a designated neuron in order to be able
to perform the instruction “access to the value qi+1” when required.

The static rational-weighted part of N is designed in order to perform the succes-
sive recursive steps of Procedure 1, every time some new value qi+1 has appeared by
means of the activation value of neuron xe. The equivalence result between rational-
weighted RNNs and TMs ensures that such a static rational-weighted sub-network
of N performing these recursive step can indeed always be constructed [59]. More-
over, for each k > 0, the time interval Nk between the apparition of the synaptic
weights qk and qk+1 is chosen large enough in order to be able to perform all the
aforementioned recursive steps.

Finally, the network N is designed in such a way that it outputs via its data and
validation cells yd and yv the finite word v−u every time it simulates the instruction
“output v− u bit by bit” of Procedure 1. The network keeps outputting λ symbols
every time it simulates any other internal instruction of Procedure 1.

It remains to prove that the network N realizes ψ , i.e. that ϕN = ψ . Note that,
for any input stream s ∈ {0,1}ω , the finite word that has been output at the end of
each instruction “output v− u bit by bit” corresponds precisely to the finite word
f (s[0:i]) currently stored in the variable v. Hence, after infinitely many time steps,
the finite or infinite word ϕN (s) output by N contains each word of { f (s[0:i]) : i ≥
0} as a finite prefix. In other words, f (s[0:i])⊆ ϕN (s) for all i ≥ 0.

We now consider in turn the two possible cases where ϕN (s) is either infinite or
finite. First, if ϕN (s) is infinite, then it means that Procedure 1 has never stopped
outputting new bits from some time step onwards, i.e., limi→∞ | f (s[0:i])| = ∞.
Consequently, the two properties f (s[0:i]) ⊆ ϕN (s) ∈ {0,1}ω for all i ≥ 0 and
limi→∞ | f (s[0:i])| = ∞ ensure that ϕN (s) is the unique infinite word containing
each word of { f (s[0:i]) : i ≥ 0} as a finite prefix, which is to say by defini-
tion that ϕN (s) = limi≥0 f (s[0:i]) = fω (s). Second, if ϕN (s) is finite, it means
that Procedure 1 has stopped outputting new bits from some time step onwards,
and hence ϕN (s) = f (s[0: j]) for some j ≥ 0. In this case, the two properties
f (s[0:i]) ⊆ ϕN (s) ∈ {0,1}∗ for all i ≥ 0 and ϕN (s) ∈ { f (s[0:i]) : i ≥ 0} ensure
that ϕN (s) is the smallest finite word that contains each word of { f (s[0:i]) : i ≥ 0}
as a finite prefix, which is to say by definition that ϕN (s) = limi≥0 f (s[0:i]) = fω (s).

Therefore, ϕN = fω , and since fω = ψ , it follows that ϕN = ψ , meaning that ψ
is realized by N . This concludes the proof. 	

Finally, the computational capabilities of interactive RNNs, stated by previous
theorems 4, 5, and 6 follow the same pattern as those of classical RNNs. The results
are summarized in Table 2 below.

Recurrent Neural Networks and Super-Turing Interactive Computation 23

Table 2 Computational power of interactive static and evolving RNNs according to the na-
ture of their synaptic weights

Interactive Static RNNs Interactive Evolving RNNs

Q Turing super-Turing

R super-Turing super-Turing

8 Universality

Theorems 5 and 6 together with Proposition 1 show that the four models of I-St-
RNN[R]s, I-Ev-RNN[Q]s, I-Ev-RNN[R]s, and I-TM/As are capable to capture all
possible computations performable by some deterministic interactive system. More
precisely, for any possible interactive deterministic systems S , there exists an I-St-
RNN[R] N1, an I-Ev-RNN[Q] N2, an I-Ev-RNN[R] N3, and an I-TM/A M such
that ϕN1 = ϕN2 = ϕN3 = ϕM = ϕS . In this sense, those four models of interactive
computation are called universal.

Theorem 7. The four models of computations that are I-St-RNN[R]s, I-Ev-RNN[Q]s,
I-Ev-RNN[R]s, and I-TM/As, are super-Turing universal.

Proof. Let S be some deterministic interactive system. By Proposition 1, ϕS is
continuous. By Theorems 5 and 6, ϕS is realizable by some I-St-RNN[R], by some
I-Ev-RNN[Q], by some I-Ev-RNN[R], and by some I-TM/A. 	

These results can be understood as follows: similarly to the classical framework,
where every possible partial function from integers to integers can be computed by
some Turing machine with oracle [64], in the interactive framework, every possible
ω-translation performed in an interactive way can be computed by some interactive
Turing machine with advice, or equivalently, by some interactive analog or evolving
recurrent neural network. Alternatively put, as in the classical framework, where
the model of a Turing machine with oracle exhausts the class of all possible partial
functions from integers to integers, in the interactive framework, the model of an
interactive Turing machine with advice or those of an interactive analog or evolv-
ing recurrent neural network also exhaust the class of all possible ω-translations
performed in an interactive way.

9 Discussion

We showed that interactive rational- and real-weighted RNNs are Turing-equivalent
and super-Turing, respectively (theorems 4, 5). Furthermore, interactive evolving
RNNs are also super-Turing, irrespective of whether their synaptic weights are mod-
eled by rational or real numbers (Theorem 6). The comparison between theorems 1,

24 J. Cabessa and A.E.P. Villa

2, 3 and theorems 4, 5, 6 shows that the computational powers of RNNs involved in
a classical or in an interactive computational framework follow similar patterns of
characterization. These results are summarized in tables 1 and 2, respectively.

These achievements show that in both classical and interactive computational
framework, the translations from the static rational to the static real context, as well
as from the static rational to the evolving rational context, do bring additional power
to the underlying neural networks. By contrast, the two other translations from the
evolving rational to the evolving real context, as well as from the static real to the
evolving real context, do not increase further the capabilities of the neural networks.

Furthermore, according to theorems 1, 2, 3, 4, 5, 6, the computational capabil-
ities of all neural models studied so far are shown to be upper bounded by those
of the Turing machine with advice model. In the classical computational context,
these considerations support the Thesis of Natural Computation, which states that
every natural computational phenomenon can be captured by the Turing machine
with polynomial advice model [59]. In the interactive framework, they support the
Church-Turing Thesis of Interactive Computation which claims that “any (non-
uniform interactive) computation can be described in terms of interactive Turing
machines with advice” [70].

Hence, similarly to the Turing machine model which represents a definitely
relevant conceptualization of current algorithmic, the interactive Turing machine
with advice model also seems to encompass a particularly suitable conceptualiza-
tion of brain computation, or even of natural computation in general[55, 7, 73],
since it is capable to capture crucial features, like analogue considerations [60],
evolvability[10, 9, 14], chaotic behaviors [63], that are impossible to be achieved
via the simple Turing machine model.

The results also show that the incorporation of general evolving capabilities in
a neuronal-based computational model naturally leads to the emergence of super-
Turing computational capabilities. In fact, tables 1 and 2 show that the incorpo-
ration of either evolving capabilities or some power of the continuum in a basic
neural model provides an alternative and equivalent way towards the achievement of
super-Turing computational capabilities. Although being mathematically equivalent
in this sense, these two features are nevertheless conceptually well distinct. While
the power of the continuum is a pure conceptualisation of the mind, the evolving
capabilities of the networks are, by contrast, observable in nature.

These achievements support the claim that the general mechanism of plasticity
is crucially involved in the computational and dynamical capabilities of biological
neural networks, and in this sense, provides a new theoretical complement to the nu-
merous experimental studies emphasizing the importance of the general mechanism
of plasticity in brain’s information processing [1, 18, 30]. They further suggest that
some intrinsic computational capabilities of the brain might lie beyond the scope of
Turing-equivalent models of computation, and hence surpass the potentialities every
current standard artificial models of computation.

Recurrent Neural Networks and Super-Turing Interactive Computation 25

Finally, we believe that the present work presents some interest far beyond the
question of the existence of hypercomputational capabilities in nature [16, 17].
Comparative studies about the computational power of more and more biologically
oriented neural models might ultimately bring further insight to the understanding
of the intrinsic natures of biological as well as artificial intelligences. Furthermore,
foundational approaches to alternative models of computation might in the long
term not only lead to relevant theoretical considerations, but also to practical appli-
cations. Similarly to the theoretical work from Turing which played a crucial role in
the practical realization of modern computers, further foundational considerations
of alternative models of computation will certainly contribute to the emergence of
novel computational technologies and computers, and step by step, open the way to
the next computational era.

References

1. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nat. Neurosci. 3(suppl.),
1178–1183 (2000)

2. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by neural nets.
J. ACM 38(2), 495–514 (1991)

3. Alquźar, R., Alberto, S.: An algebraic framework to represent finite state machines in
single-layer recurrent neural networks. Neural Computation 7(5), 931–949 (1995)

4. Arbib, M.A.: On Modelling the Nervous System. In: von Gierke, H.E., Keidel, W.D.,
Oestreicher, H.L. (eds.) Principles and Practice of Bionics, Proc. 44th. AGARD—
Conference Brüssel, ch. 1-2, pp. 43–58. The Advisory Group for Aerospace Research
and Development, NATO (1970)

5. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural networks:
a characterization in terms of kolmogorov complexity. IEEE Transactions on Information
Theory 43(4), 1175–1183 (1997)

6. Ben-Hur, A., Roitershtein, A., Siegelmann, H.T.: On probabilistic analog automata.
Theor. Comput. Sci. 320(2-3), 449–464 (2004)

7. Bournez, O., Cosnard, M.: On the computational power of dynamical systems and hybrid
systems. Theoretical Computer Science 168(2), 417–459 (1996)

8. Cabessa, J., Villa, A.E.P.: An attractor-based complexity measurement of boolean recur-
rent neural networks. Plos One (to appear, 2014)

9. Cabessa, J.: Interactive evolving recurrent neural networks are super-Turing. In: Filipe,
J., Fred, A.L.N. (eds.) ICAART (1), pp. 328–333. SciTePress (2012)

10. Cabessa, J., Siegelmann, H.T.: Evolving recurrent neural networks are super-Turing. In:
IJCNN, pp. 3200–3206. IEEE (2011)

11. Cabessa, J., Siegelmann, H.T.: The computational power of interactive recurrent neural
networks. Neural Computation 24(4), 996–1019 (2012)

12. Cabessa, J., Villa, A.E.P.: A hierarchical classification of first-order recurrent neural
networks. In: Dediu, A.-H., Fernau, H., Martı́n-Vide, C. (eds.) LATA 2010. LNCS,
vol. 6031, pp. 142–153. Springer, Heidelberg (2010)

13. Cabessa, J., Villa, A.E.P.: The expressive power of analog recurrent neural networks on
infinite input streams. Theor. Comput. Sci. 436, 23–34 (2012)

26 J. Cabessa and A.E.P. Villa

14. Cabessa, J., Villa, A.E.P.: The super-Turing computational power of interactive evolving
recurrent neural networks. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa,
A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 58–65.
Springer, Heidelberg (2013)

15. Chechik, G., Meilijson, I., Ruppin, E.: Neuronal regulation: A mechanism for synaptic
pruning during brain maturation. Neural Comput. 11, 2061–2080 (1999)

16. Copeland, B.J.: Hypercomputation. Minds Mach. 12(4), 461–502 (2002)
17. Copeland, B.J.: Hypercomputation: philosophical issues. Theor. Comput. Sci. 317(1-3),

251–267 (2004)
18. Destexhe, A., Marder, E.: Plasticity in single neuron and circuit computations. Na-

ture 431(7010), 789–795 (2004)
19. Franklin, S., Garzon, M.: Neural computability. In: Omidvar, O. (ed.) Progress in Neural

Networks, pp. 128–144. Ablex, Norwood (1989)
20. Garzon, M., Franklin, S.: Neural computability II. In: Omidvar, O. (ed.) Proceedings of

the Third International Joint Conference on Neural Networks, pp. 631–637. IEEE (1989)
21. Goldin, D.Q.: Persistent Turing machines as a model of interactive computation. In:

Schewe, K.-D., Thalheim, B. (eds.) FoIKS 2000. LNCS, vol. 1762, pp. 116–135.
Springer, Heidelberg (2000)

22. Goldin, D., Smolka, S.A., Attie, P.C., Sonderegger, E.L.: Turing machines, transition
systems, and interaction. Inf. Comput. 194, 101–128 (2004)

23. Goldin, D., Smolka, S.A., Wegner, P.: Interactive Computation: The New Paradigm.
Springer-Verlag New York, Inc., Secaucus (2006)

24. Goldin, D., Wegner, P.: The Church-Turing thesis: Breaking the myth. In: Cooper, S.B.,
Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 152–168. Springer, Hei-
delberg (2005)

25. Goldin, D., Wegner, P.: Principles of interactive computation. In: Goldin, D., Smolka,
S.A., Wegner, P. (eds.) Interactive Computation, pp. 25–37. Springer, Heidelberg (2006)

26. Goldin, D., Wegner, P.: The interactive nature of computing: Refuting the strong Church-
Turing thesis. Minds Mach. 18, 17–38 (2008)

27. Goudreau, M.W., Giles, C.L., Chakradhar, S.T., Chen, D.: First-order versus second-
order single-layer recurrent neural networks. IEEE Transactions on Neural Net-
works 5(3), 511–513 (1994)

28. Hartley, R., Szu, H.: A comparison of the computational power of neural network models.
In: Butler, C. (ed.) Proceedings of the IEEE First International Conference on Neural
Networks, pp. 17–22. IEEE (1987)

29. Hebb, D.O.: The organization of behavior: a neuropsychological theory. John Wiley &
Sons Inc. (1949)

30. Holtmaat, A., Svoboda, K.: Experience-dependent structural synaptic plasticity in the
mammalian brain. Nat. Rev. Neurosci. 10(9), 647–658 (2009)

31. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network imple-
mentations of finite state machines. Neural Networks 9(2), 243–252 (1996)

32. Hyötyniemi, H.: Turing machines are recurrent neural networks. In: Proceedings of
STEP 1996, pp. 13–24. Finnish Artificial Intelligence Society (1996)

33. Iglesias, J., Villa, A.E.P.: Emergence of preferred firing sequences in large spiking neural
networks during simulated neuronal development. Int. J. Neural Syst. 18(4), 267–277
(2008)

Recurrent Neural Networks and Super-Turing Interactive Computation 27

34. Innocenti, G.M., Price, D.J.: Exuberance in the development of cortical networks. Nature
Rev. Neurosci. 6, 955–965 (2005)

35. Kaneko, K., Tsuda, I.: Chaotic itinerancy. Chaos 13(3), 926–936 (2003)
36. Kasabov, N.: Evolving connectionist systems - the knowledge engineering approach, 2nd

edn. Springer (2007)
37. Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural networks. Inf.

Comput. 128(1), 48–56 (1996)
38. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.,

McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton
(1956)

39. Kremer, S.C.: On the computational power of elman-style recurrent networks. IEEE
Transactions on Neural Networks 6(4), 1000–1004 (1995)

40. Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog computa-
tions. Neural Comput. 10(5), 1071–1095 (1998)

41. Maass, W., Sontag, E.D.: Analog neural nets with gaussian or other common noise dis-
tributions cannot recognize arbitary regular languages. Neural Comput. 11(3), 771–782
(1999)

42. Martin, S.J., Grimwood, P.D., Morris, R.G.M.: Synaptic plasticity and memory: An eval-
uation of the hypothesis. Annu. Rev. Neurosci. 23(1), 649–711 (2000); PMID: 10845078

43. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysic 5, 115–133 (1943)

44. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., Englewood
Cliffs (1967)

45. Minsky, M.L., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT
Press, Cambridge (1969)

46. Neto, J.P., Siegelmann, H.T., Costa, J.F., Araujo, C.P.S.: Turing universality of neu-
ral nets (revisited). In: Moreno-Dı́az, R., Pichler, F. (eds.) EUROCAST 1997. LNCS,
vol. 1333, pp. 361–366. Springer, Heidelberg (1997)

47. von Neumann, J.: The computer and the brain. Yale University Press, New Haven (1958)
48. Omlin, C.W., Giles, C.L.: Stable encoding of large finite-state automata in recurrent neu-

ral networks with sigmoid discriminants. Neural Computation 8(4), 675–696 (1996)
49. Pollack, J.B.: On Connectionist Models of Natural Language Processing. PhD thesis,

Computing Reseach Laboratory, New Mexico State University, Las Cruces, NM (1987)
50. Roberts, P.D., Bell, C.C.: Spike timing dependent synaptic plasticity in biological sys-

tems. Biol. Cybern. 87, 392–403 (2002)
51. Rosenblatt, F.: The perceptron: A perceiving and recognizing automaton. Technical Re-

port 85-460-1, Cornell Aeronautical Laboratory, Ithaca, New York (1957)
52. Schmidhuber, J.: Dynamische neuronale Netze und das fundamentale raumzeitliche

Lernproblem (Dynamic neural nets and the fundamental spatio-temporal credit assign-
ment problem). PhD thesis, Institut für Informatik, Technische Universität München
(1990)

53. Shatz, C.J.: Impulse activity and the patterning of connections during CNS development.
Neuron 5, 745–756 (1990)

54. Shmiel, T., Drori, R., Shmiel, O., Ben-Shaul, Y., Nadasdy, Z., Shemesh, M., Teicher, M.,
Abeles, M.: Neurons of the cerebral cortex exhibit precise interspike timing in corre-
spondence to behavior. Proc. Natl. Acad. Sci.d U S A 102(51), 18655–18657 (2005)

55. Siegelmann, H.T.: Computation beyond the Turing limit. Science 268(5210), 545–548
(1995)

28 J. Cabessa and A.E.P. Villa

56. Siegelmann, H.T.: Neural networks and analog computation: beyond the Turing limit.
Birkhauser Boston Inc., Cambridge (1999)

57. Siegelmann, H.T.: Stochastic analog networks and computational complexity. J. Com-
plexity 15(4), 451–475 (1999)

58. Siegelmann, H.T.: Neural and super-Turing computing. Minds Mach. 13(1), 103–114
(2003)

59. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theor. Com-
put. Sci. 131(2), 331–360 (1994)

60. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput.
Syst. Sci. 50(1), 132–150 (1995)

61. Taylor, J.G., Villa, A.E.P.: The “Conscious I”: A Neuroheuristic Approach to the Mind.
In: Baltimore, D., Dulbecco, R., Jacob, F., Montalcini, R.L. (eds.) Frontiers of Life,
vol. III, pp. 349–270. Academic Press (2001) ISBN: 0-12-077340-6

62. Tsuda, I.: Chaotic itinerancy as a dynamical basis of hermeneutics of brain and mind.
World Futures 32, 167–185 (1991)

63. Tsuda, I.: Toward an interpretation of dynamic neural activity in terms of chaotic dynam-
ical systems. Behav. Brain Sci. 24(5), 793–847 (2001)

64. Turing, A.M.: On computable numbers, with an application to the Entscheidungsprob-
lem. Proc. London Math. Soc. 2(42), 230–265 (1936)

65. Turing, A.M.: Intelligent machinery. Technical report, National Physical Laboratory,
Teddington, UK (1948)

66. Turova, T.S.: Structural phase transitions in neural networks. Math. Biosci. Eng. 11(1),
139–148 (2014)

67. Turova, T.S., Villa, A.E.P.: On a phase diagram for random neural networks with embed-
ded spike timing dependent plasticity. Biosystems 89(1-3), 280–286 (2007)

68. van Leeuwen, J., Wiedermann, J.: On algorithms and interaction. In: Nielsen, M., Rovan,
B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 99–113. Springer, Heidelberg (2000)

69. van Leeuwen, J., Wiedermann, J.: Beyond the Turing limit: Evolving interactive sys-
tems. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001. LNCS, vol. 2234, pp. 90–109.
Springer, Heidelberg (2001)

70. van Leeuwen, J., Wiedermann, J.: The Turing machine paradigm in contemporary com-
puting. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited - 2001 and Beyond.
LNCS, pp. 1139–1155. Springer, Heidelberg (2001)

71. van Leeuwen, J., Wiedermann, J.: The emergent computational potential of evolving
artificial living systems. AI Commun. 15, 205–215 (2002)

72. van Leeuwen, J., Wiedermann, J.: A theory of interactive computation. In: Goldin, D.,
Smolka, S.A., Wegner, P. (eds.) Interactive Computation, pp. 119–142. Springer, Heidel-
berg (2006)

73. Wiedermann, J., van Leeuwen, J.: How we think of computing today. In: Beckmann, A.,
Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 579–593. Springer,
Heidelberg (2008)

74. Villa, A.E.P., Tetko, I.V., Hyland, B., Najem, A.: Spatiotemporal activity patterns of
rat cortical neurons predict responses in a conditioned task. Proc. Natl. Acad. Sci. U
S A 96(3), 1106–1111 (1999)

75. Villa, A.E.P.: Neural Coding in the Neuroheuristic Perspective. In: Barbieri, M. (ed.) The
Codes of Life: The Rules of Macroevolution, ch. 16. Biosemiotics, vol. 1, pp. 357–377.
Springer, Berlin (2008)

76. Watts, M.J.: A decade of kasabov’s evolving connectionist systems: A review. IEEE
Transactions on Systems, Man, and Cybernetics, Part C 39(3), 253–269 (2009)

Recurrent Neural Networks and Super-Turing Interactive Computation 29

77. Wegner, P.: Why interaction is more powerful than algorithms. Commun. ACM 40, 80–
91 (1997)

78. Wegner, P.: Interactive foundations of computing. Theor. Comput. Sci. 192, 315–351
(1998)

79. Wiener, N.: Cybernetics Or Control And Communication In The Animal And The Ma-
chine. John Wiley & Sons Inc. (1948)

Image Classification with Nonnegative Matrix
Factorization Based on Spectral Projected
Gradient

Rafał Zdunek, Anh Huy Phan, and Andrzej Cichocki

Abstract. Nonnegative Matrix Factorization (NMF) is a key tool for model dimen-
sionality reduction in supervised classification. Several NMF algorithms have been
developed for this purpose. In a majority of them, the training process is improved
by using discriminant or nearest-neighbor graph-based constraints that are obtained
from the knowledge on class labels of training samples. The constraints are usually
incorporated to NMF algorithms by l2-weighted penalty terms that involve formu-
lating a large-size weighting matrix. Using the Newton method for updating the
latent factors, the optimization problems in NMF become large-scale. However, the
computational problem can be considerably alleviated if the modified Spectral Pro-
jected Gradient (SPG) that belongs to a class of quasi-Newton methods is used. The
simulation results presented for the selected classification problems demonstrate the
high efficiency of the proposed method.

1 Introduction

Nonnegative Matrix Factorization (NMF) [20] decomposes a nonnegative matrix
into lower-rank factor matrices that have nonnegative entries and usually some
physical meaning. When NMF is applied to the matrix of training samples, we ob-
tain sparse nonnegative feature vectors and coefficients of their nonnegative com-
binations. The vectors of the coefficients, which are here referred to as encoding

Rafał Zdunek
Department of Electronics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27,
50-370 Wroclaw, Poland
e-mail: rafal.zdunek@pwr.wroc.pl

Anh Huy Phan
Laboratory for Advanced Brain Signal Processing
RIKEN BSI, Wako-shi, Japan
e-mail: phan@brain.riken.jp

Andrzej Cichocki
Laboratory for Advanced Brain Signal Processing
RIKEN BSI, Wako-shi, Japan
e-mail: a.cichocki@riken.jp

Systems Research Institute, Polish Academy of Science (PAN) Warsaw, Poland

c© Springer International Publishing Switzerland 2015 31
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_2

32 R. Zdunek, A.H. Phan, and A. Cichocki

vectors, lie in a low-dimensional latent component space. Hence, NMF is often
regarded as a dimensionality reduction technique, and it has been widely applied
for classification of various objects [2, 6, 12, 29, 33].

As reported in [8], the factor matrices obtained with NMF are generally non-
unique. Several attempts have been done to impose additional constraints on the es-
timated factors. The sparsity constraints are probably the most frequently used. It is
well-known that the factors should be somehow sparse to expect the uniqueness [16].
Hoyer [14] demonstrated that the sparsity can be readily controlled in NMF by the l1-
norm based penalty term in an objective function. When l2-norm is used instead, the
smoothness is enforced in one factor, and intrinsically the sparsity level increases in
the other [26]. The sparse NMF that minimizes the lp-diversity measure was proposed
in [37]. This approach was also developed by Kim and Park in [17] using the active-
set minimization strategy. The sparsity constraints were also analyzed in the context
of supervised classification. Li et al [21] proposed the Local NMF (LNMF) that com-
bines several kinds of constraints. It enforces orthogonality between basis vectors and
selects the most meaningful encoding vectors. As a result, the basis vectors contain
more localized features, which usually leads to better classification results.

The training process can be also improved by using the Fisher’s discriminant in-
formation. The examples include hybrid methods, such as FNMF (Fisher NMF) or
DNMF (Discriminant NMF), which combine NMF with FDA (Fisher’s Discrimi-
nant Analysis) or LDA (Linear Discriminant Analysis). The first was proposed by
Wang et al. [31], and the second developed by Zafeiriou et al. [33]. In these hy-
brids, the penalty terms are constructed in such a way to minimize the inner-class
scattering and simultaneously to maximize intra-class scattering. The inner-class
scatter models the dispersion of vectors that belong to the same class around their
mean, while the intra-class scatter expresses the distances of the local class means
from the global mean. As a result, the well-known Fisher discriminant criterion is
maximized. Both FNMF and DNMF are based on the multiplicative algorithm that
minimizes the penalized Kullback-Leibler (KL) divergence.

Another group contains the NMF algorithms which explore a geometrical struc-
ture of observed data. Cai et al. [4, 5] noticed that samples in a latent space lie on
a low-dimensional manifold embedded in a high-dimensional ambient space. Thus,
the projection from a high-dimensional observation space to a low-dimensional la-
tent space should preserve a data geometrical structure. The neighboring samples
should belong to the same class in both spaces. Thus, they proposed Graph reg-
ularized NMF (GNMF) [5] that constrains one of the factor matrices with the in-
formation on the data geometric structure encoded in a nearest-neighbor graph of
training samples. This constraint was imposed to NMF by a specifically designed
regularization term in an objective function that was then minimized with the stan-
dard multiplicative algorithm. This approach combines NMF with the Laplacian
eigenmaps [1] and locality-preserving projections [13]. Yang et al. [32] divided the
coefficients of the encoding vectors into two parts to which the discriminant infor-
mation is incorporated accordingly. The first part is enforced by the intrinsic graph
that characterizes the favorite relationships among the training data. The other is
affected by the penalty graph that expresses the unfavorable relationships. This

Image Classification with NMF Based on SPG 33

approach was then computationally improved and extended to tensor decomposi-
tions by Wang et al. [30], and to the projective NMF by Liu et al. [24].

An interesting property of nearly all the above mentioned learning methods is
the common way of introducing the prior knowledge to the training process. The
penalty terms in the regularized objective function can be expressed in terms of the
weighted Frobenius norm. The weighting matrix reflects the group sparsity, discrim-
inant information or graph-based embedding. Its size is usually equal to the number
of training samples, so it is large and usually sparse matrix.

The penalty term expressed by the the weighted Frobenius norm can be easily
considered in an optimization process when the multiplicative algorithm is used.
Hence, this approach is explored in a large number of research papers on NMF.
However, multiplicative algorithms are slowly convergent, and in the basic version
they do not guarantee convergence to a stationary point. Using the simple numerical
improvements, as proposed in [22], the algorithms can be numerically stable but the
slow convergence is still an open problem.

To tackle the convergence problems, several other computational strategies have
been proposed in the literature. Guan et al. [10] considerably accelerated the con-
vergence of GNMF by using additive quasi-Newton gradient descent updates. In the
next paper, Guan et al. [11] proposed the NeNMF that is based on the Nesterovs
optimal gradient approach. This method can be used for minimization of the above-
mentioned penalized objective functions, provided that the Lipschitz constant can
be easily calculated. A simple version of the Projected Gradient (PG) algorithm was
also used for classification problems in [18].

The optimization problems that include the weighted Frobenius norm-based
penalty terms can be also efficiently solved using the Hierarchical Alternating Least
Squares (HALS) algorithm [6]. Phan et al. [27, 28] applied the HALS algorithm to
obtain multi-way array decomposition with higher-order discriminant analysis. A
similar computational strategy, known as the Sequential Coordinate-Wise (SCW)
[9], was used in [38] for updating lateral factors in DNMF. As a result, the SCW-
DNMF substantially outperforms the basic DNMF and LNMF algorithms but at the
cost of an increased computational complexity.

GNMF can be also efficiently obtained with the Spectral Gradient Projection
(SPG) method. This approach was proposed in [39] in the context of facial image
classification. The SPG [25] belongs to a class of quasi-Newton methods. It approx-
imates the Hessian matrix with the scalar that is estimated from the secant equation,
separately for each column vector of the encoding matrix. Such computations can
be easily parallelized, which leads to a high performance with a low computational
cost. Unfortunately, the steplengths in gradient descent updates cannot be so easily
determined for the penalty terms used in GNMF. Hence, the Armijo rule was used
in [39], similarly as in the PG NMF algorithm proposed by Lin [23].

In this chapter, we extend the SPG algorithm discussed in [39] in several as-
pects: (1) we propose a better computational strategy for estimating the steplengths,
separately for each column vector of the encoding matrix; (2) we adapt this algo-
rithm for solving generalized weighted Frobenius norm-based penalty terms, in-
cluding sparsity and discriminant information; (3) we present the results for more

34 R. Zdunek, A.H. Phan, and A. Cichocki

classification problems and demonstrate the efficiency of using preprocessing based
on the wavelet transform.

The chapter is organized in the following way. The next section discusses the
penalty terms in NMF that are expressed by the weighted Frobenius norm. Section
3 is concerned with the optimization algorithms. The numerical experiments for
image classification problems are presented in Section 4. Finally, the conclusions
are drawn in Section 5.

2 Penalty Terms

Let Y = [y1, . . . ,yT] ∈ R
I×T
+ , where yt ∈ R

I
+ is the t-th training sample. Applying

NMF to Y , we get Y ∼= AX , where the columns of the matrix A ∈ R
I×J
+ represent

the feature or basis vectors, and the columns of the matrix X ∈ R
J×T
+ are encoding

vectors. The parameter J is the rank of factorization.
In several variants of NMF, the objective function can be expressed by the

quadratic function:

Ψ (A,X) =
1
2
||Y −AX ||2F +

αA

2
tr(AT LAA)+

αX

2
tr(XLX XT)

=
1
2
||Y −AX ||2F +

αA

2
||L

1
2
A A||2F +

αX

2
||XL

1
2
X ||2F , (1)

where αA
2 ||L

1
2
A A||2F and αX

2 ||XL
1
2
X ||2F are penalty terms, expressed in terms of the

weighted Frobenius norm, and αA,αX ≥ 0 are penalty parameters that control the
amounts of introduced a priori information. The weighting matrices LA ∈ R

I×I and
LX ∈ R

T×T are symmetric and nonnegative definite. Both matrices are determined
on the basis of the prior knowledge on the estimated factors. The matrix LA enforces
column profiles in the matrix A, and LX – row profiles in X . Below we present a short
survey of the typical penalty terms.

2.1 Sparse NMF

The sparsity in the factor X can be modeled in many ways, e.g. by the lp-diversity
measure [7]: J(p,q) = ∑J

j=1(||x j||q)p for p ≥ 0, q ≥ 1, where x j is the j-th row vector
of X . In [37], we assumed q = 1 and p = 2 to enforce sparsity in the columns of
X . Note that the sparsity can be also enforced in the rows, if q = 2 and p = 1.
This leads to the term: J(1,2) = ∑J

j=1(||x j||1)2 = tr{XET XT}, where ET ∈ R
T×T

is a matrix of all ones. Considering (1), we have LX = ET . The sparsity can be
also modeled in a similar way in the column vectors of A, which leads to LA =
EI ∈ R

I×I . Such sparsity measures were also used in the SNMF/L and SNMF/R
algorithms [17].

Image Classification with NMF Based on SPG 35

Applying the Hoyer’s sparsity measure [15] to the rows of X , we have:

σ =

√
T − ||xj ||1

||xj ||2√
T − 1

. (2)

Following [19], this measure can be approximated by the additive form:

J =
1
2

J

∑
j=1

||x j||21 −||x j||22 = tr{XLX XT}, (3)

where LX = ET − IT , where IT ∈R
T×T is an identity matrix. Similarly, LA =EI − II .

In this case, rank(LX) = T , which leads to better numerical properties than for the
previous case (rank(ET) = 1).

2.2 DNMF

The objective function in DNMF [31, 33] has the following form:

Ψ(A,X) = DKL(Y ||AX)+ γ tr{SX}− δ tr{SX̄}, (4)

where DKL(Y ||AX) is the KL divergence between Y and AX . The matrices SX and
SX̄ represent the inner- and intra-scattering, respectively. They are defined in the
following way:

SX =
K

∑
k=1

|Nk |
∑

tk=1

(xtk − x̄k)(xtk − x̄k)
T , (5)

SX̄ =
K

∑
k=1

|Nk|(x̄k − x̄)(x̄k − x̄)T , (6)

where K is the number of classes, Nk is the set of indices of the samples xt that
belong to the k-th class, |Nk| is the number of samples in the k-th class, xtk is the
tk-th image in the k-th class, x̄k is the mean vector of the k-th class, and x̄ is the mean
vector over all the column vectors in X .

Let C = [cst] ∈ R
T×T , where

cst =

{ 1
Nk

if (s, t) ∈ Nk

0 otherwise
(7)

for k = 1, . . . ,K. Considering (7), the matrix SX in (5) can be rearranged as follows:

SX = (X −XC)(X −XC)T = XL(1)
X XT , (8)

36 R. Zdunek, A.H. Phan, and A. Cichocki

where L(1)
X = (IT −C)(IT −C)T . Similarly, the matrix SX̄ in (6) can be rewritten as

SX̄ = (XC−XẼT)(XC−XẼT)
T = XL(2)

X XT , (9)

where ẼT = 1
T 11T , 1 = [1,1, . . . ,1]T ∈R

T , and L(2)
X = (C− ẼT)(C− ẼT)

T .
Thus, the penalty terms in (4) can be reformulated as

γ tr{SX}− δ tr{SX̄}= tr{XLX XT}= ||XL
1
2
X ||2F , (10)

where LX = γL(1)
X − δL(2)

X . The penalty term in (10) can be combined not only with
the KL divergence but also with other disimilarity measures. In [39], this modeling
was used for deriving the SCW-DNMF algorithm.

2.3 GNMF

GNMF [5] integrates NMF with the Laplacian eigenmaps [1] and locality-preserving
projections [13]. The matrix LX in GNMF is expressed by the graph Laplacian
matrix that represents a data geometrical structure in the observation space. It
takes form: LX = D −W , where W = [wnm] ∈ R

T×T
+ contains the entries that

determine the edges in the nearest neighbor graph of the observed points, and
D = diag

(
∑m�=n wnm

) ∈ R
T×T
+ . The edges can be determined by the hard connec-

tions:

wnm =

{
1, if yn ∈ Np(ym), or ym ∈ Np(yn),
0, otherwise

(11)

where Np(yt) is the p nearest neighbor of the sample yt . We can also use the Heat
kernel weighting:

wnm =

{
exp

{
−||yn−ym||22

2σ 2

}
, if yn ∈ Np(ym), or ym ∈ Np(yn),

0, otherwise
(12)

or the cosine measure:

wnm =

{
yT

n ym
||yn||||ym|| , if yn ∈ Np(ym), or ym ∈ Np(yn),

0, otherwise
(13)

The graph-based regularization helps to preserve the data geometrical structure
in the low dimensional latent space that contains the samples {xt}. If any two sam-
ples yt1 and yt2 belong to one cluster, the corresponding samples xt1 and xt2 should
also belong to the same cluster. Thus, this approach seems to be very useful for clus-
tering but not necessarily for classification problems. For the latter, the discriminant
information is more relevant.

Image Classification with NMF Based on SPG 37

The discriminant constraints can be also combined with the graph-based ones.
In this approach, the graph Laplacian matrices can be defined separately for the
inner- and intra-class samples. Guan et al. [10] model k1 nearest-neighbor inner
class samples with the graph Laplacian matrix L(inner), and k2 nearest-neighbor intra
class samples with the graph Laplacian matrix L(intra). The Laplacian eigenmaps
can be combined in the following way:

LX =

(
L̃
− 1

2
(intra)

)T

L(inner)L̃
− 1

2
(intra), (14)

where L̃(intra) = L(intra) +ξ I. The regularization parameter ξ > 0 should be selected
in such a way to guarantee the inversion of L(intra). Note that the parameter ξ also
controls a ratio of inner-to-intra class information. Hence it has a discriminant prop-
erty, and can be treated as a penalty parameter.

Note that the matrices L(1)
X and L(2)

X given in Section 2.2 can be also integrated
using the formula in (14). In this approach, the parameter ξ refers to the ratio γ

δ .

3 Algorithm

The penalty term ||XL
1
2
X ||2F in (1) can be reformulated as follows:

Ψr(X) = ||XL
1
2
X ||2F = ||(L

1
2
X ⊗ IJ)x||22 = xT (LX ⊗ IJ)x, (15)

where x = vec(X) ∈R
JT is a vectorized form of X , and ⊗ stands for the Kronecker

product.
Assuming LA = II , the Hessian matrices of Ψ (A,X) in (1) with respect to A and

X have the following forms:

HA = ∇2
AΨ(A,X) = (XXT +αAIJ)⊗ II ∈R

IJ×IJ , (16)

HX = ∇2
XΨ(A,X) = IT ⊗AT A+αX LX ⊗ IJ ∈ R

JT×JT . (17)

For αA > 0, the matrix HA is positive definite. Under the assumption of positive
definiteness of the matrix LX , the matrix HX is also symmetric and positive definite.

The matrix HA has a block-diagonal structure, and hence the updates of A might
be considerably accelerated by transforming the nonnegative least-squares problem:
minA≥0

1
2 ||Y −AX ||2F + αA

2 ||A||2F to the normal equations XXT AT = XY T subject to
the nonnegativity constraints A ≥ 0. Then, the solution can be efficiently searched
with any iterative solver for solving this kind of problems, e.g. HALS [6], PG [23],
FCNNLS [17], etc.

38 R. Zdunek, A.H. Phan, and A. Cichocki

Remark 1. Assuming (XXT)−1 is calculated with the O(J3) complexity, then one
iterative step of the Newton method for updating the matrix A entails the complex-
ity about O(IJT) +O(J3 +T J2)+O(IJ2). Assuming J << min{I,T}, an overall
complexity is dominated by O(IJT).

Remark 2. The Hessian HX is no longer a block-diagonal matrix, hence the Newton
updates for X cannot be simplified considerably. The computational complexity of
one step of the Newton algorithm is O(IJT)+O(J3T 3)+O(JT). Thus it is strongly
affected by the computational cost of the Hessian inverse.

The updates for X cannot be accelerated in the similar way, however, there is
still a possibility of applying some quasi-Newton method without formulating the
Hessian HX directly. Note that the matrix HX is very large when the number of
training samples is large, and it is rather a dense matrix due to the matrix LX . One of
these possibilities is to use the SPG method [3] that combines the standard gradient
projection scheme with the nonmonotonic Barzilai-Borwein (BB) method [25]. It is
used for minimization of convex functions subject to box-constraints.

In the SPG method, the descent direction p(k)t for updating the vector xt in the
k-th iteration is defined as follows:

p(k)t =
[
x(k)t − (α(k)

t)−1∇xtΨ(A,x(k)t)
]
+
− x(k)t , (18)

for α(k)
t > 0 selected in such a way that the matrix α(k)

t IJ approximates the Hessian
matrix.

In [6], this method was adopted to parallel processing of all column vectors in X .
Using this approach, we have the update rule:

X (k+1) = X (k) +P(k)Z(k), (19)

where Z(k) = diag{η(k)}. The column vectors of P(k) ∈ R
J×T and the entries of the

vector η(k) ∈ R
T
+ are descent directions and steplengths for updating the vectors

{xt}, respectively. According to (18), the matrix P(k) has the form:

P(k) =
[
X (k)−G(k)

X D(k)
]
+
−X(k), (20)

where G(k)
X = ∇XΨ(A,X (k)) ∈ R

J×T and D(k) = diag{(α(k)
t)−1} ∈ R

T×T .

The coefficients {α(k)
t } can be obtained from the secant equation that is given by

S(k) diag{α(k+1)
t }=W (k), where S(k) = X (k+1)−X (k) and W (k) =∇XΨ(A,X (k+1))−

∇XΨ(X (k)). For the minimization of the objective function (1) with respect to X ,
the matrix W (k) takes the form: W (k) = AT AS(k) +αX S(k)LX . From (19) we have:
S(k) = P(k)Z(k). In consequence, the secant equation leads to:

Image Classification with NMF Based on SPG 39

α(k+1) =
diag

{
(S(k))TW (k)

}
diag

{
(S(k))T S(k)

} =
diag

{
(S(k))T AT AS(k) +αX(S(k))T S(k)LX

}
diag

{
(S(k))T S(k)

}

=
diag

{
(P(k))T AT AP(k) +αX(P(k))T P(k)Z(k)LX(Z(k))−1

}
diag

{
(P(k))T P(k)

}

=
1T

J

[
P(k)�

(
AT AP(k) +αX P(k)Z(k)LX (Z(k))−1

)]
1T

J

[
P(k)�P(k)

] , (21)

where � stands for the Hadamard product, and the operation diag{M} creates a
vector containing the main diagonal entries of a matrix M. Note that the matrix Z(k)

is diagonal, so the product Z(k)LX(Z(k))−1 can be readily calculated.
The steplengths can be estimated by solving the minimization problem:

η(k)
∗ = argmin

η (k)
Ψ

(
A,X (k) +P(k) diag{η(k)}

)
. (22)

For αX = 0, the objective function Ψ(A,X (k+1)) takes the form:

Ψ(A,X (k+1)) =
1
2
||Y −A(X (k) +P(k)D(k)

η)||2F =
1
2

tr
{

D(k)
η (P(k))T AT AP(k)D(k)

η

}
− tr

{
(Y −AX (k))T AP(k)D(k)

η

}
+ const, (23)

where D(k)
η = diag{η(k)}. From the stationarity of Ψ(A,X) with respect to X , we

have:

∂
∂η

Ψ (A,X (k+1)) = diag
{
(P(k))T AT AP(k)D(k)

η

}
+ diag

{
(G(k)

X)T P(k)
}
� 0. (24)

Hence, the solution to (22) can be presented in a closed-form:

η(k)
∗ =−

diag
{
(G(k)

X)T P(k)
}

diag
{
(P(k))T AT AP(k)D(k)

η

} =−
1T

J

[
G(k)

X �P(k)
]

1T
J

[
P(k)� (AT AP(k))

] . (25)

For αX > 0, we have:

Ψ(A,X (k+1)) =
1
2
||Y −A(X (k) +P(k)D(k)

η)||2F +
αX

2
||(X (k) +P(k)D(k)

η)L
1
2
X ||2F

=
1
2

tr
{

D(k)
η (P(k))T AT AP(k)D(k)

η

}
− tr

{
(Y −AX (k))T AP(k)D(k)

η

}
+ tr

{
X (k)LX D(k)

η (P(k))T
}
+

1
2

tr
{

P(k)D(k)
η LX D(k)

η (P(k))T
}

+ const. (26)

40 R. Zdunek, A.H. Phan, and A. Cichocki

Thus

∂
∂η

Ψ(A,X (k+1)) = diag
{
(P(k))T AT AP(k)D(k)

η

}
+ diag

{
(G(k)

X)T P(k)
}

+ diag
{
(P(k))T X (k)LX

}
+

1
2

diag
{
(P(k))T P(k)D(k)

η LX

}
+

1
2

diag
{

LX D(k)
η (P(k))T P(k)

}
� 0. (27)

From (27), we have:

diag
{

diag{(P(k))T AT AP(k)}
}

η(k)
∗ +

([
(P(k))T P(k)

]
�LX

)
η(k)
∗

= −diag
{
(G(k)

X)T P(k) + (P(k))T X (k)LX

}
,

which leads to the following system of linear equations:

T̃ (k)η(k)
∗ =−b(k), (28)

where T̃ (k)
= T (k) + ξ̃ IT for ξ̃ > 0,

T (k) =
[
(P(k))T P(k)

]
�LX + diag

{
1T

I (AP(k))2
}
, (29)

b(k) = 1T
J

(
P(k)� (P(k) +X (k)LX)

)
. (30)

The matrix T (k) in (28) is symmetric and at least nonnegative definite. Introduc-
ing a small positive constant ξ̃ , the positive definiteness is enforced, which allows us
to use the Cholesky factorization to solve the system (28). Using the Matlab’s func-

tion [R, p] = chol(T̃ (k)
), we can easily control the positive definiteness. If p = 0,

the matrix T̃ (k) is positive definite, and RT R = T̃ (k). When p > 0, the parameter ξ̃
should be set up to a positive value.

The solution η(k)
∗ must satisfy the box constraints: 0 < η(k)

∗ ≤ 1. Hence, the up-

date for η in the k-th iterative step is determined by η(k) = max{ε,min{1,η(k)
∗ }},

where η (k)
∗ =−R\(RT \b(k)) for a small positive constant ε . The operator \ denotes

the back-substitution.
The final form of the modified SPG algorithm is given by Algorithm 1.

It is a fundamental part of the NMF algorithm used in the training process (see
Algorithm 2).

In the training process, we obtain the nonnegative matrices A and X . To classify
the test sample ỹ, first we need to project it onto the subspace spanned by the column
vectors of the matrix A. As a result, we obtain x̃ ∈ R

J
+. This step can be carried

out with the SPG, assuming αX = 0. Then, the following problem is solved: t∗ =

Image Classification with NMF Based on SPG 41

Algorithm 1. SPG algorithm

Input : Y ∈ R
I×T
+ , A ∈ R

I×J
+ , X (0) ∈ R

J×T
+ - initial guess, LX ∈ R

T×T , αmin > 0,

αmax > 0, ∀t : ᾱ(0)
t = 1

2 αmax, ξ̃ = 10−12, k = 0,
Output: X̂ - estimated factor matrices,

1 repeat
2 k ← k+1;

3 G(k)
X = ∇XΨ(A,X (k)) = AT (AX (k)−Y)+αX X (k)LX ; // Gradient

4 P(k) =
[
X(k)−G(k)

X diag{(ᾱ(k)
t)−1}

]
+
−X (k) ; // Descent direction

5 [R, p] = chol(T (k)) ; // where T (k) is given by (29)
6 while p > 0 do
7 ξ̃ ← 2ξ̃ ;

8 T̃ (k)
= T (k) + ξ̃ IT ;

9 [R, p] = chol(T̃ (k)
);

10 η (k)
∗ =−R\(RT \b(k)); // where b(k) is given by (30)

11 η̄ (k) = max{ε,min{1,η (k)
∗ }}; // Steplengths

12 X (k+1) = X(k) +P(k) diag{η̄(k)};

13 ᾱ (k+1) = max{αmin,min{αmax,α(k+1)}}; // where α (k+1) is set to
(21)

14 until Stop criterion is satisfied;

argmin1≤t≤T ||x̃− xt ||2, which gives us the index t∗ of the class to which the sample
ỹ is classified.

Remark 3. The complexity of one iterative step of the SPG algorithm for updat-
ing the matrix A is only O(IJT). It increases considerably for updating the matrix
X when αX > 0. In this case, it can be roughly estimated as O(IJT) +O(J2I) +
O(J2T)+O(JT 2)+O(T 3), assuming that the term X (k)LX needs O(JT 2), and the
solution of the system (28) is obtained in O(T 3). Using the Cholesky factorization,

the computational cost for calculating T̃ (k) can be diminished to T 3

6 elementary oper-
ations. Despite this computational cost predominates in the calculations, the overall
complexity for the regularized SPG is still significantly lower than for the standard
Newton method that needs O(IJT)+O(J3T 3)+O(JT) (Remark 2).

4 Experiments

In the experiments, the selected NMF algorithms are compared in the context of
their usefulness for supervised classification of various images. The algorithms are
evaluated with respect to the classification accuracy, normalized residual error and
runtime.

42 R. Zdunek, A.H. Phan, and A. Cichocki

Algorithm 2. SPG-NMF Algorithm

Input : Y ∈ R
I×T , J - lower rank, LX ∈ R

T×T - weighting matrix, αX - penalty
parameter,

Output: Factor matrices: A ∈ R
I×J
+ and X ∈ R

J×T
+

1 Initialize: A and X with nonnegative random numbers;
2 Replace negative entries (if any) in Y with zero-value, k = 0 ;
3 repeat
4 X (k+1) = SPG(Y ,A(k),X (k),LX ,αX);

5 d̄(k+1)
j = ∑T

t=1 x(k+1)
jt ,

X (k+1) ← diag

{(
d̄(k+1)

j

)−1
}

X(k+1), A(k) ← A(k)diag
{

d̄(k+1)
j

}
;

6 Ā(k+1)
= SPG(Y T ,(X (k+1))T ,(A(k))T);

7 A(k+1) = (Ā(k+1)
)T ;

8 ¯̄d(k+1)
j = ∑I

i=1 a(k+1)
i j ,

X (k+1) ← diag
{

¯̄d(k+1)
j

}
X (k+1), A(k+1) ← A(k+1)diag

{(
¯̄d(k+1)
j

)−1
}

;

9 k ← k+1;
10 until Stop criterion is satisfied;

The classification accuracy is statistically evaluated using n-fold Cross-Validation
(CV). The mean-accuracy averaged over all CV-folds is expressed as the recog-
nition rate. The normalized residual error in the k-iterative step is calculated as

r(k) = ||Y−A(k)X (k)||F
||Y ||F . The runtime is calculated in Matlab as the elapsed time of

processing the algorithm until its stop criterion is satisfied.
We used the following data:

• Dataset A: It contains log-magnitude spectrograms created from the audio record-
ings of 6 musical instruments (cello, soprano saxophone, violin, bassoon, flute,
and piano). The recordings are taken from the MIS database1 of the University of
Iowa. The sampling frequency is 44.1kHz. The audio samples are created from
4 sec. excerpts that contain meaningful information in the frequency range from
86Hz to 10.9kHz. Then, the spectrogram are downsampled to 64 frequencies ×
128 time intervals. Each class is represented by 12 samples. The samples are
divided into the training and testing sets according to the regular 6-fold CV rule.

• Dataset B: It is created from images of hand-written digits from 0 to 9. They
were prepared by one student from Wroclaw University of Technology, and used
in [34]. The images are downsampled to the resolution of 64× 64 pixels. Each
class contains 10 images. For testing the algorithms with this dataset, we used
the regular 5-fold CV rule.

1 http://theremin.music.uiowa.edu

http://theremin.music.uiowa.edu

Image Classification with NMF Based on SPG 43

Table 1 Mean recognition rates, standard deviations (in parenthesis), and elapsed time aver-
aged over CV-folds for J = 30, and the datasets: A, B1 (dataset B without processing), B2
(dataset B with WT processing) and C.

Algorithm A B1 B2 C

Rec. rate Time Rec. rate Time Rec. rate Time Rec. rate Time

MKL 78.6 (12.0) 0.71 70 (11.2) 0.4 96 (4.2) 0.79 69.75 (3.8) 3.95

MUE 91.7 (10.5) 6.19 90 (5.0) 2.18 96 (4.2) 1.86 94.5 (3.0) 14.45

ALS 90.3 (12.3) 1.05 21 (24.6) 1.82 96 (4.2) 0.81 92.5 (1.8) 2.68

LPG 94.4 (8.6) 8.94 91 (7.4) 3.13 93 (2.7) 2.99 95.75 (1.7) 13.44

FCNNLS 92.9 (8.2) 183.3 84 (6.5) 41.1 94 (2.2) 58.3 95.25 (1.6) 201.6

LNMF 94.4 (8.6) 0.71 25 (7.9) 0.39 95 (3.5) 1.32 91 (6.3) 2.49

DNMF 84.1 (5.5) 0.67 68 (2.7) 0.4 94 (4.2) 0.41 81 (4.2) 2.84

GNMF 93.3 (7.0) 4.51 90 (5.0) 2.07 98 (2.7) 1.68 96 (2.1) 15.06

SPG 95.8 (7.0) 6.66 91 (9.6) 2.89 97 (2.7) 4.24 96.25 (1.8) 9.88

SPG-MD 95.8 (7.0) 14.8 87 (5.7) 2.05 97 (2.7) 2.59 94.75 (3.0) 13.28

SPG-DNMF 97.2 (6.8) 11.76 93 (7.6) 1.71 98 (2.7) 4.65 97 (1.4) 9.67

• Dataset C: This dataset is obtained from facial images taken from the ORL
database2. It contains 400 frontal facial images of 40 people (10 pictures per
person). The resolution of each image is 112× 92 pixels. The 5-fold CV rule is
used for testing the algorithms using this dataset.

Additionally, the tests on the dataset B are carried out for two cases: (B1) the
original downsampled images are used (without preprocessing), (B2) the samples
are preprocessed using the 2-D Wavelet Transform (WT) decomposition with the
Haar wavelets at the first level. This task was achieved with the wavedec2 function
from Matlab.

We test the following NMF algorithms: MKL and MUE (standard multiplicative
Lee-Seung algorithms for minimizing the Euclidean distance and KL divergence, re-
spectively) [20], standard projected ALS [6], LPG (Lin’s Projected Gradient) [23],
regularized FCNNLS [35] (improved version of the l2-norm regularized NMF al-
gorithm proposed in [17]), LNMF [21], DNMF [33], GNMF [5], SPG (Algorithm
2 without the penalty terms), SPG-MD (regularized version with the penalty term
determined by (14)), SPG-DNMF (the penalty term modeled by (10)).

Each NMF algorithm was extensively tested for various values of the related
parameters. The results presented here are obtained for the parameters that give
the highest performance. In the SPG, we set up: αmin = 10−8, αmax = 104, ε =
10−8. The parameters, such as αX , γ and δ (DNMF), were tuned up individually to
each dataset. For the GNMF, the matrix LX is determined using the hard connection

2 http://people.cs.uchicago.edu/˜dinoj/vis/orl/

http://people.cs.uchicago.edu/~dinoj/vis/orl/

44 R. Zdunek, A.H. Phan, and A. Cichocki

5 10 15 20 25 30 35 40 45 50
40

50

60

70

80

90

100

Rank: J

R
e
c
o
g
n
it
io

n
ra

te
[%

]

MKL

MUE

ALS

LPG

FCNNLS

LNMF

DNMF

GNMF

SPG

SPG-MD

SPG-DNMF

Fig. 1 Recognition rates obtained for dataset A using various NMF algorithms versus the
rank J

criterion given by (11). For the SPG-MD, the Heat kernel weighting in (12) was used
with σ2 = 107, k1 = 5 and k2 = 20. For many test cases: αX = 10−2 and ξ = 102.
For the SPG-DNMF: αX = 1, γ ≈ 10−5 and δ ≤ 10−6.

All the NMF algorithms were initialized by the SimplexMax algorithm (for
p = 1) that was proposed in [36]. The stop criterion in all the tested algorithms
was the same. The inner iterations (i.e. for updating one factor at the other fixed)
were determined on the basis of the projected gradient criterion that was used in the
LPG algorithm [23]. The maximum number of inner iterations was set to 10. The
alternating steps (outer iterations) were terminated in all the tested algorithms if the
normalized residual error drops below 10−4.

The mean recognition rates versus the rank of factorization (J) are illustrated in
Figs. 1–4 for the datasets A, B1, B2 and C, respectively. The same results but at
the rank fixed to 30 are presented in Table 1. Additionally, the table contains the
standard deviations of recognitions rates across CV-folds, and the runtime for pro-
cessing each algorithm. Note that it is not the runtime of executing a given number
of iterations but the elapsed time measured until the stop criterion holds.

The normalized residual errors versus the number of iterations for the selected
NMF algorithms are plotted in Fig. 5.

The averaged classification results obtained with the MKL, LNMF and SPG-
DNMF algorithms are also illustrated in Fig. 6 in the form of the Hinton graph of

Image Classification with NMF Based on SPG 45

5 10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80

90

100

Rank: J

R
e

c
o

g
n

it
io

n
ra

te
[%

]
MKL
MUE
ALS
LPG
FCNNLS
LNMF
DNMF
GNMF
SPG
SPG-MD
SPG-DNMF

Fig. 2 Recognition rates obtained for dataset B without preprocessing using various NMF
algorithms versus the rank J

5 10 15 20 25 30 35 40 45 50

30

40

50

60

70

80

90

100

Rank: J

R
e

c
o

g
n

it
io

n
ra

te
[%

]

MKL

MUE

ALS

LPG

FCNNLS

LNMF

DNMF

GNMF

SPG

SPG-MD

SPG-DNMF

Fig. 3 Recognition rates obtained for dataset B with WT preprocessing using various NMF
algorithms versus the rank J

46 R. Zdunek, A.H. Phan, and A. Cichocki

5 10 15 20 25 30 35 40 45 50

20

30

40

50

60

70

80

90

100

Rank: J

R
e

c
o

g
n

it
io

n
ra

te
[%

]

MKL

MUE

ALS

LPG

FCNNLS

LNMF

DNMF

GNMF

SPG

SPG-MD

SPG-DNMF

Fig. 4 Recognition rates obtained for dataset C using various NMF algorithms versus the
rank J

0 5 10 15 20 25 30 35 40 45 50
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Iterations

N
o
rm

a
liz

e
d

re
s
id

u
a
l
e
rr

o
r

SPG-DNMF
FCNNLS
LPG
ALS
MUE

0 10 20 30 40 50 60
0.15

0.2

0.25

0.3

Iterations

N
o
rm

a
liz

e
d

re
s
id

u
a
l
e
rr

o
r

SPG-DNMF
FCNNLS
LPG
ALS
MUE

(a) (b)

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

N
o
rm

a
liz

e
d

re
s
id

u
a
l
e
rr

o
r

SPG-DNMF
FCNNLS
LPG
ALS
MUE

0 10 20 30 40 50 60 70 80 90
0.35

0.4

0.45

0.5

0.55

Iterations

N
o

rm
a

liz
e

d
re

s
id

u
a

l
e

rr
o

r

SPG-DNMF
FCNNLS
LPG
ALS
MUE

(c) (d)

Fig. 5 Normalized residual errors versus alternating iterations: (a) dataset A; (b) dataset B
without preprocessing; (c) dataset B with WT preprocessing; (d) dataset C

Image Classification with NMF Based on SPG 47

1 2 3 4 5 6

1

2

3

4

5

6

Inputs

O
u

tp
u

ts

1 2 3 4 5 6

1

2

3

4

5

6

Inputs

O
u
tp

u
ts

1 2 3 4 5 6

1

2

3

4

5

6

Inputs

O
u

tp
u

ts

(a) (b) (c)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Inputs

O
u

tp
u

ts

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Inputs

O
u

tp
u

ts

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Inputs

O
u

tp
u

ts

(d) (e) (f)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Inputs

O
u

tp
u

ts

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Inputs

O
u

tp
u

ts

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Inputs

O
u

tp
u

ts

(g) (h) (i)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Inputs

O
u

tp
u

ts

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Inputs

O
u
tp

u
ts

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Inputs

O
u

tp
u

ts

(j) (k) (l)

Fig. 6 Confusion matrices: (a) MKL, Dataset A; (b) LNMF: Dataset A; (c) SPG-DNMF,
Dataset A; (d) MKL, Dataset B without preprocessing; (e) LNMF, Dataset B without pre-
processing; (f) SPG-DNMF, Dataset B without preprocessing; (g) MKL, Dataset B with WT
preprocessing; (h) LNMF, Dataset B with WT preprocessing; (i) SPG-DNMF, Dataset B with
WT preprocessing; (j) MKL, Dataset C; (k) LNMF: Dataset C; (l) SPG-DNMF, Dataset C

confusion matrices. Both the Hinton graph and the confusion matrix are obtained
with the Matlab functions from the Neural Network Toolbox.

5 Conclusions

In the chapter, we compared several NMF algorithms for various classification prob-
lems. We observed that the classification results are more affected by the dataset

48 R. Zdunek, A.H. Phan, and A. Cichocki

or the preprocessing than the NMF algorithm. For the dataset A, the SPG-DNMF
outperforms the other algorithms for J ≥ 15 (see Fig. 1). This algorithm behaves
similarly for the dataset B1 (see Fig. 2), even for a lower rank (J = 5). After
applying the preprocessing, nearly all the tested algorithms give the similar per-
formance (see Fig. 3). Only the DNMF works noticeably worse for smaller ranks.
For J = 30, the GNMF is slightly better than the SPG-DNMF (see Table 1). For
classification of facial images, the SPG-DNMF is ranked first for J > 20. Usually
an increase in the factorization rank leads to a higher recognition rate.

Comparing the results obtained for the datasets B1 and B2, one can easily notice
that the WT preprocessing is crucial for this kind of images. For the other datasets,
it does not lead to such a big difference.

The tests show that the Euclidean distance-based algorithms better classify the
images in the datasets A, B1 and C than the KL divergence-based ones. Despite, the
MKL and MUE have a similar convergence rate, the difference in performance is
large. The LNMF and DNMF significantly outperform the MKL but are inferior to
the SPG-DNMF.

Fig. 5 proves that the SPG-DNMF algorithm has a good convergence behavior.
It converges monotonically and usually faster (especially in initial iterations) than
the others. In each alternating step, the updates for A and X are optimal according to
the first-order KKT optimality conditions. For example, the monotonic convergence
is not observed for the ALS algorithm. Additionally, Fig. 5 shows the number of
iterations performed to satisfy the stop criterion. For the threshold of the normal-
ized residual error at the level of 10−4, this number for the SPG-DNMF is usually
lower than 50 iterations, while the MUE and FCNNLS require much more iterations.
Hence, the runtime for MUE in Table 1 is sometimes longer than for the SPG-based
algorithms. In this comparison, the FCNNLS is the slowest.

Summing up, the experiments demonstrate that the SPG-based algorithms work
very efficiently in NMF-based classification of various images. It can be also easily
extended to other applications, such as multi-linear discriminant analysis or multi-
way array decompositions.

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and
clustering. In: Advances in Neural Information Processing Systems 14, pp. 585–591.
MIT Press (2001)

2. Benetos, E., Kotti, M., Kotropoulos, C.: Musical instrument classification using non-
negative matrix factorization algorithms and subset feature selection. In: Proc. of 2006
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2006), Toulouse, France, p. V (2006)

3. Birgin, E.G., Martnez, J.M., Raydan, M.: Nonmonotone spectral projected gradient
methods on convex sets. SIAM Journal on Control and Optimization 10, 1196–1211
(2000)

4. Cai, D., He, X., Han, J., Huang, T.: Graph regularized nonnegative matrix factoriza-
tion for data representation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33(8), 1548–1560 (2011)

Image Classification with NMF Based on SPG 49

5. Cai, D., He, X., Wu, X., Han, J.: Nonnegative matrix factorization on manifold. In: Proc.
8th IEEE International Conference on Data Mining (ICDM), pp. 63–72 (2008)

6. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor Fac-
torizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Sep-
aration. Wiley and Sons (2009)

7. Cotter, S.F., Rao, B.D., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear in-
verse problems with multiple measurement vectors. IEEE Transaction on Signal Pro-
cessing 53(7), 2477–2488 (2005)

8. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct de-
composition into parts? In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural
Information Processing Systems (NIPS), vol. 16. MIT Press, Cambridge (2004)

9. Franc, V., Hlaváč, V., Navara, M.: Sequential coordinate-wise algorithm for the non-
negative least squares problem. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS,
vol. 3691, pp. 407–414. Springer, Heidelberg (2005)

10. Guan, N., Tao, D., Luo, Z., Yuan, B.: Manifold regularized discriminative nonnegative
matrix factorization with fast gradient descent. IEEE Transactions on Image Process-
ing 20(7), 2030–2048 (2011)

11. Guan, N., Tao, D., Luo, Z., Yuan, B.: NeNMF: An optimal gradient method for nonneg-
ative matrix factorization. IEEE Transactions on Signal Processing 60(6), 2882–2898
(2012)

12. Guillamet, D., Vitria, J.: Classifying faces with nonnegative matrix factorization. In:
Proc. 5th Catalan Conference for Artificial Intelligence, Castello de la Plana, Spain, pp.
24–31 (2002)

13. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information
Processing Systems 16. MIT Press (2003)

14. Hoyer, P.O.: Non-negative sparse coding. In: Neural Networks for Signal Processing XII
(Proc. IEEE Workshop on Neural Networks for Signal Processing), Martigny, Switzer-
land, vol. 2, pp. 557–565 (2002)

15. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Journal of
Machine Learning Research 5, 1457–1469 (2004)

16. Huang, K., Sidiropoulos, N.D., Swami, A.: Nonnegative matrix factorization revised:
Uniquness and algorithm for symmetric decomposition, pp. 211–224 (2014)

17. Kim, H., Park, H.: Non-negative matrix factorization based on alternating non-negativity
constrained least squares and active set method. SIAM Journal in Matrix Analysis and
Applications 30(2), 713–730 (2008)

18. Kotsia, I., Zafeiriou, S., Pitas, I.: Discriminant non-negative matrix factorization and
projected gradients for frontal face verification. In: Schouten, B., Juul, N.C., Drygajlo,
A., Tistarelli, M. (eds.) BIOID 2008. LNCS, vol. 5372, pp. 82–90. Springer, Heidelberg
(2008)

19. Lanteri, H., Theys, C., Richard, C.: Nonnegative matrix factorization with regularization
and sparsity-enforcing terms. In: 4th IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 97–100 (2011)

20. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factoriza-
tion. Nature 401, 788–791 (1999)

21. Li, S.Z., Hou, X.W., Zhang, H.J., Cheng, Q.S.: Learning spatially localized, parts-based
representation. In: Proc. of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2001), vol. 1, pp. I–207–I–212 (2001)

22. Lin, C.J.: On the convergence of multiplicative update algorithms for non-negative ma-
trix factorization. IEEE Transactions on Neural Networks 18(6), 1589–1596 (2007)

50 R. Zdunek, A.H. Phan, and A. Cichocki

23. Lin, C.J.: Projected gradient methods for non-negative matrix factorization. Neural Com-
putation 19(10), 2756–2779 (2007)

24. Liu, X., Yan, S., Jin, H.: Projective nonnegative graph embedding. IEEE Transactions on
Image Processing 19(5), 1126–1137 (2010)

25. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Re-
search. Springer, New York (1999)

26. Pascual-Montano, A., Carazo, J.M., Kochi, K., Lehmean, D., Pacual-Marqui, R.: Non-
smooth nonnegative matrix factorization (nsNMF). IEEE Transaction Pattern Analysis
and Machine Intelligence 28(3), 403–415 (2006)

27. Phan, A.H., Cichocki, A.: Tensor decompositions for feature extraction and classification
of high dimensional datasets. IEICE Nonlinear Theory and Its Applications 1(1), 37–68
(2010)

28. Phan, A.H., Cichocki, A.: Extended HALS algorithm for nonnegative Tucker decom-
position and its applications for multiway analysis and classification. Neurocomputing
74(11), 1956–1969 (2011); Adaptive Incremental Learning in Neural Networks; Learn-
ing Algorithm and Mathematic Modelling. Selected paper from the International Con-
ference on Neural Information Processing (ICONIP 2009)

29. Qin, L., Zheng, Q., Jiang, S., Huang, Q., Gao, W.: Unsupervised texture classification:
Automatically discover and classify texture patterns. Image and Vision Computing 26(5),
647–656 (2008)

30. Wang, C., Song, Z., Yan, S., Lei, Z., Zhang, H.J.: Multiplicative nonnegative graph em-
bedding. In: CVPR, pp. 389–396. IEEE (2009)

31. Wang, Y., Jia, Y., Hu, C., Turk, M.: Fisher nonnegative matrix factorization for learning
local features. In: Proc. 6th Asian Conf. on Computer Vision, Jeju Island, Korea, pp.
27–30 (2004)

32. Yang, J., Yan, S., Fu, Y., Li, X., Huang, T.S.: Non-negative graph embedding. In: CVPR
2008, vol. 4, pp. 1–8 (2008)

33. Zafeiriou, S., Tefas, A., Buciu, I., Pitas, I.: Exploiting discriminant information in non-
negative matrix factorization with application to frontal face verification. IEEE Transac-
tions on Neural Networks 17(3), 683–695 (2006)

34. Zak, M.: Recognition of hand-written digits with nonnegative matrix factorization. Mas-
ter’s thesis, Wroclaw University of Technology, Wroclaw (2011); Supervisor: R. Zdunek

35. Zdunek, R.: Regularized active set least squares algorithm for nonnegative matrix factor-
ization in application to Raman spectra separation. In: Cabestany, J., Rojas, I., Joya, G.
(eds.) IWANN 2011, Part II. LNCS, vol. 6692, pp. 492–499. Springer, Heidelberg (2011)

36. Zdunek, R.: Initialization of nonnegative matrix factorization with vertices of convex
polytope. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 448–455. Springer,
Heidelberg (2012)

37. Zdunek, R., Cichocki, A.: Nonnegative matrix factorization with constrained second-
order optimization. Signal Processing 87, 1904–1916 (2007)

38. Zdunek, R., Cichocki, A.: Sequential coordinate-wise DNMF for face recognition. In:
Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC
2010, Part I. LNCS, vol. 6113, pp. 563–570. Springer, Heidelberg (2010)

39. Zdunek, R., Phan, A.-H., Cichocki, A.: GNMF with Newton-based methods. In: Mlade-
nov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N.
(eds.) ICANN 2013. LNCS, vol. 8131, pp. 90–97. Springer, Heidelberg (2013)

Energy-Time Tradeoff in Recurrent Neural Nets

Jiřı́ Šı́ma

Abstract. In this chapter, we deal with the energy complexity of perceptron net-
works which has been inspired by the fact that the activity of neurons in the brain
is quite sparse (with only about 1% of neurons firing). This complexity measure
has recently been introduced for feedforward architectures (i.e., threshold circuits).
We shortly survey the tradeoff results which relate the energy to other complexity
measures such as the size and depth of threshold circuits. We generalize the energy
complexity for recurrent architectures which counts the number of simultaneously
active neurons at any time instant of a computation. We present our energy-time
tradeoff result for the recurrent neural nets which are known to be computationally
as powerful as the finite automata. In particular, we show the main ideas of simulat-
ing any deterministic finite automaton by a low-energy optimal-size neural network.
In addition, we present a lower bound on the energy of such a simulation (within a
certain range of time overhead) which implies that the energy demands in a fixed-
size network increase exponentially with the frequency of presenting the input bits.

1 Energy Complexity—Motivations and Survey

According to biological studies on energy consumption by cortical computation
which are based on electrophysiological recordings [6], the energy cost of a sin-
gle spike is substantially higher than that of the no-spike rest state of a neuron. On
the other hand, the energy supply to the brain is known to be limited, which suffices
possibly to fewer than 1%, the number of neurons that can be substantially active
concurrently, and hence the activity of neurons in the cortex is quite sparse. This is
not in contradiction with the fMRI observations [2] that the oxygen consumption by
a functional part of the brain (e.g. visual cortex) when engaged in appropriate tasks

Jiřı́ Šı́ma
Institute of Computer Science, Academy of Sciences of the Czech Republic,
P. O. Box 5, 18207 Prague 8, Czech Republic
e-mail: sima@cs.cas.cz

c© Springer International Publishing Switzerland 2015 51
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_3

52 J. Šı́ma

is not substantially higher as compared to the state when this region is not employed
for its purpose. The reason is that the brain exhibit permanent, although sparse, ac-
tivity, and thus the difference in energy consumption by a used vs. not used area
of the brain is relatively small. In fact, this confirms the brain is quite effective in
performing its tasks from the energy point of view.

In contrast to their biological counterparts, artificial neural circuits are frequently
designed such that they do not take energy constraints into account. In fact, only the
size (i.e., the number of gates) or the depth (i.e., the number of layers) of such net-
works are usually somehow optimized while computations have the property that,
on average, approximately a half of units in the circuit fire (i.e. output a “1”) during
any computation. This fact has recently motivated the definition of a new complex-
ity measure for feedforward perceptron networks (threshold circuits), the so-called
energy complexity [17] which is the maximum number of units in the network which
output 1, taken over all the possible inputs to the circuit.

Although the perceptron networks represent only a very rough abstract model
of biological neural networks as compared to e.g. networks of spiking neurons, in
a preliminary study of energy phenomenon, the stereotypical spikes can be simu-
lated by outputs 1 from threshold gates, which makes the analysis technically more
tractable. In addition, the first results have shown that the feedforward perceptron
networks which are widely used in engineering applications have a surprisingly
large computational power even if their energy complexity is restricted which means
these circuits can exhibit only sparse activity. Minimizing the energy complexity re-
quires a different approach to the circuit design which is potentially closer to the
brain structures. In particular, different pathways in these circuits are activated for
different clusters of inputs.

Furthermore, energy complexity of feedforward neural networks has been shown
to be closely related by tradeoff results to other complexity measures such as the
network size, the circuit depth, and the fan-in. In particular, a formula binding the
energy e and the size s of any threshold circuit that computes a symmetric Boolean
function f with n variables (i.e., the function value of f depends only on the number
of 1’s in the input) was derived [21], which gives e.g. the tradeoff e logs ≥ logn
for the parity function f . Or even an exponential lower bound exp(Ω(n1−o(n))) on
the number of perceptrons in any feedforward network with constant number of
layers (i.e., constant depth) computing the Boolean inner product of 2n variables
(see Eq. 6) was proven when the energy supply is restricted by e = no(1) [19].

There is also a close relationship between the energy complexity e and the depth d
(i.e., parallel computational time) of feedforward perceptron network: Any thresh-
old circuit of energy complexity e and size s, computing a Boolean function f
can be transformed to another threshold circuit of depth 2e+ 1 and size 2es+ 1,
computing f [18]. This means that, within polynomial size, the energy complexity
provides an upper bound on the depth of feedforward networks. Moreover, the trade-
off e = O(n/�) between the energy e and the fan-in � (i.e., the maximum number
of inputs to a single unit) of any threshold circuit computing the modulus function
MODm of n variables (i.e., MODm gives 0 iff the number of 1’s in the input is divisi-
ble by m) was proven including an almost tight lower bound e=Ω((n−m)/�)) [16].

Energy-Time Tradeoff in Recurrent Neural Nets 53

Last but not least, energy complexity has found its important use in circuit complex-
ity as a tool for proving the lower bounds [20].

2 Energy Complexity of Recurrent Networks—Chapter Outline

In this chapter, we study, for the first time, the energy complexity of recurrent neu-
ral (perceptron) networks which we define to be the maximum number of neurons
outputting 1 at any time instant, taken over all possible computations. Clearly, this
generalizes the energy complexity of threshold circuits (Sect. 1) to recurrent archi-
tectures as the energy of feedforward networks remains the same according to this
definition.

It has been known for a long time that the computational power of binary-state
recurrent networks corresponds to that of finite automata since the network of size
s units can reach only a finite number (at most 2s) different states [14]. A simple
way of simulating a given deterministic finite automaton A with m states by a neural
network N of size O(m) is to implement each of the 2m transitions of A (having
0 and 1 transitions for each state) by a single unit in N which checks whether the
input bit agrees with the respective type of transition [8]. Clearly, this simple linear-
size implementation of finite automata requires only a constant energy since the
determinism of automaton ensures that only a single acceptance path is traversed
through the state transition graph, that is, only one neuron fires on this path at any
time instant.

Much effort had been given to reducing the size of neural automata [1, 3, 4, 15]
and, indeed, neural networks of size Θ(

√
m) implementing a given deterministic

finite automaton with m states were proposed and proven to be size-optimal [3, 4].
A natural question arises: What is the energy consumption when simulating finite
automata by optimal-size neural networks? We answer this question in this chapter
by showing the tradeoff between the energy and the time overhead of the simulation.
In particular, we prove that an optimal-size neural network of s =Θ(

√
m) units can

be constructed to simulate a deterministic finite automaton with m states using the
energy O(e) for any function e such that e = Ω(logs) and e = O(s), while the time
overhead for processing one input bit is τ = O(s/e). This means that the frequency
of presenting the input bits can increase when more energy is supplied to the sim-
ulating network. For this purpose, we adapt the asymptotically optimal method of
threshold circuit synthesis [7].

In addition, we also derive lower bounds on the energy consumption e of a neural
network of size s simulating a finite automaton within the time overhead τ per one
input bit, by using the technique due to Uchizawa and Takimoto [19] which is based
on a communication complexity argument [5]. In particular, for less than sublog-
arithmic time overhead τ satisfying τ logτ = o(logs), we obtain the lower bound
loge=Ω∞

(
1
τ logs

)
which implies e≥ sc/τ for some constant c> 0 and for infinitely

many s. Thus, the energy complexity in a fixed-size neural network increases expo-
nentially with the frequency of presenting the input bits. For example, this means
that for constant time overhead τ = O(1), the energy of any simulation meets e ≥ sδ

54 J. Šı́ma

for some constant δ such that 0 < δ < 1, and for infinitely many s, which can be
compared to the energy e = O(s) consumed by our simulation. For τ = O(logα s)

where 0 < α < 1, any such simulation requires energy e = Ω∞

(
slog logs/ logδ s

)
for

any δ > α , while e = O(s/ logα s) is sufficient for our implementation.
This chapter is organized as follows. After a brief review of the basic definitions

regarding neural networks as finite automata in Sect. 3, the main result concerning
a low-energy simulation of finite automata by neural nets is presented in Sect. 4
including the basic ideas of the proof. The lower bounds on the energy consumption
of such neural automata are formulated and compared to the respective upper bounds
in Sect. 5. A concluding summary is given in Sect. 6. A preliminary version of this
chapter has appeared as an extended abstract [12] which was further expanded to
journal paper [13] including complete proofs. This chapter is focused on motivations
and a survey, providing a brief exposition of the main ideas of our results on the
energy complexity of recurrent neural networks while complicated technical details
are only sketched or even omitted.

3 Neural Finite Automata

In order to precisely present our results we first recall the formal definition of an
(artificial) neural network N and then we will introduce its I/O protocol for im-
plementing a finite automaton. The network consists of s units (neurons, threshold
gates), indexed as V = {1, . . . ,s}, where s is called the network size. The units are
connected into a directed graph representing the architecture of N, in which each
edge (i, j) leading from unit i to j is labeled with an integer weight w(i, j). The ab-
sence of a connection within the architecture corresponds to a zero weight between
the respective neurons, and vice versa.

In contrast to general recurrent networks, which have cyclic architectures, the
architecture of a feedforward network (or a so-called threshold circuit) is an acyclic
graph. Hence, units in a feedforward network can be grouped in a unique minimal
way into a sequence of d+1 pairwise disjoint layers α0, . . . ,αd ⊆V so that neurons
in any layer αt are connected only to neurons in subsequent layers αu, u> t. Usually
the zeroth, or input layer α0 consists of external inputs and is not counted in the
number of layers and in the network size. The last, or output layer αd is composed
of output neurons. The number of layers d excluding the input one is called the
depth of threshold circuit.

The computational dynamics of (not necessarily feedforward) network N deter-

mines for each unit j ∈ V its binary state (output) y(t)j ∈ {0,1} at discrete time in-

stants t = 0,1,2, We say that neuron j is active (fires) at time t if y(t)j = 1, while

j is passive for y(t)j = 0. This establishes the network state y(t) = (y(t)1 , . . . ,y(t)s) ∈
{0,1}s at each discrete time instant t ≥ 0. At the beginning of a computation, the
neural network N is placed in an initial state y(0) which may also include an external
input. At discrete time instant t ≥ 0, an excitation of any neuron j ∈V is defined as

Energy-Time Tradeoff in Recurrent Neural Nets 55

ξ (t)
j =

s

∑
i=1

w(i, j)y(t)i − h(j) (1)

including an integer threshold h(j) local to unit j. At the next instant t + 1, the

neurons j ∈αt+1 from a selected subset αt+1 ⊆V update their states y(t+1)
j =H(ξ (t)

j)
in parallel by applying the Heaviside function H : ℜ −→ {0,1} which is defined as

H(ξ) =
{

1 for ξ ≥ 0
0 for ξ < 0 .

(2)

The remaining units j ∈V \αt+1 do not change their outputs, that is y(t+1)
j = y(t)j for

j �∈ αt+1. In this way, the new network state y(t+1) at time t + 1 is determined.
Without loss of efficiency [9], we implicitly assume synchronous computations.

Thus, the sets αt which define the computational dynamics of N are predestined
deterministically for each time instant t (e.g. αt =V for any t ≥ 1 means fully paral-
lel synchronous updates). Note that computations in feedforward networks proceed
layer by layer from the input layer up to the output one (i.e. sets αt naturally coincide
with layers), which implement Boolean functions. We define the energy complexity
of N to be the maximum number of active units

s

∑
j=1

y(t)j

at any time instant t ≥ 0, taken over all the computations of N.
The computational power of recurrent neural networks has been studied analo-

gously to the traditional models of computations so that the networks are exploited
as acceptors of formal languages L ⊆ {0,1}∗ over the binary alphabet. For the fi-
nite networks that are to recognize regular languages, the following I/O protocol has
been used [1, 3, 4, 11, 15, 14]. A binary input word (string) x = x1 . . .xn ∈ {0,1}n of
arbitrary length n ≥ 0 is sequentially presented to the network bit by bit via an input
neuron in ∈V . The state of this unit is externally set (and clamped) to the respective
input bits at prescribed time instants, regardless of any influence from the remaining
neurons in the network, that is,

y(τ(i−1))
in = xi (3)

for i = 1, . . . ,n where an integer parameter τ ≥ 1 is the period or time overhead
for processing a single input bit. Then, an output neuron out ∈ V signals at time τn
whether the input word belongs to underlying language L, that is,

y(τn)
out =

{
1 for x ∈ L
0 for x �∈ L .

(4)

As usual, we will describe the limiting behavior (rate of growth) of functions
when the argument tends towards infinity in terms of simpler functions by using
Landau or big O notation. Recall that for functions f ≥ 1 and g ≥ 1 defined for

56 J. Šı́ma

all natural numbers, notations g = O(f) and g = Ω(f) mean that for some real
constant c > 0 and for all but finitely many natural numbers n, g(n) ≤ c · f (n) and
g(n)≥ c · f (n), respectively. In addition, g=Θ(f) if g=O(f) and g=Ω(f) simul-
taneously. Similarly, g = o(f) denotes that for every real constant c > 0 and for all
but finitely many natural numbers n, g(n)≤ c · f (n), while g=Ω∞(f) means that for
some real constant c > 0 and for infinitely many natural numbers n, g(n)≥ c · f (n).
Clearly, g = o(f) iff limn→∞ g(n)/ f (n) = 0 iff g �= Ω∞(f).

4 A Low-Energy Implementation of Finite Automata by
Optimal-Size Neural Nets

Our main result concerning a low-energy implementation of finite automata by
optimal-size neural nets is formulated in the following theorem. We will below pro-
vide a short informal proof sketch which explains the main ideas of the low-energy
construction while the complicated details are deferred to technical paper [12].

Theorem 1. A given deterministic finite automaton A with m states can be simulated
by a neural network N of optimal size s =Θ(

√
m) neurons with time overhead τ =

O(s/e) per one input bit, using the energy O(e), where e is any function satisfying
e = Ω(logs) and e = O(s).

Proof. (Sketch) For the construction of an optimal-size neural network N imple-
menting a given deterministic finite automaton A we employ the approach due to
Horne and Hush [3] which is based on Lupanov’s result [7]. Unlike Horne and Hush
who used the statement of Lupanov’s theorem as a “black box”, we need to modify
Lupanov’s construction in order to optimize the energy consumption.

Thus, a set Q of m states of a given deterministic finite automaton A is enu-
merated by integers 0,1, . . . ,m− 1 so that each q ∈ Q is encoded in binary using
p =
log2 m�+ 1 bits including one additional (e.g. the pth) bit which indicates the
final states (i.e its value is 1 just for the final states of A). Then, the respective
transition function δ : Q×{0,1} −→ Q of automaton A, producing its new state
qnew = δ (qold,x) ∈ Q from the old state qold ∈ Q and current input bit x ∈ {0,1},
can be viewed as a vector Boolean function fδ : {0,1}p+1 −→ {0,1}p in terms of
binary encoding of automaton’s states.

Furthermore, “transition” function fδ is implemented by a four-layer neural net-
work C of asymptotically optimal size Θ(2p/2) = Θ(

√
m) using the method of

threshold circuit synthesis due to Lupanov [7]. Feedforward network C comput-
ing the transition function δ of A can then simply be transformed to a recurrent
neural network N of the same size s =Θ(

√
m) simulating A by adding the recurrent

connections from the fourth layer to the first one, as it is schematically depicted in
Fig. 1. In fact, the fourth output layer of C having p threshold gates is identified
with the p units of the zeroth layer in N which store the current state of A while the
remaining (p+ 1)th neuron in ∈V serves as an input to A (cf. Eq. 3). The recurrent
connections ensure that the binary code of automaton’s old state is replaced by the
new one. In addition, the pth neuron in the zeroth layer of N representing the output

Energy-Time Tradeoff in Recurrent Neural Nets 57

Fig. 1 A schema of the transformation of threshold circuit C (on top) implementing the “tran-
sition” function fδ of finite automaton A into a low-energy neural network N (at the bottom)
simulating A.

neuron out ∈ V signals whether the automaton is in an accepting state (cf. Eq. 4)
because the pth bit in the binary code of states indicates the final states. Using this
approach, a finite automaton can be implemented by an optimal-size neural net [3].

Unfortunately, the second layer of threshold circuit C in Lupanov’s construc-
tion [7] contains Θ(s) gates, half of which fire for any input to C, which results in
an unacceptably high energy consumption Ω(s) although the energy demands of the
remaining three layers are bounded by O(p) = O(logs). In particular, this second
layer is composed of O(2p/2) pairs of units such that exactly one neuron of each pair
fires, except for just 2p pairs of which both their neurons are active simultaneously.
In fact, determining these 2p pairs is the core of evaluating the function fδ for a
given input.

In order to achieve a low-energy implementation of A, this layer of Θ(s) neurons
is properly partitioned into O(s/e) blocks of O(e) units each so that no pair of units

58 J. Šı́ma

is split into two blocks (see Fig. 1). Then, so-called control units, one for each block,
are introduced which ensure that these blocks are updated successively one by one
so that the energy consumption (i.e. the maximum number of simultaneously active
neurons) is bounded by O(e), while the time overhead for processing a single input
bit possibly increases to O(s/e). In particular, the control units create typically a
path along which the control signal is propagated so that only one control unit on
the path is active at each time instant. Each such a control unit releases an update
of one associated block while the remaining blocks are blocked typically at the zero
state (consuming no energy) apart from those 2p pairs of which both neurons fire
simultaneously. In this way, the energy consumption of C is reduced from Ω(s) to
O(e+ p) = O(e+ logs) = O(e) as e = Ω(logs). �

Theorem 1 provides an energy-time tradeoff for the size-optimal recurrent net-
works implementing finite automata, which generalizes the tradeoff results for
threshold circuits (see Sect. 1). In particular, the time overhead τ which is neces-
sary for processing a single input bit decreases when more energy e is supplied to
the network. For the full energy e = Ω(s) we obtain the constant-time overhead.

5 The Energy Lower Bound

In this section, we will show lower bounds on the energy complexity of neural net-
works implementing finite automata. For this purpose, we will employ the technique
due to Uchizawa and Takimoto [19] which is based on communication complex-
ity [5]. Assume that f : {0,1}n ×{0,1}n −→ {0,1} is a Boolean function whose
value f (x,y) has to be computed by two players with unlimited computational
power, each receiving only his/her part of the input x ∈ {0,1}n and y ∈ {0,1}n,
respectively, while they wish to exchange with each other the least possible number
of bits. In particular, they communicate according to a randomized protocol addi-
tionally making use of the same public random bit string. For any error probability
ε satisfying 0 ≤ ε < 1/2, the communication complexity Rε(f) of function f is
defined to be the maximum number of bits needed to be exchanged for the best ran-
domized protocol to make the two players compute the correct value of f (x,y) with
probability at least 1− ε , for every input assignment x and y.

It is well known [5] that almost all Boolean functions f of 2n variables have large
communication complexity

Rε(f) = Ω
(

n+ log

(
1
2
− ε

))
(5)

for any error probability ε such that 0 ≤ ε < 1/2. An example of a particular func-
tion that meets condition (5) is the Boolean inner product IPn : {0,1}2n −→ {0,1},
defined as

IPn(x1, . . . ,xn,y1, . . . ,yn,) =
n⊕

i=1

(xi ∧ yi) (6)

Energy-Time Tradeoff in Recurrent Neural Nets 59

where ⊕ denotes the parity which gives 1 iff the number of satisfied conjunctions
xi ∧ yi (i.e. xi = yi = 1), for i = 1, . . . ,n, is odd.

On the other hand, Uchizawa and Takimoto [19] proved the upper bound on the
communication complexity of Boolean function f in terms of the size, depth, and
energy complexity of a feedforward network computing f :

Theorem 2 ([19]). If a Boolean function f : {0,1}2n −→{0,1} can be computed by
a threshold circuit of size S, depth d, and energy complexity E, then

Rε(f) = O
(
(E + d)(logn+(E + 1)d logS

)
(7)

for error probability

ε =
1
2
− 1

4S3(E+1)d . (8)

The lower and upper bounds on the communication complexity (5) and (7), respec-
tively, are put together in the following lemma:

Lemma 1 ([13]). Let f : {0,1}2n −→ {0,1} be a Boolean function of 2n variables
whose communication complexity satisfies condition (5), which can be computed by
a threshold circuit of size S, depth d, and energy complexity E such that n = O(S)
and d = O(E). Then n = O(Ed+1 logS).

Now we will formulate the result providing the lower bound e ≥ sc/τ (for some
constant c > 0 and for infinitely many s) on the energy complexity e of a recurrent
neural network of size s neurons implementing a given finite automaton with time
overhead τ such that ττ = o(s). This means the lower bound is valid for less than
sublogarithmic time overheads.

Theorem 3. Let τ logτ = o(logs). There exists a neural network of size s neurons
simulating a finite automaton with time overhead τ per one input bit which needs
energy e such that loge = Ω∞

(
1
τ logs

)
.

Proof. Let N be a neural network of size s neurons simulating a finite automaton
A with time overhead τ per one input bit. The states of A are represented by the
2s−1 states of N (excluding the input neuron in) and the transition function of A is
computed by N within τ time steps. Clearly, network N can be “unwound” into a
threshold circuit C of depth d = τ and size S = τs which implements the transition
function of A so that each layer is a copy of N [10]. Thus, the states of neurons in
the ith layer of C coincide with the network state y(kτ+i) for 0 ≤ i ≤ τ , when the new
state y((k+1)τ) of A is produced from the old one y(kτ) including the current input
bit. Hence, the energy complexity of C is a τ multiple of the energy consumed by
N, that is, E = τe.

As component fk : {0,1}s −→ {0,1} (for 1 ≤ k ≤ s) of the transition function
defining A can be arbitrary, there is a neural network N simulating A such that fk

implemented by C has large communication complexity satisfying condition (5).
Moreover, n =
s/2� = O(S) and d = τ = O(E), which meets the remaining as-
sumptions of Lemma 1. It follows that

60 J. Šı́ma

s/2�= n = O
(

Ed+1 logS
)
= O

(
(τe)t+1 logτs

)
(9)

according to Lemma 1. On the contrary, suppose that

loge = o

(
logs

τ

)
. (10)

We will prove that (τe)τ+1 logτs = o(s) which contradicts equation (9). For this
purpose, it suffices to show that log((τe)τ+1 logτs) = o(logs). This can be rewritten
as (τ + 1) logτ +(τ + 1) loge+ log logτ + loglogs = o(logs) which follows from
the assumption of the theorem and equation (10), completing the argument. �

Theorem 3 provides an energy-time tradeoff in recurrent neural networks from
the lower-bound perspective as a counterpart to Theorem 1. In particular, the un-
derlying formula relates the energy demands to the time overhead for processing a
single input bit. It follows that the energy complexity in a fixed-size neural network
increases exponentially with the frequency of presenting the input bits. In the fol-
lowing corollary we will formulate the lower bounds on energy complexity in terms
of the network size for selected cases of sublogarithmic time overhead.

Corollary 1.
1. If τ = O(1), then e ≥ sδ for some δ such that 0 < δ < 1 and for infinitely many s.

2. If τ = O(loglogs), then e = Ω∞

(
s1/ logδ s

)
= Ω∞

(
2log1−δ s

)
for any δ such that

0 < δ < 1.
3. If τ = O(logα s) for some 0 < α < 1, then e = Ω∞

(
sloglog s/ logδ s

)
=

Ω∞

(
(logs)log1−δ s

)
for any δ such that δ > α .

Proof. 1. For τ = O(1), the assumption τ logτ = o(logs) trivially holds and the
proposition follows straightforwardly from Theorem 3.
2. For τ = O(loglogs), there is cu > 0 such that for all but finitely many s we
have τ logτ ≤ cu(loglogs) log log logs + (cu logcu) log logs = o(logs). According
to Theorem 3, there is c� > 0 such that loge ≥ c� logs

cu loglog s for infinitely many s. On

the contrary, suppose that e = o
(

s1/ logδ s
)

for some δ satisfying 0 < δ < 1, which

implies log1−δ s ≥ c� log s
cu loglog s leading to a contradiction loglog s

logδ s
≥ c�

cu
> 0.

3. If τ = O(logα s) for some 0 < α < 1, then there is cu > 0 such that for all but
finitely many s we have τ logτ ≤ cu (logα s) loglogα s+(cu logcu) logα s = o(logs).
According to Theorem 3, there is c� > 0 such that loge ≥ cu

c�
log1−α s for infinitely

many s. On the contrary, suppose that e = o
(

sloglog s/ logδ s
)

for some δ satisfying

δ > α , which implies (loglogs) log1−δ s ≥ cu
c�

log1−α s leading to a contradiction
loglog s
logδ−α s

≥ cu
c�
> 0. �

We can compare the lower bounds on energy complexity of simulating the finite
automata by neural nets presented in Corollary 1 to the respective upper bounds

Energy-Time Tradeoff in Recurrent Neural Nets 61

provided by Theorem 1. For the constant time overhead τ = O(1), the construction
from Theorem 1 achieves the energy consumption of e =O(s), while any simulation
requires energy e ≥ sδ for some constant δ such that 0 < δ < 1 and for infinitely
many s, according to Corollary 1. Similarly, for the time overhead of τ = O(logα s)
where 0 < α < 1, we have the upper bound of e = O(s/ logα s) which compares

to the lower bound of e = Ω∞

(
slog logs/ logδ s

)
. Clearly, there are still gaps between

these lower and upper bounds, respectively, which need to be eliminated.

6 Conclusions

We have, for the first time, applied the energy complexity measure to recurrent neu-
ral nets. This measure has recently been introduced and studied for feedforward
perceptron networks. The binary-state recurrent neural networks recognize exactly
the regular languages so we have investigated their energy consumption of simu-
lating the finite automata with the asymptotically optimal number of neurons. We
have presented a low-energy implementation of finite automata by optimal-size neu-
ral nets with the tradeoff between the time overhead for processing one input bit
and the energy varying from the logarithm to the full network size. It appears that
the frequency of presenting the input bits can only increase when more energy is
supplied to the network. We have also achieved lower bounds for the energy con-
sumption of neural finite automata which are valid for less than sublogarithmic time
overheads and are still not tight. It follows that the energy demands in a fixed-size
network increase exponentially with the frequency of presenting the input bits. An
open problem remains for further research whether these bounds can be improved.
In addition, we have so far assumed the worst case energy consumption while the
average case analysis would be another challenge.

Acknowledgements. Author’s research was done with institutional support RVO: 67985807
and partially supported by the grant of the Czech Science Foundation No. P202/12/G061.

References

1. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by neural nets.
J. ACM 14(2), 495–514 (1991)

2. Gafaniz, R., Sanches, J.M.: Neuronal electrical activity, energy consumption and mito-
chondrial ATP restoration dynamics: A physiological based model for FMRI. In: Pro-
ceedings of the ISBI 2011 Eighth IEEE International Symposium on Biomedical Imag-
ing: From Nano to Macro, pp. 341–344. IEEE (2011)

3. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network imple-
mentations of finite state machines. Neural Netw. 9(2), 243–252 (1996)

4. Indyk, P.: Optimal simulation of automata by neural nets. In: Mayr, E.W., Puech, C.
(eds.) STACS 1995. LNCS, vol. 900, pp. 337–348. Springer, Heidelberg (1995)

5. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press,
Cambridge (1997)

62 J. Šı́ma

6. Lennie, P.: The cost of cortical computation. Curr. Biol. 13(6), 493–497 (2003)
7. Lupanov, O.: On the synthesis of threshold circuits. Probl. Kibern. 26, 109–140 (1973)
8. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood

Cliffs (1967)
9. Orponen, P.: Computing with truly asynchronous threshold logic networks. Theor. Com-

put. Sci. 174(1-2), 123–136 (1997)
10. Savage, J.E.: Computational work and time on finite machines. J. ACM 19(4), 660–674

(1972)
11. Siegelmann, H.T., Sontag, E.D.: Computational power of neural networks. J. Comput.

Syst. Sci. 50(1), 132–150 (1995)
12. Šı́ma, J.: A low-energy implementation of finite automata by optimal-size neural nets. In:

Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov,
N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 114–121. Springer, Heidelberg (2013)

13. Šı́ma, J.: Energy complexity of recurrent neural networks. Neural Comput. 26(5) (2014)
14. Šı́ma, J., Orponen, P.: General-purpose computation with neural networks: A survey of

complexity theoretic results. Neural Comput. 15(12), 2727–2778 (2003)
15. Šı́ma, J., Wiedermann, J.: Theory of neuromata. J. ACM 45(1), 155–178 (1998)
16. Suzuki, A., Uchizawa, K., Zhou, X.: Energy and fan-in of threshold circuits computing

Mod functions. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 154–
163. Springer, Heidelberg (2011)

17. Uchizawa, K., Douglas, R., Maass, W.: On the computational power of threshold circuits
with sparse activity. Neural Comput. 18(12), 2994–3008 (2006)

18. Uchizawa, K., Nishizeki, T., Takimoto, E.: Energy and depth of threshold circuits. Theor.
Comput. Sci. 411(44-46), 3938–3946 (2010)

19. Uchizawa, K., Takimoto, E.: Exponential lower bounds on the size of constant-depth
threshold circuits with small energy complexity. Theor. Comput. Sci. 407(1-3), 474–487
(2008)

20. Uchizawa, K., Takimoto, E.: Lower bounds for linear decision trees via an energy com-
plexity argument. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp.
568–579. Springer, Heidelberg (2011)

21. Uchizawa, K., Takimoto, E., Nishizeki, T.: Size-energy tradeoffs for unate circuits com-
puting symmetric Boolean functions. Theor. Comput. Sci. 412(8-10), 773–782 (2011)

An Introduction to Delay-Coupled Reservoir
Computing

Johannes Schumacher, Hazem Toutounji, and Gordon Pipa

Abstract. Reservoir computing has been successfully applied in difficult time series
prediction tasks by injecting an input signal into a spatially extended reservoir of
nonlinear subunits to perform history-dependent nonlinear computation. Recently,
the network was replaced by a single nonlinear node, delay-coupled to itself. In-
stead of a spatial topology, subunits are arrayed in time along one delay span of the
system. As a result, the reservoir exists only implicitly in a single delay differential
equation, the numerical solving of which is costly. We give here a brief introduction
to the general topic of delay-coupled reservoir computing and derive approximate
analytical equations for the reservoir by solving the underlying system explicitly.
The analytical approximation represents the system accurately and yields compara-
ble performance in reservoir benchmark tasks, while reducing computational costs
practically by several orders of magnitude. This has important implications with re-
spect to electronic realizations of the reservoir and opens up new possibilities for
optimization and theoretical investigation.

1 Introduction to Reservoir Computation

Predicting future behavior and learning temporal dependencies in time series of
complex natural systems remains a major goal in many disciplines. In Reservoir
Computing, the issue is tackled by projecting input time series into a recurrent
network of nonlinear subunits [13, 19]: Recurrency provides memory of past in-
puts, while the large number of nonlinear subunits expand their informational fea-
tures. History-dependent nonlinear computations are then achieved by simple linear
readouts of the network activity.

In a recent advancement, the recurrent network was replaced by a single nonlin-
ear node, delay-coupled to itself [2]. Such a setup is formalized by a delay differen-
tial equation which can be interpreted as an infinite-dimensional dynamical system.

Johannes Schumacher · Hazem Toutounji · Gordon Pipa
Institute of Cognitive Science, University of Osnabrück, Albrechtstr. 28,
49069 Osnabrück, Germany
e-mail: {joschuma,htoutounji,gpipa}@uos.de
c© Springer International Publishing Switzerland 2015 63

P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_4

64 J. Schumacher, H. Toutounji, and G. Pipa

Whereas classical reservoirs have an explicit spatial representation, a delay-coupled
reservoir (DCR) uses temporally extended sampling points across the span of its
delayed feedback, termed virtual nodes. The main advantage of such a setup is that
it allows for easy realization in optical and electronic hardware [26] which has great
potential for industrial application.

A drawback of this approach is the fact that the actual reservoir is always only im-
plicit in a single delay differential equation. Consequently, in many implementations
the underlying system has to be solved numerically. This leads to a computational
bottleneck and creates practical limitations for reservoir size and utility. The lack of
reservoir equations also presents problems for applying optimization procedures.

To overcome this, we present a recursive analytical solution used to derive ap-
proximate virtual node equations. The solution is assessed in its computational capa-
bilities as a DCR, and compared against numerical solvers in nonlinear benchmark
tasks. While computational performance is comparable, the analytical approxima-
tion leads to considerable savings in computation time, allowing the exploration
of exceedingly large setups. The latter allows us to stir the system away from toy
examples to the realm of application.

Moreover, we provide in this chapter a general introduction to the topic of delay-
coupled reservoir computing to familiarize the reader with the concept, and to give
some practical guidelines for setting up a DCR. To this end, we first discuss some
theory regarding solvability and dynamics of the delay differential equation under-
lying a DCR. In a next step, we use this insight to derive the approximate analytical
equations for the reservoir and explore their accuracy. A computationally efficient
numerical solution scheme arises that allows the investigation of large reservoirs,
the performance of which is evaluated on classical benchmark tasks. These will also
serve to illustrate a practical implementation. Finally, we present an application to
an experimental recording of a far-infrared laser operating in a chaotic regime and
show how a DCR can be embedded into Gaussian process regression to deal with
uncertainty and to be able to optimize hyperparameters.

2 Single Node Delay-Coupled Reservoirs

In this section, we discuss the theory of simple retarded functional differential equa-
tions, of which the delay differential equations underlying a DCR are a particular
instance, and derive approximate expressions for the virtual nodes. These will serve
as the basis for a practical implementation in later parts of this chapter.

2.1 Computation via Delayed Feedback

In a DCR, past and present information of a covariate time series undergo nonlinear
mixing via injection into a dynamically evolving “node” with delayed feedback.
Formally, these dynamics can be modeled by a delay differential equation of the
type

An Introduction to Delay-Coupled Reservoir Computing 65

dx(t)
dt

=−x(t)+ f (x(t − τ),J(t)) ∈ R, (1)

where τ is the delay time, J(t) is a weighted and temporally multiplexed transfor-
mation of some input signal u(t) driving the system, and f is a sufficiently smooth
real-valued nonlinear function. The nonlinearity is necessary to provide a rich fea-
ture expansion and separability of the information present in the input time series.
Although a solution to system (1) will in general not be obtainable analytically, it
can often be fully optically or electronically realized, for example in an all-optical
laser system with nonlinear interference given by its own delayed feedback [16].

The Mackey-Glass system represents a possible choice of nonlinearity which also
admits a hardware implementation of the system. The corresponding differential
equation is given by

dx(t)
dt

=−x(t)+
η(x(t − τ)+ γJ(t))

1+(x(t − τ)+ γJ(t))p ∈R. (2)

The parameters γ,η , p ∈ R determine in which dynamical regime the system op-
erates. Although the Mackey-Glass system can exhibit even chaotic dynamics for
p > 9, a fixed point regime appears to have the most suitable properties with re-
spect to memory capacity of the resulting reservoir. In a chaotic regime, the system
would have an excellent separability of input features, due to its sensitive depen-
dence on initial conditions. However, presumably as a result of the intrinsic en-
tropy production and exponential decay of auto-correlation in strange attractors, the
chaotic system essentially lacks memory capacity with respect to the input signal.
Furthermore, the required precision for computing the trajectories in a numerical
solver would result in prohibitive computational costs with increasing chaoticity of
the system. Other choices of nonlinearities are possible and have been investigated
[2]. For purposes of illustration, we will use the Mackey-Glass system throughout
this chapter.

Injecting a signal u(t) into the reservoir is achieved by multiplexing it in time:
The DCR receives a single constant input u(t̄) ∈ R in each reservoir time step
t̄ = � t

τ �, corresponding to one τ-cycle of the system. For example, (i−1)τ ≤ t ≤ iτ
denotes the ith τ-cycle and is considered to be a single reservoir time step during
which u(t) = ui = const. This scheme is easily extendable to vector-valued input
signals. The dynamics of x during a single delay span τ are to be seen as the tempo-
rally extended analogon of an artificial neural network, where the nonlinear subunits
are arrayed not in space, but in time. Since one is interested in operating x(t) in a
fixed point regime, the system would at this point simply saturate and converge in
the course of a τ-cycle during which ui is constant, e.g. limt→∞ x(t) = 0 for ui = 0
and suitable initial conditions (see section 2.2). To add perturbation and create a rich
feature expansion of the input signal in time (analogous to neural network activity in
space), the delay line τ is shattered into N subintervals of length θ j, for j = 1, ...,N.
On these subintervals an additional mask function reweights the otherwise con-
stant input value ui, such that the saturating system x is frequently perturbed and

66 J. Schumacher, H. Toutounji, and G. Pipa

prevented from converging. That is, the mask is a real-valued function on an interval
of length τ , e.g. [−τ,0], which is piecewise constant:

m(t) = m j ∈ R for θ j−1 < t ≤ θ j,
N

∑
j=1

θ j = τ. (3)

The input to the reservoir x(t) during the ith τ-cycle is thus given by J(t) = m(t)ui

(compare eq. (1)).
In the original approach, the m j were simply random samples from {−1,1},

meant to perturb the system and to create transient trajectories. The impact of
certain binary sequences on computation, as well as multi-valued masks, have also
been studied and may lead to a task-specific improvement of performance. Gen-
eral principles for the choice of optimal m(t) are, however, not yet well understood,
mainly due to problems in solving the system efficiently and due to an inconvenient
dependence on the θ j . For optimal information processing, θ j has to be short enough
to prevent convergence of the system trajectory (so as to retain the influence of past
states), but long enough for the system to act upon the masked input signal and
expand information. In the case of equidistant θ j = θ , it can be determined exper-
imentally that choosing θ to be one fifth of the system’s intrinsic time scale yields

τ(i-1) τi
-1

1

0

Fig. 1 Exemplary trajectory (dark gray) of system (2) during one τ-cycle of length 10, with
equidistant θ j = 0.2 for j = 1, ...,50, η = 0.04, γ = 0.005, p = 7, while ui = 0.385 constant
during the entire τ-cycle. In light gray, the piecewise constant mask (eq. (3)) with m j ∈
{−1,1} for j = 1, ...,50 is shown. The system is in a fixed point regime (parametrized by
J(t)) and starts converging on intervals where J(t) = uim(t) is constant.

An Introduction to Delay-Coupled Reservoir Computing 67

good computational performance in benchmark tasks [2]. In system (1) the intrinsic
timescale is the multiplicative factor of the derivative on the left-hand side, which is
1, so that θ = 0.2 accordingly. Figure (1) illustrates how the resulting dynamics of
x(t) may look like during a single τ-cycle, using a short delay span τ = 10, shattered
into 50 subintervals.

To obtain a statistical model, a sample is read out at the end of each θ j, thus
yielding N predictor variables at each τ-cycle (i.e. reservoir time step t̄ = � t

τ �).
These are termed “virtual nodes” in analogy to the spatially extended nodes of a
neural network. During the ith τ-cycle, virtual node j is sampled as

x j(ui) := x((i− 1)τ +
j

∑
k=1

θk)

and used in a linear functional mapping

ŷi =
N

∑
j=1

α jx j(ui)≈ g(ui, ...,ui−M) (4)

to predict some scalar target signal y by the estimator ŷ. The latter can be seen as
a function g of covariate time series u, where the finite fading memory of the un-
derlying system x causes g to be a function of at most M + 1 predictor variables
ui, ...,ui−M, where N � M 	 ∞. The memory capacity of the system, indicated by
M, represents the availability for computation of past input values ui across τ-cycles.
For details, the reader is referred to [2]. A schematic illustration of such a DCR is
given in figure (2) and compared to a classical neural network with spatially ex-
tended nodes. The α j are free parameters of the statistical model. The simplest way
to determine the coefficients is by linear regression, i.e. using the least squares so-
lution minimizing the sum of squared errors, ∑i(yi − ŷi)

2. However, in general, this
approach will only be feasible in case of a noise-free target y and on large data sets.
For a more rigorous statistical treatment of uncertainty, the problem can be formal-
ized, for example, within the framework of Bayesian statistics or Gaussian process
regression (see 3.5 and appendix). The delay span τ has, due to the recursive nature
of (1), no impact on the memory capacity and can simply be chosen to harbor an ad-
equate number N of virtual nodes along the delay line. Typically, N = 400 strikes a
good balance between computational cost and reservoir performance in benchmark
tasks.

In order to study the DCR model (4), system (1) has to be solved and virtual
nodes sampled accordingly. However, (1) can neither be solved directly, due to the
recursive terms, nor exists, to the best of our knowledge, a series expansion of the
solution (for example of Peano-Baker type), due to the nonlinearity of f . Typically,
(1) is therefore solved numerically using a lower order Runge-Kutta method, such as
Heun’s method. Although for the simple fixed point regime, the system operating in
a numerical step size of θ/2 is sufficient, the computational cost for large numbers
of virtual nodes N
 500 can still be quite excessive if the hyperparameters are
unknown and have to be determined.

68 J. Schumacher, H. Toutounji, and G. Pipa

linear
readout

input u m u.

m u. delayed
feadback

linear readout

nonlinearity
input

mask time

virtual
nodes

m

Classical Reservoir

Delay-Coupled Reservoir

Fig. 2 Schematic illustration of a DCR (bottom), where nonlinear units (virtual nodes) are
arrayed in time along the delay span τ , with temporal distance θ j between virtual nodes j−1
and j. In contrast, a classical reservoir (top) has nonlinear units extended in space according
to a certain network topology.

From a modeling perspective, the hyperparameters θ j, τ , N, m(t), γ , η are
shrouded in the nonlinear non-solvable retarded functional differential equation
(1), hardly accessible to optimization. Furthermore, due to the piecewise sampling
procedure of the virtual nodes, the shape of m is inconveniently restricted and
entangled with the sampling points θ j, as well as the numerical simulation grid.
If the latter is chosen too fine-grained, the computational costs become prohibitive
in the scheme described above. Task-specific optimization of the hyperparameters
is, however, crucial prior to any hardware implementation. In an optical implemen-
tation, for example, τ may directly determine the length of the glass-fibre cable that

An Introduction to Delay-Coupled Reservoir Computing 69

projects the delayed feedback back into the system. Determining optimal hyperpa-
rameters therefore has to be done in advance by means of numerical simulation of
the system and with respect to rigorous statistical optimality criteria that will allow
for proper confidence in the resulting permanent hardware setup.

To address these issues it is necessary to study system (1) in some detail. The
goal is to gain insight into the dynamics of the system underlying the DCR, and
to understand its theoretical solution as a semi-flow in an infinite-dimensional state
space. These insights will form the basis for an approximate analytical solution
scheme, alleviating access to the system as a functional statistical model and its
hyperparameters. In addition, the approximate solution gives rise to a fast simulation
algorithm, which will be key to the analysis and optimization of the DCR.

2.2 Retarded Functional Differential Equations

Following [7], let Cτ :=C([−τ,0],R) denote the Banach space of continuous map-
pings from [−τ,0] into R, equipped with the supremum norm. If t0 ∈ R, A ≥ 0 and
x : [t0 − τ, t0 +A]→ R a continuous mapping, then ∀t ∈ [t0, t0 +A], one can define
Cτ � xt : Cτ →Cτ by xt(σ) = x(t +σ) for σ ∈ [−τ,0]. Furthermore, let H : Cτ → R

be a mapping such that
dx(t)

dt
= H(xt), (5)

then (5) is called a retarded functional differential equation. A solution to (5) is a dif-
ferentiable function x satisfying (5) on [t0, t0 +A] such that x ∈C([t0 −τ, t0 +A),R).
If H is locally Lipschitz continuous then x is unique, given an initial condition
(t0,φ) ∈ R×Cτ .

To illustrate this, consider a solution x(t) of system (2) for t ≥ 0, where

h : R×R→ R (6)

such that

h : (x(t),x(t − τ)) → η(x(t − τ)+ γm(t)u(t̄)
1+(x(t− τ)+ γm(t)u(t̄))p − x(t)

as given in (2), where mask m and input u are known (recall m(t)u(t̄) = J(t)) and
t̄ = � t

τ �. Assume p = 1 for illustration in this section. The system will depend on its
history during [−τ,0] as specified by

φ : [−τ,0]→R.

If φ is continuous, then h is continuous and locally Lipschitz in x(t), since f is
differentiable and sup | d

dx h(x,φ)| = 1. As a result, for t ∈ [0,τ]

dx(t)
dt

= h(x(t),φ(t − τ)), t ∈ [0,τ], x(0) = φ0(0)

70 J. Schumacher, H. Toutounji, and G. Pipa

specifies an initial value problem that is solvable. Denote this solution on t ∈ [0,τ]
by φ1. Then

dx(t)
dt

= h(x(t),φ1(t − τ)), t ∈ [τ,2τ]

becomes solvable, too, since x(τ) = φ1(τ) is already given. One can iterate this
procedure to yield solutions to (2) on all intervals [(i − 1)τ, iτ], subject to some
initial condition φ0 = x|[−τ,0]. This procedure is know as the method of steps [7].

The function xt : Cτ →Cτ , defined above as

xt(σ) = x(t +σ), σ ∈ [−τ,0],

specifies a translation of the segment of x on [t − τ, t] back to the initial interval
[−τ,0]. Together with x0 = φ0, the solution to system (16) (and, more generally, to
(1)) can be shown to yield a semiflow [0,∞] � t → xt ∈Cτ .

It is now apparent that σ ∈ [−τ,0] corresponds to a parameterization of
coordinates for an “infinite vector” x(σ) in state space Cτ , which is why (1) really
constitutes an infinite-dimensional dynamical system. Delay-coupled reservoir com-
putation can thus be thought of as expanding an input time series nonlinearly into
an infinite-dimensional feature state space. However, given the sampling scheme of
virtual nodes, and the piecewise constant mask, these properties will be effectively
reduced to the number of samples N that constitute the covariates of the statistical
model (4).

To study the stability properties of system (16), consider the autonomous case
with constant input J(t) = const, and recall the temporal evolution h of system x as
given by (6). For a fixed point x∗ it holds that

dx
dt

= h(x∗,x∗) = 0

Setting p = γ = 1 for illustration, solving for x∗ evaluates to

0 =
η(x∗+ J)

1+(x∗+ J)
− x∗

x∗ =
η − 1− J

2
±
√(

1+ J−η
2

)2

+ηJ.

(7)

To simplify the expression, let J = 0, in which case one obtains

x∗ =
η − 1

2
± 1−η

2
.

Of interest is now the central solution x∗ = 0, around which the reservoir will be
operated later on by suitable choice of η and γ . To determine its stability, one lin-
earizes the system in a small neighborhood of x∗ by dropping all higher order terms
in the Taylor series expansion of h, which gives

An Introduction to Delay-Coupled Reservoir Computing 71

dx
dt

= Dx[h](x
∗,x∗)x(t)+Dy[h](x

∗,x∗)x(t − τ) (8)

where

Dx[h](x
∗,x∗) =

∂
∂x

h(x,y)|x=y=x∗ =−1

Dy[h](x
∗,x∗) =

∂
∂y

h(x,y)|x=y=x∗ =
η

1+ x∗
.

(9)

If Dx[h](x∗,x∗) + Dy[h](x∗,x∗) < 0 and Dy[h](x∗,x∗) ≥ Dx[h](x∗,x∗), x∗ = 0 is
asymptotically stable (Theorem 4.7, [25]), which is the case for η ∈ [−1,1). In
general, the analysis of eq. (8) may be quite involved and can result in an infinite
number of linearly independent solutions x(t) =Ceλ t , since the corresponding char-
acteristic equation λ = Dx[h](x∗,x∗) +Dy[h](x∗,x∗)e−λ τ gives rise to an analytic
function that may define roots on the entire complex plane.

Equations (7) and (9) already indicate that, given suitable η and γ , for J(t)=m jui

a fixed point regime may still exist between two virtual node sampling points θ j−1 <
t ≤ θ j, in which the reservoir computer can be operated while driven by input time
series u. However, for p > 1 bifurcations can occur (even a period doubling route
to chaos), if the feedback term is weighted too strongly. In this case, the virtual
nodes would not yield a consistent covariate feature expansion and, in all likelihood,
lead to a bad performance of the statistical model (4). The above considerations
also show that the nonlinear feature expansion desired in reservoir computation will
depend completely on the mask m(t), since the input ui is constant most of the time
and x(t) practically converges in a fraction of τ . The changes in m are in fact the
only source of perturbation that prevents the semiflow x(t) from converging to its
fixed point. It is not at all clear in this situation that a piecewise constant binary (or
even n-valued) mask is the most interesting choice to be made. More research is
needed to determine optimal mask functions.

2.3 Approximate Virtual Node Equations

In the following, we discuss a recursive analytical solution to equation (1), employ-
ing the method of steps. The resulting formulas are used to derive a piecewise so-
lution scheme for sampling points across τ that correspond to the reservoir’s virtual
nodes. Finally, we use the trapezoidal rule for further simplification, hereby deriv-
ing approximate virtual node equations, the temporal dependencies of which only
consist of other virtual nodes. As will be shown in the remainder of this article, the
resulting closed-form solutions allow reservoir computation without significant loss
of performance as compared to a system obtained by explicit numerical solutions,
e.g. Heun’s method ((1,2) Runge-Kutta).

First, we discuss a simple application of the method of steps. System (1) is to
be evaluated for the span of one τ during the ith τ-cycle, so (i− 1)τ ≤ t ≤ iτ . Let a
continuous function φi−1(σ)∈C[(i−2)τ,(i−1)τ] be the solution for x(t) on the previous
τ-interval. We can now replace the unknown x(t − τ) by the known φi−1(t − τ) in
equation (1). Consequently, (1) can be solved as an ODE where the variation of

72 J. Schumacher, H. Toutounji, and G. Pipa

constants [9] is directly applicable. The variation of constants theorem states that a
real valued differential equation of type

dy
dt

= a(t)y+ b(t)

with initial value y(t0) = c ∈ R has exactly one solution, given by

y(t) = yh(t)

(
c+

∫ t

t0

b(s)
yh(s)

ds

)
, (10)

where

yh(t) = exp

(∫ t

t0
a(s)ds

)

is a solution of the corresponding homogeneous differential equation dy
dt = a(t)y. In

system (1), we identify a(t) = −1 and b(t) = f (φi−1(t − τ),J(t)). Applying (10)
now yields immediately the solution to the initial value problem (1) on the interval
ti−1 = (i− 1)τ ≤ t ≤ iτ , with initial value x(ti−1) = φi−1((i− 1)τ), given by

x(t) = φi−1(ti−1)e
ti−1−t + eti−1−t

∫ t

(i−1)τ
f (φi(s− τ),J(s))es−ti−1ds. (11)

Recall that the semi-flow corresponding to x(t) is determined by the mapping
xt : Cτ → Cτ , defined above as xt(σ) = x(t +σ) with σ ∈ [−τ,0]. This specifies
a translation of the segment of x on [t − τ, t] back to the initial interval [−τ,0]. Ac-
cordingly, we can reparametrize the solution for x(t) in terms of σ ∈ [−τ,0]. Let xi

denote the solution on the ith τ-interval, then

xi(σ) = xi−1(0)e
−(τ+σ) + e−(τ+σ)

∫ σ

−τ
f (xi−1(s),m(s)ui)e

s+τds, (12)

where ui denotes the constant input in the ith reservoir time step, and we as-
sume m(σ) only has a finite number of discontinuities (see (3)). Accordingly,
xi−1 ∈C[−τ,0].

Due to the recursion in the nonlinear xi−1 = φi−1, the integral in (12) cannot
be solved analytically. To approximate the integral, the recursion requires repeated
evaluation at the same sampling points in each τ-cycle. The family of Newton-Cotes
formulas for numerical integration is appropriate in this situation. We use the cumu-
lative trapezoidal rule [20], which is 2nd order accurate and the simplest in that
family. It is given by

∫ b

a
g(x)dx ≈ 1

2

N

∑
j=1

(χ j − χ j−1)(g(χ j)+ g(χ j−1)), with χ0 = a,χN = b. (13)

To approximate the integral in (12), consider a non-uniform grid −τ = χ0 < ... <
χN = 0, where χ j − χ j−1 = θ j . This yields the approximation

An Introduction to Delay-Coupled Reservoir Computing 73

xi(χk)≈ xi−1(χN)exp(−
k

∑
i=1

θi)

+ exp(−
k

∑
i=1

θi)[
1
2

k

∑
j=1

θ j exp(
j−1

∑
i=1

θi)(f [xi−1(χ j),m(χ j)ui]e
θ j

+ f [xi−1(χ j−1),m(χ j−1)ui]],

(14)

which can be computed as cumulative sum in one shot per τ-cycle for all approxi-
mation steps χ j simultaneously.

We are now interested in equations for 1 ≤ k ≤ N single virtual nodes xik, dur-
ing reservoir time step i. At this point we will choose an equidistant sampling grid
of virtual nodes. This is not crucial but simplifies the notation considerably for the
purpose of illustration. Assuming equidistant virtual nodes, it holds that τ = Nθ
where N is the number of virtual nodes. For application of formula (13), the nu-
merical sampling grid will be uniform and chosen directly as the sampling points of
virtual nodes, such that χ j =−τ + jθ with j = 0, ...,N. To get an expression for xik,
we now have to evaluate equation (12) at the sampling point t = −τ + kθ , which
results in

xik = xi(kθ) = x((i− 1)τ + kθ)

≈ e−kθ x(i−1)N +
θ
2

e−kθ f [x(i−2)N ,JN(i− 1)]

+
θ
2

f [x(i−1)k,Jk(i)]+
k−1

∑
j=1

θe(j−k)θ︸ ︷︷ ︸
ck j

f [x(i−1) j,Jj(i)].

(15)

Here Jk(i) = mkui denotes the masked input to node k at reservoir time step i, given
a mask that is piecewise constant on each θ -interval (see eq. 3).

Note that equation (15) only has dependencies on sampling points correspond-
ing to other virtual nodes. An exemplary coupling coefficient is indicated by ck j,
weighting a nonlinear coupling from node j to node k. In addition, each node re-
ceives exponentially weighted input from virtual node N (first term eq. (15)). In
analogy to a classical reservoir with a spatially extended network topology, we can
derive a corresponding weight matrix. Figure (3) shows an exemplary DCR weight
matrix for a temporal network of 20 virtual nodes, equidistantly spaced along a de-
lay span τ = 4 with distance θ = 0.2. The lower triangular shape highlights the fact
that a DCR corresponds to a classical reservoir with ring topology. A ring topology
features the longest possible feed-forward structure in a given network. Since the
memory capacity of a recurrent network is mainly dependent on the length of its
internal feed-forward structures, the ring topology is most advantageous with re-
spect to the network’s finite fading memory [6].

Formula (15) allows simultaneous computation of all nodes in one reservoir time
step (τ-cycle) by a single vector operation, hereby dramatically reducing the com-
putation time of simulating the DCR by several orders of magnitude in practice, as
compared to an explicit second order numerical ODE solver.

74 J. Schumacher, H. Toutounji, and G. Pipa

ck j

x(i-1) N

Fig. 3 Illustration of a temporal weight matrix for a DCR comprised of 20 virtual nodes,
arrayed on a delay line of length τ = 4 with equidistant spacing θ = 0.2. The lower triangu-
lar part of the matrix corresponds to the ck j of formula (15), where darker colour indicates
stronger coupling. The last column indicates the dependence on node x(i−1)N , as given by the
first term in expression (15).

3 Implementation and Performance of the DCR

We compare the analytical approximation of the Mackey-Glass DCR, derived in
the previous section, to a numerical solution obtained using Heun’s method with a
stepsize of 0.1. The latter is chosen due to the relatively low computational cost and
provides sufficient accuracy in the context of DCR computing. As a reference for
absolute accuracy, we use numerical solutions obtained with dde23 [24], an adaptive
(2,3) Runge-Kutta based method for delay differential equations. The nonlinearity
f is chosen according to the Mackey-Glass equation with p = 1 for the remainder
of this chapter, such that the system is given by

dx
dt

=−x(t)+
η(x(t − τ)+ γJ(t))
1+ x(t − τ)+ γJ(t)

, (16)

where η , γ and p are metaparameters, τ the delay length, and J(t) is the temporally
stretched input u(t̄), t̄ = � t

τ �, multiplexed with a binary mask m (see eq. 3).
Note that the trapezoidal rule used in the analytical approximation, as well as

Heun’s method, are both second order numerical methods that should yield a global
truncation error of the same complexity class. As a result, discrepancies originating
from different step sizes employed in the two approaches (e.g. 0.2 in the analyti-
cal approximation and 0.1 in the numerical solution) may be remedied by simply

An Introduction to Delay-Coupled Reservoir Computing 75

decreasing θ in the analytical approximation, for example by increasing N while
keeping a fixed τ (see sec. 3.4).

3.1 Trajectory Comparison

In a first step, we wish to establish the general accuracy of the analytical approxi-
mation in a DCR relevant setup. Figure 4 shows a comparison of reservoir trajec-
tories computed with equation (15) (red) against trajectories computed numerically
using dde23 (blue) with relative error tolerance 10−3 and absolute error tolerance
10−6. The system received uniformly distributed input u(t̄) ∼ U[0,0.5]. The sample
points correspond to the activities of N = 400 virtual nodes with a temporal dis-
tance of θ = 0.2, and τ = 80 accordingly. Given 4000 samples (corresponding to
10 reservoir time steps t̄), the mean squared error between the trajectories is MSE
= 5.4× 10−10. As can be seen in the figure, the trajectories agree very well in the
fixed point regime of the system (autonomous case). Although it is expected that the
MSE would increase in more complex dynamic regimes (e.g. chaos), the latter are
usually not very suitable for a DCR for various reasons. The following results also
show a high task performance of the analytical approximation when used for DCR
computing.

Fig. 4 Comparison between analytical approximation and numerical solution for an input-
driven Mackey-Glass system with parameters η = 0.4, γ = 0.005 and p = 1, sampled at the
temporal positions of virtual nodes, with a distance θ = 0.2.

3.2 NARMA-10

A widely used benchmark in reservoir computing is the capacity of the DCR to
model a nonlinear autoregressive moving average system y in response to uniformly

76 J. Schumacher, H. Toutounji, and G. Pipa

distributed scalar input u(k) ∼ U[0,0.5]. The NARMA-10 task requires the DCR to
compute at each time step k a response

y(k+ 1) = 0.3y(k)+ 0.05y(k)
9

∑
i=0

y(k− i)+ 1.5u(k)u(k− 9)+ 0.1.

Thus, NARMA-10 requires modeling of quadratic nonlinearities and shows a strong
history dependence that challenges the DCR’s memory capacity. We measure per-
formance in this task using the correlation coefficient r(y, ŷ) ∈ [−1,1] between the
target time series y and the DCR output ŷ in response to u. Here, the DCR is trained
(see sec. 2.1) on 3000 data samples, while r(y, ŷ) is computed on an independent val-
idation data set of size 1000. Figure 5A summarizes the performance of 50 different
trials for a DCR computed using the analytical approximation (see eq. 15), shown
in red, as compared to a DCR simulated with Heun’s method, shown in blue. Both
reservoirs consist of N = 400 virtual nodes, evenly spaced with a distance θ = 0.2
along a delay line τ = 80. Both systems show a comparable performance across
the 50 trials, with a median correlation coefficient between r(y, ŷ) = 0.96 and 0.97,
respectively.

3.3 5-Bit Parity

As a second benchmark, we chose the delayed 5-bit parity task [23], requiring the
DCR to handle binary input sequences on which strong nonlinear computations have
to be performed with arbitrary history dependence. Given a random input sequence u
with u(k) ∈ {−1,1}, the DCR has to compute at each time step k the parity pδ

m(k) =
∏m

i=0 u(k− i−δ) ∈ {−1,1}, for δ = 0, ...,∞. The performance φm is then calculated
on n data points as φm = ∑∞

δ=0 κδ
m, where Cohen’s Kappa

κδ
m =

1
n ∑n

k=1 max(0, pδ
m(k)ŷ(k))− pc

1− pc
∈ {0,1}

normalizes the average number of correct DCR output parities ŷ by the chance level
pc = 0.5. We used 3000/1000 data points in training and validation set respectively.
To compare performance between analytical approximation and numerical solution
of the DCR, we chose m = 5 and truncated φm at δ = 7, so that φ5 ∈ [0,7]. For
parameters η = 0.24, γ = 0.032 and p = 1, and a DCR comprised of 400 neurons
(τ = 80), figure 5B shows that performance φ5 is comparable for both versions of
the DCR, with median performances between 4.3 and 4.5. across 50 different trials
of this task. As the performance is far from the ideal value of 7 and the model suffers
slightly from overfitting (not shown), it is clear that the delayed 5-bit parity task is
a hard problem which leaves much space for improvement.

An Introduction to Delay-Coupled Reservoir Computing 77

Fig. 5 Comparison on nonlinear tasks between analytical approximation and numerical so-
lution for an input-driven Mackey-Glass system, sampled at the temporal positions of virtual
nodes with a distance θ = 0.2. Mackey-Glass parameters are η = 0.4, γ = 0.005 and p = 1
(NARMA-10) and η = 0.24, γ = 0.032 and p = 1 (5-bit parity), respectively. Results are re-
ported for 400 neurons (τ = 80) on data sets of size 3000/1000 (training/validation) in figures
5A and 5B, size 3000/1000 in 5C (right plot), as well as for data sets of size 10000/10000
in figure 5C (left plot). Each plot is generated from 50 different trials. The plots show me-
dian (black horizontal bar), 25th/75th percentiles (boxes), and most extreme data points not
considered outliers (whiskers).

3.4 Large Setups

We repeated the tasks in larger network setups where the computational cost of the
numerical solver becomes prohibitive. In addition to increasing the number of vir-
tual nodes N one can also decrease the node distance θ , thus fitting more nodes into
the same delay span τ . Although too small θ may affect a virtual node’s computation
negatively, decreasing θ increases the accuracy of the analytical approximation.

3.4.1 NARMA-10

We illustrate this by repeating the NARMA-10 task with N = 2000 virtual nodes
and τ = 200. This results in θ = 0.1, corresponding to the step size used in the nu-
merical solution before. Note that this hardly increases the computational cost of the
analytical approximation since the main simulation loop along reservoir time steps t̄
(τ-cycles) remains unchanged. The results are summarized for 50 trials in figure 5C
(right boxplot). The median correlation coefficient increased significantly to nearly
0.98 while the variance across trials is notably decreased (compare fig. 5A).

78 J. Schumacher, H. Toutounji, and G. Pipa

3.4.2 5-Bit Parity

For the 5-bit parity task, we addressed the task complexity by increasing both, train-
ing and validation sets, to a size of 10000. Second, we increased once more the
virtual network size to N = 2000 virtual nodes and τ = 200. The performance of the
resulting DCR setup, computed across 50 trials using the analytical approximation,
is summarized in figure 5C (left boxplot). The model no longer suffers as much
from overfitting and the performance on the validation set increased dramatically to
a median value of 6.15, which is now close to the theoretical limit of 7.

3.5 Application to Experimental Data

When analyzing experimental data that is subject to measurement noise and uncer-
tainty, a more sophisticated statistical model than presented so far is required. In this
section, we embed the output of a DCR into a proper Bayesian statistical framework
and discuss practical difficulties that may arise. A part of this discussion and further
motivation for the statistical model can be found in the appendix. As exemplary task
we chose the one-step ahead prediction of the Santa Fe laser time series, which is
an experimental recording of a far-infrared laser operating in a chaotic regime [12].
These data consist of 9000 samples as supplied in the Santa Fe time-series com-
petition [29]. Employing Bayesian model selection strategies with a Volterra series
model [22] (which can be thought of as a Taylor series expansion of the functional
(4)), we found that the prediction of a time series sample y(t +1) required at least 8
covariates y(t),y(t − 1), ...,y(t − 7) to capture the auto-structure, and a model with
4th order nonlinearities, which makes the one-step ahead prediction of the chaotic
Santa Fe laser data an interesting and challenging task for a DCR.

When predicting experimental data, in addition to computing a point estimator it
is also important to quantify the model confidence in some way, as a result of the
potential variability of the estimator (across data sets) and one’s ignorance about
certain aspects of the target quantity. In a Bayesian approach, this uncertainty is
summarized in a probability distribution. If the task is to predict a target time se-
ries y in terms of a covariate time series u, the uncertainty in the prediction of
unseen data y∗ given covariate time series u∗ is summarized in a predictive dis-
tribution P(y∗|u∗,u,y,H). The predictive distribution incorporates knowledge of the
given data D = (y,u) to infer y∗ given u∗. We denote by H the particular modeling
assumption that has to be made and the corresponding hyperparameters. The co-
variance structure of this distribution represents the model uncertainty and supplies
confidence intervals.

To derive a predictive distribution, first recall the DCR functional model (4),

ŷi := g(ūi) = g(ui,ui−1, ...,ui−M) =
N

∑
j=1

α jxi j,

An Introduction to Delay-Coupled Reservoir Computing 79

where xi j denotes the jth virtual node (15) in reservoir time step t̄ = i, and the
dependence on covariates ūi = {ui−1, ...,ui−M} is given implicitly in each xi j via the
temporal evolution of x(t) (11). Let

X =

⎛
⎜⎝

x11 . . . x1N
...

. . .
...

xn1 . . . xnN

⎞
⎟⎠ ∈ R

n×N , α ∈ R
N , (17)

then
ŷ = Xα ∈ R

n (18)

shall denote the estimator of target time series y, given covariate time series u.
We can now state a statistical model. First, define a multivariate isotropic normal

prior distribution for α as
α ∼ N (0,λ 2I), (19)

where I ∈ R
N×N is the identity matrix. We denote the corresponding density by

p(α|λ 2). This choice of isotropic prior results effectively in an L2-regularized model
fit [11].

Given data y,u ∈ R
n, the standard modeling assumption about the target time

series y is that of noisy measurements of an underlying process g(ūi), stated as

yi = g(ui, ...,ui−M)+ εi. (20)

Here, ∀i = 1, ...,n : εi ∼ N (0,σ2
ε), and it is usually assumed that εi is independent

of ε j for j �= i. Note that the assumption of normality is also implicitly present in any
model fit given by the least squares solution as the minimizer of the sum-of-squared-
errors objective (compare section 2). It follows that the sampling distribution for
y ∈ R

n is given by
y ∼ N (g(u),σ2

ε I), (21)

where g(u) = (g(ū1), ...,g(ūn))
T ∈ R

n and I ∈ R
n×n. We denote the density of this

distribution by p(y|u,α,λ 2,σ2
ε).

One can now derive all distributions necessary to formalize the uncertainty asso-
ciated with data (y,u). The details of these derivations can be found, for example,
in [4]. First, Bayes formula supplies an expression for the posterior distribution that
summarizes our uncertainty about α . The corresponding density is given as

p(α|y,u,λ 2,σ2
ε) =

p(y|u,α,λ 2,σ2
ε)p(α|λ 2)

p(y|u,λ 2,σ2
ε)

, (22)

where the normalizing constant p(y|u,λ 2,σ2
ε) will be referred to as marginal likeli-

hood. The posterior distribution of the model coefficients α can be explicitly com-
puted as a normal distribution in this case. Given this posterior, one can compute
the predictive distribution as a convolution of the sampling distribution (21) with
the posterior of model coefficients, which will again be normal with density

80 J. Schumacher, H. Toutounji, and G. Pipa

p(y∗|u∗,u,y,λ 2,σ2
ε) =

∫
RN

p(y∗|u∗,α,σ2
ε)p(α|y,u,λ 2,σ2

ε)dα. (23)

The full distribution can be derived as

P(y∗|u∗,u,y,λ 2,σ2
ε) = N (m∗,S∗), (24)

with

m∗ := E[y∗] = X∗(XT X +
σ2

ε
λ 2 I)−1XT y

S∗ := Cov[y∗] = σ2
ε I+X∗(XT X

1
σ2

ε
+

1
λ 2 I)−1XT

∗ .
(25)

These terms are numerically computable. The predictive distribution (24) summa-
rizes all uncertainty related to our forecasting of y∗ and provides m∗ as point esti-

mator ŷ = X∗α̂ , where α̂ = (XT X +
σ 2

ε
λ 2 I)−1XT y denotes the expected value of the

coefficient posterior (22). From a decision theoretic point of view, it can also be
shown that m∗ minimizes the expected squared error loss (y∗ − ŷ)2 [3]. For an ex-
planation of how to derive estimators σ̂2

ε , λ̂ 2 and a short discussion on how to deal
with hyperparameters in a proper Bayesian model, the interested reader is referred
to the appendix.

To evaluate the model, one can compute ŷv = mv(σ̂2
ε , λ̂ 2) from (25) on a separate

validation set yv, conditional on training data (ut ,yt). However, not only would one
always want to condition the prediction on all available data, and not just on a fixed
training data set yt , but a lower number of conditional data samples in a prediction
may also lead to a reduced performance and a higher susceptibility to overfitting.
It may therefore seem more natural to compute the leave-one-out (LOO) predic-
tive distribution P(yi|ui,u\(i),y\(i), σ̂2

ε , λ̂ 2), where (u\(i),y\(i)) denotes the full data
set with the ith data point removed. The joint LOO predictive distribution for all
data points i supplies its mean vector ŷcv ∈ R

n as optimal predictor for the given
data y. Accordingly, this yields a cross-validated performance measure by e.g. the
correlation coefficient r(y, ŷcv).

To yield a confidence interval for the correlation coefficient and somehow quan-
tify our uncertainty in this statistic, note that all uncertainty pertaining to r is gov-
erned by the predictive distribution (24). Using the LOO predictive distribution
accordingly, one can perform a parametric resampling of the data, yielding new
data sets y∗ ∈ R

n with mean vector ŷcv. With these, it is possible to recompute
r(E[y] = ŷcv,y∗) for each resampled time series y∗ to get an empirical distribution for
r and quantify its expected spread on data sets of similar size. The resulting empiri-
cal distribution over r can be used to determine confidence bounds as indicators for
the variability of the goodness of fit. Alternatively, although time-consuming, non-
parametric bootstrapping could be employed by resampling design matrix rows (17)
and used with the BCa method [5] to yield confidence intervals that are corrected
for deviation from normality in several ways.

Applying the above scheme to the Santa Fe laser time series, we set up an
auto-regressive model with ui = y(i − 1) to predict y(i). We will first use only

An Introduction to Delay-Coupled Reservoir Computing 81

n = 600 samples in the training data set to illustrate the importance of formaliz-
ing uncertainty and test the DCR model with a varying number of virtual nodes. As
goodness-of-fit measure the squared correlation coefficient r2 ∈ [0,1] will be com-
puted either on the leave-one-out cross-validated prediction of the training data set
yt (r2(yt , ŷcv)), or as actual prediction of the 600 consecutive data points yv given
yt (r2(yv, ŷv)). The data will be mean corrected and rescaled using the (5,95) per-
centiles. As such, the DCR parameters can be chosen again as γ = 0.005,η = 0.4
to maintain a proper dynamical range of the underlying Mackey-Glass system
given the normalized input. Furthermore, p = 1 and τ = 100 are set and oper-
ated with a randomly sampled binary mask m. Results will be reported for N =
100,250,500,1000 virtual nodes respectively, leading to different uniform sampling
positions θ ∈R

N in the τ-cycle with fixed length 100. In this section, we use equa-
tion (14) as an approximate solution scheme with step-size k := χ j − χ j−1 = 0.01
on an equidistant approximation grid χ0 = 0, ...,χ10000 = τ = 100. For example, the
DCR with 500 virtual nodes will have an equidistant sampling grid according to
θ j = τ/500 = 0.2. In this case, the activity of a virtual node during θ j is computed
using θ j/k = 20 samples from the underlying approximation grid.

The results on the Santa Fe data are summarized in table 1. It can be seen that
all predictions conditional on merely n = 600 data points suffer from overfitting,
as there is a noteworthy difference between predictions on the training set data and
the two types of cross-validation. The models with N = 500 and N = 1000 virtual
nodes appear to have no noteworthy difference in performance. In figure (6), 500
points of the validation set are shown for the DCR model with 500 virtual nodes.
The predictive distribution is computed conditional on the first 600 data points of
the time series and confidence intervals for the individual data points are derived as
two standard deviations (

√
S∗) above and below the estimated expected value (m∗,

see eq. (25)). The two main characteristics of the Santa Fe time series are its irreg-
ular oscillatory behavior, as well as several sudden breakdowns of the amplitude,
occurring infrequently in intervals of several hundred data points. As highlighted
in the magnification of figure (6), around these rare events the confidence intervals

Table 1 Results on the Santa Fe data set: N denotes the number of virtual nodes used in the
DCR model and n is the number of data points used in the training set (that is, the number
of data on which the predictive distribution is conditioned). The goodness-of-fit is measured
by the squared correlation coefficient r2 ∈ [0,1] and evaluated for an estimate ŷ = m∗ from
equation (25) and the corresponding actual data y. First, the training set estimate ŷt ∈ R

n

conditional on the whole training set yt is considered, then the leave-one-out cross-validated
estimator ŷcv ∈ R

n (see text above), and finally an estimate ŷv ∈ R
600 for a validation set of

size 600, conditional on the preceding training set yt .

n=600, n=600, n=600, n=600, n=5000,
N=100 N=250 N=500 N=1000 N=250

r2(yt , ŷt) 0.952 0.953 0.975 0.975 0.997
r2(yt , ŷcv) 0.932 0.934 0.947 0.943 0.995
r2(yv, ŷv) 0.922 0.928 0.945 0.946 0.997

82 J. Schumacher, H. Toutounji, and G. Pipa

0.0

-0.5

1.0

0 100 200 300 400 500
Fig. 6 Normalized data points 600 to 1100 of the Santa Fe data, corresponding to a validation
set. In gray, a confidence interval of 2 standard deviations of the predictive distribution is
shown, as computed using a model with 500 virtual nodes, trained on the first 600 samples of
the time series. It can be seen that the confidence intervals lose accuracy in a neighborhood
around the sudden amplitude change after the 250th data point.

are less accurate and don’t always contain the sample. Presumably, the predictions
conditional on merely n = 600 data points do not contain enough information to ac-
count for the rare events. In contrast, using n = 5000 training data may increase the

An Introduction to Delay-Coupled Reservoir Computing 83

600 data points,
100 virtual nodes

0.945

0.93

0.91

0.92

0.935

600 data points,
250 virtual nodes

600 data points,
500 virtual nodes

600 data points,
1000 virtual nodes

0.9946

0.9944

0.9948

5000 data points,
250 virtual nodes

0.925

0.94

0.95

0.955

0.915

0.96

min

Fig. 7 Squared correlation coefficient r2 of leave-one-out cross-validated prediction ŷcv with
parametrically resampled training data sets y∗t (see text). The boxes denote quartiles, whiskers
95% confidence intervals, as given by the empirical distribution upon resampling 10000 times
r2(ŷcv =E[yt]cv,y∗t). The model with N = 500 virtual nodes shows the lowest variance among
predictions conditional on n = 600 training data points.

accuracy of the prediction around these rare events, as more information is available
to the model. As can be seen in the last column of table 1, the performance is much
improved and shows no longer signs of overfitting.

Figure 7 shows in addition for each model the variability associated with the
r2 goodness-of-fit measure, as computed using the parametric resampling strategy
described earlier. The N = 500 model shows the smallest estimated variance and
it becomes obvious from this figure that an increase of virtual nodes to N = 1000
leads to overfitting. In general, all predictions conditional on merely n = 600 data
points show a substantial variability in accuracy, which highlights the necessity for
a proper quantification of this variability in any report of performance. In contrast,
the predictions conditional on n = 5000 data points have a very low estimated vari-
ance and high accuracy, which suggests that the data set is in fact not very noisy.
The goodness-of-fit is elevated to state-of-the-art levels with a squared correlation
coefficient of r2(yt , ŷcv) = 0.99, as can be seen in the last figure on the right.

4 Discussion

In summary, we provided in this chapter a general introduction to the emerging
field of delay-coupled reservoir-computing. To this end, a brief introduction to the
theory of delay differential equations was discussed. Based on these insights, we
have developed analytical approaches to evaluate and approximate solutions of de-
lay differential equations that can be used for delay-coupled reservoir computing.

84 J. Schumacher, H. Toutounji, and G. Pipa

In particular, we derived approximate closed-form equations for the virtual nodes
of a DCR. It has been shown that the resulting update equations in principle lose
neither accuracy with respect to the system dynamics nor computational power in
DCR benchmark tasks. Using the analytical approximation reduces computational
costs considerably. This enabled us to study larger networks of delay-coupled nodes,
yielding a dramatic increase in nonlinear benchmark performance that was not ac-
cessible before. These results can lead to serious improvement regarding the imple-
mentation of DCRs on electronic boards.

Moreover, the approach yields an explicit handle on the DCR components which
are otherwise implicit in equation (1). This creates new possibilities to investigate
delay-coupled reservoirs and provides the basis for optimization schemes, a cru-
cial necessity prior to any hardware implementation. Together with the reduction
in computation time, this makes the use of supervised batch-update algorithms fea-
sible to directly optimize model hyperparameters (see eq. (16) and appendix). A
few of these possibilities were illustrated in a practical application to an experimen-
tal recording of a far-infrared laser operating in a chaotic regime, where the DCR
model was embedded in a fully Bayesian statistical model. The relation to a poten-
tial application in Gaussian process regression is discussed in the appendix, in light
of numerical difficulties that may arise with a DCR.

Future research will be focused on optimal hyperparameters of the DCR and
improved adaptability to input signals. Foremost, optimal mask functions have to
be identified systematically. To this end, the inconvenient coupling to the sampling
grid of virtual nodes has to be overcome, so as to make an independent evaluation of
mask functions possible. Accounting for and optimizing non-uniform virtual node
sampling grids could be an interesting next step (compare [28]). In addition, opti-
mization procedures may include unsupervised gradient descent schemes on DCR
parameters (e.g. θ , τ , N) with respect to other information theoretic objectives. Con-
tinuing this line of thought, one may even try to modify the update equations directly
according to self-organizing homeostatic principles, inspired, for example, by neu-
ronal plasticity mechanisms (e.g. [17]). We intend to explore these possibilities fur-
ther in future work to maximize the system’s computational power and render it
adaptive to information content in task-specific setups.

Acknowledgements. The authors acknowledge the financial support of the State Lower Sax-
ony, Germany via the University of Osnabrück, and the European project PHOCUS in the
Framework ’Information and Communication Technologies’ (FP7-ICT-2009-C/Propopsal
Nr. 240763). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Appendix

In this section, we expand and motivate the statistical model employed in section
3.5. A proper statistical model allows one to treat uncertainty associated with the
data in a formally optimal way. The authors believe that the greatest theoretical

An Introduction to Delay-Coupled Reservoir Computing 85

rigor in this regard is achieved with Bayesian statistics (see for example [18]). In a
first step, we therefore choose to formalize the model accordingly. In a second step,
we try to implement the theory as far as possible while dealing with practical issues
such as numerical accuracy, data size and computability.

Recall the DCR functional model (4),

ŷi := g(ūi) = g(ui,ui−1, ...,ui−M) =
N

∑
j=1

α jxi j,

where xi j denotes the jth virtual node (15) in reservoir time step t̄ = i, and the
dependence on covariates ui−1, ...,ui−M is given implicitly in each xi j via the tem-
poral evolution of x(t) (11). We chose an isotropic prior α ∼ N (0,λ 2I), which
corresponds effectively to an L2 regularization. The regularization term plays an
important part in safeguarding the model from overfitting. Further arguments (see
[14],[3]) suggest this prior represents our state of ignorance optimally, since (19)
maximizes entropy of α given mean and variance (0,λ 2), while being invariant un-
der a certain set of relevant transformations. It is thus the least informative choice
of a prior distribution, in addition to the assumptions following from the role of α
in model (18).

The likelihood function (21) is also normal, as a result of the normal choice for
the distribution of residuals εi. Although we may have no reason to believe that εi is
actually normally distributed, one can again make strong points that the normal dis-
tribution nonetheless represents our state of knowledge optimally, unless informa-
tion about higher moments of the sampling distribution is available [14]. In practice,
the latter will often not be the case, since there is no explicit access to the residuals
εi.

From these considerations, the predictive distribution (25) can be derived analyt-
ically, as was suggested in an earlier section. Note that, equivalently, we could have
derived these formulas in a framework of Gaussian Process Regression. The re-
sulting expressions, though equivalent, would look slightly different. The Gaussian
Process framework has many interesting advantages and allows for elegant deriva-
tions of the necessary distributions in terms of Bayesian statistics, in particular with
regard to the hyperparameters (σ2

ε ,λ 2). It has thus become an important theoretical
and practical tool in modern machine learning approaches and would have been our
first choice for a statistical model. In the following, we will therefore discuss the
predictive distribution in light of Gaussian processes, allude to difficulties in apply-
ing this framework to DCR models, and present a practical alternative for deriving
estimates for the hyperparameters (σ2

ε ,λ 2).
A Gaussian Process is a system of random variables indexed by a linearly ordered

set, such that any finite number of samples are jointly normally distributed [10].
A Gaussian Process thus defines a distribution over functions and is completely
specified by a mean function and a covariance function. In terms of a Gaussian
process, we can define the DCR functional model g ∼ G P as

86 J. Schumacher, H. Toutounji, and G. Pipa

E[g] = 0,

Cov[g(ū)] = E[g(ūi)g(ū j)]

= XE[ααT]XT = λ 2XXT =: [K(u,u)]i j,

(26)

where [K]i j denotes coordinate i, j of matrix K.
One can now derive all distributions necessary to formalize the uncertainty asso-

ciated with data (y,u). The details of these derivations can be found, for example, in
[21]. The covariance matrix Ky corresponding to y is given by

Ky := Cov[g(ū)+ ε] = Cov[g(ū)]+Cov[ε] = K(u,u)+σ2
ε I.

Accordingly, for data (y∗,u∗) (which may be the same as (y,u)),(
y
y∗

)
∼ N

(
0,

[
K(u,u)+σ2

ε I K(u,u∗)
K(u∗,u) K(u∗,u∗)

])
. (27)

If one is interested in predicting the noisy measurement of y∗, adding σ2
ε to K(u∗,u∗)

is appropriate and was presumed in the earlier derivations of section 3.5. From (27),
the marginal likelihood can be derived as y|u ∼ N (0,Ky) with log-density

log[p(y|u)] =−1
2

yT K−1
y y− 1

2
log[|Ky|]− n

2
log[2π]. (28)

Furthermore, the predictive distribution can be derived as

P(y∗|u∗,u,y) = N (m∗,S∗), (29)

with
m∗ := E[y∗] = K(u∗,u)K−1

y y

S∗ := Cov[y∗] = K(u∗,u∗)−K(u∗,u)K−1
y K(u,u∗).

(30)

To see that the predictive distribution (25) derived earlier and (30) are in fact
equivalent, consider the pseudo-inverse Φ+ of a matrix Φ ,

Φ+ = lim
δ↓0

(ΦT Φ + δ I)−1ΦT = lim
δ↓0

ΦT (ΦΦT + δ I)−1.

These limits exists even if ΦT Φ or ΦΦT are not invertible. In addition, the equality
also holds for δ > 0 [1]. This allows us to rewrite (30) as

m∗ := E[y∗] = K(u∗,u)K−1
y y

= X∗XT (XXT +
σ2

ε
λ 2 I)−1y

= X∗(XT X +
σ2

ε
λ 2 I)−1XT y

An Introduction to Delay-Coupled Reservoir Computing 87

S∗ := Cov[y∗] = K(u∗,u∗)−K(u∗,u)K−1
y K(u,u∗)

= K(u∗,u∗)−X∗(XT X +
σ2

ε
λ 2 I)−1XT XXT

∗ λ 2 (31)

= λ 2X∗(I − (XT X +
σ2

ε
λ 2 I)−1XT X)XT

∗

= λ 2X∗(
σ2

ε
λ 2 (X

T X +
σ2

ε
λ 2 I)−1)XT

∗

= σ2
ε X∗(XT X +

σ2
ε

λ 2 I)−1XT
∗ .

Unfortunately, Ky has deplorable numerical properties regarding inversion, as
necessary in (30). This is most likely owed to the fact that the individual virtual
nodes have a very high pairwise correlation across time, as can be expected of sam-
ples from a smooth system. Recall that K(u,u) = λ 2XT X ∈ R

n×n. Since typically
there will be much less virtual nodes than data points, N < n, so that K(u,u) is usu-
ally rank deficient. Although in theory Ky should always be invertible, numerically
this fact tends to hold only if σ2

ε /λ 2 ≥ 10−12. Note that this ratio corresponds to the
L2-regularization parameter. While this is a common problem in Gaussian process
regression and poses for many functional models no severe difficulties, the covari-
ance matrix built from the reservoir samples is very fickle in this regard: Setting
σ2

ε /λ 2 ≥ 10−12 can already lead to severe loss of performance in non-noisy reser-
voir benchmark tasks such as NARMA-10. Using the standard formulation of the
predictive distribution (25) allows one to sidestep these numerical issues. In both
frameworks, however, the marginal likelihood in (22) is given by y|u ∼ N (0,Ky)
with log-density

log[p(y|u)] =−1
2

yT K−1
y y− 1

2
log[|Ky|]− n

2
log[2π].

The marginal likelihood is important for Bayesian model selection, e.g. in com-
puting a Bayes Factor or Posterior Odds. Given the numerical troubles discussed
above, a straight-forward application of Bayesian model selection therefore seems
unavailable to DCR models.

In a fully Bayesian treatment, the hyperparameters σ2
ε ,λ 2 would have to be as-

signed (non-informative) priors and be integrated out of the distributions relevant
for inference or model selection. However, in general it is not possible to get rid
of dependence on both, hyperparameters and α . Instead, explicit values for the hy-
perparameters may be estimated by maximizing, for example, the marginal like-
lihood (28), or the predictive distribution (24) in a leave-one-out cross-validation
scheme [27]. With respect to computability of the involved terms, given the par-
ticular numerical difficulties arising in the DCR setup, a compromise between
theory and realizability is needed. We found a good practical performance to be
achieved by the following method. Looking at the marginal likelihood (28), one
notes that it contains essentially a term that reflects how well the model fits the data,
and another term that measures the complexity of the model as a function of Ky.

88 J. Schumacher, H. Toutounji, and G. Pipa

A similar approach is given by the information criterion AICM [15], which can be
stated as

AICM := n(log(2π)+ 1)+ n log(σ̂2
ε)+ 2[tr(G)+ 1]. (32)

Here, G denotes a smoother matrix, i.e. a matrix that is multiplied with the data y to
arrive at a prediction. From the first equation in (25), which represents our optimal
predictor, we can infer

G(λ 2) = X∗(XT X +
σ̂2

ε
λ 2 I)−1XT . (33)

The term tr(G) is called effective number of parameters and was proposed by Hastie
et al. [8] to control the complexity of a model. The model fit to the data in (32) is
given by log(σ̂2

ε) as a function of an estimator of the residual variance. Although one
could estimate σ̂2

ε along with λ 2, it is usually possible to express one as a function of
the other, thus simplifying the optimization problem. To account for generalization
of the model with respect to prediction performance, we choose

σ̂2
ε =

1
n

n

∑
i=1

(yi − μ (i))2. (34)

The term μ (i) denotes the predictive estimator of yi, obtained in a leave-one-out
cross-validation scheme by computing m∗ = mi in equation (25) with the ith data
point removed from X ,y. This can be efficiently done in one shot for all i [15],
yielding

μ (i) =
[Gy]i − [G]iiyi

1− [G]ii
. (35)

One can now determine
λ̂ 2 = argmax

λ 2
AICM(λ 2)

and compute σ̂2
ε as a function of λ̂ 2 accordingly. In addition, the AICM score can

be used to perform a selection between models of varying complexity, for example
to compare DCRs employing different numbers of virtual nodes.

References

1. Albert, A.: The Penrose-Moore Pseudo Inverse with Diverse Statistical Applications.
Part I. The General Theory and Computational Methods. Defense Technical Information
Center (1971)

2. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J.,
Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynam-
ical node as complex system. Nature Communications 2, 468 (2011)

3. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer Series in
Statistics. Springer (1985)

4. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus (2006)

An Introduction to Delay-Coupled Reservoir Computing 89

5. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, New York
(1993)

6. Ganguli, S., Huh, D., Sompolinsky, H.: Memory traces in dynamical systems. Proceed-
ings of the National Academy of Sciences 105(48), 18970–18975 (2008)

7. Guo, S., Wu, J.: Bifurcation Theory of Functional Differential Equations. Applied Math-
ematical Sciences. Springer London, Limited (2013)

8. Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability. Taylor & Francis (1990)

9. Heuser, H.: Lehrbuch der Analysis. Number pt. 1 in Mathematische Leitfäden. Teubner
Verlag (2009)

10. Hida, T., Hitsuda, M.: Gaussian Processes. Translations of Mathematical Monographs.
American Mathematical Society (2007)

11. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12(1), 55–67 (1970)

12. Huebner, U., Abraham, N.B., Weiss, C.O.: Dimensions and entropies of chaotic inten-
sity pulsations in a single-mode far-infrared nh3 laser. Phys. Rev. A 40(11), 6354–6365
(1989)

13. Jäger, H.: The echo state approach to analysing and training recurrent neural networks.
Technical report (2001)

14. Jaynes, E.T., Bretthorst, G.L.: Probability Theory: The Logic of Science. Cambridge
University Press (2003)

15. Konishi, S., Kitagawa, G.: Information Criteria and Statistical Modeling. Springer Series
in Statistics. Springer (2008)

16. Larger, L., Soriano, M.C., Brunner, D., Appeltant, L., Gutierrez, J.M., Pesquera, L., Mi-
rasso, C.R., Fischer, I.: Photonic information processing beyond turing: an optoelectronic
implementation of reservoir computing. Opt. Express 20(3), 3241–3249 (2012)

17. Lazar, A., Pipa, G., Triesch, J.: SORN: a self-organizing recurrent neural network. Fron-
tiers in Computational Neuroscience 3 (2009)

18. Lindley, D.V.: The 1988 wald memorial lectures: The present position in bayesian statis-
tics. Statistical Science 5(1), 44–65 (1990)

19. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states:
a new framework for neural computation based on perturbations. Neural Computa-
tion 14(11), 2531–2560 (2002)

20. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Texts in Applied
Mathematics, vol. 37. Springer, Berlin (2006)

21. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adapta-
tive computation and machine learning series. University Press Group Limited (2006)

22. Rugh, W.J.: Nonlinear system theory: the Volterra/Wiener approach. Johns Hopkins se-
ries in information sciences and systems. Johns Hopkins University Press (1981)

23. Schrauwen, B., Buesing, L., Legenstein, R.A.: On computational power and the order-
chaos phase transition in reservoir computing. In: Koller, D., Schuurmans, D., Bengio,
Y., Bottou, L. (eds.) NIPS, pp. 1425–1432. Curran Associates, Inc. (2008)

24. Shampine, L.F., Thompson, S.: Solving ddes in matlab. Applied Numerical Mathemat-
ics 37, 441–458 (2001)

25. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life
Sciences. Texts in Applied Mathematics. Springer (2010)

26. Soriano, M.C., Ortı́n, S., Brunner, D., Larger, L., Mirasso, C.R., Fischer, I., Pesquera, L.:
Optoelectronic reservoir computing: tackling noise-induced performance degradation.
Optics Express 21(1), 12–20 (2013)

90 J. Schumacher, H. Toutounji, and G. Pipa

27. Sundararajan, S., Sathiya Keerthi, S.: Predictive approaches for choosing hyperparame-
ters in gaussian processes. Neural Computation 13(5), 1103–1118 (2001)

28. Toutounji, H., Schumacher, J., Pipa, G.: Optimized Temporal Multiplexing for Reservoir
Computing with a Single Delay-Coupled Node. In: The 2012 International Symposium
on Nonlinear Theory and its Applications (NOLTA 2012) (2012)

29. Weigend, A., Gershenfeld, N. (eds.): Time series prediction: forecasting the future and
understanding the past. SFI studies in the sciences of complexity. Addison-Wesley
(1993)

© Springer International Publishing Switzerland 2015
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,

91

Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_5

Double-Layer Vector Perceptron for Binary
Patterns Recognition

Vladimir Kryzhanovskiy and Irina Zhelavskaya

Abstract. A new model – Double-Layer Vector Perceptron (DLVP) – is proposed.
Compared with a single-layer perceptron, its operation requires slightly more
computations (by 5%) and more effective computer memory, but it excels at a
much lower error rate (four orders of magnitude lower). The estimate of DLVP
storage capacity is obtained.

Keywords: vector neural networks, Potts model.

1 Introduction

The Potts model [1-2] is the first and the most well known vector neural network.
The model still draws much attention from researchers in such fields as physics,
medicine, image segmentation and neural networks. Later, the parametric neural
network [3] was offered and thoroughly studied by a small group of the Institute
of Optical Neural Technologies of Russian Academy of Sciences (the Center of
Optical Neural Technologies of the System Research Institute of RAS today). A
similar model (CMM) was developed independently and is still investigated at
York University [4]. V. Kryzhanovsky’s thesis introduces a vector neural network
model with a proximity measure between neuron states. This kind of neural net-
works generalizes all above-mentioned models. Researchers studied both fully
connected and perceptron-like architectures. Various vector-net learning rules
were studied [6]. The results proved the high efficiency of vector networks.

Perceptron is most suitable for associative memory-based applications (in our
case it is a vector perceptron). However, it has a major drawback: even one output
neuron taking a wrong state results in an input vector not being recognized.

Vladimir Kryzhanovskiy · Irina Zhelavskaya
Scientific-Research Institute for System Analysis of Russian Academy of
Sciences (SRISA RAS), 36/1 Nahimovskiy Ave., Moscow, Russia, 117218
e-mail: vladimir.krizhanovsky@gmail.com

92 V. Kryzhanovskiy and I. Zhelavskaya

Fig. 1 The general
arrangement of
the double-layer
vector perceptron

To overcome this, one has to raise the reliability of each neuron by increasing the
net redundancy or decreasing the load of the net. In other words, the vector per-
ceptron consists of “reliable” neurons that cannot make mistakes, which contra-
dicts the whole philosophy of neural networks.

The alternative approach is to use weak neurons. With similar requirements for
RAM, a collection of weak neurons proves to be more effective than a small num-
ber of reliable neurons. The trick is to supply a vector perceptron with an addi-
tional layer consisting of only one neuron that has a number of states equal to the
number of stored patterns. Its aim is to accumulate the information from the
preceding layer and to identify an input pattern. The approach is close to the idea
offered in papers [7, 8].

The paper consists of three parts: formal description of the model, qualitative
description with a simple example that helps to understand the point of the
approach, and experimental results.

2 Setting Up the Problem

In this paper we are solving the nearest neighbor search problem, which consists
in the following. Let us have a set of M N-dimensional bipolar patterns:

 , { 1}, 1,N
iR x Mμ μ μ∈ ∈ ± ∈X . (2.1)

A bipolar vector X is applied to the inputs of the network. The goal is to find

reference pattern Xm with the smallest Hamming distance to input pattern X.

Double-Layer Vector Perceptron for Binary Patterns Recognition 93

3 Formal Description of the Model

3.1 Model Description

Let us consider double-layer architecture (Fig. 1). The input layer has N scalar
neurons, each of which takes one of two states xi = ±1, i = 1, 2, …, N. The first
(inner) layer consists of n vector neurons. Each of these neurons has 2q fictive
states during the training, and is described by basis vectors of q-dimensional space

1 2{ , ,..., }i q∈ ± ± ±y e e e , where (0,...,0,1,0,...,0)k =e is the unit vector with k-th

component equal to 1. These fictive states are applicable only during the training,
and can be considered as responses of the inner layer of the network. That is done
since we use Hebb rule for training, so the responses of the network should be
known in advance. At the recognition stage, these neurons are simple summators
(thus, there is no activation function in the inner layer). This is done to simplify
the description of the model. The second (output) layer has one vector neuron that
can take M states, and is described by basis vectors of M-dimensional space
(where M is the number of patterns in the training set) 1 2{ , ,..., }M∈O o o o .

The state of the perceptron is described by three vectors:

1) Input layer is described by N-dimensional bipolar vector

1 2(, ,...,)Nx x x=X , where xi = ±1;

2) The first (inner) layer is described by n-dimensional 2q-nary vector

1 2(, ,...,)n=Y y y y , where 1 2{ , ,..., }i q∈ ± ± ±y e e e , and

(0,...,0,1,0,...,0)k =e is the q-dimensional unit vector with k-th compo-

nent equal to 1;

3) The second (output) layer is described by M-nary vector

1 2{ , ,..., }M∈O o o o , where (0,...,0,1,0,...,0)r =o is the M-dimensional

unit vector holding unit in the r-th digit.

Each reference pattern Xm is uniquely associated with vector Ym. In its turn,
each vector Ym is uniquely associated with vector om. Each component of vector
Ym is generated in a way that on the one hand, Ym is a unique vector, and on the
other hand, possible states 1 2{ , ,..., }qe e e are distributed evenly among reference

vectors, i.e. (1,1,...,1)M
i qμμ

≡ y . If the last condition is not satisfied, the error

rate grows by several orders of magnitude, which was proved experimentally. So,
we build a neural network that stores association:

 m m m⇔ ⇔X Y o (3.1)

94 V. Kryzhanovskiy and I. Zhelavskaya

3.2 Learning Procedure

The synaptic connections of the vector perceptron are computed using generalized
Hebb’s rule:

 1

M
m m

ji j i
m

x
=

=W y and
1

M
T m

j m j
m=

=J o y , (3.2)

where Wji is the q-dimensional vector describing the connection between the i-th
neuron of the input layer and the j-th neuron of the inner layer; Jj is the M×q ma-
trix responsible for connection between j-th neuron of the inner layer and the sole
output neuron, 1,i N= , 1,j n= .

3.3 Identification Process

Let us apply vector X to the network inputs. Let us compute the response of the
net O. For that purpose, let us first calculate local fields of the inner layer:

 1

N

j ji i
i

x
=

= h W
.
 (3.3)

Since the inner-layer neurons act as simple summators during recognition, sig-
nal hj arrives to the output neuron without any changes. That is why local field of
the output layer has the form:

 1

n
T

j j
j=

=H J h . (3.4)

The final output O is calculated in the following way. We identify the largest
component of local field H. Let it be component r. Then, the output of the percep-
tron is O = or. In other words, the input of the perceptron receives a distorted
variant of the r-th reference pattern. And the larger the product (H, or) is, the more
statistically reliable the response of the network is. Moreover, if we arrange the
numbers of components in increasing order the resulting list will tell us how close
to corresponding vectors input vector X is in terms of Hamming vicinity.

4 Qualitative Description of the Model

4.1 The General Idea

Each vector neuron corresponds to a unique partition of the whole set of reference
patterns into q subsets. For instance, Fig. 2 shows us two partitions of the set of
M=12 patterns into q=4 subsets. For any partition we can calculate q “probabili-
ties” (components of the vector of local fields, k

jh) of the input pattern belonging

Double-Layer Vector Perceptron for Binary Patterns Recognition 95

to one of the q subsets. Each vector neuron is basically a solver that selects a sub-
set with the highest “probability” (in Fig. 3 it is subset No.1 in the first partition
and subset No.1 in the second partition). The intersection of the subsets that were
selected by all solvers determines the output of a single-layer perceptron. Calcula-
tions of the “probabilities” may contain errors due to the statistical nature of calcu-
lations. So, a solution found by selecting the “highest-probability” subsets might
be wrong. Mistake in selecting a “winning” subset in at least one partition is
enough to get a wrong solution (Fig. 3).

Fig. 2 Partition of a set of objects in two different ways

Fig. 3 Intersection of winning subsets from partition 1 and 2 results in a null subset

The goal of the proposed method is to overcome this drawback. The idea is to
make decisions by accumulating “probabilities” over all partitions rather than
using “probabilities” of partitions separately (and cutting off possible solutions by
doing so). To do that, we need to interpret the probabilities 1 2, , ..., q

j j jh h h for j-th

partition differently from what we did before. If previously we treated k
jh as an

indicator of k-th subset in j-th partition, now we will say that each element (pat-
tern) of k-th subset in j-th partition is associated with the same indicator k

jh . Thus,

each pattern has n corresponding probabilities (where n is a number of different
partitions of the total set), and their sum represents a cumulative indicator of this

96 V. Kryzhanovskiy and I. Zhelavskaya

pattern. Using these cumulative indicators allows us to decide which of the pat-
terns is the winner based on the information from all subsets of all partitions.

(It should be noted once again that the “probability” here is understood as a
certain statistical quantity – a component k

jh of local field, to be exact. The higher

the probability of an input pattern being a pattern from a subset corresponding to
this local field, the larger this component is.)

4.2 Example

Let us exemplify the idea. Fig. 2 shows two different partitions (n = 2) of a set of
12 letter-denoted patterns into 4 subsets. Let us apply distorted pattern B to the
inputs. In the figure each subset has a corresponding number, which is the calcu-
lated “probability” that an input pattern is a pattern from this particular subset.

Table 1 Probability that the input pattern belongs to a particular subset

Partition 1 Partition 2

Subset
number

Objects Probability*
Subset
number

Objects Probability*

1 M, K, B 0.70 1 D, E, F 0.38

2 D, J, C 0.10 2 A, B, C 0.37

3 L, E, A 0.15 3 J, H, K 0.20

4 H, I, F 0.05 4 I, L, M 0.05

*Probability - chances that the input pattern belongs to the subset.

When a single-layer perceptron is used for recognition, subset No.1 is the
“winner” subset in the first partition, and it really contains the input pattern. In the
second partition the “winner” is also subset No.1, yet it does not have the input
pattern in it. The intersection of the two subsets gives us a null subset (Fig. 3),
which means that the net cannot identify the input pattern. It is clear that the fail-
ure of one neuron causes the failure of the whole system. At the same time, we can
see that the probabilities of the input pattern belonging to subset 1 or subset 2 for
the second partition are almost equal – the difference is just 0.01 (1%) (Table 1).
That is to say, it is almost equiprobable for the input pattern to be either in the first
or the second subset. Our model takes this fact into account, and for each pattern
the decision is made by using probabilities from both partitions (Table 2). The
pattern that corresponds to the greatest total “probability” is selected as the re-
sponse of the system. The result is a correct identification of the input pattern by
the network.

Double-Layer Vector Perceptron for Binary Patterns Recognition 97

Table 2 Recognition probabilities computed for two partitions and their sum for each
pattern

Pattern
Probability for
partition 1

Probability for
partition 2

Summary probability

A 0.15 0.37 0.52

B 0.70 0.37 1.07

C 0.10 0.37 0.47

D 0.10 0.38 0.48

E 0.15 0.38 0.53

F 0.05 0.38 0.43

5 Details of the Algorithm

We can see from the table that the proposed model requires just 4-5% more com-
putational resources (CPU, RAM) than the single-layer perceptron.

Table 3 Details of the algorithm

 Single layer Two layers Ratio*

Computational burden (number of operations) 2Nnq 2Nnq+(n+1)M 1.025

Necessary amount of RAM, bytes 4Nnq 4Nnq+4nM 1.033

* - the ratio is taken for M = 100; N = 100; q = 300; n = 2.

6 Storage Capacity

A new model of neural networks that is basically a product of adding one more
layer to a single-layer perceptron was presented above. The value of this addition-
al layer was illustrated via example in section 4.2. Now, we need to examine the
properties of the model and to compare characteristics of a single- and double-
layer perceptrons. This can be done in several ways:

1) We can take a range of datasets containing real data from different domains,
and investigate how the proposed model and the single-layer perceptron do
perform on them. As a result, we will identify types of data (types of prob-
lems), for which the networks described above work well and for which they
do not. These results would be very important since through them we would
be able to understand what place our model take among existing ones. The
disadvantage of this approach is that a very deep analysis of the used data is
required in order to understand the reasons why models work well or not, and
this task is a very nontrivial task itself.

98 V. Kryzhanovskiy and I. Zhelavskaya

2) Another approach is to generate a number of synthetic datasets that will be
considered as reference vectors (reference patterns), and test the models on
them. In this case, it becomes possible to create the situations when the tar-
geted models properties are most pronounced. The significant advantage of
that is the possibility to calculate statistical characteristics such as expected
mean, variance, correlations, etc., and different events probabilities analytical-
ly. Such estimates allow us to understand the endogenous processes in neural
networks better.

It is obvious that for thorough investigation of the model it is necessary to go
both ways. In the present work authors follow the second one: as reference pat-
terns we use vectors, which components are generated independently with equal
probabilities and take either +1 or -1.

So, with what purpose do we consider such kind of vectors? Our choice is
based on several reasons. First, this case is the simplest one for analytical calcula-
tions. Second, the estimate of storage capacity would be an upper bound estimate
in this case, i.e. we are estimating the maximum possible storage capacity of a
neural network. So, for instance, it is well known that neural networks work worse
when recognizing similar patterns, i.e. patterns that have correlations between
them rather than patterns without correlations. That means that they are able to
“remember” a fewer number of patterns a priori. Moreover, the probability of
correct recognition highly depends on correlation values in each particular case.
For that reason, we can make comparison between different models of associative
memory only by using the upper bound estimate of the storage capacity for the
simplest case. For example, the well-known result 0.14N, which is the storage
capacity estimate of Hopfield associative memory model, was obtained under the
same assumptions.

Let us give a definition of the storage capacity. The storage capacity of associa-
tive memory is a number of reference patterns Mmax that can be remembered by a
neural network so that it can recognize all of them without error. By that it is un-
derstood that adding just one reference pattern to the training set will lead to the
fact that one of the patterns is not being recognized correctly. In that event, the
probability of error recognition equals to 1/(Mmax+1).

We may formulate this classical definition in a different way. The storage ca-
pacity of associative memory Mmax is such number of reference patterns, recogniz-
ing which the probability of recognition error P is equal to 1/Mmax

1. At that, it is a
common practice that neural networks are tested at reference patterns without any
distortions. Authors think that it is necessary to generalize this definition, and to
define Mmax at condition that reference vectors being applied to the inputs of the
network are distorted at some noise level a, and the probability of recognition
error P is not greater than a predefined threshold Pmax (value Pmax could be any,
including 1/Mmax).

Authors managed to estimate storage capacity Mmax for both models at the
abovementioned conditions. Resulting estimates are in a good agreement with the

Double-Layer Vector Perceptron for Binary Patterns Recognition 99

experiment differing just 1-1.3 times in magnitude from experimental results.
Detailed derivations of the following estimates are presented in Appendix 1:

1) Storage capacity of double-layer vector perceptron (DLVP):

2

max

(1 2)

8ln
4 2

nqN a
M C

nqN

Pπ

−<

, 2.5C = . (6.1)

2) Storage capacity of single-layer perceptron:

2

max

(1 2)

2ln
2

qN a
M

nqN

Pπ

−=

 (6.2)

Let us analyze the storage capacity of both models. We may draw the following

conclusions from (6.1) and (6.2):

1) Storage capacity of both models increases linearly with N, q;
2) Storage capacity of both models decreases quadratically with a rise of the

distortion level of reference patterns a;
3) Strengthening the requirements for recognition reliability, i.e. reduction

of accepted probability error Pmax, leads to log decrease of storage capaci-
ty for both models;

4) And most importantly, comparing these two estimates we can see that the
storage capacity of a double-layer perceptron is n times greater than the
storage capacity of a single-layer perceptron!

7 Experimental Results

In this section we explore the properties of the proposed model in the following
experiments:

1. First, we show that adding the second layer to the network enhances the
probability of the correct recognition of input vectors. For this purpose,
we experimentally compare double- and single-layer perceptrons. In the-
se experiments we will vary external parameters N, M, a.

2. Then, we investigate the model behavior depending on internal parame-
ters n and q. Both parameters increment enhances the probability of cor-
rect patterns recognition. However, these parameters take different effect
on the model. Increment of q results in decrease of the amount of infor-
mation corresponding to one synaptic connection, and increment of n
allows accumulating more statistical information.

100 V. Kryzhanovskiy and I. Zhelavskaya

Fig. 4 Probability
P versus the num-
ber of stored
patterns M. Pa-
rameters N=100,
q=100, n=2

Fig. 5 Probability
P versus dimen-
sionality N. Pa-
rameters M=
1000, q=50, n=3

3. We conduct experiments on storage capacity of the proposed model, and
verify the agreement between theoretical and practical results.

4. We also consider another useful option that is provided by the proposed
model. That is a possibility of solving the K nearest neighbors task.

7.1 Comparison with a Single-Layer Perceptron

In this section we compare results of operation of a single- and double-layer
perceptron.

In Figures 4-6 the Y-axis of the plots is the recognition error probability P
(when the perceptron fails to recognize a distorted reference vector). In both
figures the curves corresponding to the single-layer perceptron are represented
by a thin line with rhombic marks (the curves are above the others). Other
curves correspond to the double-layer perceptron. The plots are drawn for
different n and q.

If the number of patterns M, their dimensionality N, and the noise level a (the
probability of a component of an input binary vector being distorted) are deter-
mined by the conditions of a problem to be solved, the number of q-digit neurons
of the inner layer and the number of their states can be varied to get satisfactory
reliability.

1E-071E-061E-051E-041E-031E-021E-011E+00200 300 400 500 600M

P

1E-081E-071E-061E-051E-041E-031E-021E-011E+00200 400 600 800 1000N

P

Double-Layer Vector Perceptron for Binary Patterns Recognition 101

Fig. 6 Recogni-
tion failure proba-
bility P versus
noise level a.
M=1000, N=100,
q= 200, n=2

Let us first consider how the recognition error probability varies with M and N

given constant n and q (Fig. 4 and 5). As expected, the growth of dimensionality
of stored patterns N or a decrease of their number M result in an exponential de-
crease of probability P. It is also seen that the introduction of another layer allows
a more than an order of magnitude (two orders and more) decrease of P. The low-
er the probability P for the original single-layer net, the more significantly P de-
creases for the double-layer system.

The noise-resistance of the double-layer net is also higher – the rhomb-marked
curve lies noticeably higher than the other curve (Fig. 6).

7.2 Model Properties Analysis

Fig. 7 shows us a few dependences of the double-layer network error probability P
on the noise level a for different combinations of n and q (given n*q = const). The
upper dashed curve corresponds to n=40, q=10, the curve below – to n=8 and
q=50. Even lower is the curve for n=4 and q=100. The combination of n=2 and
q=200 (thick solid line) demonstrates the lowest P. So we see that from the relia-
bility viewpoint it is better to use a small number of reliable (redundant) neurons
for the double-layer system. However, such kind of networks cannot boast of
high resistance to a failure of the net itself. The data (dashed line) shown in
Fig. 7 proves that reliable and failure-resistant neural systems can be made up of
unreliable elements having a considerable parameter spread.

The net with n=40 and q=10 differs from the net with n=2 and q=200 by the
principles securing correct recognition. In the first case the second layer that
accumulates information from a large number of unreliable elements plays a key
role (for a single-layer perceptron with given parameters the recognition probabil-
ity is zero). In the latter case, the second layer corrects the errors of the first layer
only occasionally (thin marked line in Fig. 7).

0.004
0.04

0.4 0 0.025 0.05 0.075 0.1a

P

102 V. Kryzhanovskiy and I. Zhelavskaya

Fig. 7 Recogni-
tion failure proba-
bility P versus
noise level a.
M=1000, N=100

Fig. 8 Recogni-
tion failure proba-
bility P versus nq.
M=1000, N=100,
a=0

Fig. 8 shows how the error probability P depends on inner-layer parameters n
and q. The thick line corresponds to the probability P of a double-layer network
with n=2 and q=200÷500, and triangular marks correspond to n =2÷5 and q=200.
Both networks have the same computational burden and requirements for RAM.
The simulation shows that

1) The growth of both parameters leads to an exponential decrease of P;
2) Both nets has the same probability P for nq < 800 (an unexpected enough

result), which once again says for the conclusion drawn above.

7.3 Storage Capacity

In this subsection we will present the experimental results of DLVP maximum
storage capacity measurements and will check how well it corresponds to the theo-
retical estimate (6.1).

The solid line in figures 9-13 corresponds to theoretical estimate (6.1)
calibrated on 2.5, markers are experimental points. The experiment was the
following: we were looking for such number of reference vectors M, at which the
probability of error recognition P would be equal 1/M at fixed parameters N, n, q
and a, i.e. solving the following equation numerically:

0.004

0.04
0 0.025 0.05 0.075 0.1a

P

1E-091E-081E-071E-061E-051E-041E-031E-021E-011E+00400 600 800 1000

P

qp

Double-Layer Vector Perceptron for Binary Patterns Recognition 103

. (7.1)

From the plots represented in Fig. 9-13 we can see that the estimate (6.1) is
consistent with the experiment quite well. Resulting curves verify the correctness
of conclusions drawed at the end of section 6. It is especially worth noting that the
storage capacity of DLVP increases linearly with n, while as the storage capacity
of a single-layer perceptron decreases with ln(n) (see (6.2)).

Fig. 9 DLP stor-
age capacity M as
a function of
distortion level a.
N=100, q=50,
n=4, Pmax=1/M

Fig. 10 DLP
storage capacity
M as a function of
the number of
vector neurons of
an inner layer n.
N=100, q=50,
a=0.1, Pmax= 1/M

Fig. 11 DLP
storage capacity
M as a function of
q. N=100, a=0.1,
n=4, Pmax=1/M

1
(, , , ,)P M N n q a

M
=

0100200300400500

0 0.1 0.2 0.3

M

a

0500100015002000

0 10 20 30

M

n

0200400600800100012001400

0 50 100 150 200 250

M

q

104 V. Kryzhanovskiy and I. Zhelavskaya

Fig. 12 DLP
storage capacity
M as a function of
problem size N.
q=50, a=0.1,
n=4, Pmax=1/M

7.4 K-Nearest Neighbors Search Task

The algorithm has yet another useful property, which a single-layer perceptron
does not have. If we arrange patterns in decreasing order according to the compo-
nents of their local field H (table 2, column “sum”), the order will tell us how
close a pattern is to an input vector, while a pattern in the first place being regard-
ed as the response of the system.

Let us demonstrate this by experiment. We will independently generate M
random uncorrelated patterns, and additionaly another 5 patterns that are similar to
each other to different extents (so they are correlated). The algorithm to generate
these patterns is the following:

1) Generate random vector X1;
2) Obtain vector X2 by random distortion of 10% components of vector X1;
3) Obtain vector X3 by random distortion of 20% components of vector X1;
4) Obtain vector X4 by random distortion of 30% components of vector X1;
5) Obtain vector X5 by random distortion of 40% components of vector X1;

Then, we will apply vector X1 to the network inputs, and will monitor the

values of the components of the local field H. Components of the local field
corresponding to these 5 patterns will be greater than those corresponding to other
components. At that, the maximum value of the local field will correspond to
vector X1 (since this vector was applied to the inputs). The second largest value
will be the component corresponding to X2, etc.

And indeed, the results of the experiment that are presented in Fig. 14
demonstrate it perfectly. Fig. 14 shows us distributions of the first six components
of the local field H after applying vector X1 to the inputs of the network. From this
plot we can see that the spikes of the distributions are put in ascending order of
patterns proximity to vector X1.

050010001500200025003000

0 200 400 600 800

M

N

Double-Layer Vector Perceptron for Binary Patterns Recognition 105

Fig. 13 Single-layer
perceptron storage
capacity M as a func-
tion of n. N=100,
q=50, a=0.1,
Pmax=1/M. Solid line
corresponds to the
estimate (6.2),
triangular markers
corresponds to
experimental points.

Fig. 14 Distributions
of the first six
components of the
local field H after
applying vector X1 to
the inputs of the
network. N=100,
q=200, a=0, n=2.

Fig. 15 Recognition
error probability P as
a function of the
number of scalar
products K. N=100,
n=2, q=100, a=0,
M=400, 500, 600

Such property allows us to solve the problem of K nearest neighbors search,

which involves finding K reference patterns that are most similar to the input
vector using Hamming distance. Alternatively, we can use this property to
enhance the reliability of recognition for the problem of finding the first closest
neighbor, i.e. for our task. To do this, we need to choose K reference patterns with
the largest corresponding components of the local field H. Then, we need to

0
50

100
150

0 25 50 75 100 125

M

n

0

0.06

-50 50 150 250 Hk

X5 X4 X3 X2 X10.06

1E-81E-71E-61E-51E-41E-31E-2 0 2 4 6 8 10 12 14 16 18 20
M=600

M=500

M=400
P

K

106 V. Kryzhanovskiy and I. Zhelavskaya

calculate scalar products of an input vector with these reference patterns, and
choose the winner (it has the maximum scalar product). The result is that it
becomes possible to significantly reduce the probability of recognition error at the
cost of a couple of additional scalar products.

Fig. 15 shows us a very high efficiency of this improvement. We see that
calculation of two additional scalar products (K=2), for example, results
in decrease of recognition error P by about an order of magnitude, and at K=20 –
by three orders. The gain is more, the smaller the error probabilty is in the first
place.

8 Conclusion

The paper shows that it is possible to raise the efficiency of the single-layer vector
perceptron by adding an extra layer. The remarkable efficiency of the algorithm is
demonstrated. It is clearly shown that in contrast to a straight increase of network
redundancy, purposeful construction of neural nets can give nice results.

The research is supported by projects ONIT RAN 1.8 and 2.1.

References

1. Wu, F.Y.: The Potts model. Review of Modern Physics 54, 235–268 (1982)
2. Kanter, I.: Potts-glass models of neural networks. Physical Review A 37(7), 2739–2742

(1988)
3. Kryzhanovsky, B., Mikaelyan, A.: On the Recognition Ability of a Neural Network on

Neurons with Parametric Transformation of Frequencies. Doklady Mathematics 65(2),
286–288 (2002)

4. Austin, J., Turner, A., Lees, K.: Chemical Structure Matching Using Correlation Matrix
Memories. In: International Conference on Artificial Neural Networks, IEE Conference
Publication 470, Edinburgh, UK, September 7-10. IEE, London (1999)

5. Kryzhanovsky, V.M.: Ph.D. Thesis, Research into Binary-Synaptic-Coefficient Vector
Neural Nets for Data Processing and Decision Making Problems, System Research In-
stitute of the Russian Academy of Sci-ences (2010)

6. Kryzhanovskiy, V., Zhelavskaya, I., Fonarev, A.: Vector Perceptron Learning Algo-
rithm Using Linear Programming. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F.,
Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 197–204. Springer, Heidel-
berg (2012)

7. Podolak, I.T., Biel, S., Bobrowski, M.: Hierarchical classifier. In: Wyrzykowski, R.,
Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 591–
598. Springer, Heidelberg (2006)

8. Podolak, I.T.: Hierarchical classifier with overlapping class groups. Expert Systems
with Applications 34(1), 673–682 (2008)

Double-Layer Vector Perceptron for Binary Patterns Recognition 107

Appendix 1

Now, we will present a nonstrict analytical derivation of DLVP storage capacity in
the engineer style, in which we will neglect different correlations and make some
simplifications. Only in this case, it becomes possible to deduce the resulting
expression but not another unsolvable theorem. As it was shown above (in subsec-
tion 7.3), the final estimate (6.1) is in a good agreement with experiments regard-
less of introduced simplifications.

If we take a particular set of reference patterns and a DLVP trained on this set,
the result of the recognition of particular pattern X will be deterministic and
nonprobabilistic (note that the process of training DLVP is also deterministic). At
such approach one cannot speak of the error recognition probability and moreover,
reason about storage capacity. However, let us try another approach.

Assume we have 1000 DLVPs trained on different sets of reference patterns.
Let us apply first patterns X1 from each set to the inputs of DLVPs accordingly.
Let us consider their local fields H. We will denote k-th component of these fields
as Hk. In the case of correct recognition, first components of the local fields H1
should be greater than other components Hi, i = 2, 3,…, M. Then, 1000 of the first
and the second components of the local fields H can be considered as realizations
of two random variables H1 and H2 (as you understand, the number of DLVPs can
be any, and 1000 is just an example). So, since Hk are random variables, (M-1)
inequalities

1 2

1 3

1 M

H H

H H

H H

>
 >

 >

 (А.1)

will hold with some probability 1–P, where

1

2

1 Pr
M

k
k

P H H
=

 = − >

 (А.2)

is a probability of error recognition. Thus, if we can analytically estimate a func-
tional relationship between P and all the model parameters, which are reference
patterns size N, number of reference patterns in the training set M, internal param-
eters n and q, and the noise level a, then we will be able to find model reliability at
specific parameters values. This will be our first goal.

1. Error Probability
Let us neglect some aspects, which will help us to obtain an expression for P:

1. Random values Hi are dependent and correlate with each other, but we
will assume that they are independent.

2. Events (H1>H2), (H1>H3), …, (H1>HM) are also dependent (since they all
depend on H1), but we will assume they are not.

108 V. Kryzhanovskiy and I. Zhelavskaya

It is obvious that each such approximation results in discrepancies between the-
ory and experiment. But this is a price we have to pay. Eventually, we can make
an approximate estimate of (A.2) in the following way:

 []1
2

1 Pr
M

k
k

P H H
=

= − >∏ . (A.3)

Now, we can focus on each random variable Hk separately, to evaluate its dis-
tribution function and its statistical characteristics.

2. Distribution Function of Hk
To evaluate distribution of Hk one need to substitute (3.2) and (3.3) in (3.4):

 1(,)
M M N n

m
m j j i i

m i j

x xμ μ

μ
= H o y y , (A.4)

where index “1” and tilde in the last multiplier 1
ix emphasizes that the first refer-

ence pattern (X1) was applied to DLVP inputs (see (3.3), where xi denotes i-th
component of an input vector, which is X1 in our case), and this pattern had aN of
its components distorted, 0<a<0.5. Recall that om

is an M-dimensional unit vector
containing 1 at m-th position. Subject to the last note, m-th component of vector H
will be

m 1
m (,)

M N n

j j i i
i j

H x xμ μ

μ
= y y

(A.5)

We can see from (A.5) that Hm is basically a sum of a great number of «+1» и
«-1», which can take only integer values, and therefore, its distribution is discrete.
We can approximate it with the normal distribution with a reasonable accuracy.
Next, we need to evaluate expected means and variances of random variables Hm.

It is worth going through the approach we conduct our analysis at one more
time. We consider the multipliers in expression (A.5) as random variables. Their
realizations correspond to particular sets of reference patterns and a particular
input vector. So, for instance, we consider ixμ , which is i-th component of refer-

ence pattern Xμ, as a random variable, which can take either +1 or -1 equiprobably
(expected mean of this value is 0, and standard deviation is 1).

3. Statistical Properties of Hk
Looking ahead, it is worth considering random variable H1 separately from
the rest of the components H2, H3, …, HM, since their statistical properties are
different.

To estimate the expected mean and the variance of H1, we need to extract addi-
tives having μ=1 from (A.5):

Double-Layer Vector Perceptron for Binary Patterns Recognition 109

1 1 1 1 1 1
1

1

(,) (,)
N n M N n

j j i i j j i i
i j i j

H x x x xμ μ

μ≠

= + y y y y

(A.6)

Taking into account the way variables j
μy were defined in 3.1, we get the

following:

1 1(,) 1j j ≡y y . (A.7)

Considering that input vector X is basically vector X1 with aN distorted
components, we get the following as well:

 1 1 (1 2)
N

i i
i

x x a N≡ − (A.8)

The first sum in (A.6) is equal strictly to (1-2a)nN, so (A.6) becomes:

1 1
1

1

(1 2) (,)
M N n

j j i i
i j

H a nN x xμ μ

μ≠

= − + y y

(A.9)

By signal we shall call the first part of (A.9), and by noise – the second part.
Let us consider multipliers of the second sum: 1(,)j j

μy y , ixμ and 1
ix . They are

independent, so

 1 1 1 1(,) (,) 0j j i i j j i iE x x E E x E xμ μ μ μ = = y y y y , (A.10)

where E[] is expectation operator. Thus, the noise term has zero mean, but has a
very large variance. The noise term may turn out to be larger than the signal
(1 2)a nN− due to statistical outliers, which will cause the error in recognition.

Ultimately, we can estimate the mean and the variance of H1 as:

[]

[]
1

1

(1 2)E H a nN

nNM
D H

q

= −

=
. (A.11)

Random variables H2, H3, …, HM variables cannot be divided into the signal
and the noise terms, since they have only noise terms. These variables have same
statistical characteristics:

[]

[]

0

(1) 1
1

k

k

E H

nNM n q N
D H

q M M

=

− − = + +

. (A.12)

Estimates of variances in (A.11) and (A.12) were obtained similarly to the
mean estimate in (A.10). It is necessary to take into account distribution functions

110 V. Kryzhanovskiy and I. Zhelavskaya

of random variables 1(,)j j
μy y and ixμ when deriving the estimates of mathematical

expectations and variances:

1

1
1,

2

1
(,) 1,

2

0,

j j

with a probability of
q

with a probability of
q

otherwise

μ

−

= +

y y (A.13)

and

1
1,

2
1

1,
2

i

witha probabilityof
x

witha probabilityof

μ

−=
+

(A.14)

4. Error Probability Estimate P
Let us introduce a new random variable combining both random variables H1 and
Hk:

 1k kH HΔ = − , 2,k M= (A.15)

The assumption made above that variables Hk are independent allows us to

easily calculate statistical characteristics of kΔ :

[]

[]

(1 2)

2

k

k

E a nN

nNM nq N
D

q M M

Δ = −

 Δ ≈ + +

(A.16)

Variable kΔ is normally distributed, so the probability of event 0kΔ > (see

multipliers in (A.3)) is defined by the following expression:

[]
[]

[]()
[]

2

0

1
1 Pr 0 exp

22

k

k k
kk

E
P d

DD

ξ
ξ

π

∞ − Δ
 − = Δ > = −
 ΔΔ

(A.17)

We can write the expression of error recognition probability as

 () 1
1 1

M

kP P
−= − − . (A.18)

Double-Layer Vector Perceptron for Binary Patterns Recognition 111

Since we are interested in the case when error probability is 0P → (so the
neural network works very reliably), we can make the following estimate of
(A.17):

 kP MP≈ . (A.19)

Thus, we need to estimate probability kP . There is a range of expansions for
the error function

() 22 t

x

erfc x e dt
π

∞
−= (A.20)

These expansions allow us to calculate probability kP approximately. So, let us
express (A.16) in terms of error function:

1
()

2kP erfc γ= , (A.21)

where

[]
[]

2 2
2 (1 2)

2 2
k

k

E nqN a

D M
γ

Δ −= = Θ
Δ

,
1

2
nq N

M M

−
 Θ = + +

. (A.22)

The greater the value of 2γ is, the smaller the error probability P is. Therefore,

the approximation of (A.17) by (A.18) is made when 2 1γ >> .
Let us take the first additive from the well-known error function expansion

()

2

2
1

1 3 5 (2 1)
() 1 (1)

2

x
r

r
r

e n
erfc x

x xπ

− ∞

=

 ⋅ ⋅ − = + −

 (A.23)

By doing so we get the resulting error probability expression:

2

2

M
P e γ

γ π
−= (A.24)

The estimate (A.23) describes the model in a qualitative manner. However, it is
inconsistent with the experiment by several orders. Such significant difference is
coming from the point that error probability is in exponential relationship with the
parameters of the model:

2

~P e γ− (A.25)

112 V. Kryzhanovskiy and I. Zhelavskaya

Even minor errors in calculations of this exponential factor lead to significant
deviations from the experiment, since 2 1γ >> . Authors realized that introduced
approximations and assumptions would lead to directly that. However, though
expression (A.23) is of interest, but it is not the final goal of our derivations.
Based on it, we will get a consistent estimate of storage capacity.

5. Storage Capacity
According to the definition of the storage capacity of associative memory Mmax

given in section 6, it is such number of reference patterns, recognizing which the
probability of error P is not greater than a predefined threshold Pmax, and input
vectors are distorted at the noise level a≥0. Therefore, we need to solve the
following equation for M:

 () max, , , ,P M N n q a P≤ . (A.26)

Let us take a logarithm of the right and the left-hand side of (A.25):

2

max

ln
2

M

P
γ

γ π
≥ (A.27)

Then, let us substitute 2γ in this expression:

()

2

3

2 2
max

(1 2)

ln
2 (1 2)

nqN a
M

M

nqN a Pπ

−≤ Θ

 − Θ

 (A.28)

Variable M in (A.27) is both in the right and the left-hand sides of the formula.
Therefore, let us use the following trick: we will recurrently insert (A.27) into
itself:

3
2

2

2

max

(1 2)

(1 2)
2ln

2 ln (...)

nqN a
M

nqN a

P π

−≤ Θ
 − Θ

 (A.29)

There still left multipliers Θ depending on M in the right-hand side of (A.28).
Let us try to eliminate this dependency. If we lower the estimate of storage capaci-
ty M we will only strengthen inequality (A.25). Therefore, let us give a raw lower
estimate of Θ :

1

4
Θ ≈ (A.30)

Eventually, we get the final expression for the estimate of DLVP storage
capacity:

Double-Layer Vector Perceptron for Binary Patterns Recognition 113

2

max

(1 2)

8ln
4 2

nqN a
M C

nqN

Pπ

−<

, 2.5C = .

(A.31)

According to multiple experiments, (A.30) gives a good qualitative description
of the model, however, in order to be in a good agreement with the experiment a
normalization constant C=2.5 is required.

© Springer International Publishing Switzerland 2015
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,

115

Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_6

Local Detection of Communities
by Attractor Neural-Network Dynamics

Hiroshi Okamoto

Abstract. Community structure is a hallmark of a variety of real-world networks.
Development of effective and efficient methods for detecting communities in net-
works has been a central issue of network science. Here we propose a method for
detecting communities in networks. We have devised this method inspired by the
cell assembly hypothesis, which has been one of the prevailing hypotheses in neu-
roscience. The cell assembly hypothesis states that neurons coding the same item
tend to be mutually connected, thus forming a ‘cell assembly’; memory recall of
this item is associated with sustained activation of neurons belonging to the cell
assembly. Here we compare communities to cell assemblies and examine commu-
nity detection by use of the neural-network dynamics describing memory recall in
the brain. To demonstrate the effectiveness of the proposed method, local detec-
tion of communities in synthetic benchmark networks and real social networks is
examined. The community structure detected by our method is highly consistent
with the correct community structure of these networks.

Keywords: Complex network, Community detection, Cell assembly, Memory
recall, Neural-network dynamics, Attractor.

1 Introduction

In literature of network science, ‘community’ refers to a group of nodes that are
more densely connected within this group than with nodes outside this group. Com-
munity structure is a fundamental property of a variety of real-world networks. De-
velopment of effective and efficient algorithms to detect communities in networks
has been a big challenge of network science [1, 2].

Hiroshi Okamoto

Research & Development Group, Fuji Xerox Co., Ltd.,
6-1 Minatomirai, Nishi-ku, Yokohama-shi, Kanagawa 220-8668, Japan, and
RIKEN Brain Science Institute,
2-1 Hirosawa, Wako, Saitama 351-0198, Japan
e-mail: hiroshi.okamoto@fujixerox.co.jp

116 H. Okamoto

Community detection algorithms proposed up to now mainly aim to exhaust-
ively detect all the communities in a given network [1, 2]. However, this type of
community detection is computationally infeasible for extremely large or dynami-
cally evolving networks such as the World Wide Web, the Twitter network or the
Facebook network.

Another, more economic approach is to detect only a community to which a
given source node belongs [3-6]. Starting from a given source node, one explores
the network crawling links; exploration will continue until certain criteria are met;
the explored region, or a part of it, is then judged as the community to which the
source node belongs. This type of community detection is described as ‘local’
because it is intended to find the community to which a given source node belongs
without knowing all other communities in the network. The purpose of this study
is to propose and examine a method for local detection of communities, which we
devised inspired by the longstanding and prevailing hypothesis in neuroscience,
the ‘cell assembly hypothesis’.

Neurophysiological studies have revealed that short-term memory recall of a
certain item in the brain is associated with sustained activation of neurons coding
this item [7, 8]. The cell assembly hypothesis states that neurons coding the same
item tend to be mutually connected [9]. Thus, neurons coding the same item or-
ganize a densely connected group, which is referred to as a ‘cell assembly’ [9].
Reverberatory propagation of neuronal activities localized in the cell assembly
generates a sustained activation of neurons belonging to this cell assembly [10].

Moreover, a lot of memory items are stored in the brain. Different items are as-
sociated with different cell assemblies. Therefore, the neural-network dynamics
describing memory recall in the brain should have a multitude of stable states [11,
12]. Initial activation of a fraction of neurons, which serves as a cue, determines
which stable state (attractor) will be selected. These describe neural mechanisms
underlying cue-triggered memory recall of an item.

Cell assemblies can be compared to communities in real-world networks. This
will inspire the idea of local detection of communities by use of the neural-network
dynamics describing cue-triggered memory recall in the brain [13]. To demonstrate
the effectiveness of this idea, we examine local detection of communities in syn-
thetic benchmark networks and real social networks for which correct community
structure is known. This paper is an extended version of a previously published
article [14] and a part of data presented here is identical to that presented there.

2 Methods

2.1 Neural-Network Dynamics

Consider a network of N nodes with undirected links. Let
() (), 1, ,nmA n m N= =A be the adjacency matrix of this network. If nodes n

and m are connected, 1nm mnA A= = ; otherwise 0nm mnA A= = .

Local Detection of Communities by Attractor Neural-Network Dynamics 117

Now we compare individual nodes to neurons and individual links to synaptic
connections between neurons. Let ()np t and ()nf t be the “potential” and the

“activity” of neuron n at time t , respectively. We assume that the relationship

between ()np t and ()nf t is given by a threshold-linear function (Fig. 1), which

models the relationship between the membrane potential and the firing rate of
pyramidal cells [15]:

() ()() ()n n nf t p t p tσ θ= − , (1)

where () ()(){ }1 1 exp np txσ β θ= + − − with 0β ≥ and 0θ ≥ . Note that

as x increases, ()y f x= sigmoidally rises and then asymptotically approaches

y x= (Fig. 1).

Fig. 1 As x increases, () ()y xf x xσ= = (black line) sigmoidally rises and then asymptot-

ically approaches y x= (grey line). We have chosen 10β = and 1 / 34θ = for this illus-

tration

Time evolution of potentials of individual neurons is described by the equation

() () ()
() () ()

1 0 0

1
1 1 0

1

N n
n nm m m

t
p t T t F F t F

F t

f
f

=

−
 = − + − − > − (2)

where
' 1nm nm

N

n n mT A A ′=
≡ and () ()

1

N

nn
F t tf

=
≡ . The first term on the right-

hand side describes propagation of activities to neuron n from neurons making
synaptic connections onto neuron n . The second term models competition be-
tween neurons for a finite resource 0F F− ; such competition, which is generally

considered to occur owing to activation of inhibitory interneurons, is common in
cortical network architecture [16].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

 y

118 H. Okamoto

We can easily verify that the sum of the potential of all neurons is kept constant
with time

()1 0

N

n np t F
=

= . (3)

This property is important as it stabilizes the neural-network dynamics (2). By
virtue of this property, the network is kept from falling into pathological states
such as flare-up or extinction of the activities of all neurons. Without loss of gen-
erality we set 0 1F = .

One can give another interpretation to equation (3). In the limit 0θ → and
β → ∞ , equation (3) becomes

() ()1
1n nm m

N

m
p t T p t

=
= − . (4)

This is formally equivalent to the Markov-chain equation [17, 18]. One can sup-
pose a ‘random walker’ who is walking around the network along links; ()np t is

then interpreted as the probability that the random walker stays at node n at time
t and nmT is the transition probability from node m to node n (note that by

its definition nmT satisfies 1nmn
T =). For 0θ > and finite β , however,

()np t can no longer be interpreted as the probability for a single random walker.

Instead one can suppose a large number of random walkers; ()np t can now be

interpreted as the population density of node n at time t . A random walker stay-
ing at node m at time 1t − monitors the population density of this node. With

probability ()()()()1 1 exp 1mpr tβ θ= + − − − he/she selects one of the nodes linked

from node m and then moves to the selected node at time t ; with probability
1 r− the random walker jumps to any node. For the latter, to which node he/she
jumps is determined by the relative amplitude of the activity; namely, he/she
jumps to node n with probability () ()1 1nf t F t− − .

2.2 Local Detection of Communities

For a given source node (say, node l), local community detection is done as
follows. First the initial condition is set as follows

() () ()0 1, 0 0l np p ln= = ≠ . (5)

This means that neuronal activities are initially concentrated at the source node.
As time passes, activities spread in the network according to equation (3). Activi-
ties preferentially propagate within the community to be detected, where nodes are
more densely connected within this community than with nodes outside. Potentials
of nodes located around the frontier region of the community are considered small
because these nodes have less links than those centrally located in the community.
Owing to the sigmoidal rise of ()f x at small x , activities of nodes around the

Local Detection of Communities by Attractor Neural-Network Dynamics 119

frontier regions rapidly decay. Thus activities no more spread far beyond the fron-
tier regions. Thus, activities are confined and localized within the community.

Iterative calculation of equation (3) with initial condition (5) eventually leads to
the steady-state distribution of potentials { } ()(stead) 1 ,,np n N= . We consider that

this steady-state distribution represents the community to which the source node
belongs. The (stead)

np has a graded value ranging from 0 to 1, which expresses the

level of belongingness of node n to the detected community.
Our algorithm detects communities as attractors of the neural-network dynam-

ic. Arenas et al. [19, 20] have proposed to detect communities in networks by
coupled-oscillator dynamics. In their model communities emerge as temporally
evolving synchronization patterns, whereas communities detected by the proposed
method are represented by static patterns (point attractors).

2.3 Parameters

The neural-network dynamics defined by equation (4) includes two parameters,
β and θ . We found that the value of β controls the resolution of the commu-

nity structure to be detected (see Results). We have empirically found that com-
munity detection by the proposed method is highly performed when the value of
θ is chosen as

explored1 Nθ = , (6)

where exploredN is the number of neurons whose potential has ever been elevated

above zero during course of neuronal propagation in the network. Note therefore
that exploredN is a function of time t and never decreases with time; that is,

() ()explored explored 1N t N t −≥ .

3 Results

3.1 Local Detection of Communities from Synthesized Networks

First we evaluate the effectiveness of the proposed method using synthetic bench-
mark networks. Lancichinetti et al. have proposed a method for synthesizing net-
works with community structure that captures essential features of that of real-world
networks [21, 22]. The number of communities and their sizes can be controlled by
adjusting the parameter values. In this study we have synthesized a network of

200N = nodes with six communities. The parameter values used for synthesizing
this network and the statistics of the communities are given in Appendix.

One of the 200 nodes was chosen to define the initial condition by (5) and then
the steady state distribution of potentials { } ()(stead) 1 ,,np n N= was obtained by

120 H. Okamoto

iterative calculation of equation (2). The same calculation was repeated for all
nodes. For each node taken as a source, the steady state distribution falls into any
of K patterns, with K varying with β as shown below. We consider that each

pattern represents the community to which the source node belongs.

Fig. 2 The number of communities detected in the synthesized benchmark network by the
proposed method depends on β . Note that for a wide range of β the correct number of

communities (six, indicated by broken line) is stably obtained.

Fig. 3 Local detection of communities in the synthetic benchmark network. The color (red,
blue, green, yellow, orange or purple) of each icon indicates the community detected by the
proposed method for this node taken as a source. The shape (vertically long ellipse, hori-
zontally long ellipse, vertically long box, horizontally long box, triangle or diamond) of
each node indicates the correct community to which this node belongs. Note that nodes that
have the same shape also have the same color. Here, we have chosen log 5β = .

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

log β

Th
e

nu
m

be
r

of
 c

om
m

un
iti

es

Local Detection of Communities by Attractor Neural-Network Dynamics 121

The number of communities depends on (Fig. 2). For a wide range of
 the correct number (six) of communities is obtained. The detected community

for each node taken as a source and the correct community to which this node
belongs are compared in Fig. 3, which shows that local detection of communities
in the synthesized benchmark network by the proposed method is perfect.

3.2 Local Detection of Communities from Real Social Networks

Zachary’s karate-club network [23] is a famous benchmark network that has been
used for development of algorithms detecting social sub-groups. This is a real
social network of 34 members of karate club at a US university observed by a
social scientist, Wayne Zachary. Each link represents social tie between two
members. During the period of observation by Zachary, a dispute concerning
management of membership dues had developed between the head teacher and the
administrator. This finally resulted in factional separation of the club into two
groups with one led by the head teacher and the other led by the administrator.
The goal of Zachary’s karate-club task is to predict to which group each member
belongs after the factional separation of the club.

The number of communities detected by the proposed method depends on β
(Fig.4). For a range of β (log ~~ 1 2β≤ ≤) the correct number (two) of commu-

nities is gained. For a value of β in this range, the detected community for each

node taken as a source and the correct group to which the member corresponding
to this node belongs are compared in Fig. 5, which shows that the proposed meth-
od accurately predicts the groups to which individual members belong after fac-
tional separation of the club.

Moreover, varying the value of β revealed hierarchical structure of commu-

nities in the karate club (Fig. 6 and 7). For log 0.0β = the network as a whole is

Fig. 4 The number of communities detected by our algorithm depends on . Note that for
a certain range of the correct number of communities (two, indicated by broken line) is

obtained.

K β
β

0 1 2 3 4 5

0

1

2

3

4

5

log β

Th
e

nu
m

be
r o

f c
om

m
un

iti
es

β
β

122 H. Okamoto

Fig. 5 Local detection of communities in Zachary’s karate-club network for .

The color (red or blue) of each node indicates the community detected by the proposed
method for this node taken as a source. The shape (circle or box) of each node indicates the
correct group to which the member corresponding to this node belongs. Note that nodes that
have the same shape also have the same color.

Fig. 6 For , the steady-state distribution of the firing rate for

any node taken as a source falls into either of the two patterns (left or right). Nodes that
lead to the left pattern and those that lead to the right pattern are indicated by blue and red
icons, respectively, in Fig. 5.

log 2.0β =

0

0.05

0.1

0.15

0.2

0.25

1 6 11 16 21 26 31
0

0.05

0.1

0.15

0.2

0.25

1 6 11 16 21 26 31

Node # Node #

fir
in

g
ra

te
 f

log 2.0β = { } ()1 ,,nf n N=

Local Detection of Communities by Attractor Neural-Network Dynamics 123

Fig. 7 Hierarchical structure of communities in Zachary’s karate-club network

judged as a single community because the steady-state distribution of

(){ } ()1, ,nf t n N= is the same for any node taken as a source. As log β is

increased to 2.0, the steady-state distribution falls into either of the two patterns
shown in Fig. 6. The community corresponding to one of these patterns is separat-
ed into two groups when log β is further increased to 2.5. The remaining com-

munity is also separated into two groups when log β is further increased to 3.0.

Thus we find hierarchical structure of communities of Zachary’s karate-club net-
work, as shown in Fig. 7.

4 Discussion

We have proposed a method for local detection of communities in networks. We
have devised this method inspired by possible neural mechanisms of cue-triggered
memory recall in the brain. Communities are compared to cell assemblies and
source nodes to fraction of neurons whose activation serves as cue signals; cue-
triggered activation of neurons belonging to a particular cell assembly is therefore
compared to detection of a community to which a source node belongs. We have
shown that the proposed method can correctly detect communities from a synthe-
sized benchmark network (Fig. 3). Application of this algorithm to a real social
network, the Zachary karate club network, has accurately replicated the factional
separation of this club (Fig. 5). These results demonstrate the effectiveness of
local detection of communities by the proposed method.

0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

log 0.0β =

log 2.0β =

log 2.5β =

log 3.0β =

Node #

f

0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

124 H. Okamoto

The computational complexity of local detection of communities by previously
proposed algorithms is ()3~ eO N or ()2~ eO N k< > [3-6], where eN is the num-

ber of nodes in the explored portion of the network and k< > is the mean number
of links attached to individual nodes. The cost of computation by our algorithm,
on the other hand, basically scales with the number of links L within the ex-
plored region. Connection density in real-world networks is generally sparse
(2

e eL N<<). Thus the proposed method is considered computationally more effi-

cient than previously proposed ones. To confirm this, more elaborated study will
be conducted in our forthcoming study.

The algorithm has parameters β and θ , and the number of detected commu-
nities depends on the values of these parameters (Fig. 2 and Fig. 4). In this study
we have determined these values rather in a heuristic way, though we have found
the value of β controls the resolution of communities (Fig. 7). Introduction of

some measure to estimate the goodness of local detection of communities, such as
the ‘modularity’ in global detection of communities [24], might be useful for de-
veloping more principled ways of determining the values of these parameters.

Networks examined in the present study are restricted to those having undi-
rected links. Local detection of communities in networks having directed links is
an important issue to be addressed in the next step of our study. For this, introduc-
tion of random jump from sink nodes to any other nodes, the prescription used for
calculation of the PageRank values in the World Wide Web [18], might be useful.

Acknowledgments. This study was partly supported by KAKENHI (23500379) and
KAKENHI (23300061).

References

1. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
2. Newman, M.E.J.: Communities, modules and large-scale structure in networks. Nature

Phys. 8, 25–31 (2012)
3. Bagrow, J.P., Bollt, E.M.: Local method for detecting communities. Phys. Rev. E 72,

046108 (2005)
4. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72, 026132

(2005)
5. Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the overlapping and hierarchical

community structure in complex networks. New J. Phys. 11, 033015 (2009)
6. Chen, Q., Wu, T.-T., Fang, M.: Detecting local community structures in complex net-

works based on local degree central nodes. Physica A 392, 529–537 (2013)
7. Funahashi, S., Bruce, C.J., Goldman-Rakic, P.S.: Mnemonic coding of visual space in

the monkey’s dorsolateral prefrontal cortex. J. Neurphysiol. 61, 331–349 (1989)
8. Churchland, A.K., Kiani, R., Shadlen, M.N.: Decision making with multiple alterna-

tives. Nature Neurosci. 11, 693–702 (2008)
9. Hebb, D.O.: Organization of behaviour. Wiley, New York (1949)

Local Detection of Communities by Attractor Neural-Network Dynamics 125

10. Durstewitz, D., Seamans, J.K., Sejnowski, T.J.: Neurocomputational model of working
memory. Nature Neurosci. Suppl. 3, 1184–1191 (2000)

11. Hopfield, J.J.: Neural networks and physical systems with emergent collective compu-
tational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

12. Wang, X.-J.: Neural dynamics and circuit mechanisms of decision-making. Curr. Opin.
Neurobiol. 22, 1–8 (2012)

13. Okamoto, H.: Local detection of communities by an analogy to memory recall in the
brain. Biol. Insp. Cog. Arch. 6, 12–17 (2013)

14. Okamoto, H.: Local Detection of Communities by Neural-Network Dynamics. In:
Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B.,
Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 50–57. Springer, Heidelberg
(2013)

15. Tuckwell, H.: Introduction to theoretical neurobiology: nonlinear and stochastic theo-
ries, vol. 2. Cambridge University Press (1988)

16. Rabinovich, N.I., Volkovskii, A., Lecanda, P., Heurta, R., Abarbanel, H.D., Laurent,
G.: Dynamical encoding by networks of competing neuron groups: winnerless compe-
tition. Phys. Rev. Lett. 87, 068102 (2001)

17. Collins, A.M., Loftus, E.F.: Spreading-Activation Theory of Semantic Processing.
Psychological Review 82, 407–428 (1975)

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bring-
ing Order to the Web. Stanford Digital Library Technologies Project (1998),
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

19. Arenas, A., Diaz-Guilera, A., Perez-Vicente, C.J.: Synchronization reveals topological
scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)

20. Arenas, A., Diaz-Guilera, A., Perez-Vicente, C.J.: Synchronization processes in com-
plex networks. Physica D 224, 27–34 (2006)

21. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing communi-
ty detection algorithms Phys. Rev. E 78, 46110 (2008)

22. http://santo.fortunato.googlepages.com/benchmark.tgz
23. Zachary, W.W.: An information flow model for conflict and fission in small groups. J.

Anthropol. Res. 33, 291–473 (1977)
24. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-

works. Phys. Rev. E 69, 026113 (2004)

Appendix: Synthetic Benchmark Network

The benchmark network examined in 3.1 was synthesized using the software
downloaded from [22], under the following settings: Number of nodes 200; aver-
age degree 10; maximum degree 30; exponent for the degree distribution 2; expo-
nent for the community size distribution 1; mixing parameter 0.2; minimum for
the community sizes 20; maximum for the community sizes 50. The synthesized
network has six communities having 23, 24, 36, 37, 38 and 42 nodes.

Learning Gestalt Formations
for Oscillator Networks

Martin Meier, Robert Haschke, and Helge J. Ritter

Abstract. The binding of similar objects to a common group is an effortless task
for humans. We know if things belong together or not by intuitively relying on a set
of rules. In the area of visual perception, these rules can be described by the Laws
of Gestalt. Although these laws are intuitive for humans to understand, a computa-
tional feasible formulation can be demanding. We present an improved approach to
learn the computational formulations for these laws from labeled training data. The
approach learns attraction and repelling interactions between features, which in turn
can be used in artificial neural networks to decided whether input features belong to
a common group or have to be separated. The technique is evaluated within different
perceptual grouping scenarios and with two kinds of artificial neural networks.

1 Introduction

The perception of sensory stimuli is a complex problem that incorporates many
facets in different levels of abstraction, both in human and artificial systems. For
example, the task of reading a word from this page reaches from the activation of
single nervous cells in the fovea, to a higher level where stimuli are bound together
based on these activations to continuous areas, facilitating figure ground segmen-
tation between dark letters and the page. Based on their proximity, letters which
are not separated by white spaces are grouped together to form a word. Finally,
the words which are not separated by punctuation marks form sentences. To this
end, the initially perceived low level stimuli are processed in a hierarchy of increas-
ing abstraction that requires the binding of features from the visual and syntactic
level, leading to a semantic meaning in the end. During this process, the concepts
of binding and segregation play an important role on all of these levels. This princi-
ple can be found in various modalities, e.g. the auditory systems employs a similar

Martin Meier · Robert Haschke · Helge J. Ritter
Bielefeld University, 33501 Bielefeld, Germany
e-mail: {mmeier,rhaschke,helge}@techfak.uni-bielefeld.de
c© Springer International Publishing Switzerland 2015 127

P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_7

128 M. Meier, R. Haschke, and H.J. Ritter

process for the understanding of spoken language. Recent studies also suggest that
these principles apply to haptic perception (Chang et al, 2007; Gallace and Spence,
2011).

Although this principle can be found in different perceptional modalities, the
most prominent domain of research is the area of visual perception. In the early 19th

century, the Laws of Gestalt emerged as a branch of cognitive psychology. Actually
being more descriptive than formal, these laws illustrate basic rules how humans
perceive and process different kinds of visual stimuli. Some of the most prominent
laws are shown in Fig. 1, an overview can be found in Wagemans et al (2012).

Fig. 1 Illustration of some of the most prominent Laws of Gestalt. Through proximity, the tri-
angles in the leftmost panel form two distinct clusters. The two curved lines are distinguished
based on their continuation and by similarity, the circles in the right panel are grouped into
horizontal lines.

When looking at the illustration, the reader will intuitively recognize the de-
scribed law and the respective groups. The proximity of features in the leftmost
panel is recognized as two clusters, the intersecting lines are easy to distinguish
from each other because of their smooth continuation and the circles in the right-
most panel form horizontal lines according to their similarity. From a computational
perspective, this grouping task is far more demanding. One of the main problems
that arise is how to generate “good” groups, which is closely related to the Binding
Problem (Treisman et al, 1996). The Binding Problem expresses the decision, if fea-
tures from an input domain have to be segregated or combined to form a meaningful
figure based on their properties and the interaction between these properties. On the
other hand, appropriate architectures which utilize the binding rules and generate a
meaningful result from a set of features coupled by said rules are also required.

Neurophysiological research on the visual system of animals created the foun-
dation for a type of artificial networks which are able to handle these grouping
problems. By measuring the neural activity in the visual cortex while presenting bar
patterns to cats, Gray and Singer (1989) discovered that spiking neurons in areas
related to the stimulus synchronize whilst other areas do not synchronize. The work
of Gray and Singer (1989) led to the development of LEGION (locally excitatory
globally inhibitory oscillator networks) by Wang (1994), who used relaxation os-
cillators which are arranged in a two dimensional grid. An oscillator in this grid is

Learning Gestalt Formations for Oscillator Networks 129

coupled to its four neighbors with an excitatory connection that enables a synchrony
of oscillators. Additionally, all oscillators are coupled with a global inhibitory com-
ponent which facilitates desynchronization. When input stimuli are presented to this
network, this combination of excitatory and inhibitory connections achieves a syn-
chronization in oscillator spikes. An example where the LEGION network is applied
to artificial letters is shown in Wang and Terman (1995).

In terms of the Binding Problem, the LEGION network employs a positive bind-
ing between features when they are in close proximity. This binding becomes neg-
ative through the global inhibitory component for features that are far away from
each other.

Since Wang introduced the concept of combining excitatory and inhibitory con-
nections in oscillator networks, this principle has been employed in a wide variety
of networks. For example Li and Li (2011) modified the LEGION model by re-
placing the global inhibitor by local inhibitory shortcuts between oscillators. This
method increases the synchronization speed of the network compared to the original
LEGION. It was evaluated in an image segmentation task, where pixels form real
world images were connected based on their proximity. Yu and Slotine (2009) em-
ployed FitzHugh-Nagumo oscillators to solve clustering, contour integration and
image segmentation tasks. For each of these tasks, problem specific connection
rules were developed. Oscillators from the network which synchronized their phases
based on these connection rules represent the salient features from the input domain,
for example similar regions in gray scaled images. Nomura et al (2011) also uti-
lized FitzHugh-Nagumo oscillators for edge detection in gray scaled images. They
arranged the oscillators in two grids, one activator and one inhibitor grid, to account
for the two variables of these type of oscillator. Similar to the LEGION model,
an oscillator here is coupled to its four neighbors. The coupling strength between
neighboring oscillators is based on the intensity of corresponding pixels from the
image. To obtain an edge map of the input image, the approach is applied two times,
on the original and the inverted gray scale image. The final edge map is created as
a union of both of these intermediate maps. By exploiting the synchrony in a net-
work of Rössler oscillators, Breve et al (2009) were able to identify salient object
in real work images. They employed a similar approach as Nomura et al (2011) by
choosing individual couplings between oscillators based on the relative contrast in
the image.

Most of the mentioned oscillator networks still employ task specific, hand crafted
rules for each grouping problem. Due to the design of these networks, the rules
have to express the compatibility, or interaction, between features in a scalar value,
which can introduce additional complexity in terms of weighting and mapping
from n dimensional feature vectors to a one dimensional interaction value. Wersing
(2001) presented a quadratic consistency optimization (QCO) learning algorithm
for interaction functions based on the topology of the Competitive Layer Model
(CLM) (Ritter, 1990). The concept was later picked up by Weng et al (2006). The
approach in Weng et al (2006) is to express the interaction function as a set of
basis functions, which in turn are learned from labeled examples and simple n-
dimensional distance vectors. The basis functions in this case are estimated with

130 M. Meier, R. Haschke, and H.J. Ritter

a vector quantization variant, the Activity Equilibrium Vector Quantization (AEV)
(Heidemann and Ritter, 2001) in the space of the distance vectors. The attracting
respectively repelling interaction weights are obtained by incorporating the labels
from the examples. Although this approach achieves good results for different per-
ceptual grouping problems, it does not incorporate the mutual information of the
elements in the proximity space, leading to a sub optimal approximation of the in-
teraction function. To gain a better approximation, the learning algorithm was re-
cently improved (Meier et al, 2013a) by employing a vector quantization variant
which explicitly incorporates information theoretic principles, the ITVQ algorithm
(Rao et al, 2007).

Before we cover the ITVQ based learning algorithm, we will introduce two net-
works for perceptual grouping tasks in the following section. First the CLM, for
which the original learning algorithm was developed and later on a network com-
posed of Kuramoto oscillators which was presented in Meier et al (2013b) and can
achieve grouping results of similar quality more time efficient while keeping the
high grouping quality of the CLM. Building on the topological properties of the
CLM, the original learning algorithm is outlined in section 3 and our proposed
modifications, including an abstract of the ITVQ algorithm, are stated. Following
the theoretical part, we evaluated the presented techniques within different percep-
tual grouping scenarios that resemble basic laws of Gestalt as illustrated in Fig. 1.

2 Artificial Networks for Perceptual Grouping

The topological layout of the CLM and the oscillator network is designed to allow
an easy evaluation of the grouping results. In case of the CLM, the dynamics is
designed such, that similar features are grouped in the same layer. This is possible
because of the columnar arrangement of neurons. A winner takes all circuit per
column assures that only one neuron per column can be active at a time. Therefore
the grouping result automatically manifests itself by the active neurons per layer.

The network presented in Meier et al (2013b) employs a similar topology, but
transfers the concept of layers to discrete frequencies in the phase space of Kuramoto
oscillators (Kuramoto, 2003). This section covers details about the dynamics of both
networks, followed by an analysis of the grouping behavior with artificial data.

2.1 Competitive Layer Model

The CLM consists of N ×L neurons which are arranged in L layers. Neurons are
indexed column wise with r = 1, . . . ,N denoting the feature index within each layer
and α = 1, . . . ,L denoting the layer index. A single neuron’s activity is therefore
denoted as xrα . A graphical representation of the CLM is shown in Fig. 2a. The
neurons in each layer are coupled with a symmetric interaction function f (vr ,vr′) =
f (vr′ ,vr) = frr′ which describes the compatibility between two features vr and vr′ .
They are additionally coupled with a winner takes all (WTA) circuit in each column
to assure that only one neuron in each column becomes active. Therefore, a single

Learning Gestalt Formations for Oscillator Networks 131

v1

v2

v3

input

x11

x21

x31

layer 1

x12

x22

x32

layer 2

x1L

x2L

x3L

layer L

vertical
w
in
n
er

tak
es

all

lateral i
nteracti

on

(a) CLM

θ ω1

ω2

ωL

O1

O2

O3

ψ2

r2

v1

v2

v3

input

ph
ase

cou
pling

pha
se
cou

pli
ng

(b) Kuramoto Oscillators

Fig. 2 Graphical representation of the two networks described in this article. The Competitive
Layer Model in Fig. 2a employs a recurrent dynamic to drive neural activity, which in turn
represents similar features from an input domain, to be in the same layer α . The oscillator
network in Fig. 2b has a similar topology, but uses a frequency based grouping in oscillator
phase space. The circles in the figure represent the state of the oscillators in the phase space
in polar coordinates. The angle represents the phase θr and the radius the frequency ωr of an
oscillator Or.

input feature vr is represented by a column composed of L neurons xrα . Combining
the lateral interaction and columnar WTA circuit, the recurrent CLM dynamics can
be written as:

ẋrα =−xrα +σ(J(hr −
L

∑
β=1

xrβ)+
N

∑
r′=1

frr′xr′α) . (1)

Here J(hr −∑β xrβ) represents the WTA competition weighted by the constant J,
hr encodes the importance of feature vr – which is set to 1 for each feature in the
upcoming evaluation, because all features are equally important – and σ(·) is a
linear threshold function. The lateral interaction is expressed as ∑r′ frr′xr′α , which
calculates the support for the feature r from all other features r′ in a given layer α .
For a more comprehensive overview and a prove of the CLM convergence, we refer
to (Wersing et al, 2001).

2.2 Coupled Kuramoto Oscillators

The oscillator model has a topology similar to the CLM, but replaces the L neurons
in each column with a single oscillator of the Kuramoto type (Kuramoto, 2003),
where an oscillator Or is described by its phase θr and frequency ωr. Additionally

132 M. Meier, R. Haschke, and H.J. Ritter

to the global coupling constant K, these oscillators are coupled individually by a
symmetric matrix Mrr′ ≡ f (vr,vr′). Thus, the phases θr of the oscillators evolve
according to the following update rule:

θ̇r = ωr +
K
N

N

∑
r′=1

f (vr,vr′) · sin(θr′ −θr). (2)

The interaction function f is limited to the interval [−1,1], where −1 and +1
represent strongest dissimilarity resp. similarity of features. Arenas et al (2006) in-
troduced a correlation measure

ρrr′(t) = 〈cos(θr(t)−θr′(t))〉

between oscillator phases to trace the evolution of clusters in real world data like
social networks over time. Related to this approach, an autocorrelation based tech-
nique was recently employed by Bassett et al (2013). By measuring the correlation
between phases, these approaches also had to introduce a threshold above which the
correlated oscillators are interpreted as a group. In turn, the setting of a threshold
requires either domain knowledge or the introduction of additional heuristics.

To relax the need for threshold based evaluations of grouping results, we intro-
duced a topology into the oscillator network based on fixed frequencies. These os-
cillator frequencies are limited to discrete values ωα = α ·ω0, where α ∈{1, . . . ,L}
denotes the group index – following the CLM notation where α denotes the
group/layer index. This discretization will further allow a very simple analysis of
the grouping result. To cluster similar features to the same frequency ωα , the fre-
quency ωr of each oscillator is updated according to the support Sr(α) an oscillator
receives from the subset of oscillators currently occupying the discrete frequency
ω0 ·α . Similar to correlation based approaches, we employ the cosine similarity be-
tween the phases of the oscillators. This similarity measure is mapped to the inter-
val [0,1], which is crucial to preserve the sign of the interaction function f (vr,vr′).
Therefore, the frequencies are updated according to:

Sr(α)= ∑
r′∈N (α)

f (vr,vr′) · 1
2

(
cos(θr′ −θr)+ 1

)

ωr= ω0 · argmax
α

(Sr(α))

(3)

where N (α) denotes the set of oscillators with frequency index α , i.e. form-
ing the current perceptual group indexed by α . This updates the frequency of
an oscillator Or to the frequency ω0 ·α , whose corresponding oscillators provide
most support in terms of f-weighted phase similarity. It ensures that oscillators
representing similar features will both phase-lock and converge to identical frequen-
cies. Eq. (3) also boosts the phase-locking process, because synchronized phases do
not tend to desynchronize anymore. Contrarily, oscillators representing dissimilar
features will spread both in phase and frequency. The final grouping result is deter-

Learning Gestalt Formations for Oscillator Networks 133

mined by oscillator subsets N (α) having common frequency indices α . In terms
of the CLM topology, an oscillator Or can represent a whole column of neurons,
because it possesses two degrees of freedom. The phase coupling (2) represents the
lateral interaction over all layers whilst the frequency update (3) acts as the layer
assignment.

2.3 Grouping with Artificial Data

We evaluated the grouping quality of the oscillator network compared to the CLM
in Meier et al (2013b) with artificial data. The evaluation utilized networks with
1000 features and 100 layers/discrete frequencies. The test data contained 10 target
groups and the interaction function frr′ contained different amounts of noise in form
of randomly inverted interaction values. An example for these function in matrix
form is shown in Fig. 3. Here a black pixel indicates an attracting interaction value
frr′ = 1 and a white pixel expresses frr′ =−1.

-1

-0.5

0

0.5

1

(a) 0% inverted.
-1

-0.5

0

0.5

1

(b) 20% inverted.
-1

-0.5

0

0.5

1

(c) 40% inverted.

Fig. 3 Visualization of interaction functions with different amounts of inverted interaction
values. Black pixels represent attracting interactions whilst white pixels indicate repelling
interactions.

To investigate the behavior in more demanding scenarios than a simple, noise
free grouping task as visualized in Fig. 3a, we successively added noise to the inter-
action matrices in form in randomly inverted interaction values while keeping the
symmetry. The amount of noise is increased in steps of 1% from zero to a total of
49% noise in the interaction matrices. For each percentage, we simulated 500 trials
with both networks. A single trial consisted of 1000 update steps and to account for
different computational demands of both networks, a step is the update of each os-
cillator or neuron, respectively. After each trial, we calculated the grouping quality
Q as proposed in Wersing et al (2001):

Q =
1

N2

N

∑
r

N

∑
r′

qrr′ , qrr′ =

⎧⎨
⎩

1 i f tr = tr′ and ar = ar′
1 i f tr �= tr′ and ar �= ar′
0 else

(4)

134 M. Meier, R. Haschke, and H.J. Ritter

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

gr
ou

pi
ng

qu
al

it
y,

m
ea

n
an

d
st

dd
ev

% of noise

CLM
Oscillators

Fig. 4 Achieved grouping quality for both networks with respect to an increasing percentage
of inverted interaction values. Both networks show nearly perfect grouping results for up to
35% of noise and decrease similar after that mark.

where t is the target label and a the assignment generated by the perceptual grouping
network. This yields a value from 0 to 1, where 1 is a perfect grouping result.

The results for both networks in terms of grouping quality are shown in Fig. 4.
The CLM and the oscillator network achieve similar results with a nearly per-
fect grouping quality for up to 35% of inverted interaction values. For percentages
greater than 35%, the performance of both networks decreases similar.

Based on the fast convergence properties of other approaches (Yu and Slotine,
2009; Li and Li, 2011), the amount of updates steps each network needs to achieve
these results is also of interest. Therefore, we measured the number of updates with
respect to noise to achieve at least a 95% correct grouping quality, the results are
shown in Fig. 5. The oscillator network needs far less updates than the CLM for up to
30% of noise, showing a nearly constant value whilst the CLM increases linear with

0

50

100

150

200

250

300

0 5 10 15 20 25 30#
of

up
da

te
st

ep
s,

m
ea

n
an

d
st

dd
ev

% of noise

CLM
Oscillators

(a) 0% to 30% inverted

31 32 33 34 35 36 37 38 39
0
100
200
300
400
500
600
700
800
900
1000

#
of

up
da

te
st

ep
s,

m
ea

n
an

d
st

dd
ev

% of noise

CLM
Oscillators

(b) 31% to 39%

Fig. 5 Number of update steps needed to achieve a grouping quality of at least 95%

Learning Gestalt Formations for Oscillator Networks 135

respect to noise. For greater amounts of noise, both networks show an exponential
increase in required update steps. Based on these simulations, the oscillator network
is a feasible alternative to the CLM, it maintains the same grouping quality but
shows better convergence speed.

3 Learning Lateral Interactions

Handcrafting functions that represent attracting and repelling interactions can be dif-
ficult and error prone, resulting in reduced generalization abilities of these functions.
To circumvent these problems, the concept in Weng et al (2006) is to learn these
functions from labeled examples and to approximate the handcrafted interaction
function by distance vectors drr′ = (d1(vr,vr′), . . . ,dn(vr,vr′)) in a n−dimensional
proximity space D. This transformation assures that the required symmetry is pre-
served. Another important aspect of this distance vector is, that it relaxes the former
requirement of hand crafted interaction functions to be one dimensional, as frr′ in
Eq. (1). The set of distance vectors obtained from all training feature pairs is repre-
sented by a small set of representative prototypes by means of vector quantization.

The attracting respectively repelling interactions frr′ are created in a second step
which incorporates the labels of the training data. To this end, the number of compati-
ble and incompatible feature pairs from the training set is counted for each associated
prototype. (Features are compatible if they share a common group.) These counts are
finally used to determine the interaction weight ci assigned to the prototype.

3.1 Original Learning Algorithm with AEV

The first formulation of the learning problem for interaction functions based on
the layered CLM topology was presented in Wersing et al (2001). Starting from the
desired grouping result of the CLM as depicted in Fig. 6, the target state of the CLM
is expressed by a set of target vectors yα . These target vectors in turn are generated
by a set of labeled training examples T = {y1, . . . ,yN}. A training example yi is
composed of a number of input features yi = {vi

r, . . . ,v
i
r′ }, where i indicates the

group label, i.e. all features sharing the same label i belong to the same target group.
As proven in (Wersing et al, 2001), the CLM dynamics converges to a set of

stable states which satisfy the consistency conditions

∑
r′

frr′xr′β ≤ ∑
r′

frr′xr′α(r) ∀r,β �= α(r) (5)

Theses conditions express the assignment of a feature at position r to the layer α(r)
and β represents all other possible layers.

Given a consistent labeling α(r) for a training sequence T, the task is to learn an
interaction function frr′ which fulfills the consistency conditions from (5) for all ele-
ments of T. As proven in (Weng et al, 2006), these inequalities can be approximated
by a matrix

136 M. Meier, R. Haschke, and H.J. Ritter

yi=1

yi=2

yi=3

Input

Target State T

Fig. 6 Illustration of the learning problem. Given an input for the CLM, the interaction func-
tion frr′ should created neural activities based on the target state T = {y1, . . . ,yM}, which is
composed of the desired group labels yi, by combining attracting and repelling interactions
between features.

F̂ = f̂rr′ = ∑
γ

∑
μ �=γ

(yγ − yμ)(yγ − yμ)
T (6)

where yγ and yμ stand for all features in the γth resp. μ th layer.
This interaction matrix only represents the discrete values which are present in

the training sequence T. To generalize it to a continuous function over the feature
space, the interaction function is decomposed into a set of B symmetric basis in-
teraction function g j

rr′ = g j(mr,mr′). These basis interaction functions are a linear
combination over the feature space in the way that

frr′ =
B

∑
j

c jg
j
rr′ (7)

It is further described in Weng et al (2006), that when the the basis interaction
functions are assumed to by binary step functions g j

rr′ ∈ {0,1}, a disjunct partition
of the feature space can be estimated through:

c j = ∑
r,r′

f̂rr′g
j
rr′ (8)

To preserve the required symmetricity of the interaction function, the feature
space is transformed into a generalized proximity space D = RP where

Learning Gestalt Formations for Oscillator Networks 137

drr′ = ((vr0 − vr′0)
2, . . . ,(vrP−1 − vr′P−1)

2) (9)

and vri being the ith component of feature vector vr.
Each of the so gained proximity vector drr′ is then projected onto a multidimen-

sional Voronoi map. This map consists of B cells and prototypes d̃ j, where each cell
is defined as

Vj =
(
vr,vr′) | ∀i �= j :‖ drr′ − d̃ j ‖≤‖ drr′ − d̃i ‖ (10)

Because the Voronoi tessellation results in a disjunct partition, we can set g j
rr′ =

1 if (vr,vr′) ∈Vj and g j
rr′ = 0 otherwise, which fulfills the condition for Eq. (8).

It is now possible to learn an interaction function by calculating the proximity
vector drr′ for a pair of features vr,vr′ and search its nearest prototype vector d̃ j to
get the corresponding coefficient c j.

After the vector quantization phase, feature pairs are sampled randomly and their
labels are examined. If a feature pair shares the same label, a positive interaction c+i
is counted for the closest prototype d̃i. In the case of different labels, the interaction
counts as repelling and is therefore stored as negative interaction c−i . After a suffi-
cient amount of random samples, the positive and negative interactions are summed
up to create the interaction coefficient

ci = c+i −λ c−i (11)

for each of the i = 1, · · · ,B prototypes. Here λ is a weighting parameter to account
for the fact, that typically more incompatible feature pairs exist. Finally, the coeffi-
cients are normalized by the coefficient with the biggest value.

The proposed vector quantization in Weng et al (2006) is Activity Equilibrium
VQ (AEV) (Heidemann and Ritter, 2001) to estimate a set of d̃i, i = 1, . . . ,N pro-
totypes for the distance space D. In contrast to standard vector quantization, AEV
measures the activity of each prototype based on the number of data points from the
input it describes. If a prototype only represents a smaller subset of the input data
than the remaining prototypes, it is repositioned in an exploration step, otherwise it
is locally adapted. Combined with simulated annealing, this technique should avoid
idle prototypes and place them uniformly distributed in regions of the feature space
where input data is present.

3.2 Learning Algorithm with ITVQ

Although the original learning algorithm based on AEV already yields good results,
the distribution of the prototypes has some drawbacks. It is desirable to find pro-
totypes, which reflect the structure of the underlying grouping problem. This can
be achieved by replacing the AEV clustering in the original algorithm with a vector
quantization variant which explicitly incorporates the information density of the fea-
ture space, as presented by Rao et al (2007). The main idea there is to minimize the
Cauchy-Schwartz (CS) divergence between the input data and the prototypes. The

138 M. Meier, R. Haschke, and H.J. Ritter

Fig. 7 Sketch of the learning algorithm. The labeled training data on the left is used twofold.
Based on the distances between features, the proximity space is tessellated with vector quan-
tization. The supplied labels are used to decide whether the corresponding proximity proto-
type represents a positive or negative interaction. If a prototype represents more features pairs
which share the same label than pairs with different labels, it obtains a positive interaction
value and a negative otherwise. This figure is adapted from Weng et al (2006).

CS divergence measures the “distance” between two probability density functions
p(x) and q(x) as

DCS(p,q) =−log

∫
p(x)q(x)dx√∫

p2(x)dx
∫

q2(x)dx
(12)

Following the derivation in Rao et al (2007) by using Renyi’s quadratic entropy
(Rényi, 1976) for a dataset X

H(X) =−log
(
V (X)

)
=−log

(∫
p2(x)dx

)
(13)

and the cross entropy between two datasets X and X0

H(X ,X0) =−log
(∫

p(x)q(x)dx
)
, (14)

the CS divergence can be estimated by

DCS = 2H(X ,X0)−H(X)−H(X0). (15)

Given the datasets X0, which represents the original data, and the set X of prototypes,
the goal is to find the dataset X which minimize the cost function

J(X) = min
X

DCS(X ,X0). (16)

Differentiating J(X) with respect to xi and using the Parzen window technique for
the dataset X = (xi), i = 1, . . . ,N with

Learning Gestalt Formations for Oscillator Networks 139

p(x) =
1
N

N

∑
i=1

Gσ ′(x− xi), (17)

where Gσ ′(t) = e
− t2

2σ ′2 is a Gaussian kernel to estimate the pdfs of the input data,
we get a simple fixed point update rule:

xt+1
i =

∑N0
j=1 Gσ (xt

i − x0 j)x0 j

∑N0
j=1 Gσ (xt

i − x0 j)
− c

∑N
j=1 Gσ (xt

i − xt
j)x

t
j

∑N0
j=1 Gσ (xt

i − x0 j)
+ c

∑N
j=1 Gσ (xt

i − xt
j)

∑N0
j=1 Gσ (xt

i − x0 j)
xt

i (18)

With c = N0
N

V (X ,X0)
V (X) . For a more comprehensive derivation please refer to Rao et al

(2007).
Replacing the AEV algorithm with ITVQ for the learning of interaction proto-

types while keeping the same estimation of interaction coefficients from Eq. (11)
should lead to better perceptual grouping capabilities of the two networks described
in section 2. We will evaluate the proposed changes within different scenarios and
compare the grouping quality to the original approach in the following section.

4 Applications of Learned Gestalt Formations

Applying the theoretical principles, we will show examples of learned Gestalt For-
mations according to the Laws of Gestalt illustrated in Fig. 1. Starting from the
rather simple to implement proximity, the examples grow in complexity to empha-
sis the need for a learning architecture.

4.1 Proximity

The behavior of grouping objects which are, mostly in a spatial sense, close to each
other is described by the Gestalt Law of proximity. Formulating this law by hand
for computational purposes can be done in terms of the Euclidean distance between
features as:

d(vr,vr′) =

√
n

∑
i=1

(vr,i − vr′,i)2

Difficulties arise when it comes to define thresholds for the borders of classes, es-
pecially when multiple classes with different distributions are interleaving. Fig. 8a
shows such a problem, where a dense cluster of Gaussian distributed features (blue
rectangles in the figure) is embedded in a set of sparse uniform distributed features
(red circles). In this case, two regions of distances are needed which represent fea-
tures that belong together whilst the remaining distances represent no group relation.

An example for a hand crafted proximity rule can be seen in Yu and Slotine
(2009). They calculate the coupling strength between oscillators based on the Eu-
clidean distance with an exponential decay. Also a threshold M in terms of the num-

140 M. Meier, R. Haschke, and H.J. Ritter

(a) Training input. (b) Grouping of Fig. 8a. (c) Grouping of a test input.

0 2 4 6 8 10

A
E

V
Le

ar
ni

ng

positive
negative

0 2 4 6 8 10

IT
V

Q
Le

ar
ni

ng

distance

positive
negative

(d) Learned proximity prototypes.

Fig. 8 Training and test input for the learning of a proximity law based on the Euclidean
distance between features. Fig. 8a shows the training data which consists of two classes.
The blue rectangles represent 200 features with a Gaussian distribution (σ = 0.4). They are
embedded in a sparse uniform distribution, represented by red circles. Fig. 8b shows the
grouping result for the training input and Fig. 8c for another randomly generated test. The
learned prototypes with AEV and ITVQ learning are shown in Fig. 8d. They contain two
classes of positive connections, one for features in close proximity, representing the distances
between the blue rectangles and one for features further away from each other.

Learning Gestalt Formations for Oscillator Networks 141

ber of nearest neighbors is applied, such that features further away as the M closest
features have a coupling value of zero.

By employing a data driven approach to learn the interaction function, the need
to hand tune parameters can be removed. We used the learning approach from Sec. 3
with the Euclidean distance between features to learn an interaction function from
the data shown in Fig. 8a. The data consists of 500 features, 200 of them are drawn
from a Gaussian distribution with σ = 0.4 at a randomly chosen center, these fea-
tures are displayed with blue rectangles. The remaining 300 features (indicated by
red circles) are distributed uniform. For the example in Fig. 8 an interaction function
with 15 prototypes is learned from the training input shown in Fig. 8a. The group-
ing of the input with the learned interaction function and ITVQ learning is shown
in Fig. 8b, the grouping results for a test input with the same interaction function is
shown in Fig. 8c. The learned one dimensional prototypes are visualized in Fig. 8d.
Positive prototypes are indicated with a red + and negative prototypes with a blue
−. The radius of the circles indicated the weight of the prototype. Both algorithms
generate two groups of positive prototypes separated by negative weighted proto-
types. Noticeable is the different weighting between both variants. In case of the
AEV learning, the negative prototypes are weighted similar, whilst the ITVQ learn-
ing created a large negative prototype close to the border to the positive prototypes
for small distances, which indicates a stronger separation between these two classes.

To investigate the influence of different amounts of prototypes, we generated
interaction functions with 5,10,15 and 20 prototypes that are evaluated with both
networks and learning variants. For each condition 100 trials were performed. The
average grouping quality over these trials is shown in Fig. 9. For small numbers
of prototypes, the ITVQ learning achieves slightly better results of 8%. With an
increasing number of prototypes, the grouping quality of the ITVQ version is around
10% higher than the AEV learning over all cases. Also the oscillator model performs
slightly better than the CLM in this task, but only about 3% over all cases.

0

0.2

0.4

0.6

0.8

1

G
ro

up
in

g
Q

ua
lit

y

AEV CLM
AEV Oscillators

ITVQ CLM
ITVQ Oscillators

5 Prototypes 10 Prototypes 15 Prototypes 20 Prototypes

Fig. 9 Evaluation of the learned proximity interaction function with both learning variants
and networks for 5,10,15 and 20 prototypes. The ITVQ version of the learning algorithm
achieves a 8% higher quality for the CLM case compared to AEV with only 5 prototypes and
14% for the oscillator case with 20 prototypes.

142 M. Meier, R. Haschke, and H.J. Ritter

4.2 Learning Good Continuations

In Meier et al (2013a), we resembled the original contour grouping task from
Weng et al (2006) as evaluation scenario for the improved learning of interaction
functions. In this task, an interaction function is learned for oriented edge features.
The distance between two oriented edges

d(vr,vr′) = (||pr − pr′ ||,θ1,θ2,θ3)
T

is defined by their Euclidean distance and the three angles θ1−3, as shown in
Fig. 10a. For three types of shapes, namely triangles, squares and circles, inter-
action functions are learned with AEV and ITVQ clustering for different numbers
of prototypes. According to the findings from Weng et al (2006), the λ parameter
from Eq. (11) is set to 2 in all trials.

(a) Oriented edge features. (b) “Easy” problem. (c) “Hard” problem.

Fig. 10 A sketch of the parameter of the distance function is shown in 10a. Figures 10b
and 10c show examples for an easy grouping task and a hard one, respectively. In the hard
example, the overlapping lines in the center and on the left are nearly indistinguishable.

In Fig. 11, 100 prototypes learned with ITVQ and AEV are shown for circu-
lar shapes composed of oriented edge features (as depicted in Fig. 10). Although
the prototypes can only be evaluated qualitatively by visual inspection, the positive
interaction prototypes in the zoomed areas suggest, that the ITVQ variant is more
sensitive to different radii in the input data by generating more prototypes for these
cases.

For the quantitative part of the evaluation, we varied the number of prototypes
in steps of 50 starting with 50 for up to 200 prototypes. After learning an inter-
action function from eight shapes with different orientations, positions and sizes,
each function was used in 200 trials to group randomly generated inputs, each input
consisting of five shapes with varying sizes, positions and orientations. Because the
oscillator network is less computationally demanding, we employ the same measure
for counting update steps as before: A single step is the update of each neuron in
each layer for the CLM or the update of each oscillator for the oscillator network,
respectively. Based on the previous findings, each trial was limited to a total of 500
steps. The grouping quality Q is calculated according to Eq. 4.

Learning Gestalt Formations for Oscillator Networks 143

C+
C-

Reference

C+
C-

Reference

ITVQ Prototypes AEV Prototypes

Fig. 11 Example of learned prototypes for circular training data. Red edges show attracting
and blue edges represent repelling prototypes. The length of the edges encodes the interaction
strength. All prototypes are positioned relative to the black feature. Although the prototypes
are hard to inspect visually, ITVQ generates more positive prototypes which represent differ-
ent radii of the input data. This can be seen in the zoomed part of the images. (best viewed in
color)

The results for this evaluation are shown in Fig. 12. Especially for a small number
of prototypes, the presented modification which uses ITVQ outperforms the CLM
with AEV learning by 27%. This difference decreases with an increasing number of
prototypes, but the grouping is still 12% better with 200 prototypes. Also, the os-
cillator network achieves a better grouping with both methods, which is especially
significant for the case with AEV learning. The variance of the grouping results can
be explained by the random generation of the shapes. Fig. 10b shows an example
of an easy grouping task, while Fig. 10c is way more demanding because of largely
overlapping features. Following up to the findings of Meier et al (2013b), we also
calculated the average number of update steps for the CLM and the oscillator net-
work which are needed to achieve the maximal grouping quality in each trail. The
CLM takes an average of 88.7 steps to gain the maximal grouping quality while the
oscillator network reaches this goal within an average of 24.9 steps.

4.3 Similarity of Textures

As an example for the learning of interaction functions which resemble the law
of similarity, we employ a texture grouping scenario on real world images that
we first presented in Meier et al (2014). The applied interaction function was
originally developed for the CLM without the learning technique and presented in
Ontrup et al (2004). The image preprocessing is based on two dimensional Gabor
Filters with different sizes and orientations, which are applied on image patches. The
dimensionality of the Gabor Filters is reduced using standard principal component
analysis and combined with the patch location in image coordinates.

144 M. Meier, R. Haschke, and H.J. Ritter

0

0.2

0.4

0.6

0.8

1

G
ro
u
p
in
g
Q
u
a
li
ty

AEV CLM
AEV Oscillators

ITVQ CLM
ITVQ Oscillators

50 Prototypes 100 Prototypes 150 Prototypes 200 Prototypes

Fig. 12 This plot shows the mean grouping quality Q with standard deviation for each com-
bination of learning algorithm and perceptual grouping network, each over 200 trials. The
value is the average over all three types of shapes.

A Gabor Filter g(·) is complex valued and defined at a two dimensional position
(x,y) as

g(x,y) = e
−(

(x−x0)
2

2σ2
x

+
(y−y0)

2

2σ2
y

)
e−i 2π

λ (x−x0). (19)

Here x0,y0 is the center of the filter, σx,y represents the width according to the axis
and λ is the spatial frequency. To create a filter bank, the coordinated frame of
the filter is rotated and scaled. We followed the findings from Ontrup et al (2004),
which in turn are motivated by physiological experiments of visual perception from
De Valois et al (1982), and used five different orientations and three sizes. This
leads to a 30 dimensional feature vector. From this texture feature vector, the first
four principal components are used. Including the proposed spatial decay from
Ontrup et al (2004), the texture distance is augmented with the two dimensional
position in image coordinates, leading to a distance vector of:

d(vr,vr′) = (|P1
r −P1

r′ |, |P2
r −P2

r′ |, |P3
r −P3

r′ |, |P4
r −P4

r′ |, ||pr − pr′ ||)T

where Pi
r is the i-th principal component of the image patch represented by oscillator

Or and pr is the position in two dimensional image coordinates.
As suggested in Ontrup et al (2004), the input image is partitioned in patches with

a size of 8×8 pixels. On these patches the Gabor filters are applied. The interaction
function is learned with 100 prototypes from the image in Fig. 13a in conjunction
with the labels shown in Fig. 13b. The image has a size of 256× 256 pixel, leading
to a total of 1024 texture features after the partitioning and preprocessing. In regions
of the label image, where an image patch spans over more than one class label, a
simple majority vote is used to determine the actual label.

The grouping of a test image with the learned interaction function is shown in
Fig. 13c. The overall structure of the image is well reflected by the grouping result,
although small features like the end of the road, small branches of the trees on
the right and the small pond on the left are not contained in the grouping result.
Increasing the number of prototypes in this texture grouping scenario proved not
to increase the grouping quality, but induces some spurious features in some of the

Learning Gestalt Formations for Oscillator Networks 145

(a) Training image. (b) Target labels. (c) Oscillator grouping.

Fig. 13 Training data used for the similarity of textures. The leftmost image shows the training
input, which is split into patches and preprocessed with Gabor Filters. The hand labeled target
groups for the training image are shown in the center and the result of the oscillator grouping
is shown on the right. The same symbols/colors represent that corresponding features belong
to the same perceptual group. (Images from Meier et al (2014))

(a) Test image. (b) Grouping result.

Fig. 14 Grouping result of a test image employing the learning interaction function from
Fig. 13. The basic structure of the image, namely the road, background and sky, is presented
well by the oscillator model. Smaller parts of the image, e.g. the distant part of the road and
fine branches of the trees on the right are not represented in the segmentation. This may be
due to the sub sampling of the input image into patches.

evaluation cases, e.g. small artifacts in the region of the pond and the branches of
the trees.

146 M. Meier, R. Haschke, and H.J. Ritter

5 Conclusion

Oscillator networks have been proven to be able to solve a broad spectrum of per-
ceptual grouping tasks. Nevertheless, most of the state of the art approaches still
rely on hand crafted compatibility rules specific to the grouping task at hand. Also,
these rules can become rather complex depending on the problem. By employing a
learning technique as the one presented here, this problem is relaxed. We addition-
ally utilize an oscillator network which, in contrast to other approaches, does not
require correlation based techniques for the evaluation of grouping results. We il-
lustrated the feasibility of this approach with examples from different areas of visual
perception and presented a modification of the learning algorithm from Weng et al
(2006), that increases the grouping quality of perceptual networks. Evaluations with
two perceptual grouping networks, the Competitive Layer Model and an oscillator
network, revealed that the incorporation of ITVQ in the learning algorithm increases
the grouping quality of these networks. Also, the learning approach is not limited
to the application with the to presented network, but could be adapted to be used
in conjunction with other types of grouping networks which employ attracting and
repelling connections for their binding dynamics.

References

Arenas, A., Diaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization processes in complex net-
works. Physica D: Nonlinear Phenomena 224(1), 27–34 (2006)

Bassett, D.S., Porter, M.A., Wymbs, N.F., Grafton, S.T., Carlson, J.M., Mucha, P.J.: Robust
detection of dynamic community structure in networks. Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science 23(1), 013,142–013,142 (2013)

Breve, F.A., Zhao, L., Quiles, M.G., Macau, E.E.: Chaotic phase synchronization and desyn-
chronization in an oscillator network for object selection. Neural Networks 22(5), 728–737
(2009)

Chang, D., Nesbitt, K.V., Wilkins, K.: The gestalt principles of similarity and proximity ap-
ply to both the haptic and visual grouping of elements. In: Proceedings of the Eight Aus-
tralasian Conference on User Interface, vol. 64, pp. 79–86. Australian Computer Society,
Inc. (2007)

De Valois, R.L., Yund, W.E., Hepler, N.: The orientation and direction selectivity of cells in
macaque visual cortex. Vision Research 22(5), 531–544 (1982)

Gallace, A., Spence, C.: To what extent do gestalt grouping principles influence tactile per-
ception? Psychological Bulletin 137(4), 538 (2011)

Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat
visual cortex. Proceedings of the National Academy of Sciences 86(5), 1698–1702 (1989)

Heidemann, G., Ritter, H.J.: Efficient vector quantization using the wta-rule with activity
equalization. Neural Processing Letters 13(1), 17–30 (2001)

Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Dover (2003)
Li, C., Li, Y.: Fast and robust image segmentation by small-world neural oscillator networks.

Cognitive Neurodynamics 5(2), 209–220 (2011)

Learning Gestalt Formations for Oscillator Networks 147

Meier, M., Haschke, R., Ritter, H.J.: Learning of lateral interactions for perceptual grouping
employing information gain. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa,
A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 178–185.
Springer, Heidelberg (2013)

Meier, M., Haschke, R., Ritter, H.J.: Perceptual grouping through competition in coupled
oscillator networks. In: ESANN (2013b)

Meier, M., Haschke, R., Ritter, H.J.: Perceptual grouping by entrainment in coupled ku-
ramoto oscillator networks. Network: Computation in Neural Systems 25(1-2), 72–84
(2014), http://informahealthcare.com/doi/abs/10.3109/0954898X.
2014.882524, doi:10.3109/0954898X.2014.882524

Nomura, A., Ichikawa, M., Okada, K., Miike, H., Sakurai, T., Mizukami, Y.: Image edge de-
tection with discretely spaced fitzhugh-nagumo type excitable elements. In: 2011 Joint 3rd
Int’l Workshop on Nonlinear Dynamics and Synchronization (INDS) & 16th Int’l Sympo-
sium on Theoretical Electrical Engineering (ISTET), pp. 1–8. IEEE (2011)

Ontrup, J., Wersing, H., Ritter, H.: A computational feature binding model of human texture
perception. Cognitive Processing 5(1), 31–44 (2004)

Rao, S., Han, S., Principe, J.: Information theoretic vector quantization with fixed point up-
dates. In: International Joint Conference on Neural Networks, IJCNN 2007, pp. 1020–1024
(2007), doi:10.1109/IJCNN.2007.4371098

Rényi, A.: Some fundamental questions of information theory. Selected Papers of Alfred
Renyi 2(174), 526–552 (1976)

Ritter, H.: A spatial approach to feature linking. In: INNC (1990)
Treisman, A., et al.: The binding problem. Current Opinion in Neurobiology 6(2), 171–178

(1996)
Wagemans, J., Elder, J., Kubovy, M., Palmer, S., Peterson, M., Singh, M., von der Heydt, R.:

A century of gestalt psychology in visual perception: I. perceptual grouping and figure-
ground organization. Psychological Bulletin 138(6) (2012)

Wang, D.: Modeling global synchrony in the visual cortex by locally coupled neural oscilla-
tors. In: Eeckman, F.H. (ed.) Computation in Neurons and Neural Systems, pp. 109–114.
Springer (1994)

Wang, D., Terman, D.: Locally excitatory globally inhibitory oscillator networks. IEEE
Transactions on Neural Networks 6(1), 283–286 (1995)

Weng, S., Wersing, H., Steil, J., Ritter, H.: Learning lateral interactions for feature binding
and sensory segmentation from prototypic basis interactions. IEEE Transactions on Neural
Networks 17(4), 843–862 (2006)

Wersing, H.: Learning lateral interactions for feature binding and sensory segmentation. In:
NIPS, pp. 1009–1016 (2001)

Wersing, H., Steil, J., Ritter, H.: A competitive-layer model for feature binding and sensory
segmentation. Neural Computation 13(2), 357–387 (2001)

Yu, G., Slotine, J.J.: Visual grouping by neural oscillator networks. IEEE Transactions on
Neural Networks 20(12), 1871–1884 (2009)

http://informahealthcare.com/doi/abs/10.3109/0954898X.2014.882524
http://informahealthcare.com/doi/abs/10.3109/0954898X.2014.882524

Analysing the Multiple Timescale Recurrent
Neural Network for Embodied Language
Understanding

Stefan Heinrich, Sven Magg, and Stefan Wermter

Abstract. How the human brain understands natural language and how we can ex-
ploit this understanding for building intelligent grounded language systems is open
research. Recently, researchers claimed that language is embodied in most – if not all
– sensory and sensorimotor modalities and that the brain’s architecture favours the
emergence of language. In this chapter we investigate the characteristics of such an
architecture and propose a model based on the Multiple Timescale Recurrent Neural
Network, extended by embodied visual perception, and tested in a real world sce-
nario. We show that such an architecture can learn the meaning of utterances with
respect to visual perception and that it can produce verbal utterances that correctly
describe previously unknown scenes. In addition we rigorously study the timescale
mechanism (also known as hysteresis) and explore the impact of the architectural
connectivity in the language acquisition task.

1 Introduction

Natural language is the cognitive capability that clearly distinguishes humans from
other living beings and is often called the key to intelligence. Humans not only ut-
ter short sounds to indicate an intention, but also describe procedural activities or
may even completely think in natural language [10, 16]. However, language pro-
cessing in the human brain and the acquisition of language has not yet been fully
understood at the level of neural architectures. While hypotheses and models for
innateness and universal grammars dominated the last 60 years (see [14] for a re-
view on generativism), new neuroscientific findings and computational approaches
led to alternative views towards emergence and constructivism (see [2, 26] for

Stefan Heinrich · Sven Magg · Stefan Wermter
University of Hamburg, Department of Informatics, Knowledge Technology
Vogt-Kölln-Straße 30, D - 22527 Hamburg, Germany
e-mail: {heinrich,magg,wermter}@informatik.uni-hamburg.de
http://www.informatik.uni-hamburg.de/WTM/

c© Springer International Publishing Switzerland 2015 149
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_8

http://www.informatik.uni-hamburg.de/WTM/

150 S. Heinrich, S. Magg, and S. Wermter

reviews). With the tool sets of neural simulations and behavioural robotics we now
can approach the following research question: what are the architectural character-
istics for models of the human brain that favour the emergence of language?

1.1 Binding and Grounding in Computational Models

In the past researchers have suggested valuable models to explain the binding of
language to experience or learned instances of certain roles, but also to ground lan-
guage in embodied perception and action based on recent neuroscientific data and
hypotheses. Recent computational models aimed at mimicking certain abstractions
of circuits in the brain and tested them for instances of the binding and the grounding
problem [21, 29].

To investigate systematicity in language processing, Frank studied empirically
to what extent a neural architecture can bind learned words to novel roles (trained
grammatical roles for which these words have not been trained) [17, 18]. For an
Echo State Network (ESN) with an additional hidden layer a corpus of sentences
was tested that stems from a small context free grammar, which allows to include
recursions of relatives clauses. Compared to other Recurrent Neural Network (RNN)
the ESN has a similar complexity in processing, but allows for easier training on
the one hand and a more difficult in-depth analysis on the other hand. In the study
it was found that language can be learned compositionally and that RNNs show
strong systematicity, or in other words: generalisation for structural coarsely related
sentences, both syntactically and semantically.

In various experiments Cangelosi et al. investigated the grounding of symbols in
a computational model [5, 6, 7]. With the hypothesis that language can emerge from
embodied interaction within an environment and a simultaneous exposure to words
or “symbols”, a number of simulations were conducted. Firstly, stick-figure robots
were supposed to perform actions with a number of proto-objects, for which they
also perceived names. The study showed that the underlying neural feed-forward ar-
chitecture can be trained to ground the label in the sensori-motor perception to pro-
duce a name for a perceived action or vice versa. Additionally, an analysis revealed
that the architecture self-organised to a semantic representation in the hidden layer.
Secondly, an iCub humanoid robot was set up to perform similar interaction tasks
with increased complexity. In this study a similar neural architecture was tested, and
it was shown that the labels for an object can be grounded in the visual perception.
The robots in these approaches do not have full linguistic and compositional abili-
ties, but can enrich their lexicon with simple mechanisms mimicking composition-
ality. These models are inspired by from research in developmental psychology and
neuroscience to provide a better understanding of the emergence of complex cog-
nitive and perceptual structures. Also, they provide a basis to test novel algorithms
and methodologies for the development of effective interaction between humans
and autonomous robotic systems. Both sets of studies emphasised the importance of
integrating language and embodied perception.

Analysing the MTRNN for Embodied Language Understanding 151

In addition, early models captured the fusion of language and multi-modal per-
ceptions or aimed at bridging the gap between formal linguistics and bio-inspired
systems. For these approaches the idea is a certain abstraction of the environment
and its representation in testing for language learning.

For instance, with the Cross-Modal Early Lexical Learning (CELL) framework,
Roy and Pentland proposed a model of embodied word acquisition [40]. CELL is
based on a multi-modal learning scheme, where semantic categories and object la-
bels are learned simultaneously. Sequences of phonemes that are detected in a short
time window are interpreted as words and associated to visual prototypes, repre-
sented by a histogram for the object’s shape. The learning takes place in a semi-
supervised fashion using a short-term memory for identifying the reoccurring pairs
of acoustic and visual sensory data, which later are passed to a long-term represen-
tation of extracted audio-visual objects. In the experiment with data from caregiver-
infant interactions it was shown that the system is able to pick up the ideal link
of sounds forming a word (or in rare cases a onomatopoeic sound) to an object
shape and thus associated a meaning to certain chains of phonemes. Although the
model shows that the learning of language is much more effective, if the learning is
grounded in visual perception, the study was constrained to the abstraction of words
from input phonemes and the association of the words with shapes.

Furthermore, Rhode proposed a model for language comprehension and predic-
tion based on an Elman Recurrent Neural Network (ERNN or more often called
SRN for Simple RN) [38, 39]. The semantic part of the model was trained to ab-
stract the meaning or “the message” of a sentence from a set of linguistic proposi-
tions, while the comprehension part of the network learned to extract this meaning
from a sequence of words, which includes the distribution of the propositions. The
network can be used also in the opposite direction in a way that it can predict the first
word for a given meaning and can then predict the next words based on the feed-
back of the previous word and the meaning. The underlying claim of the model is
that humans may learn to produce language based on the previously learned capabil-
ity to formulate predictions as well as the simultaneous comprehension of language.
In this architecture the RNN is used as a statistical tool that can predict a sequence
based on a training with structured representation (predefined role binding) and does
not attempt to capture embodied representations of the human cortex.

However, due to the vast complexity of language some models rely on well-
understood Chomskyan formal theories, which are difficult to maintain in the light
of recent neuroscientific findings, e.g. of non-infinite-recursive mechanisms and the
evident involvement of various – if not all – functional areas in the human brain
in language [35, 36]. A substantial number of studies indicate that the cognitive
processes – including language processing – originate in multi-modal interactions
with the environments and are encoded in terms of the overall goal involving all the
relevant effectors [1, 4]. Other integrating or constructive models are constrained to
single words, neglecting the temporal aspect of language, e.g. that both the represen-
tation on the level of speech sounds and the processing with a multi-time resolution
are important [11, 24].

152 S. Heinrich, S. Magg, and S. Wermter

1.2 Language Acquisition in a Recurrent Neural Model

In a recent study Hinoshita et al. claimed that for human language acquisition just
an “appropriate” architecture is sufficient and provided a model based on a Multiple
Timescale Recurrent Neural Network (MTRNN) [25]. The RNN model learns lan-
guage from continuous input of sentences composed of words and characters that
stem from a small grammar. For the model no implicit information is provided on
word segmentation and on roles or categories for words. Instead the input is mod-
elled as streams of spike-like activities on character level. During training the ar-
chitecture self-organises to the decomposition of the sentences hierarchically based
on the explicit structure of the inputs and the specific characteristic of some lay-
ers. The authors found that the characteristics, e.g. the information processing on
different timescales, indeed leads to a hierarchical decomposition of the sentences
in a way that certain character orders forms words and certain word orders forms
the sentences. Although in the study the model was reproducing learned symbolic
sentences quite well, generalisation was not possible to test, because the generation
of sentences was initiated by the internal state of some neurons, which had to be
trained individually for every sentence.

In this chapter we incorporate embodied perception based on real world data
in an MTRNN model and show that such a novel system is able to generalise to
completely new situations by recomposing learned elements, and also self-organises
towards the meaning of the learned verbal utterances. For both, the verbal utterances
and the perception, we employ representations that are biologically inspired and
avoid to provide structural information on the language. To acquire real world data
and test the model in a language acquisition task in an embodied and situated agent,
we employ an humanoid robot NAO that is supposed to learn language in interaction
with different shaped and coloured objects. This work is an extension of the previous
ICANN contribution [23], and in addition includes in-depth analyses of the roles of
the network connectivity and the timescale concept in language acquisition.

1.3 Chapter Organisation

This chapter is organised as follows: With the related work in mind from the in-
troduction, in Section 2 we will provide a detailed description of our model of an
MTRNN extended by embodied perception. We include a complete formalisation
to ease re-implementation. In Section 3 we will specify the scenario of the language
learning robot as well as a complete description of the used representations of ver-
bal utterances and embodied perception and the preceding encoding mechanisms.
Then, in Section 4, follows our evaluation and the analysis. We report on the studies
for generalisation capabilities as well as for the network behaviour and the impact
of some key characteristics. Finally, in Section 5 we will discuss our findings, con-
clusions, and future prospects.

Analysing the MTRNN for Embodied Language Understanding 153

2 Extended MTRNN Model

To test for plausible characteristics for the semantic processing of verbal utter-
ances, we incorporate both hypotheses into one model: a) speech is processed on
a multiple-time resolution [24], and b) semantic circuits are involved in the process-
ing of language [36]. We model the neural circuit as an RNN to achieve a reasonable
biological plausibility, but also be able to analyse the networks behaviour on cortex
level. More precisely, for our proposed model we employ the MTRNN to process
verbal utterances over time [46], extended by several feed-forward layers to inte-
grate embodied perceptions during the processing of utterances.

The MTRNN part is composed of an Input- and Output layer (IO) and two
context layers called Context fast (Cf) and Context slow (Cs). Our extension part
consists of an Embodied Input layer (EI), an Embodied Fusion layer (EF), and an
Embodied Controlling layer (EC). Fig. 1 provides an overview of our architecture.

IO
Layer

Cf
Layer

Cs
Layer

t+1

=2
=5

=70

...

...

Phonemes

Shape

Colour

Position

EF
Layer EC

Layer

Verbal
Utterance

Embodied
Perception

EI
Layer

Csc
Units
Csc

Units
Csc
Units
Csc
Units
Csc

Units

...

...

...

Fig. 1 Architecture of a Multiple Timescale Recurrent Neural Network extended by embod-
ied perception from the scene. A sequence of phonemes (utterance) is processed over time,
while the perceived embodied and situated information is constantly present.

During learning the MTRNN layers self-organise to the decomposition of a
semantic meaning into a verbal utterance on phoneme level over time, while the
feed-forward layers associate the meaning with the embodied perception. For pro-
duction of utterances the feed-forward layers have the role of abstracting the mean-
ing from the embodied input, whereas the MTRNN functions as a predictor of
the next phoneme based on the context information and the previous sequence of
phonemes.

154 S. Heinrich, S. Magg, and S. Wermter

2.1 RNN Schematics

The MTRNN is composed of an Input- and Output layer that continuously produces
an output from an input and from recurrent connections, as well as of an arbitrary
number of coupled context layers. In general, the MTRNN is an extended Elman
Recurrent Neural Network (ERNN) on the one hand and a special case of the Plau-
sibility Recurrent Neural Network (PRNN) on the other hand [15, 43].

In contrast to the ERNN, the MTRNN allows for full connectivity of neurons to
all neurons of the same and of adjacent layers. Also, all neurons process information
based on incoming connections as well as their previous internal state. In principle
the neurons maintain a fraction of previous information and process new informa-
tion slower, based on a lagging parameter [33]. We call the parameter hysteresis ϕ ,
if we denote, which fraction of new information is taken into account (where 1−ϕ
denotes, which fraction of old information is kept), or timescale τ , if we denote to
which magnitude new information is processed slower and we can relate:

ϕ =
1
τ

. (1)

Compared with the PRNN the MTRNN restricts this concept of hysteresis to an
increasing slowness from the first to the last layer and also restricts the architec-
ture to one horizontal set of layers only. A schematic comparison of the network
architectures is shown in Fig. 2.

Input
Layer

Output
Layer

Hidden
Layer

Context
„Loop“

Input
Layer

Output
Layer

Hn
Layer

Hn-1
Layer ...

Output Cn
Layer

Cn-1
Layer

Input

...

Cm,n
Layer

......

Cm,n-1
Layer

Cm-1,n
Layer

Cm-1,n-1
Layer

...

MTRNN

PRNN

ERNN

Timescales:
PRNN:

MTRNN:

(IO Layer)

Application:

ϕCp,q ∈ [0,1] ,∀p ∈ [1..m],
q ∈ [1..n]

τL ∈ [1..N] ,∀L ∈ Layers
τIO < τCm < .. . < τC1

zt,i = ϕi ∑
j∈I

wi, jxt, j

+(1−ϕi)zt−1,i

= 1
τi ∑

j∈I
wi, jxt, j

+
(

1− 1
τi

)
zt−1,i

Fig. 2 Schematic comparison of Elman Recurrent Neural Network, Plausibility Recur-
rent Neural Network, and Multiple Timescale Recurrent Neural Network. The concept of
timescales τ in the MTRNN is equivalent to the concept of hysteresis ϕ in the PRNN, but is
restricted to increasing values τ for increasing numbers of layers to the right.

Analysing the MTRNN for Embodied Language Understanding 155

Based on the idea of introducing a parametric bias to the network [42], some neu-
rons in the slowest context layer Cs of the MTRNN are also designated as Context
controlling units (Csc units). The internal state of these units at the initial time step
(t = 0) can be stored during training and can be used to initialise the generation of a
meaningful sequence. By modulating these internal states, different other sequences
can be generated.

2.2 Information Processing

In the MTRNN information is processed continuously with a constant firing rate as
a sequence of T discrete-time steps. A sequence s ∈ S is represented as a discretised
flow of activations of the neurons in the IO layer i ∈ IIO. The input activation x of a
neuron i ∈ Iall = IIO ∪ ICf ∪ ICs at time step t is calculated as:

xt,i =

⎧⎪⎨
⎪⎩

0 iff t = 0

(1−α)yt−1,i+(α)dt−1,i iff t ≥ 1∧ i ∈ IIO

yt−1,i iff t ≥ 1∧ i /∈ IIO

, (2)

where α ∈]0,1[is the feedback rate reflecting a teacher forcing (TF) signal of the
desired output y∗ to the input together with the generated output y of the last time
step (see [12, 45]). The feedback is only given during training the MTRNN.

The internal state z of a neuron i at time step t is determined by:

zt,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 iff t = 0∧ i /∈ ICsc

c0,i iff t = 0∧ i ∈ ICsc(
1− 1

τi

)
zt−1,i +

1
τi

∑
j∈Iall

wi, jxt, j otherwise
, (3)

where c0,i is the initial internal state of the Csc units i ∈ ICsc ⊂ ICs (at time step 0),
and wi, j are the weights from the jth to the ith neuron. In our model the MTRNN
is specified by timescale values of τ = 2, τ = 5, and τ = 70 for the IO, Cf, and Cs
layers respectively, based on previous work [25, 46] and experiments in this study
(see Section 4.3), indicating that these settings work well for language learning sce-
narios.

The output (activation value) y of a neuron i at time step t is defined by:

yt,i =

⎧⎪⎨
⎪⎩

exp(zt,i + bi)

∑
j∈IIO

exp(zt, j + b j)
iff i ∈ IIO

sig(zt,i + bi) iff i /∈ IIO

, (4)

where bi is the bias of neuron i. For the IO layer we employ a soft-max function due
to the problem-specific representation, while for the neurons in the remaining layers
we use a sigmoidal transfer function:

156 S. Heinrich, S. Magg, and S. Wermter

sig(zt,i + bi) =
1+ 2κa

1+ exp(−κb (zt,i + bi))
−κa , (5)

which is a logistic function with parameters κa for range and κb for slope. For our
model we modulated the function with κa = 0.35795 and κb = 0.92 to capture the
characteristics of the synchronic transfer function that has been proposed by LeCun
for faster convergence in association tasks [32]. Although the choice of transfer
functions is vast and well studied, more complex, but also more flexible functions
exist [13]. In particular, the asynchonic tangens-hyperbolicus function and its syn-
chronic equivalent – the logistic function – are used more often. We favour the use
of a simple function since we are more interested in the general characteristics and
also the comparability of the model and less in an optimal solution.

For the feed-forward extension the information processing follows analogously.
Input perception ps for a sequence is constantly present, while the output constitutes
the activity for the initial internal states c0(s) of the Csc units for the sequence s.
For all layers of the extension we use the same modified logistic transfer function.

2.3 Learning

During learning of the system the MTRNN is trained with verbal utterances, and
self-organises the weights and also the internal state values of the Csc units. These
self-organised values are then transferred to the EC layer and associated with
the present embodied perception (EI layer). For training the MTRNN we use an
adaptive variant of the real-time backpropagation through time (RTBPTT) algo-
rithm [22, 45].

In the forward pass (FP) the error E is accumulating the error between the acti-
vation values (y) and the desired activation values (y∗) of the IO neurons at every
time step as follows:

E(W) = ∑
t

∑
i∈IIO

y∗t,i · log

(
y∗t,i
yt,i

)
, (6)

where we use the Kullback–Leibler divergence as error function on IO neurons [31].
In the second step the partial derivatives of the calculated activation (y) and the

desired activation (y∗) are derivated in a backward pass (BP):

∂E
∂ zt,i

=

⎧⎪⎪⎨
⎪⎪⎩

yt,i − y∗t,i +
(

1− 1
τi

)
∂E

∂ zt+1,i
iff i ∈ IIO

sig′ (yt,i) ∑
k∈Iall

wk,i

τk

∂E
∂ zt+1,k

+

(
1− 1

τi

)
∂E

∂ zt+1,i
otherwise

, (7)

Analysing the MTRNN for Embodied Language Understanding 157

where the gradients are 0 for the time step T + 1. The derivative for the sigmoidal
transfer function is calculated as follows:

sig′ (yt,i) =
κb

1+ 2κa
(yt,i +κa)(1− yt,i+κa) . (8)

Finally, with the determined gradients the weights w and biases b are updated:

wn+1
i, j = wi, j −ηi, j

∂E
∂wi, j

= wi, j −ηi, j ∑
t

1
τi

xt, j
∂E
∂ zt,i

, (9)

bn+1
i = bi −βi

∂E
∂bi

= bi −βi ∑
t

1
τi

∂E
∂ zt,i

, (10)

where the partial derivatives for w and b are the sums of weight and bias changes
over the whole sequence respectively, and η and β denote the learning rates for the
weight and bias changes. Here, we use individual learning rates for all weights and
biases because we adapt them with respect to the gradient as described below.

The initial internal states c0,i of the Csc units define the behaviour of the network
and are also updated as follows:

cn+1
0,i = c0,i − ζi

∂E
∂c0,i

= c0,i − ζi
1
τi

∂E
∂ z0,i

iff i ∈ ICsc , (11)

where ζi denotes the learning rates for the initial internal state changes.
For training the association of the EC layer with the EI layer, we apply the least

mean square (LMS) rule as error function [44]:

E(W) =
1
2 ∑

i∈IEI

(yi − y∗i)
2 , (12)

∂E
∂ zi

=

⎧⎨
⎩
(yi − y∗i)sig′ (yt,i) iff i ∈ IEC

sig′ (yi) ∑
k∈IEC

wk,i
∂E
∂ zk

iff i ∈ IEF
, (13)

where the desired output y∗ corresponds to the activity derived from the c0values:

y∗i = sig(ci) ∀i ∈ IEC . (14)

The adaptation of the weights and biases follows analogously.

158 S. Heinrich, S. Magg, and S. Wermter

2.4 Adaptive Learning Rates

In our approach the learning rates η , β , and ζ are adaptive, based on the local
gradient information inspired by the Resilient Propagation (RPROP) algorithm [37].
In contrast to the original RPROP, learning rates are adapted and multiplied directly
with the partial derivatives instead of only using the sign of the partial derivatives,
to determine the change of the learning step:

ηn
i, j =

⎧⎪⎪⎨
⎪⎪⎩

min
(

ηn−1
i, j ξ+,ηmax

)
iff
(

∂E
∂wi, j

· ∂E
∂wi, j

n−1
)
> 0

max
(

ηn−1
i, j ξ−,ηmin

)
iff
(

∂E
∂wi, j

· ∂E
∂wi, j

n−1
)
< 0

ηn−1
i, j otherwise

, (15)

β n
i =

⎧⎪⎪⎨
⎪⎪⎩

min
(
β n−1

i ξ+,ηmax
)

iff
(

∂E
∂bi

· ∂E
∂bi

n−1
)
> 0

max
(
β n−1

i ξ−,ηmin
)

iff
(

∂E
∂bi

· ∂E
∂bi

n−1
)
< 0

β n−1
i otherwise

, (16)

where ξ+ ∈]1,∞] and ξ− ∈]0,1[are the increasing or decreasing factors respec-
tively and ηmax > ηmin are upper and lower bounds for both learning rates η and
β . If the partial derivative of the current epoch n is pointing to the same direction
as in the former epoch n− 1, then the learning rate is increased. If the direction of
the partial derivative is pointing to the other direction, then the minimum has been
missed and the learning rate is decreased.

For the update of the initial internal states c0,i the learning rates ζ are adapted
proportionally to the average learning rates η of all weights that are connected with
unit i and neurons of the same (Cs) and the adjacent (Cf) layer:

ζi ∝
1

|ICf|+ |ICs| ∑
j∈(ICf∪ICs)

ηi, j . (17)

Since the update of the c0,i depends on the same partial derivatives (time step 0) as
the weights, we do not need additional parameters in this adaptive mechanism.

2.5 Production

During testing the system approximates EC values from the embodied perception
input at the EI layer. From the EC values the corresponding values of Csc units
are calculates using the inverse of Eq. 14, which in turn initiate the generation of a
corresponding verbal utterance. These processing steps are done in a single set of
computation – no additional training or adaptation is necessary.

Analysing the MTRNN for Embodied Language Understanding 159

3 Scenario

Our scenario for this model is the interaction between a human teacher and a robotic
learner, which is supposed to learn language from scratch by grounding utterances in
its embodied experience, but also is supposed to use its learned language to describe
novel situations. We believe it is important to test the learning in a real environment
to face the influence of natural noise and uncertainty of perception.

The robot is placed in a scene and receives an utterance from the teacher, who de-
scribes the scene, e.g. “THE APPLE HAS COLOUR GREEN”. The system should learn,
in a self-organised way, how to bind the visual scene information with this verbal
expression to be able to describe another scene like “THE BANANA HAS COLOUR

GREEN” correctly. The focus of this study is on generalisation using possibly learned
components.

To control our setup, all verbal utterances stem from a small symbolic gram-
mar as presented in Fig. 3a. However, every symbolic sentence is transformed into
a phonetic utterance based on phonemes from the ARPAbet and four additional
signs to express pauses and intonations in propositions, exclamations, and ques-
tions: A = {’AA’, ..., ’ZH’}∪{’SIL’, ’PER’, ’EXM’, ’QUM’}, with size |A|= 44.

S → INFORM
INFORM → POS is a OBJ.
INFORM → OBJ has colour COL.
OBJ → apple | banana | dice | phone
POS → above | below | left | right
COL → blue | green | red | yellow

(a) Grammar.

(b) Encoded utterance.

(c) Learner.

(d) Learner’s view.

(e) Perceived shapes.

1 6 11 16
0

0.5

1

Neuron number

N
eu

ra
l a

ct
iv

ity

dice
phone

apple
banana

(f) Shape representation.

Fig. 3 Representations and scenario of language learning in human-robot interaction

160 S. Heinrich, S. Magg, and S. Wermter

3.1 Utterance Encoding

To encode an utterance u=(p1, . . . , p|u|) into neural activation over time, we adapted
the encoding scheme suggested by Hinoshita et al. [25], but we use a phoneme-based
instead of a symbol-based representation: The occurrence of a phoneme pk is repre-
sented by a spike-like neural activity of a specific neuron at relative time step r. In
addition, some activity is spread backward in time (rising phase) and some activity
is spread forward in time (falling phase) represented as a Gaussian over the interval
[−ω/2, . . . ,−1,0,+1, . . . ,ω/2]. On absolute course of time t the peaks mimic prim-
ing effects in articulatory phonetic processing. For example the previous occurrence
of the phoneme “P” could be often related to the occurrence of the phoneme “AH”
leading to an excitation of the respective neuron for “AH”, when the neuron for “P”
was activated.

All activities of spike-like peaks are normalised by a soft-max function for every
absolute time step t over the set of input neurons. A sketch of the utterance encoding
is shown in Fig. 4.

Fig. 4 Schematic process of utterance encoding. The input is a symbolic sentence, while the
output is the neural activity over N neurons times T time steps.

The Gaussian g for pk is defined by:

gk,r,i =

⎧⎨
⎩exp

(−r2

2σ2

)
iff pk = Ai

0 otherwise
, (18)

where r = 0 is the mean and σ the filter sharpness factor. A peak occurs for the
neuron i ∈ IIO with |IIO|= |A|, if the phoneme pk is equal to the ith phoneme in the
phoneme alphabet A. From the spike-like activities the internal state z of a neuron i
at time step t is determined by:

zt,i =

{
λ ·max

(
gk=1...|u|,r=−ω/2...ω/2,i

)
iff t = μ + kυ + r

0 otherwise
, (19)

where ω is the filter width, μ is a head margin to put some noise to the start of the
sequence, υ is the interval between two phonemes, and λ is a scaling factor for the
neuron’s activity y∗.

Analysing the MTRNN for Embodied Language Understanding 161

The scaling factor depends on the number of IO neurons and scales the activity
to d ∈]0,0.9] for the specified soft-max function:

λ = ln

(
0.9

1.0− 0.9
(|IIO|− 1)

)
, (20)

y∗t,i =
exp(zt,i)

∑
j∈IIO

exp(zt, j)
. (21)

For our scenario we set the constants to μ = 4, ω = 4, σ2 = 0.3, and υ = 2. The
ideal neural activation for an encoded sample utterance is visualised in Fig. 3b.

3.2 Visual Perception Encoding

To encode the visual shape perception into sustained neural activity, we aim at cap-
turing a representation that is biologically plausible, but on a level of abstraction of
shapes as found in the posterior infero-temporal (PIT)/V4 area [34]. On an image
taken by the NAO robot we employ the mean shift algorithm for segmentation [9],
and the Canny edge detection as well as the contour finder for object discrimina-
tion [8, 41]. Subsequently, we calculate the centre of mass and 16 distances to salient
points around the contour. Finally, we scale the distances by the square root of the
object’s area and order them clockwise – starting with the largest – to determine
the characteristic shape, which is scale- and rotation-invariant. Fig. 3e provides two
example results of this process, and Fig. 3f visualises typical characteristics for the
employed object shapes (scaled to [0,1]). Encoding of the perceived colour is re-
alised by averaging the three R, G, and B values of the shape, while the perceived
position is encoded by the two values of the centroid coordinate in the field of view.
A sketch of the visual perception encoding is shown in Fig. 5.

Fig. 5 Schematic process of visual perception encoding. The input is a single frame taken by
the NAO camera, while the output is the neural activity over N neurons, with N is the sum
over shape + colour + position features.

162 S. Heinrich, S. Magg, and S. Wermter

4 Evaluation and Analysis

To understand the dynamics of the architecture in this study, we are interested in
evaluating the generalisation capabilities, and the role of some key characteristics
like connectivity and timescales. We also aim at analysing the network behaviour in
generating utterances for known as well as for novel scenes.

To test and analyse our model, we collected a data set consisting of all possible
scenes and their respective verbal description. From the grammar we obtained 32
different combinations, which we set up as scenes and in turn used for collecting
different examples. The corresponding verbal utterances were reasonably complex
sequences with a length of 32 to 46 time steps (compare Fig. 3b). Subsequently,
we ran a series of experiments, for which we carefully, but randomly divided the
data into a training set and a test set (50:50) – making sure that every scene is
included only in one of these sets – and trained ten randomly initialised systems.
For every setup we repeated this process ten times with different distributions of
data in training and test set to arrive at 100 runs for analysis. Compared to the
previous ICANN contribution [23], the results are based on twice the number of
runs per setup and per experiment. The parameters of the network and the meta-
parameters were mostly chosen based on the experience in [22] and [25] and are
detailed in Tab 1. The number of neurons in the input layers |IIO| and |IEC| are given
by the input representations. The size of EC depends on and is equal to the size of
Csc, which we determined with |ICsc| =
|ICs|/2�. As the termination criteria for
the learning, we used a maximum number of epochs with θ = 50,000 and minimal
average errors on the IO and EI layers with εIO = 5.0× 10−4 and εEI = 5.0× 10−6.
We favoured the use of fixed termination criteria over the use of a validation set to
allow for comparisons on the meta-parameters.

Table 1 Standard parameter settings for evaluation

Param. Description Value

|IIO| Number of IO neurons 44

|ICf| Number of Cf neurons 80

|ICs| Number of Cs neurons 23

|ICsc| Number of Csc neurons 12

|IEC| Number of EC neurons 12

|IEF| Number of EF neurons 16

|IEI| Number of EI neurons 21

W0 Initial weights range ±0.025

C0
0 Initial Csc values range ±0.01

Param. Description Value

τIO Timescale of IO neurons 2

τCf Timescale of Cf neurons 5

τCs Timescale of Cs neurons 70

α Teacher forcing 0.1

ηmax Maximal learning rate 1.0

ηmin Minimal learning rate 1.0×10−6

ξ+ Increasing factor 1.01

ξ− Decreasing factor 0.96

η0, β 0, ζ 0 Initial learning rates 0.05

Analysing the MTRNN for Embodied Language Understanding 163

4.1 Generalisation

To be able to compare the generalisation capabilities, we use the standard measure
F1-score determined by precision and recall, and defined as follows:

pprecision =
t p

t p+ f p
, precall =

t p
t p+ f n

,

F1-score = 2 · pprecision · precall

pprecision + precall
, (22)

where we specify all correct and matching utterances as t p (true positives), all cor-
rect, but not matching utterances as f p (false positives), and strictly all incorrect
utterances as f n (false negatives).

Table 2 Parameter variation in the generalisation experiment

Dimension Parameter Description Values

1 (|ICf|, |ICs|) Number of Cf, Cs neurons {(40,11),(80,23),(160,47)}
2 |IEF| Number of EF neurons {8,16,24}

The results in Tab. 3 show that the system can be trained perfectly in most cases,
and also produces correct utterances for new scenes on a moderate level: For a
suitable parameter setting, networks reach an F1-score of up to 1.0 on the train-
ing set and 0.545 on the test set, with an average over all random seeds of 0.999 on
the training set and 0.185 on the test set. From the chart in Fig. 6 for the same results
for the test set only, we can learn that the size of the network dimension is impor-
tant for ideal generalisation capabilities. The F1-score on utterance level is clearly
stricter than on word or on phoneme level, but we aim at evaluating, if the complete
meaning of the scene was uttered correctly.

Table 3 Comparison of F1-score for different network dimensions

|C f |/|Cs| 40/11 40/11 40/11 80/23 80/23 80/23 160/47 160/47 160/47
|EF| 8 16 24 8 16 24 8 16 24

training set best 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
test set best 0.316 0.316 0.316 0.476 0.476 0.545 0.476 0.400 0.400
training set best avg * 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
test set best avg * 0.200 0.229 0.207 0.322 0.333 0.336 0.277 0.254 0.264
training set average 0.913 0.927 0.928 0.948 0.999 0.999 0.988 0.998 0.996
test set average 0.068 0.072 0.076 0.133 0.177 0.185 0.098 0.119 0.115

* Averaged over all best networks of all data set distributions.

164 S. Heinrich, S. Magg, and S. Wermter

40/11/8 40/11/16 40/11/24 80/23/8 80/23/16 80/23/24 160/47/8 160/47/16 160/47/24
0

0.1

0.2

0.3

0.4

0.5

0.6
F 1−s

co
re

 te
st

 s
et

Setup

Fig. 6 Comparison of the F1-score on the test set for the generalisation experiment. The
dark/blue bars and the error bars present the average F1-score and the standard error of means
respectively, while the bright/red bars show the F1-score of the best network for the respective
setup.

Note that due to the random selection the system had to describe a scene in several
cases, for which it had not seen any aspect (shape, colour, or position) before. This
was intended to keep the scenario realistic and observe the effects.

In experiment we observed for incorrect utterances three types of errors: a) Minor
substitution errors in terms of a single wrong phoneme or a pause that was too long
(“SIL SIL” instead of “SIL”), b) word confusion errors, and c) phoneme chains with-
out any meaning. Tab. 4 provides example results for observed errors. Errors of type
(a) occurred often for networks in which the MTRNN part did not converge well to
small average errors. For errors of type (b) we only found very few instances, and
in these cases found the confused word mostly in the end of the sentence. A reason
for this error was not found in this experiment, but further experiments (compare
Sec. 4.3) indicates a link to the timescale parameter. The type (c) error appeared
often in cases in which the training set and the test set are structural very different,
e.g. when the test scene consisted of unknown aspects, as described above.

Table 4 Examples for different correct and incorrect utterances for errors (a), (b), and (c).
Incorrect phonemes are emphasised bold.

correct B AH N AE N AH SIL HH AE Z SIL K AH L ER SIL B L UW PER

substitution error (a) R AY T SIL IH Z SIL AH SIL B AY S PER

substitution error (a) B IH L OW SIL IH Z SIL SIL AH SIL AE P AH L PER

word confusion (b) B AH N AE N AH SIL HH AE Z SIL K AH L ER SIL G R IY N PER

phoneme babbling (c) AE P AH AE SIL AH SIL AE AE Z K P L ER EH R EH D . . .

Analysing the MTRNN for Embodied Language Understanding 165

4.2 The Role of Connectivity and Pathways

During training of the system we found that the connection weights from the Cs to
the Cf layer as well as from the Cf to the IO layer converged towards zero in many
cases. This means that the highly dynamic networks organised themselves towards
a directed flow of information from the context to the phonetic output instead of a
mutual exchange of information.

Fig. 7 Connectivity for an
example network trained
with the standard param-
eters and visualised as a
Hinton diagram, where a
square represents a connec-
tion weight from a neuron
(horizontal dimension) to
another neuron (vertical di-
mension). The diagram has
been modified in a way that
the strong connections are
shown towards black (omit-
ting the sign of the weights
to increase readability),
while weak connections are
shown towards white

Cf IO

Cs Cf

To test the hypothesis that the MTRNN architecture might already be more com-
plex than necessary and should be studied with less initial connectivity, we set up
an experiment with modified connectivity and compared the following setups:

1. No modification (baseline): all neurons of a layer are connected to all neurons of
the same and of adjacent layers.

2. All neurons of a layer are connected to all neurons of the same and of adjacent
layers, but the connection weights from Cs to Cf and from Cf to IO are initialised
with 0.0 instead of ±0.025.

3. Connections from Cs to Cf and from Cf to IO are removed.

We trained the networks with the procedure and the standard parameters as de-
scribed above (see Tab. 1), but increased for the training the maximum number of
epochs to θ = 100,000, to ease the comparison of the training effort for the mod-
ifications. The results presented in Fig. 8 show that on the test data the F1-score is
slightly, but not significantly higher for setup 2 compared to setup 1, whereas the
F1-score is significantly (p < 0.001) lower for setup 3 compared to setup 1. How-
ever, the training effort for setup 2 is a bit but significantly (p < 0.01) smaller, and
for setup 3 vastly larger (significant, p < 0.001) than for setup 1.

166 S. Heinrich, S. Magg, and S. Wermter

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6
F 1−s

co
re

 te
st

 s
et

Setup

(a) F1-score on test set.

1 2 3
0

2

4

6

8

10
x 104

N
um

be
r

of
 e

po
ch

s
Setup

(b) Training effort.

Fig. 8 Comparison of generalisation capability and training effort for modifications of the
MTRNN connectivity. For (a) the dark/blue bars represent the average F1-score, while the
bright/red bars show the F1-score of the best network for the respective setup. The error bars
denote the respective standard error of means.

Note that for setup 2 we do not expect a higher F1-score compared to setup 1,
since in the training process all weights self-organise with respect to the partial
derivatives. However, the results indicate that the introduced “bias” of having low
connectivity from Cs to Cf and from Cf to IO leveraged the training process and
led to faster convergence. For setup 3 the results show that having no backward
connectivity makes the language acquisition problem much harder, indicating that
backward connections are indeed necessary.

In terms of types of errors for the incorrect utterances we did not find consider-
able differences between setup 2 and setup 1, but a larger number of substitution
errors for setup 3 compared to setup 1.

4.3 The Role of the Timescale Parameter

In preliminary experiments we confirmed that simpler RNNs cannot reproduce the
generalisation capabilities of the MTRNN on the language acquisition. We tested
both the ERNN with additional parametric bias units attached to the hidden layers
(RNNPB, for details see [42]), as well as the MTRNN architecture with no timescale
mechanism. Although the networks could learn the training data to some extent, the
generation of utterances for novel scenes led to meaningless phoneme babbling.
Basically the networks did not self-organise to the decomposition of the training
sequences, but to reproduce them in whole, and thus generalisation ability was not
evident.

Analysing the MTRNN for Embodied Language Understanding 167

Table 5 Parameter variation in the timescale experiment

Dimension Parameter Description Values

1 τCf Timescale of Cf neurons τIO · k, k ∈ {1,2,3,4,5,6}
2 τCs Timescale of Cs neurons τCf · l, l ∈ {2,6,10,14,18,22}

Because the concept of hysteresis or timescales seems crucial for the language
acquisition task, we investigated the influence of the timescale parameter. In a rig-
orous experiment we systematically varied the combination of timescale values of
the neurons in the Cf and in the Cs layer. More precicely we tested the 2-fold up to
6-fold of the timescale for Cf with respect to the timescale for IO (fixed to τIO = 2)
and also the 2-fold up to 22-fold of the timescale for Cs with respect to the timescale
for Cf. For every combination as shown in Tab. 5 we trained 100 networks in the
procedure as described above and kept all other parameters fixed. In sum we tested
for 36 combinations leading to 3600 trained networks. Since we are interested both
in the influence on the convergence of the networks for the given data set as well as
in the generalisation capabilities we define a mixed score:

F1,mixed-score =(F1-score(training set average)+F1-score(test set average)

+F1-score(training set best avg)+F1-score(test set best avg))/4 .

The result of the experiment is visualised in Fig. 9, where high (desired) scores
are shown in red and low scores are shown in blue. From the map we can obtain that
using increasing timescales for the different layers increases the score. However, the
scores do not differ much on a certain plateau: Networks for timescale ratio τCf/τIO

of 2 and τCs/τCf of 6 or higher reached a score of > 0.6, but this score does not

Ratio τ
Cs

/τ
Cf

R
at

io
τ C

f/τ
IO

2 4 6 8 10 12 14 16 18 20 22
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.5

0.52

0.54

0.56

0.58

0.6

0.62

τ
IO

=2, τ
Cf

=5, τ
Cs

=70

Fig. 9 F1,mixed-score for different combinations of timescale values of the Cf and the Cs
neurons. Desired scores (high) are shown in red.

168 S. Heinrich, S. Magg, and S. Wermter

increase considerably for larger timescale ratios. In the results we can find some
peaks e.g. for τCf/τIO = 4,τCs/τCf = 14 (τCf = 8,τCs = 112), but the differences in
the score values compared to e.g. the baseline (τCf = 5,τCs = 70) are not significant.

To investigate the differences in the results for networks with smaller timescale
ratio (both τCs/τCf and τCf/τIO) we looked at the erroneous utterances that these
networks produced on IO level. For both cases we noticed that the number of incor-
rect words as well as substitution errors in the end of the utterances occurred more
often. The networks with smaller τCs/τCf ratio generated syntactically correct but
semantically not matching words more often for longer utterances, while networks
with smaller τCf/τIO in general started to generate meaningless phoneme babbling
more often. In summary, the results indicate that:

• The timescale for neurons in Cf is ideally of the length of the number of time
steps for an average word length. For example the average word length in our
scenario is 3.156 phonemes or 6.313 time steps, while the average inter-word
distance (distance between the beginning of words including pauses) is 4.208
phonemes or 8.417 time steps.

• The timescale for neurons in Cs is ideally equal to or larger than the number
of time steps of the longest sequence for a high score. However, very large
timescales increase the training effort significantly. Recall, in our scenario we
used sequences with length up to 46 time steps.

In an additional test we investigated the first indication further. We modified
our corpus of utterances in a way that we changed all translations from words to
phonemes to half the number of phonemes for the first setup and to double the num-
ber of phonemes for the second setup. Again, we trained the networks with different
ratios τCf/τIO (compare Tab.5), while keeping the ratio fixed for the first setup with
τCs/τCf = 7 and for the second setup with τCs/τCf = 28 due to the halved and dou-
bled sequence lengths respectively. From the results in Fig 10 we can take that the
estimate holds also for shorter and longer average word lengths as well.

Fig. 10 Comparison of
F1,mixed-score for differ-
ent timescale values over
shortened and prolonged
average word lengths. The
timescale ratio are varied for
τCf/τIO layer only. For the
first setup, all words have
been artificially halved in
length (to a minimal length
of one phoneme) and for the
second setup, all words have
been doubled in length. Re-
sults have been normalised
for each setup to increase
readability.

1 2 3 4 5 6

0

0.5

1

F 1,
m

ix
ed

−s
co

re
 te

st
 s

et
 (

no
rm

al
is

ed
)

Ratio τ
Cf

/τ
IO

shorter
baseline
longer

Analysing the MTRNN for Embodied Language Understanding 169

Ratio τ
Cs

/τ
Cf

R
at

io
τ C

f/τ
IO

2 4 6 8 10 12 14 16 18 20 22
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 104

τ
IO

=2, τ
Cf

=5, τ
Cs

=70

Fig. 11 Training effort (number of training epochs until termination) for different combina-
tions of timescale values of the Cf and the Cs neurons. Desired (low) numbers are shown in
red.

To also compare the difficulty to train the networks we looked at the average
number of epochs until the training reached one of the termination criteria. The
numbers are presented in Fig. 11, where low (desired) numbers are shown in red
and high numbers are shown in blue.

For some combinations of timescale values around τCf/τIO = 2,τCs/τCf = 10
(τCf = 4,τCs = 40) we found the smallest training effort, while for larger timescales
both for Cf and Cs neurons the effort increases.

Combining both results, the scores on training and test data as well as the train-
ing effort can provide a rough estimate of good parameter values for practical
applications. For example in Fig. 12 a possible combination is shown, where we
weighted the proportion of the score five times over the proportion of the effort.

Ratio τ
Cs

/τ
Cf

R
at

io
τ C

f/τ
IO

2 4 6 8 10 12 14 16 18 20 22
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ
IO

=2, τ
Cf

=5, τ
Cs

=70

Fig. 12 Combination of F1,mixed-score and training effort (5:1) for practical applications.
Desired values are shown in red and may indicate good parameters.

170 S. Heinrich, S. Magg, and S. Wermter

4.4 Network Behaviour

To provide a better understanding of the system, we analysed the neural activity of
the Cf layer for the trained networks. We aimed to test whether this layer had organ-
ised itself to represent the words in the utterances (compare [25]). Using principle
component analysis (PCA), we reduced the dimensionality to visualise trajectories
over time for specific words. The start and end point of the trajectory were defined
as the first highest activity for the first phoneme and the last highest activity for the
last phoneme of the word in the IO layer.

The results reveal several characteristics (see Fig. 13 for the trajectories of a
typical network): Firstly, the neural activity in the Cf layer is nearly identical for
the same words from trained utterances. Secondly, the same words from untrained
utterances have a quite similar activity pattern. Thirdly, words of the same type
(shape, colour, or position words) have very related activity patterns. From the data
we can observe that the networks self-organise to patterns for words about shapes,
colours, and positions. Fourthly, words with similar phonetic representations have
different activities, if the type of the word is different. Low correlation was found of
activity for phonetically similar but semantically different words.

−6 −4 −2 0 2 4
−4

−2

0

2

4

6

PC1

P
C

2

apple
banana
phone

below
left
right

blue
red
yellow

(a) Words of similar type.

−4 −2 0 2
−4

−2

0

2

4

PC1

P
C

2

(b) Words with similar phonetics.

Fig. 13 Comparison of neural activation in the Cf layer for different words. The dimension-
ality has been reduced from |C f | to two dimensions (PC1 and PC2) and the beginning (∗) as
well as the end (◦) of the words have been marked. The dark/blue lines represent words from
utterances of the training set and the bright/red lines show words from utterances of the test
set. Arrows indicate the same phoneme “AH”.

In addition, we found the tendency that the activation of a word primes the activa-
tion of other grammatically related words. In terms of trajectories it can be observed
that the end point of the word “COLOUR” is close to the starting point of all colour
words, and the end point of a position word is close to the starting point of “IS A ...”
(compare Fig. 13a and b).

Analysing the MTRNN for Embodied Language Understanding 171

5 Discussion

The combination of visual perception and an architecture that includes different
timescales in processing verbal sequences provides a system that self-organises to-
wards the perceptual meaning of learned utterances in a real world scenario. Our
experiments have shown that such a system apparently is able to understand verbal
utterances and describe novel scenes with the correct corresponding verbal utter-
ances. The analysis revealed that novel scenes are described by recomposing the
correct words, which have been grounded in the perception of different shapes,
colours, or positions.

Analysis of the errors for incorrect utterances revealed a) minor substitution er-
rors, b) word confusion errors and c) phoneme babbling errors. In cases of type
(a) listening humans would presumably consider this a normal inaccuracy and auto-
matically correct the error. Errors of type (b) may indicate effects of the memorising
capacity. For the trained networks we observed the word confusion error mostly in
such cases, where timescale parameter values have been chosen sub-optimally. Neu-
ral activity in the Cs layer revealed that the networks seemingly could not produce
the correct word, because they “forgot” the meaning of the scene at a certain time
step and initiated the production of the most probable next word. Further research in
the brain ’s information habituation could clarify this observation. Case (c) clearly
shows that generalisation was sometimes difficult. It is open to clarify, whether this
degree of difficulty is inherent, e.g. if the error rate is comparable to certain learning
stages in young children during early language learning [30].

During training we also observed that connectivity plays an important role for
the behaviour of the network. Although we found that the connection weights from
the Cf to the Cs layer as well as from the IO to the Cf layer in many cases converged
towards zero, we learned in additional experiments that we cannot leave out the
backward connections. We found that a more directed flow of information from the
context to the phonetic output was the result of the training, but a certain feedback
seems to be important as well. In the light of neuroscientific evidence the directed
information flow from the conceptual network (reflected by Cs) to the articulatory
areas (reflected by IO) is plausible [24]. Also, in computational studies, researchers
found that network architectures of biological plausible integrate-and-fire-neurons
tend to form a mostly feed-forward structure out of initial randomly connected net-
work for recurring input patterns [27, 28]. However, for many cortical regions of the
human brain, for example in vision, it was also reported that certain proportions of
backward (feedback) connections exist and play an important role [19, 20].

The examination of the timescale parameter revealed that the hysteresis mecha-
nism (the timescales) is a key element for learning complex sequences like longer
phoneme chains. Firstly, our results confirm that the hysteresis mechanism may be
a required architectural characteristic that favours the emergence of language. Sec-
ondly, our results suggest that ideal parameter values are indeed problem-dependent,
but less ideal values still lead to good performances. For the language acquisition
problem we suggest to choose the average word-length in time steps as timescale
value for the fast context layer (Cf) and to choose the maximal length of the

172 S. Heinrich, S. Magg, and S. Wermter

sequences as timescale value for the slow context layer (Cs). These results can per-
haps get transferred to other problems, where one uses the average length of the fast
dynamics and maximal length of the slow dynamics as the respective values.

The dependency that we found between the size of the architecture and the
size of the problem is less desirable, but in line with experience from associator
networks [32]. Further investigations should include the consideration of architec-
tures that are dynamic in connectivity as well as in size. In addition, architectures
should be tested with more complex scenes and verbal descriptions, including inter-
relations of multiple objects and embodied experience of a broader set of real world
situations.

5.1 Conclusion

In conclusion our study supports that the embodiment of language in perception and
a hierarchical structure with hysteresis mechanisms in terms of different timescales
are important aspects of an appropriate architecture for language. For such an ar-
chitecture a feasible constraint can be our mostly feed-forward but compositional
structure, also suggested for the (visual) cortex [19].

We believe it is very important to intensively study further the architectural char-
acteristics that both favour or hinder the emergence of language. More specifically,
in addition to learning “that” language can be grounded in perception and be bound
to experience we need to learn “how”. For this we need to very carefully choose
the assumptions that we are willing to make, to avoid to a) run into the poverty of
stimulus (POS) pitfall [3] and b) research only into the parts instead of looking at
the full system, which may result in more than the sum of the parts.

In the future we will further refine the architectural characteristics to identify the
most important building blocks for natural language processing. The understanding
of the brain’s architecture for language can explain the humans’ most important
cognitive capability, but also can inform future software frameworks for service
robots that should interact with and understand humans.

Acknowledgements. The authors would like to thank A. Saleh and H. Vöcking for support
with the real world data acquisition, J. Dávila-Chacón and C. Weber for critical and inspiring
discussions, as well as J. Bauer and C. Mönter for valuable revisions of early versions of this
chapter.

References

1. Barsalou, L.W.: Grounded cognition. Annual Review of Psychology 59, 617–645 (2008)
2. Behrens, H.: Usage-based and emergentist approaches to language acquisition. Linguis-

tics 47(2), 383–411 (2009)
3. Berwick, R.C., Pietroski, P., Yankama, B., Chomsky, N.: Poverty of the stimulus revis-

ited. Cognitive Science 35(7), 1207–1242 (2011)
4. Borghi, A.M., Gianelli, C., Scorolli, C.: Sentence comprehension: effectors and goals,

self and others. An overview of experiments and implications for robotics. Frontiers in
Neurorobotics 4(3), 8 (2010)

Analysing the MTRNN for Embodied Language Understanding 173

5. Cangelosi, A.: Grounding language in action and perception: From cognitive agents to
humanoid robots. Physics of Life Reviews 7(2), 139–151 (2010)

6. Cangelosi, A., Riga, T.: An embodied model for sensorimotor grounding and grounding
transfer: Experiments with epigenetic robots. Cognitive Science 30(4), 673–689 (2006)

7. Cangelosi, A., Tikhanoff, V., Fontanari, J.F., Hourdakis, E.: Integrating language and
cognition: A cognitive robotics approach. Computational Intelligence Magazine 2(3),
65–70 (2007)

8. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 8(6), 679–698 (1986)

9. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

10. Deacon, T.W.: The symbolic species: The co-evolution of language and the brain. W.W.
Norton & Company (1997)

11. DeWitt, I., Rauschecker, J.P.: Phoneme and word recognition in the auditory ventral
stream. Proceedings of the National Academy of Sciences 109(8), E505–E514 (2012)

12. Doya, K.: Recurrent networks: learning algorithms. In: Handbook of Brain Theory and
Neural Networks, pp. 955–960. MIT Press (2003)

13. Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Computing Sur-
veys 2, 163–212 (1999)

14. Eisenbeiß, S.: Generative approaches to language learning. Linguistics 47(2), 273–310
(2009)

15. Elman, J.L.: Finding structure in time. Cognitive Science 14(2), 179–211 (1990)
16. Feldman, J.A.: From Molecule to Metaphor: A Neural Theory of Language. The MIT

Press (2006)
17. Frank, S.L.: Strong systematicity in sentence processing by an echo state network. In:

Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131,
pp. 505–514. Springer, Heidelberg (2006)

18. Frank, S.L., Haselager, W.F., van Rooij, I.: Connectionist semantic systematicity. Cogni-
tion 110(3), 358–379 (2009)

19. Friston, K.: A theory of cortical responses. Philosophical Transactions of the Royal So-
ciety B: Biological Sciences 360, 815–836 (2005)

20. Gilbert, C.D., Li, W.: Top-down influences on visual processing. Nature Reviews Neu-
roscience 14, 350–363 (2013)

21. Harnad, S.: The symbol grounding problem. Physica D: Nonlinear Phenomena 42, 335–
346 (1990)

22. Heinrich, S., Weber, C., Wermter, S.: Adaptive learning of linguistic hierarchy in a mul-
tiple timescale recurrent neural network. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F.,
Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 555–562. Springer, Heidel-
berg (2012)

23. Heinrich, S., Weber, C., Wermter, S.: Embodied language understanding with a multiple
timescale recurrent neural network. In: Mladenov, V., Koprinkova-Hristova, P., Palm,
G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp.
216–223. Springer, Heidelberg (2013)

24. Hickok, G., Poeppel, D.: The cortical organization of speech processing. Nature Reviews
Neuroscience 8(5), 393–402 (2007)

25. Hinoshita, W., Arie, H., Tani, J., Okuno, H.G., Ogata, T.: Emergence of hierarchical
structure mirroring linguistic composition in a recurrent neural network. Neural Net-
works 24(4), 311–320 (2011)

26. Hoffmann, T., Trousdale, G.: The Oxford handbook of construction grammar. Oxford
University Press (2013)

174 S. Heinrich, S. Magg, and S. Wermter

27. Iglesias, J., Eriksson, J., Pardo, B., Tomassini, M., Villa, A.E.: Emergence of oriented cell
assemblies associated with spike-timing-dependent plasticity. In: Duch, W., Kacprzyk,
J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 127–132. Springer,
Heidelberg (2005)

28. Iglesias, J., Villa, A.E.: Recurrent spatiotemporal firing patterns in large spiking neu-
ral networks with ontogenetic and epigenetic processes. Journal of Physiology-Paris
104(3-4), 137–146 (2010)

29. Jackendoff, R.: Foundations of language: Brain, meaning, grammar, evolution. Oxford
University Press (2002)

30. Karmiloff, K., Karmiloff-Smith, A.: Pathways to language: From fetus to adolescent.
Harvard University Press (2002)

31. Kullback, S.: Information Theory and Statistics. John Wiley, New York (1959)
32. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop. In: Orr, G.B., Müller,

K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998)
33. Mielke, A., Theil, F.: On rate-independent hysteresis models. Nonlinear Differential

Equations and Applications NoDEA 11(2), 151–189 (2004)
34. Orban, G.A.: Higher order visual processing in macaque extrastriate cortex. Physiologi-

cal Reviews 88(1), 59–89 (2008)
35. Pulvermüller, F.: The Neuroscience of Language: On Brain Circuits of Words and Serial

Order. Cambridge University Press (2003)
36. Pulvermüller, F., Fadiga, L.: Active perception: sensorimotor circuits as a cortical basis

for language. Nature Reviews Neuroscience 11, 351–360 (2010)
37. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learn-

ing: the rprop algorithm. In: Ruspini, E.H. (ed.) Proceedings of the IEEE International
Conference on Neural Networks (ICNN 1993), vol. 1, pp. 586–591. IEEE, San Francisco
(1993)

38. Rohde, D.L.T.: A connectionist model of sentence comprehension and production. Ph.D.
thesis, School of Computer Science, Carnegie Mellon University (2002)

39. Rohde, D.L.T., Plaut, D.C.: Connectionist models of language processing. Cognitive
Studies 10(1), 10–28 (2003)

40. Roy, D.K., Pentland, A.P.: Learning words from sights and sounds: A computational
model. Cognitive Science 26(1), 113–146 (2002)

41. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border
following. Graphical Models and Image Processing 30(1), 32–46 (1985)

42. Tani, J., Ito, M.: Self-organization of behavioral primitives as multiple attractor dynam-
ics: A robot experiment. IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans 33(4), 481–488 (2003)

43. Wermter, S., Panchev, C., Arevian, G.: Hybrid neural plausibility networks for news
agents. In: Ford, K., Forbus, K., Hayes, P., Kolodne, J., Luger, G. (eds.) Proceedings of
the 16th National Conference on Artificial Intelligence (AAAI 1999), Orlando, USA, pp.
93–98 (1999)

44. Widrow, B., Hoff, M.E.: Adaptive switching circuits. IRE WESCON Convention
Record 4, 96–104 (1960)

45. Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent networks and
their computational complexity. In: Chauvin, Y., Rumelhart, D.E. (eds.) Backpropaga-
tion: Theory, Architectures, and Applications. Lawrence Erlbaum Associates, NJ (1995)

46. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neu-
ral network model: A humanoid robot experiment. PLoS Computational Biology 4(11),
e1000220 (2008)

Learning to Look and Looking to Remember:
A Neural-Dynamic Embodied Model
for Generation of Saccadic Gaze Shifts
and Memory Formation

Yulia Sandamirskaya and Tobias Storck

Abstract. Looking is one of the basic sensorimotor behaviours, which entails rep-
resentation of the visually perceived target and transformation of this representation
in a motor signal, which moves the eye to center the target object in the field of view.
Looking facilitates memory formation, bringing objects into the portion of the reti-
nal space with a higher resolution. It also helps to align the internal representations
of space with the physical environment. In this chapter, we present a neural-dynamic
architecture, which integrates several processes, involved in looking, such as target
selection, generation of motor signal, adaptation of gaze shift’s amplitude, memory
formation, scene exploration, and the coordinate transformations. We demonstrate
the functioning of the architecture on a simulated robotic agent and provide a dis-
cussion of its implications in terms of neural-dynamic and cognitive modelling.

1 Introduction

When we look around a room, we don’t even notice our own fast and frequent
gaze shifts - saccades, - which scan the environment around us, bringing potentially
interesting portions of visual input into our fovea for detailed examination. We,
instead, have an illusion of a continuous perception of the room and objects in it,
ready to be acted upon. We can direct actions at objects around us based on our
memory, collected in the fixation periods between discrete saccadic eye movements.
How does our neural system accomplish this task? This question has been asked for
decades now [2, 12]. How may we build an artificial looking system with similar
properties?

Let us follow the processes involved in looking and which our neural system
uses to derive a useful representation of the body’s surroundings from a sequence
of saccades. First, the luminance of light, reflected from objects around us, induces

Yulia Sandamirskaya · Tobias Storck
Insititut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany
e-mail: {yulia.sandamirskaya,tobias.storck}@ini.rub.de

c© Springer International Publishing Switzerland 2015 175
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_9

176 Y. Sandamirskaya and T. Storck

activity patterns on the retina of our eyes. This activity is projected onto the visual
cortex and subcortical structures, in which the neuronal attentional mechanisms se-
lect a single target for the next saccade. Next, the precise and fast eye movement is
generated and brings the interesting part of the visual input into the fovea. Falling
onto the fovea, the features of the visual patch may be examined at a better resolution
and the identity of the object in this location may be recognised. Moreover, at this
moment, the location of the visual patch has to be stored in a useful way, i.e. so that
it may be fused with information, collected from previous and upcoming fixations.

Several parts of this process have been examined experimentally, and both neu-
rologically and behaviourally realistic models were developed. Despite the seeming
simplicity of the looking system1, the neural circuitry involved in saccades genera-
tion has an immense complexity. For instance, the selection of the saccade’s target
involves attentional processes, which include both bottom-up, saliency-based com-
putation [17], and top-down influence of context, presence of distractors and alterna-
tive targets, memory, or task cues. The generation of a saccade towards the selected
target, in its turn, is not trivial, since the variability in the neuromuscular system
of the eye calls for a permanently running calibration process between the retinal
frame of reference and the motor system [5, 15, 24]. Such calibration processes
related to the control of gaze-shifts were found in cerebellar cortex and are hypoth-
esised to be modulated by reward-related basal ganglia loops. Finally, the reference
frame transformations between retinotopic, gaze-centred, head-, and body-centred
coordinates are needed to fuse information between saccades, to generate saccades
to remembered targets if intermediate saccades are involved (double-step saccades),
as well as to directed, e.g., arm movements towards visually perceived targets. These
processes are hypothesised to be located in the prefrontal cortex [9].

As summarized by Girard and Berthoz [13], several cortical and subcortical re-
gions are involved in generation of the saccadic eye movements (or gaze shifts)
in humans and primates. Each of these regions, in its turn, has a complex struc-
ture and the modelling and experimental work on untangling these structures – tak-
ing into account the behavioural and neurophisiological data – is far from being
complete yet.

In this paper, we show how a neural-dynamic framework, based on Dynamic
Field Theory, allows to implement an embodied, dynamic, autonomous, and adap-
tive model for looking behavior. We demonstrate the properties and function of the
model by implementing the neural-dynamic architecture on an embodied (here, sim-
ulated) robotic agent, connecting its sensors (camera) and motors to the architecture.
We introduce visual scenes to the robotic camera and observe the behaviour – both
of the network and of the simulated robotic hardware. This approach enables a tight
integration between modelling and behaviour analysis, linking the neural, architec-
tural level with the behavioural level.

Our model integrates several functional components, which evolve around look-
ing behaviour. In particular, the agent is able to calibrate itself and learns to look
at objects based on a vision-based error-estimation module. The agent is able to

1 Looking is probably the most basic behaviour, which arises on the intersection between
the sensory input and motor control; compare it with arm movements, for instance.

Learning to Look and Looking to Remember 177

adapt to abrupt changes in the sensorimotor plant or in the environment, as demon-
strated in adaptation experiments. Moreover, the robot builds a memory of the ob-
served scene, which integrates the feature information about the objects in the scene
with spatial information. A transformation to a body-centred reference frame is per-
formed to make memory independent of the current gaze direction of the camera.
We deal with exploration of a scene and inhibition of return, which allows to scan
the scene with several objects with different saliency. We demonstrate memory and
double-step saccades, as well as simulate an experiment on saccadic adaptation.

Certainly, the model does not address all issues and does not tackle all problems,
involved in understanding the saccade generating circuitry. However, it makes an
important step towards this understanding, by, first, testing a framework, in which
neuronal mechanisms may result in real world behaviour, bridging the mechanistic
and behavioural levels. Critically, in this framework, the modelled neural circuitry
may be simulated continuously in time and may be linked to noisy and varying real-
world sensory inputs and effectors. Second, the framework allows to integrate many
functional modules and thus study the saccadic system as a whole, in an integrative
framework, instead of looking at its subsystems in isolation. Such a ‘wholistic’ ap-
proach provides additional constraints for modelling, which are set by considering
the system as a whole, instead of looking at it as a sum of its components. Finally,
the functionally-driven approach allows to look beyond a mechanistic devision of
the saccadic system according to neurophysiological units, found in the brain, and
allows to consider solutions, in which particular function is served by several such
units and is not localised to a particular brain structure. We believe that such func-
tional models will ultimately shed light on how the brain solves the problem of
generating precise saccades.

The model, presented here, is not claimed to be complete and we also didn’t aim
at relating its elements to the neuronal structures, although such mapping will be ex-
emplarily done in the discussion, but is an initial presentation of the neural-dynamic
modelling framework with, hopefully persuasive, demonstration of its power to un-
derstand the neural circuitry in behavioral terms. The architecture may also have
technical application, being a proof-of-concept demonstration of a self-calibrating
robotic system, similar to a model presented in [3], but with an increased auton-
omy, which learns to look at objects in its environment and autonomously update
the involved internal sensorimotor mappings when needed.

2 Methods

The architecture for generation of adaptive looking behaviour, which we present
in this chapter, is built within Dynamic Field Theory (DFT) – a mathematical and
conceptual framework for modelling cognition based on population-level descrip-
tions of neuronal dynamics [1, 33]. In DFT, continuous activation functions, called
Dynamic Neural Fields (DNFs), represent different perceptual and motor variables,
critical for behaviour of an embodied agent. The DNFs may be coupled through
mappings, analogous to weight matrixes of neural networks, which are subject for

178 Y. Sandamirskaya and T. Storck

adaptation and learning. Critically, DNFs follow the dynamics, which allows for
localised attractor patterns – peaks of activity, which make DNF architectures be-
haviourally robust – the behaviourally relevant states of the dynamics correspond to
attractors and thus the correct behaviour may be guaranteed.

Here, we present the main functional and structural units of DFT, used in the
architecture, whereas a more thorough discussion of the DFT framework may be
found in [32, 29].

2.1 Dynamic Neural Fields

Dynamic Neural Fields describe activity of populations of biological neurons in
terms of continuous functions, defined over behavioural parameters, to which the
neurons are sensitive. These continuous functions are descriptions, which abstract
away the discrete nature of individual neurons, as well as the spiking character
of their activity. A differential equation (1) specifies how the activation functions
evolve in time in DFT, as analysed by [42, 14, 1].

τ u̇(x, t) = − u(x, t)+ h+
∫

f (u(x′, t))ω(|x′ − x|)dx′+ I(x, t). (1)

In Eq. (1), u(x, t) is the activation of a dynamic neural field (DNF) at time t; x is
one or several behavioral parameters (e.g., color, pitch, space, or velocity), over
which the DNF is spanned; τ is the relaxation time-constant of the dynamics; h is
the negative resting level, which defines the activation threshold of the field; f (·)
is the sigmoidal non-linearity shaping the output of the neural field when it is con-
nected to other fields or self-connected; the self-connections of DNFs are shaped by
a Mexican hat lateral interaction kernel, ω(|x′ − x|), with a short-range excitation
and a long-range inhibition; I(x, t) is the external input to the DNF from the sensory
systems or other DNFs.

Equation (1) defines an attractor for the activation function, which is determined
by the external input, I(x, t), the resting level of the field, h, and the lateral interac-
tions, specified by the kernel, ω(|x−x′|). Critically in the DFT framework, a distinc-
tive type attractor of a DNF is a localized activity peak, which may be “pulled up”
by the lateral interactions from a distributed input with inhomogeneities. Such peaks
of activation are units of representation in Dynamic Field Theory [33]. Because of
the stability and attractor properties of the DNF dynamics, cognitive models formu-
lated in DFT may be coupled to real robotic motors and sensors and were shown
to generate cognitive behavior in autonomous robots [32, 6]. In particular, activity
peaks stabilise decisions about detection of a salient object in the visual input and
selection among alternatives, the stabilised representations are critical to linking to
motor control and performing cognitive operations on representations [29].

Learning to Look and Looking to Remember 179

2.2 Autonomous Control in DNF Architectures

A single DNF converges to an attractor – one or several localised activity peak(s) –
in response to its inputs and would stay in this state unless inputs change, bringing
about a different attractor. In this “passive” mode, a DNF could serve as a detec-
tion mechanisms, but wouldn’t be able to autonomously control actions of an agent.
To overcome this limitation, the DFT framework has been extended recently with
dynamical structures, which enable activation and deactivation of DNFs depend-
ing not only on the sensory inputs, but also on the cognitive task, which the agent
faces [31, 27]. These dynamical structures are zero-dimensional DNFs, or dynami-
cal nodes, with an activation following the Equation (2).

τ ṅ(t) = − n(t)+ h+ c f (n(t))+ I(t). (2)

The dynamics of activation function n(t) of a dynamical node is equivalent to
dynamics of a zero-dimensional DNF. This dynamics is bi-stable: the node can be
in an active (i.e., activation is above the threshold, defined by the sigmoidal output
function f) or in an inactive state. An active state may be sustained event if the ex-
ternal input, I(t), which initially activated the node, decreases below the activating
levels. The self-excitatory term with a strength c accounts for this behavior. If the
self-excitation parameter is high enough, the node may stay active even if the ini-
tial input, which caused its activation, ceases completely. In this case, an external
inhibitory input is needed to deactivate the node.

For autonomous control of DNFs, two such nodes are introduced for every ele-
mentary (cognitive) behaviour in the agent’s repertory: an intention node activates
DNFs, which bring about a particular (motor or intrinsic) action, and a condition
of satisfaction node is activated when the desired action outcome is perceived to be
achieved and the intention can be inhibited [30].

In our looking architecture, these nodes play an important role in starting and
finishing different phases of the gaze shift – the saccade initiation and termination,
activation of the fixation, learning, and memory formation processes.

2.3 Learning with DNFs

The basic learning mechanism in the DFT is the formation of memory traces of
positive activation of a DNF [41]. The memory trace – called preshape in DFT –
is a dynamical layer, which receives input from the respective DNF and projects
its output back to this DNF. The memory trace projection facilitates activation of
the DNF at previously activated locations (positive preshape), or inhibits DNF at
previously activated location (negative preshape, which accounts for habituation and
exploration). The preshape layer follows the equation (3), [29].

τl Ṗ(x, t) = λbuild

(
−P(x, t)+ f

(
u(x, t)

))
f
(
u(x, t)

)−
−λdecayP(x, t)

(
1− f

(
u(x, t)

))
. (3)

180 Y. Sandamirskaya and T. Storck

Here, P(x, t) is the strength of the memory trace at site x of the DNF with activity
u(x, t) and output f

(
u(x, t)

)
, λbuild and λdecay are the rates of build-up and decay

of the memory trace. The build-up of the memory trace is active on the sites with
a high positive output f

(
u(x, t)

)
, the decay is active on the sites with a low output.

The memory trace P(x, t) is an additive input to the DNF dynamics.
Two DNFs may be coupled through a higher-dimensional memory structure, sim-

ilar to a weight matrix in the standard neural networks. In DFT, such weight matrix
is adapted through the mechanism of memory trace formation, which is in this case
equivalent to a Hebbian learning process. The coupling is strengthen between loca-
tions in two DNFs, which are activated simultaneously, according to Equation (4).

τẆ (x,y, t) = ε(t)
(
−W(x,y, t)+ f (u1(x, t))× f (u2(y, t))

)
·

·
(

f (u1(x, t))× f (u2(y, t))
)
. (4)

Here, the weights function, W(x, y, t), which couples two DNFs, u1(x, t) and u2(y, t)
has an attractor at the intersection between positive outputs of the DNFs. The in-
tersection is computed as a sum between the output of u1, expanded along the di-
mensions of the u2, and the output of the u2, expanded in the dimensions of the u1,
augmented with a sigmoidal threshold function (this neural-dynamic equivalent to
the Kronecker product is denoted by the × symbol). Learning is only active at the
intersection of the active regions in fields u1(x, t) and u2(y, t) to prevent spontaneous
forgetting of previously learned associations. The shunting term ε(t) limits learning
to time intervals, specified by the autonomous control of the overall architecture, as
will be exemplified in our model.

The learning process is functionally robust if the coupling is updated only when
the two input DNFs are in a correct, behaviourally meaningful, state. In the looking
architecture, presented here, we combine the elements of intentionality with learn-
ing dynamics to demonstrate how the sensorimotor mapping, involved in looking
behaviour, may be autonomously learned.

2.4 DFT in Modelling Saccade Generation

In our work, we rely on several properties of DFT, which already have been probed
in modelling certain aspects of saccades, in particular the target selection and time
course of decision making in saccade preparation. The following models are par-
ticularly relevant to our work, since they use the same mathematical model for the
layer, which performs selection of saccadic targets and thus our model “inherits”
the properties, established for this layer.

The first model, which used a dynamic neural field as a layer for target selection
in a saccades generation system was introduced by Kopecz and colleagues [18]. The
planned eye movement was represented in a neural field with visual and task-related
(pre-) input converging on this field. The model could account for a transition from
averaging between two presented targets to precise saccades to one of the two targets

Learning to Look and Looking to Remember 181

depending on the distance between the targets and the strength of the memory for the
two locations from preceding saccades. The architecture features an active fixation
system, similar to the one we use in our model.

The effects of lateral interactions in superior colliculus (SC) on the saccade re-
action time were studied by Trappenberg and colleagues [38] in their work, which
provides a link between behavioural studies of saccade generation and the underly-
ing neural substrate. This model considers integration of different input sources for
the selection of a single target in SC with a dynamic neural field and may account for
experimentally observed delays in saccade initiation. Behavior of the model closely
resembles activity of neurons and the model can account for many observations
related to saccade initiation.

Willimzig et al [40] has also studied the time-course of saccadic decision making
within dynamic field theory. To initiate a saccade, the system has to overcome fix-
ation, which may be more or less difficult depending on the fixated object and the
overall scene. The transition from fast averaging saccades to more time-lagged se-
lective saccades is again demonstrated here using DNF layer for target selection. A
similar DNF framework for movement representation was used in modelling prepa-
ration of arm movements [7].

These previous models have demonstrated the power of DFT in preparation and
planning of saccades. Here, we extend these models to an architecture, which may
actually realise the planned saccades, check for their accuracy, and adapt saccades’
amplitude if needed.

3 The Model

3.1 The Overall Architecture for Looking

Figure 1 depicts the overall architecture for looking. It is a fairly complex network,
since it accomplishes several functions apart from generating gaze shifts towards vi-
sually perceived targets. The architecture may be described in terms of the following
interconnected modules. The perception module integrates over time and stabilises
the visual input from a simulated robotic camera, as well as the proprioceptive input
from the motor system of the simulated robotic agent. The precise saccades to the
visually perceived targets are generated in the saccade generator system. The am-
plitude of the saccades for every retinal position and current gaze angle is learned
in a set of gain maps within the learning module. There is one set of gain maps
for each of the two motors of the robot. Next, the fixation system tracks the object
between successive saccades and triggers memory processes in the memory system,
which, on the one hand, steers exploration of the scene, decreasing the competitive
advantage of those object in the scene, which are already put to memory, and, on the
other hand, creates an allocentric representation of the objects in the scene, which
can be used to generate saccades from memory, double step saccades (using the
planning saccades system), or arm movements towards the target. Next, we will
walk through the most important parts of this architecture, explaining how different
functions of the network are brought about.

182 Y. Sandamirskaya and T. Storck

visual
perception

DNF

Gaze-
color

memory

smooth
pursuit

dynamics

center
vis.
field

memorize

camera

no target

fixation

end-of-fixation

color faster
memory

color slower
memory

gaze
perception

DNF

motor
Visual
target
DNF

Gaze
difference

learninggaze
memory

Gaze
Target
DNF

Weight
and direction

Selection

too far/
too

close
Gain Maps

camera

motor

∫

no go, plan

saccades generator system

fixation
system

planning saccades system

learning

agent

p
er

ce
p

ti
o

n

color

integrator

m
em

o
ry

 s
ys

te
m

no go, plan

Fig. 1 The overall architecture

3.2 Perception

The perceptual system consists of a three-dimensional visual perception DNF,
which spans the dimensions of color and the retinotopic space (modelled to be a
cartesian space here, but a polar version with foveal expansion is possible as well).
The RGB output of the robotic camera is split into three color channels – hue, satu-
ration, and value. The saturation channel is used to perform the basic figure-ground
segregation and create a course saliency map, which highlights regions in the visual
space, for which the hue value is extracted and input to the visual perception DNF.
The hue (color) dimension is additionally stabilised by a coupled one-dimensional
color DNF. The visual perception DNF requires this supporting input to form a sta-
bilised activity peak over a selected object in the scene. This support from the color
field is suppressed for objects, which are already stored in memory. Thus, such ob-
jects have a disadvantage in the competition to be selected for the next looking act2.

The center of visual field is another three-dimensional DNF, which receives in-
put from the central portion of the camera image. This field may only build activity
peaks from the camera input when the fixation node is active and provides an addi-
tional boost to this DNF (i.e., raises its resting level), signalling that a saccadic gaze
shift has been finished. An activity peak in the center of visual field DNF activates

2 This ‘habituation’ happens along color dimension, but habituation along retinal space is
also possible [36], both processes have to be balanced to account for human looking data.
Here, we keep this system simple since accounting for experimental data is not the focus
of the work reported here.

Learning to Look and Looking to Remember 183

two processes in the architecture: memory formation and smooth pursuit dynamics,
briefly described in the next section.

The gaze perception DNF receives input from the motor system of the robotic
agent and represents the current proprioceptive state of the motor system.

3.3 Motor Control

The motor system of the agent consists of two motorised joints – the pan and tilt
joints of the camera-head unit. The pan joint corresponds to rotation of the camera
head around the vertical axis between the two cameras of our robot (only one of
the cameras was used in this work; the camera’s optical axis is not crossing the
axis of the pan joint). The tilt joint corresponds to the incline of the camera – a
rotation around the horizontal axis (which is also not aligned with the image plane
of the cameras). Note that the arrangement of the motor rotation axes and the camera
image provides for a non-linear mapping between the reference frame of the camera
image (‘retinal’ reference frame) and the reference frame of the motor system.

The two motors – the pan and tilt motors – are servo motors, which may receive
both position and rotation speed commands. We have used speed control in this work
to make the motor system somewhat confirm with the biological motor systems
(still, buying into significant simplifications compared to muscle control). The two
motors coarsely correspond to the horizontal and vertical control of the eye. The
rotation of the eye-ball was not modelled here.

During saccades, the saccade generator system sends velocity commands directly
to the two motors of the camera head. During smooth pursuit movement, a dynam-
ical system, which has an attractor at the visually perceived target, provides the
velocity input for the two motors and performs visual servoying around the target
object. The visual servoying towards the target is not possible during saccadic gaze
shifts, since they are performed too fast for the visual processing to influence their
course.

Next, we will describe the system, which may generate correct velocity com-
mands based on the visual perception of the target in the retinal frame of reference.

3.4 Saccade Generator

Since the saccades (in humans and primates) are very fast movements3, the neural
system needs to generate the complete velocity profile, which will bring the eye’s
fovea onto the target. In our architecture, this velocity profile is generated by a neu-
ral oscillator, as described next. In particular, the neural oscillator is part of a central
control unit, which generates the saccades gaze shifts and controls the temporal
dynamics of the overall architecture. This unit consists of six dynamical nodes, de-
picted in Figure 2.

3 Which ecologically makes sense, to minimise the time when the eye moves and both vision
and calibration with the outside world are disturbed.

184 Y. Sandamirskaya and T. Storck

initiate

burst

reset

end-of-
burst

end-of-
fixation

fixation
center of

visual field

smooth
pursuit

gain maps
adaptation

motor
system

visual
target
field

Fig. 2 A neural circuit, which generates the gaze-shift velocity profile. Grey shaded circles
denote the six central nodes, which control gaze shift generation. Black arrows show exci-
tatory connections between the nodes, lines with filled circles – the inhibitory connections.
Blue arrows are outputs of the system to other parts of the architecture, red arrows are inputs
to the nodes structure.

The burst and reset nodes constitute the neural oscillator. If a constant input is
provided to the burst node, this pair of nodes gets activated and deactivated in al-
ternation: the burst node activates the reset node, which in its turn deactivates the
burst node and consequently looses its own activation, and the cycle repeats. In our
setting, however, this system, generates a single “oscillation” in the following way.
The reset node is lifted to be self-sustained by the input from the visual target field
and only looses its activation when the whole gaze-shift action is finished (i.e. when
the visual target field is inhibited by the end-of-fixation node). The active reset node
keeps the burst node inhibited until a new target is selected for the gaze shift.

Activation of the burst node drives the motor system of the agent by sending ve-
locity commands to both the pan and tilt motors. The amplitude of the burst specifies
the peak velocity of the gaze shift and, implicitly, its amplitude. The busts’s ampli-
tude is set by the adaptive gain maps – one for the horizontal movement, generated
by the pan motor, and one for the vertical movement, generated by the tilt motor.
The adaptive dynamics of the gain maps will be presented in Section 3.5.

The burst node is activated by the initiate gaze shift node, which is effectively
the intention node of the gaze shift behaviour. The end-of-burst node detects when
one burst is finished and activates the fixation node, which, eventually, drives the
fixation and the smooth pursuit systems of the architecture. When the fixation sys-
tem brings the object in the center of the visual field and the memory for this object
is updated, the end-of-fixation node is activated and resets the gaze shift elementary
behaviour by inhibiting the visual target field, which provided the initial input to this
system.

Figure 3 shows the time-course of activation of the five nodes from Figure 2 for
two subsequent gaze shifts, demonstrating how the autonomous organisation of the
architecture works – like a clock, turned on by the target field when a new target to

Learning to Look and Looking to Remember 185

36.8 36.85 36.9 36.95 37 37.05 37.1 37.15 37.2
−0.2

0

0.2

0.4

0.6

0.8

1

B

R

E

F

E

t, sec

sig
m

oi
de

d
ac

tiv
at

io
n

burst
reset
end-of-burst
fixation
end-of-fixation

saccade fixation end of gaze shift

Fig. 3 A sequence of two gaze shifts, each consisting of a saccadic part, driven by the Burst
node (red line shows sigmoided activation of the Burst node), and a fixation part, in which the
target object is tracked, memory is formed, and adaptation is performed if needed (magenta
line shows activation of the Fixation node), the gaze shift is finished when the End-of-fixation
node is activated (dashed black line) and the Reset node (green line) is inhibited, releasing
the Burst node from inhibition, which may now generate the next saccade.

look at is detected and turned off by the fixation dynamics, when the target is centred
in the camera’s view and its location and features (color) are stored in memory.

3.5 Saccade Amplitude and Gain Maps

The peak velocity of the saccadic gaze shift is defined by the values, stored in the
gain maps, which are initially learned and are constantly adapted in a learning pro-
cess after each gaze shift. Each gain map is defined over the same space as the visual
target DNF – the retinotopic (here, camera image) space. There is one gain map for
each starting gaze angle, i.e. for every possible state of the eye (here, of the camera
motors). This means that the gain map is a four-dimensional structure, with two vi-
sual (retinal) dimensions and two motor dimensions. Further, there is one such map
associated with each of the motors of the system (the pan and tilt motors).

The maps control the precise vector of the saccadic gaze shift as follows. The
output of the visual target field is multiplied with a slice of the four-dimensional
gain map, selected by the currently perceived (before the gaze shift) gaze position
(the pan and tilt values stored in the gaze memory DNF). When a peak is built in the
visual target field, this multiplication effectively selects a region on the gain map,
which is specified by the location of the activity peak in the visual target field. Thus,
the gain maps function as synaptic weights between the visual target field and the
circuitry, which generates motor commands. Moreover, these synaptic weights are
modulated by the input, which specifies the gaze angle before the saccade. Formally,
the gain maps constitute a tuneable (or steerable) map between the retinal and the
motor frames of reference [9]. The result of the multiplication of the output of the
visual target field with the gain map is integrated and is connected to the output of

186 Y. Sandamirskaya and T. Storck

the saccade generator system (Figure 2), amplifying the amplitude of the burst of
the neural oscillator. Figure 4 illustrates this process.

Perceptual DNF (2D projection) Visual Target DNF

Selected gain map
(horizontal)

Selected gain map
(vertical)

time

time

speed hor.

speed vert.

Saccade generation circuit

Fig. 4 Circuitry to generate saccades with a precise amplitude

The gain maps are initially homogeneous – all values in them are set to ones.
When a visually perceived target appears in this state, a saccade is generated with
such an amplitude in both motors that does not bring the target object into the central
portion of the camera image (retina). Thus, the fixation system does not get engaged,
but the error estimation module is activated and estimates whether the saccade was
too long or too short (too far / to close module in Figure 1) in each of the four direc-
tion in the image: left, right, up, and down (corresponding to four direction of the
eye movements’ ‘synergies’). The learning mechanism of Equation (5) updates the
gain map at the position, which corresponds to the active region of the visual target
field and the gaze angle before the saccade. The direction of adaptation (increase
of decrease of the values in the selected region of the gain map) is defined by the
output of the error estimation module.

τl Ġh,v(x,y,k, l, t) = εh,v(t) f (uEoS(t))
(

f (um(k, l, t))× f (utar(x,y, t))
)
. (5)

Here, Gh,v(x,y,k, l, t) are two sets of gain maps (for the ‘horizontal’ and ‘vertical’
components of movement). Each of the k× l gain maps in the two sets is defined over
the dimensions of the visual target DNF, utar(x,y, t). Each set spans k× l different
initial motor states (the pan and tilt joint angles in our setup). The gains change
in the map(s), which are selected by the output of the motor DNF, f (um(k, l, t)),
at the locations, which are set by the activity peak in the target DNF. f (uEoS(t))
is the output of the end-of-saccade node, which is required to be positive (saccade
finished) for learning to become active. εh,v(t) is the error in each of the movement
components, τl is the learning rate.

Thus, after each unsuccessful saccade the gain maps are corrected slightly in
a localised region. After sufficient experience with looking at visual targets in

Learning to Look and Looking to Remember 187

different locations in the image and from different starting gaze angles, the com-
plete gain maps are learned and the system is able to perform precise saccades from
any configuration. The maps are updated locally over a few gaze-shifts if an unex-
pected change in the sensorimotor plant happens.

3.6 Memory Formation and Exploration

After a precise saccade, the target object falls into the central part of the visual field,
as detected by the center of visual field DNF. The object is being tracked now by the
smooth pursuit dynamics, which sets an attractor at the visually perceived target and
visually servoys the camera at the objects. When the object is centred in the visual
field, its memory is formed in the three-dimensional color-gaze memory field, which
is critical for creation of an allocentric memory for the object and for generation of
memory saccades. The part of the architecture, which forms memory during fixation
and biases the perceptual system during exploration is shown in Figure 5.

visual
perception

DNF

Gaze-
color

memory

smooth
pursuit

dynamics

center
vis.
field

memorize

camera

no target

fixation

end-of-fixation

color faster
memory

color slower
memory

gaze
perception

DNF

motor

Fig. 5 Part of the architecture responsible for memory formation and exploration
(habituation)

Here, the activated center of visual field DNF activates the smooth pursuit dynam-
ics, which fixates the object in the center of visual field, even if the object moves.
As long as movement is generated by the smooth pursuit dynamics – i.e. the object
is not yet centred in the visual field and its location in gaze coordinates is not stable,
– the memory formation process is suppressed by a lacking boosting input from the
memorise node. When the object is centred in the visual field of view, the memory

188 Y. Sandamirskaya and T. Storck

formation process is activated in the three-dimensional color-gaze memory DNF,
which forms an allocentric memory of the objects in the visual scene, represented
in gaze-coordinates. If there is no object perceived in the center of visual field (the
no target node is activated), the corresponding location in the color-gaze memory
DNF is inhibited. If there was an object memory stored at this location, its memory
representation ceases.

On the other hand, the center of visual field DNF boosts the color faster memory
field, which builds a memory representation of the color of the currently observed
object. This representation inhibits the visual perception DNF along color dimen-
sion for the subsequent saccades. Thus, when the next saccade target is selected,
the colors that are already in memory have less chances to induce a peak in the
perception DNF. The color slower memory builds up preshape activity hills on a
more slower time scale. These preshape hills eventually delete the peaks from the
faster color memory field, releasing the respective color to participate in the target
selection during exploration.

3.7 Prediction and Memory-Driven Saccades

On the right side of Figure 1, the planning saccade system is depicted. In this sys-
tem, the saccades’ targets are represented in the body-centred gaze coordinates. This
gaze-target DNF receives input either from the gaze-memory DNF, if saccade is to
be performed to a memorised object, or from an integrator, which predicts the gaze
coordinate of a visually perceived target without performing a saccade. The latter
path allows the system to perform double-step saccades, when two targets are pre-
sented to the system and the agent has to saccade to them in a sequence only when
both targets are no longer visible. In this case, the system “simulates” two saccades
from the fixation point and stores the predicted gaze angle after each such virtual
saccade. These stored gaze-representations of the targets’ locations can then be used
to generate eye movement towards both targets, even though the retinal representa-
tion of the second target would shift after the first saccade.

4 Results of Simulated Experiments

The architecture, sketched in Figure 1, was implemented using an open-source C++
framework cedar, www.cedar.ini.rub.de [20], which allows to build neural-
dynamic architectures using a graphical user interface and simulate them efficiently
on a conventional computer. The simulation basically consists in solving the cou-
pled differential equations (the core equations, which form the building units of
the architecture, were presented in Section 2 of this chapter) using Euler method.
The cedar framework also offers an interface to robotic hardware, including cam-
eras. The interface may be used both with real and simulated robots. In this work,
we have used a simulated CoRa robot [16], in particular its camera, mounted on a
motorised pan-tilt unit. Although cedar offers plotting routines to visualise the ar-
chitecture during its function for monitoring purposes, we have collected the data

www.cedar.ini.rub.de

Learning to Look and Looking to Remember 189

from simulation and have analysed and plotted it offline, using standard MATLAB
routines. The data consists of matrices of activation of the dynamic neural fields and
nodes of the architecture. Here, we exemplify some of the architecture’s functions
based on this collected data from simulated experiments.

4.1 Gaze Shifts Generation

Saccades, generated by humans or primates, have particular properties, which are
well-studied in a controlled experimental settings. Here, we demonstrate that the ba-
sic properties of real saccades may be replicated in our system. Note that the archi-
tecture was not tuned to model the dynamic properties of human saccades, but still
the trajectories and velocities of saccades resemble the respective behavioural plots.
Figure 6a shows examples of velocity profiles, generated by the neural-dynamic
gaze-shift generator in the simulated robot for gaze shifts of different amplitudes.
Note the constant duration of the gaze shift, as typically observed in eye movement
studies, and the varying peak velocity for saccades of different aptitudes. This prop-
erty is part of the ‘main sequence’, postulated in studies of the primates’ saccade
generating system.

pa
n

sp
ee

d

time

Velocity profiles of saccades

(a) Generation of saccades of different ampli-
tudes. Demonstration of the relation between
the peak velocity and amplitude of saccadic
gaze shifts.

0

-0.1

-0.2

-0.3

-0.4
0 0.1 0.2 0.3 0.4

Saccade to a target on a vertical screen

image coord. x

im
ag

e
co

or
d.

 y saccade trajectory

straight line

target

(b) Trajectory of an oblique saccade.

Fig. 6 Illustration of the basic properties of the saccade generating system

Figure 6b shows the trajectory of an eye movement (projection of the gaze di-
rection on a vertical plane, in which the target is presented) towards a target, which
requires activation of both the vertical and horizontal movement systems. The tra-
jectory is very close to a straight line, as observed experimentally. In our architec-
ture, this property is achieved by a mechanisms, similar to the mechanism proposed
by [35] for generation of two-dimensional saccades: both horizontal and vertical

190 Y. Sandamirskaya and T. Storck

movements are produced by the same neural burst generator, which output is scaled
differently for the two components of the movement. This results in almost straight
oblique saccades, when both the target and the gaze direction are projected on a
vertical plane. The shape of saccade trajectories in 3D, when targets are located on
a horizontal plane at different distances, is yet to be established experimentally and
can be simulated in our framework.

4.2 Scene Exploration and Memory Formation

Figure 7 demonstrates how a visual scene (here, consisting of three coloured objects)
is explored by the system.

On the left, four snapshots from the robot simulator show the simulated camera
image and the visual scene in front of the robotic camera head. In the first snapshot,
the robot observes the scene with three objects. The red object induces the largest
blob in the camera image (since it is closer to the robot on the table) and is selected
by the visual perception DNF as the saccade’s target. The robot performs a saccadic
gaze shift followed by a fixation dynamics towards the red object (second snapshot).
Now, only the yellow object is visible in the camera image and is selected by the
robot for the next gaze shift. When the yellow object is centred in the camera, both
blue and red objects are visible (third snapshot). Although the red object is more
salient in the camera image again, the blue object is selected for the next saccade,
because of the inhibitory influence of the memory on the selection dynamics in
the visual perception DNF. Finally, the blue object is fixated by the system (forth
snapshot) and its representation is stored in the gaze-based scene representation.

On the right of Figure 7, the summed activations of the saliency in the camera
image and the visual target DNF are shown. Note that during exploration, many
locations have significant saliency in the camera image (in fact, more than shown
in the figure – these are only the regions, which where active for longer periods
of time). In the visual target DNF, to the contrary, only the locations selected for
the saccade targets leave traces. The third plot shows the gaze-based (body-centred)
representation of the visual scene, built-up during scene exploration: after each suc-
cessful saccade, the gaze angles of the camera head are stored, which correspond to
the object in the scene, i.e. which bring the object in the center of camera field of
view (if the body of the robot does not move relative to the scene). The forth plot
shows the projection of line of sight of the camera on the table surface during the
experiment, as viewed from above. These projections show the scan paths of the
camera head over the scene.

In this demonstration, it may be seen how a visual scene triggers a sequence of
saccades in the system. Each object is fixated by the camera in a succession and
the gaze angle of the robot during fixation is stored as a self-sustained peak in the
memory field. The resulting memory representation may be used to direct saccades
to memorised, but currently not observed objects, as well as used for control of
movements, generated by other effectors of the robot (e.g., reaching), even if the
robot looks away from the object (e.g., to look at the arm or the next object in a
longer sequence of actions).

Learning to Look and Looking to Remember 191

Snapshot 1: before looking

Snapshot 2: after gaze shift 1

Snapshot 3: after gaze shift 2

Snapshot 4: after gaze shift 3

20 40 60 80 100 120

10

20

30

40

50

60

70

80

90

Summed camera images
(most salient)

Summed output of Visual Target DNF

Gaze directions projected
on the table-top

Gaze-based scene memory

tilt, motor units

pa
n,

 m
ot

or
 u

ni
ts

retinal x

re
tin

al
 y

retinal x

re
tin

al
 y

Fig. 7 Left: Simulated robot exploring the scene. Right: the summed visual input to the
architecture, the summed activity of the visual target DNF, gaze-based memory of the scene
at the end of exploration, and the gaze-trajectory, projected on the table-top (sampled at 100
frames per second).

4.3 Gain Maps Learning

The precise gaze shifts, demonstrated in the previous experiment, are the result of a
learning processes, in which the gain maps, which specify the saccades’ amplitudes,
are adapted. Figure 8 shows the convergence of the learning process for a single
location in one of the gain maps, in which the initial error of more than 3 cm is
reduced over a few saccades (five here) to values below 0.5 cm.

192 Y. Sandamirskaya and T. Storck

Saccadic error during gain map
adaptation for one position

er
ro

r*1
0,

 c
m

time*10, ms

Fig. 8 Convergence of gain map for a single location

The two four-dimensional gain maps, learned for the horizontal and vertical
movements are shown in Figure 9. The maps reflect the geometry of the robot
and implicitly encode the amplitudes of the pan and tilt shifts for different shifts
in the retinal frame of reference. Note that the mapping between the image and
motor coordinates is non-linear here and changes significantly with initial gaze
angle of the camera head. Especially with changing initial tilt-configuration, the
amplitude of the motor signal changes for the same shift in the retinotopic coor-
dinates. The pan-configurations play a lesser role in our robotic architecture, since
changes in initial pan do not change the mapping between shifts in retinal and motor
coordinate frames much.

Ti
lt

ga
ze

 a
ng

le

Ti
lt

ga
ze

 a
ng

le

10

0
300-30

10

0
300-30Pan gaze angle Pan gaze angle

A: Gain map for horizontal gaze shifts B: Gain map for vertical gaze shifts

Fig. 9 Gain maps learned by the system. Nine slices are shown for three selected pan and tilt
values of the initial pose (gaze angle) of the camera head.

Learning to Look and Looking to Remember 193

4.4 Modelling Adaptation Experiments

Adaptation of the amplitude of the saccadic gaze shift, as demonstrated in [24] is
exemplified in Figure 10. Here, the robot first learned the complete gain maps and
was able to perform precise saccadic gaze shifts from any starting configuration. In
a scenario, which simulated the adaptation experiment, the target object was shifted
horizontally during the saccadic gaze shift, so that the saccade landed (in the case,
shown here) behind the target, i.e. the saccade was too long. The perceived error was
used to updated the gain map, similarly as during the initial learning process, so that
the new, adapted, gain map generated a saccade of the amplitude, which brought the
shifted target in the fovea.

The adaptation is only effective for a localised region both in terms of reti-
nal location of the target and the gaze angle prior to the saccade. In combi-
nation, the adaptation generalises to a region in the allocentric (here meaning
gaze-angle independent) reference frame. This result is conform with recent
experimental studies [44].

(a) Map for horizontal gaze shift (b) Map for vertical gaze shift

Fig. 10 Gain maps adapted at one location. The adapted region is marked with the arrow.

The time-course of the simulated adaptation experiment is shown in Figure 11.
This figure shows the increase of saccadic error at the offset of the adaptation ex-
periment (seventh saccade shown in the figure) and a gradual decrease of the error
back to the optimal level in the course of several saccades.

5 Discussion

This paper has introduced a computational framework and a neural-dynamic archi-
tecture for generation of adaptive looking behaviour in an embodied agent. The be-
haviour and the computational network share several characteristics with the human
looking system.

194 Y. Sandamirskaya and T. Storck

Fig. 11 Time course of adaptation: error magnitude for the adapted location over the course
of adaptation experiment

5.1 Strengths and Limitations of the Architecture

The power of the framework we used in our modelling is in its dynamics. Thus,
the introduced architecture is a process model and allows to model not only the
structure, but also the dynamics of neural processes within this structure. Moreover,
this dynamics is autonomous and embodied, which means that it may be connected
to real sensors and motors and produce behaviour in real time.

The dynamic fields theory provides for stability of the building units of the archi-
tecture and enables coordination between different subsystems.The stability prop-
erty of the dynamic neural fields has been established theoretically [1, 14, 42] and
leads to robust, controllable, behaviour. The behaviourally relevant states of the neu-
ral system are represented in this framework as attractors, which persist long enough
to have impact on the downstream structures. Transitions between attractors are in-
stabilities and their course is autonomously controlled by an interconnected set of
dynamical nodes, which organise behaviour of the architecture in time.

In the architecture, many different functional subsystems are integrated, some of
them were developed in recent years in the DFT framework, others are introduced
here for the first time (e.g. the adaptive weights coupled to a neural oscillator, the
motor-based scene memory, the error-detection network, the coordination between
smooth pursuit dynamics and saccade generation). Several functions of the look-
ing system are implemented in our model, such as memory formation, formation
of allocentric scene representation, habituation, scene exploration, adaptation, and
learning. Although not all properties of looking behaviour in humans and primates

Learning to Look and Looking to Remember 195

have been accounted for in our current system, the framework has a potential to be
extended and refined while keeping the behavioural stability of the overall network.

Another important characteristics of our architecture is that it is a function-based
model. This allows to avoid narrowing modelling too much on single brain areas,
as has been advocated early on in studies of the saccadic system [39, 13]. Thus,
the architecture presented here is a behavior-based, functional model, which may be
mapped on the substrate of neural circuits, involved in generation of eye movements.
This mapping onto neuronal substrate, however, even for a single functional module
of our architecture requires considering interactions among different neural circuits.
This avoids a simplifying view, when one cortical or subcortical region is made
responsible for a single function and every function is assigned to a single brain
region. Since our architecture was inspired by the neural and behavioural findings
about biological saccadic systems, we will provide a brief discussion of the neural
plausibility and relevance of our model in Section 5.2.

Several properties of the saccadic system have not been modelled here. Thus, our
current system cannot produce saccades with different durations. A more flexible in
this respect neural oscillator could solve this problem, or substituting the oscillator
with a resettable integrator, as in classical saccade generation models [28]. This
modification will also solve the problem that an interrupted saccade, currently, will
be resumed, but won’t end at the correct pose.

5.2 Discussion of the Architecture in Relation to the Neural
Mechanisms of Saccades Generation

The currently most widely accepted picture of the saccade generating circuitry in-
cludes the following neuronal structures [13]: superior colliculus (SC), saccadic
burst generators in the reticular formation, cerebellum, basal ganglia, and cortical
structures. Here, we review briefly how each of these brain areas is reflected in our
architecture.

5.2.1 Superior Colliculus

The SC is considered to be responsible for representation of the amplitudes and
directions of saccades in retinal coordinates. In our architecture, the visual (retino-
topic) target field accomplishes this role, since activity peaks in this DNF encode
the saccades targets in retinal coordinates. But also the spatial component of the
perceptual DNF probably corresponds to one of the SC layers. This field selects the
saccadic target, but does not keep this representation fixed during the eye move-
ment, but tracks the visual input to some extent. The burst, reset, and fixate nodes,
roughly correspond to the three different types of saccade-related neurons, found in
SC [21, 43]. The nodes perform the spatial-to-temporal transformation, which con-
verts the location of the activated region on the visual target map into a temporal
signal encoding the desired speed of the eyes, similar to other neural models, e.g.
[26]. The nodes of the saccade generating circuit may be seen in close connection to

196 Y. Sandamirskaya and T. Storck

the visual target DNF, and a more precise model of SC would have a number of lay-
ers with the topology of the visual target DNF and interconnected among each other
like the nodes in Figure 2. We are not modelling the log-polar topology of the SC
here – our visual target DNF has a cartesian structure, but the log-polar organisation
of this field can also be used [38].

5.2.2 Saccadic Burst Generators

Our saccade-generating circuit is similar to the burst, buildup, and fixate neurons,
proposed in several models for saccade generation [13]. This circuit provides for the
temporal properties and dynamics of saccades, in particular the relation between ve-
locity, amplitude, and duration of the saccade, time of its initiation, and reaction to
perturbations. The mechanisms we used to produce two-dimensional saccades are
closely related to mechanisms proposed in earlier models [8, 10], which include a
shared burst generator driving the two components of the eye movement through dif-
ferent gain factors. This setup results in straight oblique saccades. Experimentally,
it has not yet been decided on the nature and substrate of the saccade generating
motor signal [13], but an alternative to our solution would be a classical model by
[28], in which the motor command is integrated to achieve the target pose during
saccade generation. This solution may be realised in our architecture, but would
require the transformation from the retinal representation of the target to its motor
representation to be learned before this integration leads to saccades of the correct
amplitude.

5.2.3 Cerebellum

Fine-tuning of the saccadic amplitude, as well as corrections for changes in motor
plant are found to happen in the cerebellum [26, 22]. This structure is also consid-
ered to be responsible for taking the starting position of the eye into account and
compensating for the non-linearities of the motor system. In our architecture, the
gain maps correspond to this function of the cerebellar structures, in particular, they
attenuate saccades and provide for adaptation in the saccadic circuitry. The gain
maps also reflect to models of the cerebellum as the locus of supervised learning,
responsible for long-term calibration and adaptation of saccades’ gains. E.g., a sim-
ilar, but more abstract and relying on different error signals model is discussed in
[4] . Gain adaptation in our framework is similar to adaptation process described in
[11, 5]. Although in several models [19, 26, 23] the control of saccades’ accuracy
is controlled by the cerebellum only, cortical structures are probably also involved
in this process [13]. Which, again, shows that the correspondence of an established
function to the neural substrate might not be unequivocal.

5.2.4 Basal Ganglia

Error signal, generated by the ‘too-far, too-close’ module in our architecture, could
be neurally associated with inferior olive, as in the model of [34]. The error in our

Learning to Look and Looking to Remember 197

model is determined directly based on the visual input after the saccades, whereas
in their model the error is defined based on proprioception, using the memory of the
saccade signal, the non-confirmation of the correct cascade by the fixation system,
and the motor signal of the corrective saccade. In our framework, the error esti-
mation module takes input from the visual memory of the saccadic target and the
perceived visual representation of the target after the saccade and estimates whether
the target after the saccade is on the same or on the different side of the midline com-
pared to the original location of the target on the retina. This very basic operation
delivers meaningful results, which drive learning in the correct direction, even when
the corrective saccade also cannot be performed in the correct direction yet, since
the system is completely uncalibrated. An elaborated visual processing mechanism
to estimate visual error after saccade, which drives adaptation, has been discussed
in relation to experimental work on saccadic adaptation [24].

Since basal ganglia are probably also involved in overall temporal coordination
of saccade generation, our gaze shift generator nodes circuitry, which is responsi-
ble for temporal coordination of the gaze shifts, fixation, adaptation, and memory
formation, could partially reside in this region.

5.2.5 Cortical Structures: Adaptation and Spatiotopic Visual Maps

The location of adapted region in our gain maps depends on a combination of the
retinal position of the target and the position of the eye before the saccade. Conse-
quently, adaptation effectively influences the target location in the allocentric, body
centred frame of reference. This is conform with a recent experimental finding [44],
which establishes that adaptation influences saccade targeting for the same position
in the allocentric space. The spatial spread of the adapted region in our architec-
ture corresponds to the experimental findings as well [15]. Our gaze-based memory
representation of the visual scene resembles recent evidence, which shows that the
motor representation is what is updated in the double-step paradigm and is probably
used to plan multiple saccades [25]. Both these functions – learning of the saccade’s
amplitude and formation of memory for the visually observed scene – at least par-
tially are solved by cortical structures [37].

6 Conclusions and Outlook

The architecture presented here demonstrates how looking behaviour may be learned
autonomously and lead to formation of memory in body-centered coordinates,
which may be used to direct actions at objects around us. The model demonstrates
what it takes to create an illusion of the stable perception from a sequence of fast eye
movements, in particular the critical role in this process of adaptation and learning,
the temporal coordination between different processes and sensorimotor structures,
and interplay between memory formation and exploration. Considering the inte-
grated, dynamical system of functional modules allowed us to reveal how closely
interconnected different functions of the looking system may be. There are different

198 Y. Sandamirskaya and T. Storck

directions, in which this architecture may be developed. To add neural plausibility
and account for neural and behavioural data is one of them, whereas extending the
architecture towards a system, capable of learning to generate arm movements to-
wards visually observed targets and thus creating a more complex self-calibrating
embodied agent is another possible direction.

Acknowledgements. The authors gratefully acknowledge the financial support of DFG SPP
Autonomous Learning, within Priority Program 1567.

References

1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biolog-
ical Cybernetics 27, 77–87 (1977)

2. Aslin, R.N.: Perception of visual direction in human infants. In: Visual Perception and
Cognition in Infancy, pp. 91–119 (1993)

3. Chao, F., Lee, M.H., Lee, J.J.: A developmental algorithm for ocularmotor coordination.
Robotics and Autonomous Systems 58(3), 239–248 (2010)

4. Dean, P., Mayhew, J.E., Langdon, P.: Learning and maintaining saccadic accuracy: a
model of brainstem-cerebellar interactions. Journal of Cognitive Neuroscience 6(2),
117–138 (1994)

5. Ebadzadeh, M., Darlot, C.: Cerebellar learning of bio-mechanical functions of extra-
ocular muscles: modeling by artificial neural networks. Neuroscience 122(4), 941–966
(2003)

6. Erlhagen, W., Bicho, E.: The dynamic neural field approach to cognitive robotics. Journal
of Neural Engineering 3(3), R36–R54 (2006)

7. Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psychologi-
cal Review 109, 545–572 (2002)

8. Fuchs, A.F., Kaneko, C.R.S., Scudder, C.A.: Brainstem control of saccadic eye move-
ments. Annual Review of Neuroscience 8(1), 307–337 (1985)

9. Gail, A., Andersen, R.: Neural dynamics in monkey parietal reach region reflect context-
specific sensorimotor transformations. The Journal of Neuroscience 26(37), 9376–9384
(2006)

10. Gancarz, G., Grossberg, S.: A neural model of the saccade generator in the reticular
formation. Neural Networks (1998)

11. Gancarz, G., Grossberg, S.: A neural model of saccadic eye movement control explains
task-specific adaptation. Vision Research 39(18), 3123–3143 (1999)

12. Gibson, J.J.: The perception of the visual world (1950)
13. Girard, B., Berthoz, A.: From brainstem to cortex: computational models of saccade

generation circuitry. Progress in Neurobiology 77(4), 215–251 (2005)
14. Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architectures.

Neural Networks 1, 17–61 (1988)
15. Hopp, J.J., Fuchs, A.F.: The characteristics and neuronal substrate of saccadic eye move-

ment plasticity. Progress in Neurobiology 72(1), 27–53 (2004)
16. Iossifdis, I., Bruckhoff, C., Theis, C., Grote, C., Faubel, C., Schöner, G.: CORA:An

Anthropomorphic Robot Assistant for Human Environment. In: Proceedings of the 2002
IEEE Int. Workshop on Robot and Human Interactive Communication, Berlin, Germany,
September 25-27, pp. 392–398 (2002)

Learning to Look and Looking to Remember 199

17. Itti, L., Koch, C.: Computational modeling of visual attention. Nature Reviews Neuro-
science 2, 1–11 (2001)

18. Kopecz, K., Schöner, G.: Saccadic motor planning by integrating visual information and
pre-information on neural, dynamic fields. Biological Cybernetics 73, 49–60 (1995)

19. Lefèvre, P., Quaia, C., Optican, L.M.: Distributed model of control of saccades by supe-
rior colliculus and cerebellum. Neural Networks 11 (1998)

20. Lomp, O., Zibner, S.K.U., Richter, M., Rañó, I., Schöner, G.: A Software Framework for
Cognition, Embodiment, Dynamics, and Autonomy in Robotics: cedar. In: Mladenov,
V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.)
ICANN 2013. LNCS, vol. 8131, pp. 475–482. Springer, Heidelberg (2013)

21. Munoz, D.P., Wurtz, R.H.: Saccade-related activity in monkey superior colliculus. I.
Characteristics of burst and buildup cells. Journal of Neurophysiology 73(6), 2313–2333
(1995)

22. Optican, L.M.: Sensorimotor transformation for visually guided saccades. Annals of the
New York Academy of Sciences 1039, 132–148 (2005)

23. Optican, L.M., Quaia, C.: Distributed Model of Collicular and Cerebellar Function dur-
ing Saccades. Annals of the New York Academy of Science 956, 164–177 (2002)

24. Pelisson, D., Alahyane, N.: Sensorimotor adaptation of saccadic eye movements. Neu-
roscience & Biobehavioral Reviews 34, 1103–1120 (2010)

25. Quaia, C., Joiner, W.M., FitzGibbon, E.J., Optican, L.M., Smith, M.A.: Eye movement
sequence generation in humans: Motor or goal updating? Journal of Vision 10(14) (2010)

26. Quaia, C., Lefèvre, P., Optican, L.M.: Model of the control of saccades by superior col-
liculus and cerebellum. Journal of Neurophysiology 82(2), 999–1018 (1999)

27. Richter, M., Sandamirskaya, Y., Schöner, G.: A robotic architecture for action selection
and behavioral organization inspired by human cognition. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS (2012)

28. Robinson, D.A.: Oculomotor control signals. In: Lennerstrand, G., Bach-y Rita, P. (eds.)
Basic Mechanisms of Ocular Motility and Their Clinical Implications, pp. 337–374.
Pergamon Press, Oxford (1975)

29. Sandamirskaya, Y.: Dynamic Neural Fields as a Step Towards Cognitive Neuromorphic
Architectures. Frontiers in Neuroscience 7, 276 (2013)

30. Sandamirskaya, Y., Richter, M., Schöner, G.: A neural-dynamic architecture for behav-
ioral organization of an embodied agent. In: IEEE International Conference on Develop-
ment and Learning and on Epigenetic Robotics (ICDL EPIROB 2011) (2011)

31. Sandamirskaya, Y., Schöner, G.: An Embodied Account of Serial Order: How Instabili-
ties Drive Sequence Generation. Neural Netw. 23(10), 1164–1179 (2010)

32. Sandamirskaya, Y., Zibner, S.K.U., Schneegans, S., Schöner, G.: Using Dynamic Field
Theory to extend the embodiment stance toward higher cognition. New Ideas in Psychol-
ogy 31(3), 322–339 (2013)

33. Schöner, G.: Dynamical Systems Approaches to Cognition. In: Sun, R. (ed.) Cambridge
Handbook of Computational Cognitive Modeling, pp. 101–126. Cambridge University
Press, Cambridge (2008)

34. Schweighofer, N., Arbib, M.A., Dominey, P.F.: A model of the cerebellum in adaptive
control of saccadic gain. Biological Cybernetics 75(1), 19–28 (1996)

35. Scudder, C.A.: A new local feedback model of the saccadic burst generator. Journal of
Neurophysiology 59(5), 1455–1475 (1988)

36. Spencer, J.P., Schöner, G.: Embodied Approach to Cognitive Systems: A Dynamic Neu-
ral Field Theory of Spatial Working Memory. In: . . . Annual Conference of the Cognitive
. . . , pp. 2180–2185 (2006)

200 Y. Sandamirskaya and T. Storck

37. Steve, N.G., Charles, T., Benoı̂t, G.: Saccade learning with concurrent cortical and sub-
cortical basal ganglia loops. arXiv preprint arXiv:1312.5212, 1–34 (2013)

38. Trappenberg, T.P., Dorris, M.C., Munoz, D.P., Klein, R.M.: A model of saccade initiation
based on the competitive integration of exogenous and endogenous signals in the superior
colliculus. Journal of Cognitive Neuroscience 13(2), 256–271 (2001)

39. Tweed, D., Vilis, T.: A two dimensional model for saccade generation. Biol. Cybern. 52,
219–227 (1985)

40. Wilimzig, C., Schneider, S., Schöner, G.: The time course of saccadic decision making:
dynamic field theory. Neural Networks: the Official Journal of the International Neural
Network Society 19(8), 1059–1074 (2006)

41. Wilimzig, C., Schöner, G.: The Emergence of Stimulus-Response Associations from
Neural Activation Fields: Dynamic Field Theory. In: Proceedings of the Twenty-Seventh
Annual Cognitive Science Society, pp. 2359–2364. Cognitive Science Society, Stresa
(2005)

42. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical
and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

43. Wurtz, R.H., Optican, L.M.: Superior colliculus cell types and models of saccade gener-
ation. Current Opinion in Neurobiology 4, 857–861 (1994)

44. Zimmermann, E., Burr, D., Morrone, M.C.: Spatiotopic Visual Maps Revealed by Sac-
cadic Adaptation in Humans. Current Biology (2011)

How to Pretrain Deep Boltzmann Machines
in Two Stages

Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

Abstract. A deep Boltzmann machine (DBM) is a recently introduced Markov
random field model that has multiple layers of hidden units. It has been shown em-
pirically that it is difficult to train a DBM with approximate maximum-likelihood
learning using the stochastic gradient unlike its simpler special case, restricted
Boltzmann machine (RBM). In this paper, we propose a novel pretraining algo-
rithm that consists of two stages; obtaining approximate posterior distributions over
hidden units from a simpler model and maximizing the variational lower-bound
given the fixed hidden posterior distributions. We show empirically that the pro-
posed method overcomes the difficulty in training DBMs from randomly initialized
parameters and results in a better, or comparable, generative model when compared
to the conventional pretraining algorithm.

1 Introduction

Deep Boltzmann machine (DBM), proposed in [36], is a recently introduced variant
of Boltzmann machines which extends the widely used restricted Boltzmann ma-
chine (RBM) to have multiple layers of hidden neurons. It differs from the popular
deep belief network (DBN) which is built by stacking multiple layers of RBMs [22]
in that every edge in the DBM model is undirected. This construction of DBMs
facilitates propagating uncertainties across multiple layers of hidden variables.

Although it is straightforward to derive a learning algorithm for DBMs using
a variational approximation and stochastic maximum likelihood method, recent re-
search (for example [36] and [15]) has shown that learning the parameters of DBMs
is not trivial. Especially the generative performance of the trained model, commonly
measured by the variational lower-bound of log-probabilities of test samples, tends
to degrade as more hidden layers are added.

Kyunghyun Cho · Tapani Raiko · Alexander Ilin · Juha Karhunen
Department of Information and Computer Science,
Aalto University School of Science, Finland
e-mail: firstname.lastname@aalto.fi

c© Springer International Publishing Switzerland 2015 201
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_10

202 K. Cho et al.

v1 v2 vp

h[1]1 h[1]2 h[1]q[1]

h[L]1 h[L]2 h[L]q[L]

v1 v2 vp

(a) Deep Boltzmann Machine (b) Deep Belief Network

Fig. 1 Illustrations of (a) a deep Boltzmann machines (DBM) and (b) a deep belief network
(DBN)

In [36] a greedy layer-wise pretraining algorithm was proposed to initialize the
parameters of DBMs. It was shown that the proposed algorithm largely overcomes
the difficulty of learning a good generative model.

Along this line of research, we propose another strategy of pretraining DBMs
in this paper. The proposed scheme is based on an observation that training DBMs
consists of two separate stages; approximating the posterior distribution over hidden
units and updating parameters to maximize the lower-bound of the log-likelihood
given the approximate posterior distribution.

Based on this observation, the proposed algorithm in this paper pretrains a DBM
in two stages. During the first stage we train a simpler, directed deep model such as
DBNs or stacked denoising autoencoders (sDAE) to obtain an approximate posterior
distribution over hidden units. With this approximate posterior distribution fixed,
we train an RBM that learns a distribution over a combination of data samples and
their corresponding posterior distributions over the hidden units. It is then trivial to
finetune the model as one only needs to simply free hidden variables from the fixed
approximate posterior distribution obtained in the first stage.

We show that the proposed algorithm helps learning a good generative model
which is empirically comparable to, or better than the pretraining method proposed
in [36]. Furthermore, we discuss the degrees of freedom in extending the proposed
approach. The preliminary results of this work were presented in our conference
paper [13] and workshop paper [12].

2 Deep Boltzmann Machines

We start by describing deep Boltzmann machines (DBM) [36]. A DBM with L lay-
ers of hidden neurons is defined by the following negative energy function:

How to Pretrain Deep Boltzmann Machines in Two Stages 203

−E(v,h | θ) =
Nv

∑
i

vibi +
Nv

∑
i

N1

∑
j

vih
[1]
j wi, j +

N1

∑
j

h[1]j c[1]j +

L

∑
l=2

(
Nl

∑
j

h[l]j c[l]j +
Nl

∑
j

Nl+1

∑
k

h[l]j h[l+1]
k u[l]j,k

)
, (1)

where v= [vi]i=1...Nv
and h[l] =

[
h[l]j

]
j=1...Nl

are Nv binary visible units and Nl binary

hidden units in the l-th hidden layer, where 1 ≤ l ≤ L. See Figure 1 (a) for the
graphical description of the model.

W = [wi, j]i=1...Nv, j=1...N1
is the set of weights between the visible neurons and the

first layer hidden neurons. U[l] =
[
u[l]j,k

]
i=1...Nl , j=1...Nl+1

is the set of weights between

the l-th and (l + 1)-th hidden neurons, where 1 ≤ l < L, in this case. bi and c[l]j are
a bias to the i-th visible neuron and the j-th hidden neuron in the l-th hidden layer,
respectively. We use θ to denote a set of all these parameters.

With the energy function, a DBM can assign a probability to each state vector

x = [v;h[1]; · · · ;h[L]]

using a Boltzmann distribution

p(x | θ) =
1

Z(θ)
exp{−E(x | θ)} , (2)

where
Z(θ) = ∑

∀x
exp{−E(x | θ)} .

Under this formulation, the conditional distribution of each hidden layer l is

p(h[l]j = 1 | h[l−1],h[l+1],θ) = f

(
ql−1

∑
k=1

h[l−1]
k u[l−1]

k j +
ql+1

∑
i=1

h[l+1]
i u[l]ji + c[l]j

)
, (3)

and the conditional distribution of the visible layer is

p(vi = 1 | h[1],θ) = f

(
q1

∑
j=1

h[1]j wi j + bi

)
, (4)

where

f (x) =
1

1+ exp{−x} (5)

is a logistic sigmoid function.

204 K. Cho et al.

xxx

h[1]h[1]

h[1]h[1]

h[2]h[2]

h[2]

h[2]

h[3]

h[3]h[3]

Fig. 2 Illustration of the layer-wise pretraining of a deep Boltzmann machine. The dashed
directed lines indicate copying either the pretrained models or the activations of the hidden
units of the pretrained models.

3 Training Deep Boltzmann Machines

Using the probability defined by a DBM in Eq. (2) the parameters of the DBM can
be learned by maximizing the log-likelihood

L (θ) =
N

∑
n=1

log∑
h

p(v(n),h | θ)

given N training samples {v(n)}n=1,...,N , where

h =
[
h[1]; · · · ;h[L]

]
.

The gradient is stochastically estimated by taking the partial derivative of the
log-likelihood function L with respect to each parameter θ using only a subset of
training samples. This estimate is then used to update the parameters, effectively
forming a stochastic gradient ascent method. A standard way of computing gradient
results in the following update rule for each parameter θ :

∇θ L =

〈
−∂E(v(n),h | θ)

∂θ

〉
d

−
〈
−∂E(v,h | θ)

∂θ

〉
m
, (6)

where 〈·〉d and 〈·〉m denote the expectation over the data distribution P(h | v,θ)D(v)
and the model distribution P(v,h | θ), respectively [7]. D denotes an empirical data
distribution.

Although the update rule in Eq. (6) is well defined, it is intractable to compute
both terms in the update rule exactly. Hence, an approach based on variational

How to Pretrain Deep Boltzmann Machines in Two Stages 205

approximation together with Markov chain Monte Carlo (MCMC) sampling was
proposed in [36].

First, variational approximation is used to compute the expectation over the data
distribution. It starts by approximating the posterior distribution over the hidden
variables p(h | v,θ), which is intractable unless L = 1, by a factorial distribution

Q(h) =
L

∏
l=1

Nl

∏
j=1

(
μ [l]

j

)h[l]j
(

1− μ [l]
j

)1−h[l]j
.

Each variational parameter μ (l)
j can then be estimated by the following fixed-point

equation:

μ [l]
j ← f

(
Nl−1

∑
i=1

μ [l−1]
i w[l−1]

i j +
Nl+1

∑
k=1

μ [l+1]
k w[l]

k j + c[l]j

)
, (7)

where f is a logistic sigmoid function in Eq. (5). Note that μ (0)
i is fixed to vi and

the update rule for the top layer does not contain the second summation term, that
is NL+1 = 0.

This variational approximation provides the values of variational parameters that
maximize the following variational lower-bound (right-hand side) of the true log-
probability of v with respect to the current parameters θ :

log p(v | θ)≥ EQ(h) [−E(v,h)]+H (Q)− logZ(θ), (8)

where

H (Q) =−
L

∑
l=1

Nl

∑
j=1

(
μ [l]

j log μ [l]
j +(1− μ [l]

j) log(1− μ [l]
j)

)

is an entropy functional.
Due to the layered structure of a DBM, it is possible to analytically sum out

the odd-numbered hidden layers (see, e.g., [20]). If we denote the odd-numbered
and even-numbered hidden layers by h+ and h− respectively, we may, then, rewrite
Eq. (8) into

log p(v | θ)≥ EQ(h−)

[
−∑

h+

E(v,h+,h−)

]
+H (Q)− logZ(θ). (9)

Since the first term of the gradient in Eq. (6) is approximated in this way,
each gradient update step does not increase the true log-likelihood directly but its
variational lower-bound.

Second, the expectation over the model distribution is computed by persistent
sampling (see, for example, [43]). By persistent sampling, we mean that we do not
wait for a sampling chain to converge before computing each update direction, but

206 K. Cho et al.

run the chain for only a few steps and continue using the same chain over consecu-
tive updates. The simplest approach is to use Gibbs sampling, while there have been
some work in applying more advanced sampling methods [35, 34, 16, 8]. In this
paper, we use coupled adaptive simulated tempering (CAST) which was recently
proposed in [35].

This approach closely resembles variational expectation-maximization (EM) al-
gorithm (see, for example, [5]). Learning proceeds by alternating between finding
the variational parameters μ and updating the DBM parameters θ to maximize the
given variational lower-bound using the stochastic gradient method.

It has, however, been known and will be shown in the experiments in this paper
that training a DBM using this approach starting from randomly initialized parame-
ters is not trivial [36, 15, 11]. The difficulty of training without any pretraining was
illustrated in [36] and [15] by a lower log-likelihood achieved by a DBM trained
without any pretraining. Furthermore, the lack of proper initialization of the param-
eters was found to result in the upper-level hidden neurons not being able to capture
any interesting features of an input data in [11].

3.1 Layer-Wise Pretraining

In [36] a pretraining algorithm to initialize the parameters of DBMs was pro-
posed. The proposed pretraining algorithm greedily trains each layer of a DBM
by considering each layer as an RBM, similarly to a pretraining approach used for
training deep belief networks (DBN) [22]. However, the pretraining algorithm for
DBMs differs from DBNs1 due to the undirectedness of all the edges in a DBM,
which requires that the pretraining algorithm for DBMs must take into account that
each hidden unit in a DBM receives a signal from both upper and lower layers
(see Eq. (3)).

The algorithm proposed in [36] modifies the structure of RBMs to cope with
this difference. For the bottom two layers, an RBM is modified to have two copies
of visible units with tied weights such that the additional set of visible units sup-
plies signal that compensates for the lack of signal from the second hidden layer.
Similarly, an RBM that consists of the top two layers has the two copies of hidden
units. For any pair of intermediate hidden layers, an RBM is constructed to have two
copies of both visible and hidden units. See Figure 2 for an illustration.

Recently, in [38] the same authors were able to show that the variational lower
bound is guaranteed to increase by adding the top hidden layer using the proposed
pretraining scheme. Their proof, however, only applies to the top layer, which
means that the guarantee only works for pretraining a DBM having two hidden
layers.

1 Compare Figures 1 (a) and (b) for the difference between a DBM and a DBN. The edges
of the DBN except for those between the top two hidden layers are directed, pointing
downward.

How to Pretrain Deep Boltzmann Machines in Two Stages 207

v1 v2 vp

h1 h2 hq

W

W�

v1 v2 vp

h1 h2 hq

ṽ1 ṽ2 ṽp

(a) Restricted Boltzmann Machine (b) Denoising Autoencoder

Fig. 3 Illustrations of (a) a restricted Boltzmann machine (RBM) and (b) a denoising
autoencoder (DAE)

4 Restricted Boltzmann Machines and Denoising Autoencoders

Here we briefly discuss restricted Boltzmann machines (RBM) and single-layer de-
noising autoencoders (DAE) which will constitute an important part of the two-stage
pretraining algorithm that will be described in the next section.

An RBM is a special case of DBMs, where the number of hidden layers is re-
stricted to one, L = 1 [42] (see Figure 3 (a)). Due to this restriction it is possible
to compute the posterior distribution over the hidden units conditioned on the vis-
ible neurons exactly and tractably. The conditional probability of each hidden unit

h j = h[1]j is

p(h j = 1 | v,θ) = f

(
∑

i
wi jvi + c j

)
,

where f is a logistic sigmoid function from Eq. (5).
This allows exact and efficient computation of the positive part of the gradient

in (6). However, the negative part, which is computed over the model distribution,
still relies on persistent sampling, or more approximate methods such as contrastive
divergence (CD) [20].

There have been extensive research on improving training RBMs using various
techniques. In [9, 10] the authors proposed enhanced gradient which exploits the
fact that the gradient update of RBMs is not invariant to the bit-flipping transforma-
tion and showed that it outperforms the traditional gradient. In [16, 34, 8], advanced
sampling methods for computing the negative part of the gradient based on temper-
ing were proposed and shown to improve and stabilize learning.

A single-layer DAE is a special form of multi-layer perception network with
a single hidden layer and a tied set of weights [45] (see Figure 3 (b)). A DAE is a
network that reconstructs a corrupted input vector as well as possible by minimizing
the following cost function

208 K. Cho et al.

xx

h[1] h[1] h[1]

h[2] h[2]

RBM (1st layer)

RBM (2nd layer)

Deep Belief Network

Fig. 4 Illustration of the stack of RBMs. The dashed directed lines indicate copying of either
pretrained models or the activations of the hidden units of the pretrained models.

N

∑
n=1

∥∥∥gv

(
Wgh

(
W�φ(v(n))

))
− v(n)

∥∥∥2
, (10)

where gh(·) and gv(·) are component-wise nonlinear functions. φ is a stochastic
corruption process that corrupts the input v(n) stochastically.

There is an important difference in training DAEs compared with training RBMs.
In DAEs, the objective of learning is not to learn a distribution but to minimize the
reconstruction error. This does not require computing a computationally intractable
normalizing constant, which often leads to easier learning.2

These two models are important, because they can be stacked to form more pow-
erful hierarchical models [22, 21, 2].

A deep belief network (DBN) is constructed by stacking multiple layers of RBMs
[22], and a stacked DAE (sDAE) can be built by stacking DAEs on top of each other
[46]. With probabilistic interpretation, one may consider these stacked models as
having multiple layers of latent random variables where their posterior distributions
can be computed by recursively obtaining (approximate) posterior means of the
hidden units layer-wise. See Figure 4 for the illustration.

5 A Two-Stage Pretraining Algorithm

In this paper, we propose an alternative way of initializing parameters of a DBM
compared with the one described in Section 3.1. Unlike the conventional pretraining
strategy we employ an approach that obtains approximate posterior distributions
over hidden units and initializes parameters separately.

Before proceeding to the description of the proposed algorithm, we first divide
the hidden layers of a DBM into two sets as we have done in Section 3. Let us
denote a vector of hidden units in the odd-numbered layers as h+ and the respective
vector in the even-numbered layers as h−. Note that due to the structure of DBMs,

2 Despite this difference in the learning objective, recent research such as [3] suggests that
the DAE approximates a data generating distribution as well.

How to Pretrain Deep Boltzmann Machines in Two Stages 209

xxx x̃

h[1] h[1]

h[2]h[2]h[2]

h[3] h[3]

h[4]h[4]h[4]

Stage 1 Stage 2 Finetuning

Fig. 5 Illustration of the two-stage pretraining of a deep Boltzmann machine. The dashed
directed lines indicate copying of either pretrained models or the activations of the hidden
units of the pretrained models. In this figure, a deep autoencoder is used to learn an arbitrary
approximate posterior in the first stage. The red-colored edges indicate that the weights pa-
rameters learned in the second stage are used as initial values when finetuning the DBM. Note
that the parameters learned in the first stage are discarded immediately after the first stage.

it is possible to explicitly sum out h+, which halves the space of hidden variables.
Similarly we define μ+ and μ− as variational parameters of the hidden units in the
odd-numbered layers and the even-number layers, respectively.

5.1 Stage 1

During the first stage we focus on finding a good set of variational parameters μ−
of Q(h−) that has a potential to give a reasonably high variational lower-bound in
Eq. (8). In other words, we propose to first find a good posterior distribution over
hidden units given a visible vector regardless of parameter values of a DBM.

Although it might sound unreasonable to find a good set of variational param-
eters without any fixed parameter values, we can do this by borrowing posterior
distributions over latent variables from another model.3

We propose here to utilize either a DBN or a sDAE, described in Section 4, to find
good approximate posterior distributions over hidden units in the even-numbered
hidden layers. However, it is possible to use any model that finds a good binary
hierarchical posterior distribution.

DBNs and sDAE’s described in Section 4 are natural choices to find a good ap-
proximate posterior distribution over units in the even-numbered hidden layers. One
justification for using either of them is that they can be trained efficiently and well
(see, e.g., [1] and references therein). It is rather a trivial task where one iteratively
trains each even-numbered layer as either an RBM or a DAE on top of each other.

3 A similar approach of borrowing the posterior means of hidden variables has been pro-
posed in [23]. The authors of that paper initialized the variational Bayesian nonlinear blind
source separation model with the posterior distribution borrowed from kernel principal
component analysis.

210 K. Cho et al.

5.2 Stage 2

Once a set of initial variational parameters μ− is found from a DBN or an sDAE, we
train a model that has predictive power of the variational parameters given a visible
observation. It can be simply done by letting an RBM learn a joint distribution of v
and μ−. In other words, we train an RBM on a set of data samples, each of which is
a concatenation of v and μ−.

The structure of the RBM is directly derived from the DBM such that the visi-
ble layer of the RBM corresponds to the visible layer and the even-numbered hid-
den layers of the DBM and the hidden layer to the odd-numbered hidden layers of
the DBM. The connections between them can also follow those of the DBM. This
corresponds to finding a set of DBM parameters that fit the variational parameters
obtained in the first stage.

One way to understand what happens during the second stage is to consider what
an RBM has been trained for. If we assume that we use actual samples from Q(h−)
instead of the variational parameters μ−, training the RBM maximizes

L2(θ) = log∑
h+

EQ(h−) exp{−E(v,h−,h+)}− logZ(θ). (11)

However, since we use the variational parameters which are the mean of Q(h−), the
actual quantity being maximized is the lower-bound of Eq. (11) according to the
Jensen’s inequality and the linearity of the expectation:

L2(θ)≥∑
h+

{−E(v,μ−,h+)
}− logZ(θ). (12)

It is easy to see that this corresponds to maximizing the variational lower-bound
of the DBM, if we group the three terms of Eq. (9) such that

log p(v | θ)≥ EQ(h−)

[
−∑

h+

E(v,h+,h−)

]
− logZ(θ)

︸ ︷︷ ︸
(a)

+H (Q).

The two terms grouped as (a) in the above equation is equivalent to Eq. (12) which
is maximized during the second stage.4

Once the RBM has been trained, we can use the learned parameters as initial-
izations for training the DBM, which corresponds to freeing h− from its variational
posterior distribution obtained in the first stage. Finetuning of the initialized param-
eters can be performed according to the standard procedure given in Section 3.

The overall steps of the proposed learning algorithm are presented in Algo-
rithm 1, and a simple illustration is given in Figure 5.

4 The entropy functional in Eq. (9) can be ignored, as it is constant with respect to the
parameters θ .

How to Pretrain Deep Boltzmann Machines in Two Stages 211

Algorithm 1. Two-Stage Pretraining Algorithm
Input Training data XN×D, the number of layers L and the number of units in each layer
N1, . . . ,NL
Q = X
X− = []
for l = 1 → L do

if odd l then
continue

end if
Train a DAE/RBM with Nl hidden units with Q
Set Q to Q(h) from the DAE/RBM
Append Q to X−

end for
Train an RBM with ∑even l Nl hidden units with X−
Return parameters θ of the trained RBM

5.3 Discussion

It is quite easy to see that the proposed algorithm has a high degree of freedom to
plug in alternative algorithms and models in both the stages.

The most noticeable flexibility can be found in Stage 1. Any other machine learn-
ing model that gives reasonable posterior distributions over multiple layers of binary
hidden units can be used instead of DBNs or sDAE’s. For instance, a stack of re-
cently proposed variants of RBMs such as spike-and-slab RBMs [14, 27] can be
used.5 Also, instead of stacking each layer at a time, one could opt to train deep
autoencoders at once using recently proposed learning algorithms for feedforward
neural networks (see, for instance, [31, 32, 41, 29]).

In Stage 2, one may use a DAE instead of an RBM. It will make learning faster
and therefore leave more time for finetuning the model afterward. Also, the use of
different algorithms for training an RBM can be considered. For quicker pretrain-
ing, one may use contrastive divergence [20] with only a small number of Gibbs
sampling steps per update, or for better initial models, tempering-based advanced
MCMC sampling methods such as parallel tempering [16, 8] or tempered transition
[34] could be used.

Another obvious possibility is to utilize the conventional pretraining algorithm
proposed in [36] during the first stage. This approach gives approximate posterior
distributions over all hidden units [h−;h+] as well as initial values of the parame-
ters that may be used during the second stage. In this way, one may use either an
RBM or a fully visible BM (FVBM) during the second stage starting from the ini-
tialized parameters. When an RBM is used in the second stage, one could simply
discard μ+.

5 One potential restriction on the choice of a single-hidden-layer neural network is that it
must be computationally inexpensive and easy to compute the posterior distribution over
the hidden variables.

212 K. Cho et al.

Table 1 Algorithms used in the experiment. (S) – the pretraining algorithm from [36].

Stage 1 Stage 2 Finetuning

DBM × × DBM
DBMsDAE

RBM sDAE RBM DBM
DBMDBN

RBM DBN RBM DBM
DBMS&H (S) × DBM
DBMS&H

RBM (S) RBM DBM
DBMS&H

FVBM (S) FVBM DBM

One important point of the proposed algorithm is that it provides another research
perspective in training DBMs. The existing pretraining scheme developed in [36, 37]
was based on the observation that under certain assumptions the variational lower-
bound could be increased by learning weight parameters layer wise. However, the
success of the proposed scheme suggests that it may not be the set of parameters
that need to be pretrained, but the set of variational parameters that determine how
tight the variational lower-bound is and their corresponding parameters. This way
of approaching the problem of training DBMs enables us to potentially find another
explanation on why training large DBMs without pretraining is not trivial.

6 Experiments

In the experiments, we train DBMs on two datasets which are a handwritten digit
dataset6 (MNIST) [26] and Caltech-101 Silhouettes dataset7 [28]. We used the
MNIST and Caltech-101 Silhouettes datasets because experimental results of us-
ing DBMs for both datasets are readily available for direct comparison [39, 35, 30].

We train DBMs with varying numbers of units in the hidden layers; 500-1000,
500-500-1000, 500-500-500-1000. The first two architectures were used in [39, 35],
which enables us to directly compare our proposed algorithm with the conventional
pretraining algorithm.

For learning algorithms, we extensively tried various combinations. They are pre-
sented in Table 1. In summary, a DBMstage 1

stage 2 denotes a deep Boltzmann machine in
which its superscript and subscript denote the algorithms used during the first and
second stages, respectively.

We used contrastive divergence (CD) to train RBMs in the first stage, and the
persistent CD [44] with coupled adaptive simulated annealing (CAST) was used
in the second stage. DAEs were trained using stochastic gradient descent (SGD)
algorithm with backpropagation [33].

When a DBM was finetuned, we estimated the variational parameters by
the variational approximation with at most 30 mean-field updates (see Eq. (7)).
The model statistics, the negative part of the gradient, was computed by CAST.
When the conventional pretraining algorithm is used, we do not explicitly make

6 http://yann.lecun.com/exdb/mnist/
7 http://people.cs.umass.edu/˜marlin/data.shtml

http://yann.lecun.com/exdb/mnist/
http://people.cs.umass.edu/~marlin/data.shtml

How to Pretrain Deep Boltzmann Machines in Two Stages 213

Model (a) MNIST (b) Caltech-101 Silhouettes

1000
|

500
|

784

−100 −95 −90 −85 −80 −75

10
−1.9

10
−1.8

10
−1.7

10
−1.6

C
la
ss
ifi
ca
tio

n
E
rr
or

Lower-bound
−145 −140 −135 −130 −125 −120 −115 −110 −105

10
−0.59

10
−0.57

10
−0.55

10
−0.53

10
−0.51

10
−0.49

C
la
ss
ifi
ca
tio

n
E
rr
or

Lower-bound

1000
|

500
|

500
|

784

−100 −95 −90 −85 −80 −75

10
−1.9

10
−1.8

10
−1.7

10
−1.6

C
la
ss
ifi
ca
tio

n
E
rr
or

Lower-bound
−145 −140 −135 −130 −125 −120 −115 −110 −105

10
−0.59

10
−0.57

10
−0.55

10
−0.53

10
−0.51

10
−0.49

C
la
ss
ifi
ca
tio

n
E
rr
or

Lower-bound

1000
|

500
|

500
|

500
|

784

−100 −95 −90 −85 −80 −75

10
−1.9

10
−1.8

10
−1.7

10
−1.6

C
la
ss
ifi
ca
tio

n
E
rr
or

Lower-bound
−145 −140 −135 −130 −125 −120 −115 −110 −105

10
−0.59

10
−0.57

10
−0.55

10
−0.53

10
−0.51

10
−0.49

C
la
ss
ifi
ca
tio

n
E
rr
or

Lower-bound

DBM DBMsDAE
RBM DBMDBN

RBM DBMS&H
RBMDBMS&H

FVBMDBMS&H

Fig. 6 Performance of the trained DBMs. Best performing models are in the bottom right
corners.

214 K. Cho et al.

duplicate copies of visible or hidden units, but only double the corresponding weight
parameters [37].

We trained each model for 200 epochs in the case of MNIST and 2000 epochs
in the case of Caltech-101 Silhouettes with a learning rate scheduled by η0

1+ n
5000

where n is the number of updates. η0 was set to 0.01 and 0.0005 for pretraining and
finetuning, respectively. When we did not pretrain a DBM, we trained each DBM
for twice more epochs and set η0 to 0.001. In all cases, we used a minibatch of
size 128.

When training RBMs with CAST, we used equally spaced 21 tempered fast
chains from 0.9 to 1 with a single sampling step each update. When DAEs were
trained, at every update we dropped off a randomly chosen set of hidden units with
probability 0.1 [19]. During the finetuning stage, we used CAST with the equally
spaced 21 tempered chains from 0.9 to 1.

We evaluated the resulting models with the variational lower-bound of log-
probabilities and the classification errors of test samples. The variational lower-
bounds reflect the generative performance of the model. We trained a linear SVM
[17] for each hidden layer l using μ l as its features to compute the classification
errors. This is expected to show how much discriminative information about input
samples is captured by each hidden layer of the model.

The intractable normalization constant (logZ(θ) in Eq. (8)) required when com-
puting the variational lower-bound was approximated using annealed importance
sampling (AIS) [40]. For each model, we used 20001 equally spaced tempered
chains from 0 to 1 with 128 independent runs.

All models were trained five times starting from different random initializations.
We report the medians over these random trials.

6.1 Result and Analysis

Figure 6 presents the result using both the lower-bound of log-probabilities and the
classification error of the test samples. As has already been expected, none of the
models trained without pretraining have been able to perform well enough to be
presented inside the boundaries of the boxes in Figure 6.

It is clear from the figures that the proposed two-stage pretraining algorithm
outperforms, in all cases, the conventional pretraining algorithm (DBMS&H). On
MNIST, the DBMs pretrained with the proposed algorithm using the conventional
pretraining algorithm in the first stage achieved the best performance. In the case
of Caltech-101 Silhouettes, DBMsDAE

RBM was able to achieve superior performance in
both generative and discriminative modeling. It is notable that without any pretrain-
ing (DBM) we were not able to achieve any reasonable performance.

Figure 7 presents layer-wise classification errors. It is clear from the significantly
lower accuracies in the higher hidden layers of the DBMs trained without pre-
training that pretraining is essential to allow upper layers to capture discriminative

How to Pretrain Deep Boltzmann Machines in Two Stages 215

Model (a) MNIST (b) Caltech-101 Silhouettes

1000
|

500
|

784

1 2

10
−1

C
la
ss
ifi
ca
tio

n
E
rr
or

Hidden Layer
1 2

10
−0.6

10
−0.5

10
−0.4

C
la
ss
ifi
ca
tio

n
E
rr
or

Hidden Layer

1000
|

500
|

500
|

784

1 2 3

10
−1

C
la
ss
ifi
ca
tio

n
E
rr
or

Hidden Layer
1 2 3

10
−0.6

10
−0.5

10
−0.4

C
la
ss
ifi
ca
tio

n
E
rr
or

Hidden Layer

1000
|

500
|

500
|

500
|

784

1 2 3 4

10
−1

C
la
ss
ifi
ca
tio

n
E
rr
or

Hidden Layer
1 2 3 4

10
−0.6

10
−0.5

10
−0.4

C
la
ss
ifi
ca
tio

n
E
rr
or

Hidden Layer

DBM DBMsDAE
RBM DBMDBN

RBM DBMS&H
RBMDBMS&H

FVBMDBMS&H

Fig. 7 Layer-wise Discriminative Performance. Lower is better.

216 K. Cho et al.

structures of data. DBMDBN
RBMand DBMS&H

RBMwere most effective in ensuring the upper
hidden layers to have better discriminative property.8

7 Conclusions

The experimental success of the proposed two-stage pretraining algorithm in train-
ing DBMs suggests that the difficulty of DBM learning might be due to the fact that
the estimated variational lower-bound at the initial stage of learning is too crude, or
too loose. Once the variational parameters are initialized well with another deep hi-
erarchical model, the parameters of a DBM may be fitted to give a tighter variational
lower-bound which facilitates jointly estimating all parameters.

The proposed two-stage pretraining algorithm provides a general framework in
which many hierarchical deep learning models can be used. It even makes possible
to include the conventional pretraining algorithm as a part of the proposed algorithm
and improve upon it. This is a significant step in developing and improving a training
algorithm for DBMs, as it allows us to fully utilize other learning algorithms that
have been extensively studied previously.

7.1 Future Work

Recently, two additional algorithms for training DBMs have been proposed. In [30]
the authors proposed to center the activations of the neurons in a DBM, which
is closely related to the previously proposed method of the enhanced gradient
for RBMs [9, 10]. They showed that this simple method allows training a DBM
without any pretraining, however, without any direct comparison to the method of
pretraining.

The authors of [18] and [6] proposed an alternative learning criterion based on
the idea of generalized pseudo-likelihood [24]. The alternative criterion does not
maximize the log-likelihood but maximizes the predictive (approximate) conditional
probabilities among all the visible variables of a DBM.

It is important in the future to compare these recently proposed algorithms to-
gether with the two-stage pretraining algorithm as well as the conventional pretrain-
ing algorithm against each other. In the case of RBMs, the authors in [28] compared
various learning criteria such as maximum-likelihood, contrastive divergence, ratio
matching [25] and maximum pseudo-likelihood [4], and they found that each algo-
rithm resulted in solutions that are different in multiple aspects. A similar approach
of comparing different learning criteria for the DBM will reveal their inductive bi-
ases and allow us to choose an appropriate learning algorithm.

8 It should be noted that these accuracies were computed purely to illustrate the effect of
generative training of DBMs , and the reported accuracies are lower than other state-of-the-
art accuracies (see, [18] for state-of-the-art accuracies for MNIST and [9] for Caltech-101
Silhouettes).

How to Pretrain Deep Boltzmann Machines in Two Stages 217

Acknowledgements. This work was supported by “the Academy of Finland (Finnish Centre
of Excellence in Computational Inference Research COIN, 251170)”.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new per-
spectives. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 1798–
1828 (2013)

2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep
networks. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information
Processing Systems 19, pp. 153–160. MIT Press, Cambridge (2007)

3. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders as gen-
erative models. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.
(eds.) Advances in Neural Information Processing Systems 26, pp. 899–907 (2013)

4. Besag, J.: Statistical Analysis of Non-Lattice Data. Journal of the Royal Statistical Soci-
ety. Series D (The Statistician) 24(3), 179–195 (1975)

5. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus (2006)

6. Brakel, P., Stroobandt, D., Schrauwen, B.: Training energy-based models for time-series
imputation. Journal of Machine Learning Research 14, 2771–2797 (2013)

7. Cho, K.: Improved Learning Algorithms for Restricted Boltzmann Machines. Master’s
thesis, Aalto University School of Science (2011)

8. Cho, K., Raiko, T., Ilin, A.: Parallel tempering is efficient for learning restricted Boltz-
mann machines. In: Proceedings of the 2010 International Joint Conference on Neural
Networks (IJCNN 2010), pp. 1–8 (July 2010)

9. Cho, K., Raiko, T., Ilin, A.: Enhanced gradient and adaptive learning rate for training
restricted Boltzmann machines. In: Proceedings of the 28th International Conference on
Machine Learning (ICML 2011), pp. 105–112. ACM, New York (2011)

10. Cho, K., Raiko, T., Ilin, A.: Enhanced gradient for training restricted Boltzmann ma-
chines. Neural Computation 25(3), 805–831 (2013)

11. Cho, K., Raiko, T., Ilin, A.: Gaussian-Bernoulli deep Boltzmann machines. In: Proceed-
ings of the International Joint Conference on Neural Networks (IJCNN 2013), Texas,
USA (August 2013)

12. Cho, K., Raiko, T., Ilin, A., Karhunen, J.: A Two-Stage Pretraining Algorithm for Deep
Boltzmann Machines. In: NIPS 2012 Workshop on Deep Learning and Unsupervised
Feature Learning, Lake Tahoe (December 2012)

13. Cho, K., Raiko, T., Ilin, A., Karhunen, J.: A two-stage pretraining algorithm for deep
Boltzmann machines. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P.,
Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 106–113. Springer,
Heidelberg (2013)

14. Courville, A., Bergstra, J., Bengio, Y.: A spike and slab restricted Boltzmann machine.
In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics (AISTATS 2011) (2011)

15. Desjardins, G., Courville, A., Bengio, Y.: On training deep Boltzmann machines.
arXiv:1203.4416 (cs.NE) (March 2012)

218 K. Cho et al.

16. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., Delalleau, O.: Parallel temper-
ing for training of restricted Boltzmann machines. In: Teh, Y.W., Titterington, M. (eds.)
Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics (AISTATS 2010). JMLR Workshop and Conference Proceedings, vol. 9, pp.
145–152. JMLR W&CP (2010)

17. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large
linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

18. Goodfellow, I., Miraz, M., Courville, A., Bengio, Y.: Multi-prediction deep Boltzmann
machines. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.)
Advances in Neural Information Processing Systems 26, pp. 548–556 (December 2013)

19. Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improv-
ing neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580
(cs.NE) (July 2012)

20. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural
Computation 14, 1771–1800 (2002)

21. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
Computation 18(7), 1527–1554 (2006)

22. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006)

23. Honkela, A., Harmeling, S., Lundqvist, L., Valpola, H.: Using kernel PCA for initial-
isation of variational Bayesian nonlinear blind source separation method. In: Puntonet,
C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 790–797. Springer, Heidelberg
(2004)

24. Huang, F., Ogata, Y.: Generalized pseudo-likelihood estimates for Markov random fields
on lattice. Annals of the Institute of Statistical Mathematics 54(1), 1–18 (2002)

25. Hyvärinen, A.: Some extensions of score matching. Computational Statistics & Data
Analysis 51(5), 2499–2512 (2007)

26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE 86, 2278–2324 (1998)

27. Luo, H., Carrier, P., Courville, A., Bengio, Y.: Texture modeling with convolutional
spike-and-slab RBMs and deep extensions. In: Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics (AISTATS 2013). JMLR Workshop
and Conference Proceedings, vol. 31, pp. 415–423. JMLR W&CP (April 2013)

28. Marlin, B.M., Swersky, K., Chen, B., de Freitas, N.: Inductive principles for restricted
Boltzmann machine learning. In: Proceedings of the Thirteenth Internation Conference
on Artificial Intelligence and Statistics (AISTATS 2010). JMLR Workshop and Confer-
ence Proceedings, vol. 9, pp. 509–516. JMLR W&CP (2010)

29. Martens, J.: Deep learning via Hessian-free optimization. In: Fürnkranz, J., Joachims,
T. (eds.) Proceedings of the 27th Internation Conference on Machine Learning (ICML
2010), Haifa, Israel, pp. 735–742 (June 2010)

30. Montavon, G., Müller, K.R.: Deep Boltzmann machines and the centering trick. In: Mon-
tavon, G., Orr, G.B., Müller, K.-R. (eds.) NN: Tricks of the Trade, 2nd edn. LNCS,
vol. 7700, pp. 621–637. Springer, Heidelberg (2012)

31. Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. arXiv:1003.0358
(cs.NE) (2013)

32. Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear transformations in
perceptrons. In: Proceedings of the Fifteenth Internation Conference on Artificial Intel-
ligence and Statistics (AISTATS 2012). JMLR Workshop and Conference Proceedings,
vol. 22, pp. 924–932. JMLR W&CP (April 2012)

How to Pretrain Deep Boltzmann Machines in Two Stages 219

33. Rumelhart, D.E., Hinton, G., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323, 533–536 (1986)

34. Salakhutdinov, R.: Learning in Markov random fields using tempered transitions. In:
Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances
in Neural Information Processing Systems 22, pp. 1598–1606 (2009)

35. Salakhutdinov, R.: Learning deep Boltzmann machines using adaptive MCMC. In:
Fürnkranz, J., Joachims, T. (eds.) Proceedings of the 27th International Conference on
Machine Learning (ICML 2010), Haifa, Israel, pp. 943–950 (June 2010)

36. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: Proceedings of the Twelfth
Internation Conference on Artificial Intelligence and Statistics (AISTATS 2009). JMLR
Workshop and Conference Proceedings, vol. 5, pp. 448–455. JMLR W&CP (2009)

37. Salakhutdinov, R., Hinton, G.: A better way to pretrain deep Boltzmann machines. In:
Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural
Information Processing Systems 25, pp. 2456–2464 (2012)

38. Salakhutdinov, R., Hinton, G.: An effcient learning procedure for deep Boltzmann ma-
chines. Neural Computation 24, 1967–2006 (2012)

39. Salakhutdinov, R., Larochelle, H.: Efficient learning of deep Boltzmann machines. In:
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (2011)

40. Salakhutdinov, R., Murray, I.: On the quantatitive analysis of deep belief networks. In:
Proceedings of the 25th International Conference on Machine learning (ICML 2008), pp.
872–879. ACM, New York (2008)

41. Schulz, H., Behnke, S.: Learning two-layer contractive encodings. In: Villa, A.E.P.,
Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552,
pp. 620–628. Springer, Heidelberg (2012)

42. Smolensky, P.: Information processing in dynamical systems: foundations of harmony
theory. In: Parallel Distributed Processing: Explorations in the Microstructure of Cogni-
tion. foundations, vol. 1, pp. 194–281. MIT Press, Cambridge (1986)

43. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likeli-
hood gradient. In: Proceedings of the 25th Internation Conference on Machine Learning
(ICML 2008), pp. 1064–1071. ACM, New York (2008)

44. Tieleman, T., Hinton, G.: Using fast weights to improve persistent contrastive diver-
gence. In: Proceedings of the 26th Annual International Conference on Machine Learn-
ing (ICML 2009), pp. 1033–1040. ACM, New York (2009)

45. Vincent, P.: A connection between score matching and denoising autoencoders. Neural
Computation 23(7), 1661–1674 (2011)

46. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research 11, 3371–3408 (2010)

© Springer International Publishing Switzerland 2015
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,

221

Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_11

Training Dynamic Neural Networks
Using the Extended Kalman Filter
for Multi-Step-Ahead Predictions

Artem Chernodub

Abstract. This paper is dedicated to single-step-ahead and multi-step-ahead time
series prediction problems. We consider feedforward and recurrent neural network
architectures, different derivatives calculation and optimization methods and ana-
lyze their advantages and disadvantages. We propose a novel method for training
feedforward neural networks with tapped delay lines for better multi-step-ahead
predictions. Special mini-batch calculations of derivatives called Forecasted Prop-
agation Through Time for the Extended Kalman Filter training method are intro-
duced. Experiments on well-known benchmark time series are presented.

Keywords: multi-step-ahead prediction, mini-batch Extended Kalman Filter,
Forecasted Propagation Through Time, Backpropagation Through Time.

1 Introduction

Dynamics are everywhere around us. Economic and financial processes, ecologi-
cal systems, industrial systems, weather fluctuations, and any kind of control sys-
tem has internal dynamics governing its behavior. Even life is a dynamic system
that consists of processing the information input from our senses and producing
reactions to the outer environment. Surely, dealing with dynamics is required to
perform many real-life tasks. Dynamic and static systems have an important dif-
ference: whereas in static systems all events are independent, dynamical systems
have a memory of past events. This frequently makes solving dynamic problems
much more difficult because errors are independent in the static case. For exam-
ple, a single misclassification in an automated product sorting facility likely will

Artem Chernodub
Institute of Mathematical Machines and Systems NASU, Neurotechnologies Dept.,
Glushkova 42 ave., 03187 Kyiv, Ukraine

222 A. Chernodub

not significantly change the overall outcome of the task. In the dynamic case if the
plant is unstable, errors can snowball: a single incorrect control action could result
in a catastrophic accident. Good prediction quality is essential for successful
control in any dynamic plant.

Neural networks are an effective and friendly tool for black-box modeling of a
plant’s unknown dynamics [1-3]. The neural network may be trained on examples
of the dynamic plant’s recorded output and then be exploited for prediction of new
values. Usually, neural networks are trained to perform single-step-ahead (SS)
predictions, where the predictor uses some available input and output observations
to estimate the variable of interest for the time step immediately following the
latest observation [4-6]. Knowing only the next nearest value is enough for many
problems. However, recently there has been growing interest in multi-step-ahead
(MS) predictions, where the values of interest must be predicted for some horizon
in the future. Knowing the sequence of future values allows for estimation of pro-
jected amplitudes, frequencies, and variability, which are important for Model
Predictive Control [7], modeling flood forecasts [8] and fault diagnostics [9].
Generally speaking, the ability to perform MS predictions is frequently treated as
the “true” test for the quality of a developed empirical dynamic model. In particu-
lar, well-known echo state machine neural networks (ESNs) became popular
because of their ability to perform good long-horizon)84(=H multistep

predictions [10].
This chapter is dedicated to time series prediction methods using dynamic neu-

ral networks. In Section 1 we consider a system identification problem that uses
statistical methods to build empirical models of dynamic plants from the measured
data. We formulate single-step-ahead (SS) and multi-step-ahead (MS) prediction
problems using the developed empirical models. In Section 2 we consider differ-
ent perceptron-like models of dynamic neural networks including feedforward
(FFN) and recurrent (RNN) neural networks and provide an analysis of their
strengths and weaknesses. We discuss methods for calculating static and dynamic
(BPTT) derivatives for these architectures. In Section 3 we briefly consider the
vanishing gradient effect and its impact on neural networks’ long-term learning
capabilities. In Section 4 we consider optimization algorithms for training these
neural networks. We describe online and mini-batch implementations of the se-
cond-order Extended Kalman Filter (EKF) algorithm for training neural networks.
We compare the EKF algorithm with the standard first-order gradient descent-
based backpropagation algorithm. In Section 5 we propose a new method for
training feedforward neural models to perform MS prediction, called Forecasted
Propagation Through Time (FPTT). FPTT allows calculation of batch-like dynam-
ic derivatives while minimizing the negative effect of vanishing gradients. We use
mini-batch modification of the EKF algorithm that naturally deals with these
batch-like dynamic derivatives for training the neural network. We present exper-
iments on SS and MS predictions using well-known time series benchmarks.

Training Dynamic Neural Networks Using the Extended Kalman Filter 223

2 Modeling the Dynamic Systems

Consider a dynamic plant:

)),(),(()1(kkk uSS Φ=+ (1)

)),(()1(kk Sy Ψ=+ (2)

where)(kS

is a state vector,)(ku

is a plant’s input,)1(+ky is an observable

plant’s output, and)(⋅Φ і)(⋅Ψ

are some nonlinear functions. The identification

problem in the general case may be stated as follows: to identify a priori unknown

functions)(⋅Φ and)(⋅Ψ using the known history of inputs { }T
kk 1)(=u and the

measured outputs { }T
kk 1)(=y .

Fig. 1 General scheme of plant’s identification

In this chapter we consider identification of the dynamic plants in the sense that
we build empirical models of the dynamic plants, predicting time series using the
concept of nonlinear autoregression (NAR). To use NAR we must make two addi-

tional important assumptions: 1) the plant’s inputs { }T
kk 1)(=u are not observable

and 2) the plant’s states)(kS may be expressed as a function of the last N ob-

servable outputs of the plant:

)).1(),....,(()(+−Ω= Nkkk yyS (3)

where k is the time step variable and)(⋅Ω is an unknown function that defines

the underlying dynamic process. Now it is possible to capture the plant’s behavior
using the following equation:

)).1(),...,1(),(()1(+−−=+ NkkkFk yyyy (4)

Empirical models such as neural networks may be trained on known inputs and
outputs of dynamic processes and then be used for estimation of new outputs us-
ing the unknown inputs (Fig. 1). By training the neural network we mean tuning

224 A. Chernodub

the neural network’s free parameters (weights). The goal of training is to develop
the empirical model)(~ ⋅F of function)(⋅F as closely as possible.

If such an empirical model)(~ ⋅F is available, one can perform single-step-

ahead (SS) predictions)(~ ⋅y using the measured outputs)(⋅y :

)).1(),...,1(),((~)1(+−−=+ NkkkFk yyyy (5)

Meanwhile, since we are working with autoregression models, we can perform
iterated multi-step-ahead (MS) predictions)(ˆ ⋅y using both the measured outputs

)(⋅y and the neural network’s SS)(ˆ ⋅y and MS estimations)(~ ⋅y if real outputs are

not available:

)),(),...,(),1(ˆ(~)2(~ NkkkFk −+=+ yyyy (6)

…

)),(~),...,2(~),1(~(~)(~ NHkHkHkFHk −+−+−+=+ yyyy (7)

)),1(~),...,1(~),(~(~)1(~ +−+−++=++ NHkHkHkFHk yyyy (8)

where H is the horizon of prediction. Here and later we emphasize the differ-
ences between SS)(~ ⋅y and MS)(ˆ ⋅y predictions,)(~)(ˆ HkHk +≡+ yy for 1=H .

We can also now define the Normalized Mean Squared Error, NMSE:

,
))()((

))(~)((
2

2

 −
−=

k kk

kk
NMSE

tt

yt
 (9)

where)(⋅t are target values,)(kt is mean target value,)(~ ⋅y are predicted values.

3 Dynamic Neural Networks

Early neural network architectures (Adaline [11], Rosenblatt’s Perceptron [1, p.
78], Multilayer Perceptron [1, p. 152]) were developed for solving static pattern
recognition problems only. The dynamic neural networks for time series discussed
in this chapter are adaptations of feedforward neural networks for pattern recogni-
tion. There are two main approaches for performing such “dynamization” of the
static neural networks: 1) adding a tapped delay line to the network’s inputs and 2)
adding recurrent connections to the network’s topology.

In the first case (Dynamic Linear Neural Network, Dynamic Multilayer Percep-
tron) the neural network receives the previous inputs, delayed in time, together
with the current input. Training the neural network usually is performed using the
well-known backpropagation method for calculating the derivatives and various
gradient-based optimization methods. Advantages of this scheme are its simplicity

Training Dynamic Neural Networks Using the Extended Kalman Filter 225

and convenience. Our estimation is that this scheme is used in more than 90% of
cases. On the other hand, the number of delays in the tapped delay lines must be
set a priori. If these properties do not correlate with the order of the underlying
dynamic process, the neural network achieves poor results. Another disadvantage
of this scheme is bad quality in the iterated multi-step-ahead predictions.

Another basic way to implement dynamics inside a feedforward neural network
is adding internal recurrent connections to the input, hidden or output neurons
(Recurrent Multilayer Perceptron, Elman Neural Network, etc.) A special method-
ology for calculating dynamic derivatives must be provided to take into account
the influence of the previous time steps on the current state. Dynamic derivatives
can be calculated using two techniques: Real-Time Recurrent Learning (RTRL) or
Backpropagation Through Time (BPTT). Then, any gradient-based optimization
algorithm for tuning weights may be used. Recurrent neural networks are more
suitable for modeling the dynamic process’s structure. However, training RNNs is
a much more complex problem than training the FFNNs because of the additional
degrees of freedom and more complicated error surface. Moreover, during calcula-
tion of the dynamic derivatives for neural networks with sigmoidal activation
functions, the vanishing gradient effect occurs. This effect additionally compli-
cates the detection of correlations between the neural network’s previous inputs
and current target outputs.

In this section we consider the most popular models of perceptron-like dynamic
neural networks. Note that all neural network schemes described here were adopt-
ed for the autoregression case. Also, for simplicity we always assume that dimen-
sionality of the modeled plant’s output is 1, i.e. the neural network has only a sin-
gle output neuron.

3.1 Dynamic Linear Neural Network

Dynamic Linear Neural Network, DLNN [2, p. 644] is the simplest model of a
dynamic neural network. It consists of a single-layer perceptron and a time delay
line (TDL) of order N (Fig. 2). Dynamic Linear Neural Network may be effec-
tively used for the identification of linear dynamic plants only.

Fig. 2 Dynamic Linear Neural Network

226 A. Chernodub

The Neural Network receives the input
TNkkkk])(...)1()([)(−−= yyyx , (10)

and calculates the output

=

=+
wN

i
ii kwkxk

1

)1()()()1(~y , (11)

where wN is number of NN’s weights. Error gradients
)1(

)(

w∂
∂ kE

 for DLNN are

calculated as:

.)(
)()1(

)1(ii
i

wkx
w

kE =
∂
∂

 (12)

3.2 Dynamic Multilayer Perceptron

The Dynamic Multilayer Perceptron [2, p. 665] (DMLP) is a much more powerful
neural network architecture than the DLNN. It consists of a multilayer perceptron
with non-linear units and a time delay line of order N (Fig. 3).

Fig. 3 Dynamic Multilayer Perceptron

DLNN receives the input vector)(kx (10) and calculates the output)1(~ +ky as:

),()1(=
i

ijij xwfz (13)

),()1(~)2(=+
j

jj zwgky

(14)

where jz is the postsynaptic value for the j -th hidden neuron,)1(w are the hid-

den layer’s weights,)(⋅f are the hidden layer’s activation functions,)2(w are the

output layer’s weights, and)(⋅g are the output layer’s activation functions.

Training Dynamic Neural Networks Using the Extended Kalman Filter 227

Error gradients
)1(

)(

w∂
∂ kE

 and
)2(

)(

w∂
∂ kE

 for the DMLP are calculated using the

backpropagation technique. The procedure is the same as for the static case. Local
gradients for the hidden layer HIDδ are calculated and local gradients for input

layer INδ are calculated on demand as follows:

),1(~)1(+−+= kyktOUTδ (15)

,)(')2(OUT
jj

HID
j wzf δδ = (16)

,
1

)1(HID
n

K

n
ni

IN
i w δδ

=

=

(17)

where)1(+kt is the target value, and K is number of neurons in the hidden layer.

Then the error gradients are calculated:

,
)(
)2(j

OUT

j

z
w

kE δ=
∂
∂

(18)

.
)(

)1(i
IN
j

ji

x
w

kE δ=
∂
∂

(19)

3.3 Recurrent Multilayer Perceptron

The Recurrent Multilayer Perceptron (RMLP) is an adaptation of the multilayer
perceptron. It is made dynamic by adding recurrent connections to the hidden
layer, a so-called “context layer”.

Fig. 4 Recurrent Multilayer Perceptron

228 A. Chernodub

The RMLP’s input vector)(kx is:

,])1(...)1()1()([)(21
T

K kzkzkzkyk −−−=x (20)

where jz is the postsynaptic value of the j -th neuron of the hidden layer, and K

is the number of hidden neurons.
To consider the influence of the previous time steps to the current error residu-

al, special dynamic Backpropagation Through Time derivatives [1, p. 836] are
calculated, described in Fig. 4. An alternative for the BPTT method for calculating
the dynamic derivatives is Real Time Recurrent Learning [1, p. 840]. RTRL is
now rarely used because it requires more computational resources than BPTT, yet
is less accurate.

Fig. 5 Calculation of dynamic BPTT derivatives for RMLP, truncation depth h = 2

After calculating the output, the neural network is unfolded back through time
(Fig. 5). The recurrent neural network is presented as a feedforward neural net-
work with many layers, each corresponding to one of the retrospective time steps

1−k , 2−k , , hk − , where h is the BPTT truncation depth. The

hyperparameter h corresponds to N , the order of the time delay line in the
DMLP. Derivatives are calculated using the standard backpropagation method.
Local gradients for backpropagation are calculated using the following equations:

,)(')()2(OUT
jj

HID
j wkfk δδ = (21)

),()1(')(
1

)1(kwkfk HID
i

K

i
ijj

IN
j δδ

=

−= (22)

),1()1(')(
1

)1(+−−−=−
=

nkwnkfnk IN
i

K

i
ijj

IN
j δδ (23)

where)1(w and)2(w are weights of the hidden and output layer, HID
jδ

is the local

gradient for the j -th neuron of the hidden layer,)(nkIN
j −δ is the local gradient

Training Dynamic Neural Networks Using the Extended Kalman Filter 229

for the hidden layer at retrospective time step nk − , hn ≤≤1 , and h is the trun-
cation depth.

Error gradients for the output layer
)2()2(

)()(

ww ∂
∂=

∂
∂ kEkEBPTT are calculated using

(16). For the hidden layer
)1(

)(

w∂
∂ kEBPTT , the procedure is more complex and has

two stages: First, gradients for each unfolded layer are calculated for each retro-
spective time step nk − . Second, the BPTT derivatives are calculated as averaged
static gradients:

.
)(1)(

0
)1()1(

= ∂
−∂=

∂
∂ h

n jiji

BPTT

w

nkE

hw

kE
 (24)

3.4 NARX Neural Network

The NARX neural network is a dynamic neural network with two main approach-
es for implementing its dynamics. It is a multilayer perceptron that is equipped
with both a tapped delay line at the input and global recurrent output feedback
connections (Fig. 6).

Fig. 6 NARX neural network

As it was shown in [12], NARX networks with sigmoidal activation functions
are universal approximators of dynamic systems, i.e. in theory they can simulate
any Turing machine. The input vector)(kx is:

230 A. Chernodub

,])(~...)(~)(...)([)(TLkykyNkykyk −−=x (25)

where N is an order of the time delay line for the input values, and L is the order
of the time delay line for the recurrent feedback connections. The scheme for cal-
culating the dynamic BPTT derivatives for NARX networks is shown in Fig. 7.
Similarly to the RMLP, the NARX network must be unfolded back though time; it
is presented as feedforward neural network with many layers, each layer corre-
sponding to one of the previous time steps 1−k , 2−k , , hk − , and error is

propagated back through this feedforward network.

Fig. 7 Calculating the dynamic BPTT derivatives for the NARX neural network, truncation
depth h = 1

During the backpropagation pass, local gradients are calculated as follows:

,)(')1()2(+= kOUT
jj

HID
j wkf δδ (26)

,)1('
1

)1(HID
i

K

i
ijj

IN
j wkf δδ

=

−= (27)

,)1(IN
lN

lkOUT
+

+− = δδ (28)

where HID
jδ is the local gradient for the j -th hidden neuron, IN

jδ is the local

gradient for the l
-th input neuron, Ll ≤≤1 , L is the order of the time delay

line for the recurrent connections,)(nOUT
jδ is the output local gradient for the n -

th step back through time. The final dynamic gradients for both layers

)1(

)(

w∂
∂ kEBPTT and

)2(

)(

w∂
∂ kEBPTT are averaged static gradients

)1(

)(

w∂
∂ kE

 and
)2(

)(

w∂
∂ kE

.

Training Dynamic Neural Networks Using the Extended Kalman Filter 231

3.5 Experiment on SS Predictions with Different Network
Types

In order to test the dynamic neural network architectures described above, we
prepared 6 well-known time series: “MG17”, “ICE”, “SOLAR”,
“CHICKENPOX”, “RIVER”,”LASER” (Fig. 8).

Fig. 8 Datasets for the SS-prediction experiment. a) Mackey-Glass chaotic series. b) Global
ice volume dataset. c) River flow dataset. d) Monthly chickenpox instances dataset. e)
River flow dataset. f) Santa-Fe Laser Dataset

232 A. Chernodub

The dataset “MG17” is the Mackey-Glass chaotic process. It is a famous
benchmark for time series predictions. The discrete-time equation is given by the
following difference equation (with delays):

,,...1,,
)(1

)1(
101 +=

+
+−=

−

−
+ ττ

τ

τ t
x

x
axbx

t

t
tt (29)

where 1≥τ is an integer. We used the following parameters: 1.0=a , 2.0=b ,
17=τ as in [6]. The dataset “ICE” represents 219 measurements of global ice

volume over the last 440,000 years [13]. The dataset “SOLAR” consists of record-
ing 2899 months of mean solar sunspots. The dataset “CHECKPOX” represents
498 months of chickenpox cases in New York City for 1931-1972 [14]. The da-
taset “RIVER” consists of the monthly river flows of the Sacramento River [14].
The dataset “LASER” consists of far-infrared laser intensity over a period of cha-
otic activity, taken from the Santa Fe competition.

For each dataset, we trained 100 DLNN, DMLP, RMLP and NARX networks
using the Extended Kalman Filter (EKF) method (see Section 4). The training

parameters for the EKF were set to 310−=η and 810−=μ . The number of neu-

rons in the hidden layer for MLP-based networks was varied from 3 to 8, the order
of input tapped delay line was set to 5=N for the DLNN and DMLP and 5=N ,

5=L for NARX. The initial weights were set to small random values. Each net-
work was trained for 50 - 500 epochs depending on the dataset. The best perform-
ing network on the ‘Test’ sequence was then tested on the ‘Validation’ subset of
the data. The final results are presented in Table 1. The DLNN is only performing
linear regression and so is not a serious competitor to the nonlinear MLP-based
architectures; it is given for comparison.

Table 1 Mean NMSE Single-Step-Ahead predictions for different neural network
architectures

 MG17 ICE SOLAR CHICKENPOX RIVER LASER

DLNN 0.0042 0.0244 0.1316 0.8670 4.3638 0.7711

DMLP 0.0006 0.0376 0.1313 0.4694 0.9979 0.0576

RMLP 0.0050 0.0273 0.1493 0.7608 6.4790 0.2415

NARX 0.0010 0.1122 0.1921 1.4736 2.0685 0.1332

We can see that in most cases, feedforward DMLP networks outperform recur-

rent networks for SS predictions. However, the DLNN shows approximately the
same quality as the DMLP for the SOLAR dataset, indirectly confirming the
hypothesis that the dynamic process generating solar spots is actually linear in
nature. For recurrent networks it is not possible to say which architecture is signif-
icantly better: the highest and lowest performing networks vary between datasets
and prediction quality may differ by 2-5 times.

Training Dynamic Neural Networks Using the Extended Kalman Filter 233

4 The Vanishing Gradient Effect

The vanishing gradient effect [1, p. 846], [15], [16] significantly complicates
training of ordinary perceptron-like recurrent neural networks. As described in
Section 2, recurrent neural networks are first considered feedforward neural net-
works with many layers, each layer corresponding to one retrospective time step,
in order to calculate the dynamic derivatives. When the error is propagated back
through the layers the absolute values of the target derivatives exponentially de-
crease. This makes the detection of long-term dependencies between events diffi-
cult. To understand the internal mechanics of the vanishing gradient effect, con-
sider the provisional feedforward multilayer perceptron that has N layers (Fig. 9):

Fig. 9 Scheme of N-layer perceptron

Calculation of the error gradients
w∂

∂)(kE
 or Jacobians

w
y

∂
+∂)1(~ k

 must be per-

formed during the backward pass. Since we use backpropagation for calculating
the derivatives for training, all relevant local gradients)(kOUT eδ = or 1δ =OUT

must be propagated back through N layers respectively. Error gradients are the

product of the local gradients)(m
jδ and the corresponding values)1(−m

iz :

.
)()1()(
)(

−=
∂
∂ m

i
m

jm
ji

z
w

kE δ (30)

The Jacobians
w

y
∂

+∂)1(~ k
 for the neural network’s training procedure are calcu-

lated using the standard backpropagation technique by propagating a constant

value 1δ =OUT at each backward pass instead of propagating the residual error

)1(~)1(+−+= kkOUT ytδ , calculating Jacobians instead of error gradients since

w
y

e
w

e
w ∂

+∂=
∂

∂=
∂

∂)1(~
)(2

])([)(2 k
k

kkE
.

234 A. Chernodub

Local gradients)(mδ are calculated for each neuron layer, starting from neuron

layer Nm = and finishing with neuron layer 1=m :

.')1()()1()(+− = m
i

i

m
ij

m
j

m
j wf δδ (31)

In practice, it was found that for neural networks with 2>N layers, the gradi-

ents (Jacobians) vanish, i.e. 0
)(
)(

→
∂
∂

m
jiw

kE
 (or 0

)1(~
)(

→
∂

+∂
m

jiw

ky
) for 1→m . There-

fore, updates to the weights become very small and the neural network cannot be
trained properly.

The origins of the vanishing gradient effect lie in the calculation of the local
gradients (30). During backpropagation, the absolute values of each local gradient
are frequently smaller than those of the previous local gradient because they are
the product of values which are all less than or equal to 1. We know that the val-

ues will always be less than or equal to 1 since the initial local gradients OUTδ

never contain values greater than 1, the neural network’s weights)(m
ijw cannot be

large to avoid overfitting, and the derivatives of the activation functions)1(−m
jf

are always less than 1. Moreover, in [16] it was proven that if overfitting occurs,

the case where 0.1 weights')1()()1(<+− m
i

m
ij

m
j wf δ , the vanishing gradient effect

still occurs. This happens because the relevant derivative goes to zero faster than

the absolute weight can grow and local gradients)(mδ exponentially decrease as a
function of the current layer’s number m .

For small, static pattern recognition problems a single hidden layer is often
enough, so the vanishing gradient effect does not have a significant impact on the
training quality. However, if one works with training datasets that contain hun-
dreds of millions of high-dimensional training samples, the impact of the vanish-
ing gradient effect is substantial. To use such data, one might need neural net-
works with many layers and millions of weights. The vanishing gradient effect
plays a key role in these “Deep Neural Networks” which usually have 6-9 layers; a
special “pre-training” procedure was invented [17] to avoid this effect in static
networks. Unrolled dynamic recurrent neural networks may have 20-30 layers [9],
so the importance of the vanishing gradient effect cannot be underestimated.

5 Optimization Methods for Dynamic Neural
Network Training

There are many methods for training neural networks. Their key properties are cal-
culating the weights’ derivatives, which strongly depends on the neural network’s
topology and selected optimization algorithm. Here we consider gradient-based

Training Dynamic Neural Networks Using the Extended Kalman Filter 235

optimization methods based on backpropagation. There are two understandings of
term “backpropagation” – in a broad and in a narrow sense. In a broad sense,
backpropagation is a method for calculating the derivatives of a neural network and
a procedure for correcting the weights based on a gradient descent optimization
technique. In a more narrow sense, which we will use here, backpropagation refers
only to the technique for calculating derivatives.

5.1 Gradient Descent

Gradient descent is a first-order optimization algorithm. It is widely used for train-
ing neural networks due to its simplicity and low computational cost. Its disad-
vantages are low convergence speed and high risk of stopping in a local minimum.
The idea of training is to move in the direction of the negative gradient in the
weights space:

),()()1(kkk www Δ+=+ α (32)

,
)(

)(
)(

k

kE
k

w
w

∂
∂−=Δ (33)

where α is training speed, w are weights coefficients, and
)(

)(

k

kE

w∂
∂

 static or dy-

namic derivatives depending on the network’s topology.

5.2 Extended Kalman Filter Training

The extended Kalman Filter method was proposed in the late 1980s [18] as an
effective and efficient tool for supervised training of neural networks. Kalman
Filter training shows much better fitting accuracy and faster convergence in com-
parison to the gradient descent-based methods. It is based on second order deriva-
tive information about the error surface, which is accumulated in the covariance
matrix. This makes the Kalman Filter a good alternative to the popular second-
order batch training methods such as conjugate gradient, BFGS, Levenburg-
Marquardt, etc. Meanwhile, Kalman Filter methods are online (sample-by-
sample), offering additional benefits. First, it makes it possible to operate in real-
time. Second, KF training is less likely to converge to a local minimum due to the
stochastic component in the training process [1, p. 24]. Moreover, it is not neces-
sary to implement the regularization procedure here to decrease overfitting, be-
cause it is already implicitly implemented inside the Kalman recursion [19]. Men-
tioned above, a pioneering paper by S. Singhal and L. Wu produced a family of
training methods called “Bayesian filtering for parameter estimation” [1], [19].
Several methods were developed: decoupled EKF training for reducing computa-
tional resources required [1, p. 855], [20, p. 33], [21], multi-stream [20, p. 35] and
mini-batch [22], [23] training for escaping local minima. New designs of Kalman

236 A. Chernodub

Filters were used: The Ensemble Kalman Filter, EnKF [24], Unscented Kalman
Filter, UKF [20, p. 221], [25], Cubature Kalman Filter, CKF) [1, p. 787], [26] and
their more numerically stable square-root implementations [1, p. 773], [20, p.
273], etc. Although KF methods are usually used for training RNN networks, they
can be applied to any differentiable model of a neural network including Multi-
layer Perceptrons, RBF networks, belief networks and others.

The Kalman Filter deals with the dynamics of the training process, so the exist-
ence of recurrent connections in the network’s topology is not a necessary condi-
tion. Training the neural network is considered a state estimation problem of some
unknown “ideal” neural network that provides zero residual. In this case, the states
are the neural network’s weights)(kw , and the residual is the current training

error),(ke

),1(~)1()(+−+= kyktke (34)

where)1(+kt is a target and)1(~ +ky is NN’s output.

The dynamic training process can be described by equations (33) and (34)
using the state space model. The state transition equation (33) describes the evolu-
tion in time of the neural network’s weights)(kw under the influence of the

random Gaussian process)(nξ with zero mean and diagonal covariance matrix

Q :

).()()1(kkk ξww +=+ (35)

Measurement equation (34) is considered a linearized NN model at the time step
k . It is noised by random Gaussian noise)(kζ with zero mean and known covar-

iance matrix R :

),(
))(),(),((

)(k
kkk

k ζ
w

xzwy
h +

∂
∂= (36)

where)(kw are weights,)(kz are postsynaptic values ,)(kx are input values of

the neural network. The Jacobians
w
y

∂
∂

 for the neural network’s training proce-

dure are calculated using the standard backpropagation procedure by propagating

the value 1=OUTδ at each backward pass.

During the initialization step, the covariance matrices of measurement noise
IR η= and dynamic training noise IQ μ= are set. Matrix R has size OO× and

matrix Q has size ,ww NN × where O is the number of output neurons (we as-

sume 1=O) and wN is the number of weight coefficients. Coefficient η is in-

verse to the training speed, usually 42 10...10~ −−η , and coefficient μ defines the

measurement noise, usually 84 10...10~ −−μ . Also, the identity covariance matrix

P of size ww NN × and zero observation matrix H of size wNO × are defined.

Training Dynamic Neural Networks Using the Extended Kalman Filter 237

The following steps must be performed for all elements of the training dataset:
1) Forward pass: the neural network’s output)1(~ +ky is calculated.

2) Backward pass: Jacobians
w
y

∂
∂~

 are calculated using backpropagation. Observa-

tion matrix)(kH is filled:

.
)1(~

...
)1(~)1(~

)(
21

∂
+∂

∂
+∂

∂
+∂=

wNw

ky

w

ky

w

ky
kH (37)

3) Residual matrix)(kE is filled:

[].))1(~)1()(+−+= kyktkE (38)

4) New weights)(kw and correlation matrix)1(+kP are calculated:

,])()()([)()()(1−+= RHPHHPK TT kkkkkk (39)

,)()()()()1(QPHKPP +−=+ kkkkk (40)

).()()()1(kkkk EKww +=+ (41)

5.3 Experiment: Gradient Descent vs Extended Kalman Filter

In order to compare the sequential optimization algorithms we trained 100 Dy-
namic Multilayer Perceptrons on the Mackey-Glass chaotic process (please, see
Section 2.5 for details). The training speed for the Gradient Descent 01.0=α ,

the training parameters for the EKF were set to 310−=η and 810−=μ . Initial

weights of all neural networks were exactly the same for the both methods.

Fig. 10 Left: training 100 DMLPs with the Gradient Descent. Right: training 100 DMLPs
with the Extended Kalman Filter.

238 A. Chernodub

The evolution of errors in time situation shown on Fig. 10 is typical for such
comparison: we can see that EKF converges extremely faster than GD. Final test
error was 0.0055 for GD vs 0.0026 for EKF (validation step was not performed in
this experiment). At the same time, total training time of 100 DMLPs was 100.54
seconds for GD versus 7.18 seconds for EKF.

5.4 Mini-Batch Extended Kalman Filter Training

The EKF training algorithm also has a mini-batch form [23]. In this case, a batch
size of B patterns and a neural network with O outputs is treated as training a
single shared-weight network with BO × outputs, i.e.

B data streams which feed

B networks constrained to have identical weights are formed from the training set.
A single weight update is calculated and applied equally to each stream's network.
This weights update is sub-optimal for all samples in the mini-batch. If streams are
taken from different places in the dataset, then this trick becomes equivalent to a
Multistream EKF [21], a well-known technique for avoiding poor local minima.
The mini-batch observation matrix)(kBATCHH and residual matrix)(kBATCHE

now become:

,
)(

...
)(

.........

)1(
...

)1(

)(

1

1

∂
+∂

∂
+∂

∂
+∂

∂
+∂

=

w

w

N

N

BATCH

w

Bky

w

Bky

w

ky

w

ky

k

H

(42)

[].)()(...)1()1()(BkyBktkyktkBATCH +−++−+= E (43)

Note that outputs)(⋅y for calculating the training derivatives and residuals for

mini-batch EKF are pure SS predictions. If derivatives
w

y

∂
⋅∂)(

 are calculated dy-

namically (e.g., BPTT) they provide better MS prediction quality.
 The size of matrix R is)()(BOBO ××× , the size of matrix

)(kBATCHH is wNBO ××)(, and the size of matrix)(kBATCHE is 1)(×× HO .

The remainder is identical to regular EKF. Again, here without loss of generality
we assume 1=O . However, the mini-batch method requires at least B more
calculations at each time step in comparison to the original EKF method.

Training Dynamic Neural Networks Using the Extended Kalman Filter 239

6 Training FFNNs for MS Predictions Using FPTT and
Mini-Batch EKF

Recurrent neural networks trained using Backpropagation Through Time show
better multi-step-ahead prediction quality than feedforward neural networks
trained using backpropagation. The underlying idea of BPTT is to calculate deriv-
atives by propagating the errors back across the RNN, which is unfolded through
time. This penalizes the network for accumulating errors in time and therefore
provides better MS predictions. Nonetheless, RNNs have some disadvantages.
First, the implementation of RNNs is harder than feedforward neural networks
(FFNNs) in industrial settings. Second, training the RNNs is a difficult problem
because of their more complicated error surfaces and vanishing gradient effects.
Third, the internal dynamics of RNNs are less amenable to stability analysis. All
of the above reasons prevent RNNs from becoming widely popular in industry.
Meanwhile, RNNs have inspired a new family of methods for training FFNNs to
perform MS predictions called direct methods [6]. Accumulated error is
backpropagated through an unfolded through time FFNN in BPTT style that caus-
es minimization of the MS prediction error. Nevertheless, the vanishing gradient
effect still occurs in all multilayer perceptron-based networks with sigmoidal acti-
vation functions.

We propose a new, effective method for training the feedforward neural models
to perform MS prediction, called Forecasted Propagation Through Time (FPTT),
for calculating the batch-like dynamic derivatives that minimize the negative ef-
fect of vanishing gradients. We use the mini-batch modification of the EKF algo-
rithm which naturally deals with these batch-like dynamic derivatives for training
the neural network.

The scheme for calculating the dynamic derivatives for the FFNNs, called
Forecasted Propagation Through Time, is depicted in Fig. 11.

Fig. 11 Calculation of dynamic FPTT derivatives for feedforward neural networks

1. At each time step the neural network is unfolded forward through time H
times using Eqs. (5)-(8) in the same way as it is performed for regular multi-
step-ahead prediction, where H is a horizon of prediction. Outputs

)1(~),...,1(~ +++ Hkyky are calculated.

240 A. Chernodub

2. For each of the H forecasted time steps, prediction errors
)1(~)1()1(++−++=++ hkyhkthke , Hh ,...,1= are calculated.

3. The set of independent derivatives

∂
+∂

w

hky)(~
, 1,...,1 += Hh , are calculat-

ed for each copy of the unfolded neural network using the standard
backpropagation of independent errors { })(hke + .

The mini-batch observation matrix)(kFPTTH and residual matrix)(kFPTTE

now become:

,
)1(~

...
)1(~

.........

)1(~
...

)1(~

)(

1

1

∂
++∂

∂
++∂

∂
+∂

∂
+∂

=

w

w

N

N

FPTT

w

Hky

w

Hky

w

ky

w

ky

kH

(44)

[].)1(~)(...)1(~)1()(++−++−+= HkyBktkyktkFPTTE (45)

Outputs)(~ ⋅y for calculating the training derivatives and residuals here are the

direct result of MS prediction at each time step. There are three main differences
between the proposed FPTT and traditional BPTT. First, BPTT unfolds the neural
network backward through time; FPTT unfolds the neural network recursively
forward through time. This is useful from a technological point of view because
this functionality must be implemented for MS predictions anyway. Second, FPTT
does not backpropagate the accumulated error through the whole unfolded struc-
ture. Instead, it calculates BP for each copy of the neural network. Finally, FPTT
does not average derivatives, it calculates a set of formally independent errors and
a set of formally independent derivatives for future time steps. By doing this, we
leave the question of contributions by each time step to the total MS error to the
mini-batch EKF algorithm.

6.1 Multi-Step-Ahead on the Mackey-Glass Chaotic Process

In the first experiment on MS predictions we used the Mackey-Glass chaotic pro-
cess (see details about data in Section 2.5). 500 values were used for training; the
next 100 values were used for testing. First, we trained 100 DMLP networks with
one hidden layer and hyperbolic tangent activation functions using traditional EKF

and BP derivatives. The training parameters for EKF were set as 310−=η and
810−=μ . The number of neurons in the hidden layer was varied from 3 to 8, the

order of input tapped delay line was set 5=N , and the initial weights were set to
small random values. Each network was trained for 50 epochs. After each epoch,

Training Dynamic Neural Networks Using the Extended Kalman Filter 241

MS prediction on horizon 14=H on the training data was performed to select the
best network. This network was then evaluated on the test sequence to achieve the
final MS quality result. Second, we trained 100 DMLP networks with the same
initial weights using the proposed mini-batch EKF technique together with FPTT
derivatives and evaluated their MS prediction accuracy. Third, we trained 100
NARX networks (orders of tapped delay lines: 5=N , 5=L) using EKF and
BPTT derivatives to make comparisons. The results of these experiments are pre-
sented in Table 1. Normalized Mean Square Error (NMSE) was used for the quali-
ty estimations.

Table 2 Mackey-Glass dataset: mean NMSE errors for different prediction horizon values

 H=1 H=2 H=6 H=8 H=10 H=12 H=14

DMLP EKF BP 0.0006 0.0014 0.013 0.022 0.033 0.044 0.052

DMLP BEKF FPTT 0.0017 0.0022 0.012 0.018 0.022 0.027 0.030

NARX EKF 0.0010 0.0014 0.012 0.018 0.023 0.028 0.032

6.2 Multi-Step-Ahead on Santa-Fe Laser Dataset

In order to explore the capability of the global behavior of DMLP using the pro-
posed training method, we tested it on the laser data from the Santa Fe competi-
tion. The dataset consisted of laser intensities collected from the real experiment.
Data was divided to training (1000 values) and testing (100 values) subsequences.
This time the goal for training was to perform long-term (H=100) MS prediction.
The order of the time delay line was set to 25=N as in [4], the rest was the same
as in the previous experiment. The obtained average NMSE for 100 DMLP net-
works was 0.175 for DMLP EKF BP (classic method) versus 0.082 for DMLP
BEKF FPTT (proposed method). NARX networks shows NMSE 0.131 in average.

Fig. 12. The best results of the closed-loop long-term predictions (H=100) on testing data using
DMLPs trained using different methods

Meanwhile, the best instance trained using mini-batch EKF+FPTT shows 10
times better accuracy than the best instance trained using the traditional approach.

242 A. Chernodub

7 Conclusions

We considered the multi-step-ahead prediction problem and discussed neural net-
work based approaches as a tool for its solution. Feedforward and recurrent neural
models were considered, and advantages and disadvantages of their usage were
discussed. A novel direct method for training feedforward neural networks to per-
form multi-step-ahead predictions was proposed, based on the mini-batch Extend-
ed Kalman Filter. This method is considered to be useful from a technological
point of view because it uses existing multi-step-ahead prediction functionality for
calculating special FPTT dynamic derivatives that require a slight modification of
the standard EKF algorithm. Our method demonstrates doubled long-term accura-
cy compared to standard training of the dynamic MLPs using the EKF due to di-
rect minimization of the accumulated multi-step-ahead error.

References

1. Haykin, S.: Neural Networks and Learning Machines, 3rd edn., 936 p. Prentice Hall,
New York (2009)

2. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn., p. 842. Prentice
Hall, Englewood Cliffs (1999)

3. Bishop, C.M.: Pattern Recognition and Machine Learning, 738 p. Springer (2006)
4. Giles, L.L., Horne, B.G., Sun-Yan, Y.: A Delay Damage Model Selection Algorithm

for NARX Neural Networks. IEEE Transactions on Signal Processing 45(11), 2719–
2730 (1997)

5. Parlos, A.G., Raisa, O.T., Atiya, A.F.: Multi-step-ahead prediction using dynamic re-
current neural networks. Neural Networks 13(7), 765–786 (2000)

6. Bone, R., Cardot, H.: Advanced Methods for Time Series Prediction Using Recurrent
Neural Networks. In: Recurrent Neural Networks for Temporal Data Processing, ch. 2,
pp. 15–36. Intech, Croatia (2011)

7. Qina, S.J., Badgwellb, T.A.: A survey of industrial model predictive control technolo-
gy. Control Engineering Practice 11(7), 733–764 (2003)

8. Toth, E., Brath, A.: Multistep ahead streamflow forecasting: Role of calibration data in
conceptual and neural network modeling. Water Resources Research 43(11) (2007),
doi:10.1029/2006WR005383

9. Prokhorov, D.V.: Toyota Prius HEV Neurocontrol and Diagnostics. Neural Net-
works (21), 458–465 (2008)

10. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural net-
works. Technical ReportGMDReport 148, German National Research Center for In-
formation Technology (2001)

11. Anderson, J.A., Rosenfeld, E. (eds.): Talking nets: An oral history of neural networks,
p. 54. MIT Press, Cambridge (1998)

12. Hava, T., Siegelmann, B.G., Horne, C.: Computational capabilities of recurrent NARX
neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B 27(2),
208–215 (1997)

13. Newton, H.J., North, G.R.: Forecasting global ice volume. J. Time Series Analy-
sis 1991(12), 255–265 (1991)

Training Dynamic Neural Networks Using the Extended Kalman Filter 243

14. Hyndman, R.J.: Time Series Data Library, http://data.is/TSDLdemo
15. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient

scent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)
16. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies. In: A Field Guide to Dynam-
ical Recurrent Neural Networks, 421 p. IEEE Press (2001)

17. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T., Kingsbury, B.: Deep Neural Networks for
Acoustic Modeling in Speech Recognition. IEEE Signal Processing Magazine 29(6),
82–97 (2012)

18. Singhal, S., Wu, L.: Training Multilayer Perceptrons with the Extended Kalman algo-
rithm. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 1,
pp. 133–140. Morgan Kaufmann, San Mateo (1989)

19. Arasaratnam, I., Haykin, S.: Nonlinear Bayesian Filters for Training Recurrent Neural
Networks. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI),
vol. 5317, pp. 12–33. Springer, Heidelberg (2008)

20. Haykin, S.: Kalman Filtering and Neural Networks, 304 p. John Wiley & Sons (2001)
21. Puskorius, G.V., Feldkamp, L.A.: Decoupled Extended Kalman Filter Training of

Feedforward Layered Networks. In: International Joint Conference on Neural Net-
works, Seattle, July 8-14, vol. 1, pp. 771–777 (1991)

22. Li, S.: Comparative Analysis of Backpropagation and Extended Kalman Filter in Pat-
tern and Batch Forms for Training Neural Networks. In: Proceedings on International
Joint Conference on Neural Networks (IJCNN 2001), Washington, DC, July 15-19,
vol. 1, pp. 144–149 (2001)

23. Chernodub, A.: Direct Method for Training Feed-Forward Neural Networks Using
Batch Extended Kalman Filter for Multi-Step-Ahead Predictions. In: Mladenov, V.,
Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.)
ICANN 2013. LNCS, vol. 8131, pp. 138–145. Springer, Heidelberg (2013)

24. Mirikitani, D.T., Nikolaev, N.: Dynamic Modeling with Ensemble Kalman Filter
Trained Recurrent Neural Networks. In: Seventh International Conference on Machine
Learning and Applications (ICMLA 2008), San Diego, USA, December 11-13 (2008)

25. Wan, E.A., van der Merwe, R.: The Unscented Kalman Filter for Nonlinear Estima-
tion. In: Proceedings of IEEE Symposium (AS-SPCC), Lake Louise, Alberta, Canada,
pp. 153–158 (October 2000)

26. Arasaratnam, I., Haykin, S.: Cubature Kalman Filters. IEEE Transactions on Automat-
ic Control 56(6), 1254–1269

Learning as Constraint Reactions�

Giorgio Gnecco, Marco Gori, Stefano Melacci, and Marcello Sanguineti

Abstract. A theory of learning is proposed, which extends naturally the classic regu-
larization framework of kernel machines to the case in which the agent interacts with
a richer environment, compactly described by the notion of constraint. Variational
calculus is exploited to derive general representer theorems that give a description
of the structure of the solution to the learning problem. It is shown that such solution
can be represented in terms of constraint reactions, which remind the corresponding
notion in analytic mechanics. In particular, the derived representer theorems clearly
show the extension of the classic kernel expansion on support vectors to the expan-
sion on support constraints. As an application of the proposed theory three examples
are given, which illustrate the dimensional collapse to a finite-dimensional space
of parameters. The constraint reactions are calculated for the classic collection of
supervised examples, for the case of box constraints, and for the case of hard holo-
nomic linear constraints mixed with supervised examples. Interestingly, this leads
to representer theorems for which we can re-use the kernel machine mathematical
and algorithmic apparatus.

Giorgio Gnecco
IMT, Piazza S. Ponziano 6, 55100 Lucca, Italy
e-mail: giorgio.gnecco@imtlucca.it

Marco Gori · Stefano Melacci
DIISM – University of Siena, Via Roma 56, 53100 Siena, Italy
e-mail: {marco,mela}@diism.unisi.it
Marcello Sanguineti
DIBRIS – University of Genoa, Via Opera Pia 13, 16145 Genova, Italy
e-mail: marcello.sanguineti@unige.it
� Part of this chapter is an excerpt of the paper “Foundations on Support Constraint Ma-

chines,” by the same authors, that will appear in Neural Computation, which contains a
significantly broader view on the subject along with a more general framework, algorith-
mic issues, and references to applications.

c© Springer International Publishing Switzerland 2015 245
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_12

246 G. Gnecco et al.

1 Introduction

Examples of constraints in machine learning come out naturally in various situa-
tions: constraints may represent, for instance, prior knowledge provided by an expert
(e.g., a physician in the case of a medical application: in such a case constraints may
be expressed in the form of rules which help in the detection of a disease [14, 16]).
The expressive power of constraints becomes particularly significant when dealing
with a specific problem, like vision, control, text classification, ranking in hyper-
textual environment, and prediction of the stock market.

Table 1 provides some examples of constraints that are often encountered in prac-
tical problems arising in different domains. The first example (i) describes the sim-
plest case in which we handle several classic pairs (xκ ,yκ) provided for supervised
learning in classification, where xκ is the κ-th supervised example and yκ ∈ {−1,1}
is its label. If f (·) is the function that the artificial agent is expected to compute, then
the corresponding real-valued representation of the constraint is just the translation
of the classic “robust” sign agreement between the target and the function to be
learned. Example ii is the normalization of a probability density function, whereas
example iii (which refers to a binary classification problem) imposes the coherence
between the decisions taken on S1x and S2x for the object x, where S1 and S2 are ma-
trices used to select two different views of the same object (see [17]). In the example
iv we report a constraint from computer vision coming from the classic problem of
determining the optical flow. It consists of finding the smoothest solution for the
velocity field under the constraint that the brightness of any point in the movement
pattern is constant. If u(x,y, t) and v(x,y, t) denote the components of the velocity
field and E(x,y, t) the brightness of any pixel (x,y) at time t, then the velocity field
satisfies the linear constraint indicated in Table 1 iv. Finally, example v in the table
refers to a document classification problem, and states the rule that all papers dealing
with numerical analysis and neural networks are machine-learning papers. Notice
that, whereas the first row of example v expresses the rule by a first-order logic de-
scription, in the second row there is a related constraint expressed by real-valued
functions that is constructed using the classic product T-norm [4, 5, 13].

The aim of this chapter is to show how the framework of kernel machines can be
extended to support constraint machines by including prior knowledge modeled by
several kinds of constraints. In particular, we propose a framework in which the am-
bient space is described in terms of Reproducing Kernel Hilbert Spaces (RKHSs) of
Sobolev type, which has the advantage, over generic RKHSs, of providing optimality
conditions expressed as partial differential equations (see Theorems 1and 2 in Section
2). The general learning paradigm of support constraints machines, its mathematical
foundations, representer theorems, and algorithmic issues is presented in [11].

Unlike the classic framework of learning from examples, the beauty and the
elegance of the simplicity behind the parsimony principle - for which simple ex-
planations are preferred to complex ones - has not been profitably used yet for
the formulation of systematic theories of learning in general constrained environ-
ments, although there are some works on learning in specific constrained con-
texts [2, 6, 12, 15, 21–23]. We propose the study of parsimonious agents interacting

Learning as Constraint Reactions 247

Table 1 Examples of constraints from different environments. For each entry, both a linguis-
tic description of the constraint and its real-valued representation are provided.

i κ-th supervised pair for classification
yκ · f (xκ)−1 ≥ 0

ii normalization of a probability density function∫
X f (x)dx = 1, and ∀x ∈ X : f (x)≥ 0

iii coherence constraint (two classes)
∀x ∈ X : f1(S1x) · f2(S2x)> 0

iv brightness invariance - optical flow
∂ E
∂ x u+ ∂ E

∂ y v+ ∂ E
∂ t = 0

v document classification: ∀x : na(x)∧nn(x) ⇒ ml(x)
∀x ∈ X : fna(x) fnn(x)(1− fml(x)) = 0

simultaneously with examples and constraints in a multi-task environment with
the purpose of developing the simplest (smoothest) vectorial function in a set of
feasible solutions. More precisely, we think of an intelligent agent acting on a
subset X of the perceptual space R

d as one implementing a vectorial function
f := [f1, . . . , fn]

′ ∈F , where F is a space of functions from X toRn. Each function
f j is referred to as a task of the agent. We assume that additional prior knowledge is
available, defined by the fulfillment of constraints modeled as

∀x ∈ Xi ⊆ X : φi(x, f (x)) = 0, i = 1, . . . ,m, (1)

or as

∀x ∈ Xi ⊆ X : φ̌i(x, f (x)) ≥ 0, i = 1, . . . ,m, (2)

where φi, φ̌i are scalar-valued functions. Following the terminology in variational
calculus, when the sets Xi are open we call (1) bilateral holonomic constraints and
(2) unilateral holonomic constraints. When the sets Xi are made by finite numbers
of points, we replace the term “holonomic” by point-wise. The constraints above are
called hard if they cannot be violated; constraints that can be violated (at the cost
of some penalization) play the role of soft constraints (this is usually the case for
supervised pairs of the learning set). In this way, any cross-dependence amongst the
functions f j is expressed directly by the constraints.

In this chapter, which is an improved and extended version of [8], we investigate
theoretically and by means of case studies the problem of learning in a constraint-
based environment, taking into account both hard and soft constraints of holonomic
and point-wise types. The focus on holonomic constraints is motivated by the fact
that they model very general prior knowledge, expressed by universal quantifiers.
Examples of learning problems with holonomic constraints are given, e.g, in [5],
where the constraints arise by a suitable representation of prior knowledge expressed
in terms of first-order-logic clauses. We also consider point-wise constraints, which
arise, e.g., in the case of interpolation and approximation problems, given a finite
set of examples. However, the proposed framework can be extended to several other

248 G. Gnecco et al.

kinds of constraints and their combinations (e.g., isoperimetric ones, box constraints
[9, 16], and boundary conditions [10]).

The chapter is organized as follows. In Section 2 we formalize the problems of
learning from soft and hard constraints and we present the corresponding representer
theorems, which provide information on the form of their solutions. Section 3 is de-
voted to the concepts of reactions of the constraints and support constraint machines.
Section 4 analyzes some practical instances of the proposed framework. Section 5 is
a discussion. Finally, the most technical results are detailed in three appendices.

2 Learning from Constraints and Its Representer Theorems

In this chapter, we assume X to be either the whole R
d , or an open, bounded and

connected subset of Rd , with strongly local Lipschitz continuous boundary [1]. In
particular, we consider the case in which, ∀ j ∈ Nn := {1, . . . ,n} and some positive
integer k, the function f j : X →R belongs to the Sobolev space W k,2(X), i.e., the
subset of L 2(X) whose elements f j have weak partial derivatives up to the order k
with finite L 2(X)-norms. So, the ambient space of the class of proposed problems
of learning from constraints is

F := W k,2(X)× . . .×W k,2(X)︸ ︷︷ ︸
n times

.

We take k > d
2 since, by the Sobolev Embedding Theorem (see, e.g., Chapter 4

in [1]), for k > d
2 each element of W k,2(X) has a continuous representative, and

under such an assumption F is a RKHS.
We can introduce a seminorm ‖ f ‖P,γ on F via the pair (P,γ), where P :=

[P0, . . . ,Pl−1]
′ is a suitable (vectorial) finite-order1 differential operator of order k

with l components and γ ∈ R
n is a fixed vector with positive components. Let us

consider the functional

E (f) := ‖ f ‖2
P,γ=

n

∑
j=1

γ j < P f j,P f j >

=
n

∑
j=1

γ j

(
l−1

∑
r=0

∫
X
(Pr f j(x)Pr f j(x))dx

)
. (3)

Note that we overload the notation and use the symbol P for both the (matrix) dif-
ferential operator acting on f and the (vector) one acting on its components. If we
choose for P the form used in Tikhonov’s stabilizing functionals [24], for n = 1 and
l = k+ 1 we get

‖ f ‖2
P,γ = γ

∫
X

k

∑
r=0

ρr(x)(Dr f (x))2 dx ,

1 The results can be extended to infinite-order differential operators (see the example in
Section 4.3).

Learning as Constraint Reactions 249

where the function ρr(x) is nonnegative, Pr :=
√

ρr(x)Dr, and Dr denotes a dif-
ferential operator with constant coefficients containing only partial derivatives of
order r. In this work, we focus on the case in which the operator P is invariant
under spatial shift and has constant coefficients. For a function u and a multiin-

dex α with d nonnegative components α j, we write Dα u to denote ∂ |α|
∂x

α1
1 ...∂x

αd
d

u,

where |α| := ∑d
j=1 α j . So, the generic component Pi of P has the expression

Pi = ∑|α |≤k bi,α Dα , where the bi,α ’s are suitable real coefficients. Then, the formal
adjoint of P is defined as the operator P� = [P�

0 , . . . ,P
�
l−1]

′ whose i-th component P�
i

is given by P�
i = ∑|α |≤k(−1)|α |bi,α Dα . Finally, we define the operators L := (P�)′P

and, using again an overloaded notation, γL := [γ1L, . . . ,γnL]′.

2.1 Soft Constraints

We start considering the case of learning from soft constraints, whose representer
theorem has a simpler formulation than in the case of hard ones. The problem of
learning from soft constraints is based on a direct soft re-formulation of (3). We
can associate any holonomic or point-wise unilateral constraint φ̌i(x, f (x)) ≥ 0 with
φ≥

i (x, f (x)) = 0, where φ≥
i (·, ·) is a non-negative function. Similarly, each holo-

nomic or point-wise bilateral constraint can be expressed via a pair of unilateral
constraints. Hence, regardless of bilateral or unilateral constraints, the problem of
learning from soft holonomic or point-wise constraints can be formulated as the
minimization of the functional

Ls(f) :=
1
2
E (f)+

m

∑
i=1

∫
X

p(x) 1Xi(x)φ
≥
i (x, f (x))dx , (4)

where p(x) is a (nonnegative) weight function, e.g., a probability density function
(this setting can be extended to the case of a generalized probability density func-
tion). We use 1Xi(·) to denote the characteristic function of the set Xi when Xi

is open. In order to keep the notation uniform, we let 1Xi(·) := δ (·− xi), where δ
denotes the Dirac delta, for a set Xi = {xi} made up of a single element. Finally, for
two vector-valued functions u(1) and u(2) of the same dimensions, u(1)⊗ u(2) repre-
sents the vector-valued function v whose first component is the convolution of the
first components of u(1) and u(2), the second component is the convolution of the

second components of u(1) and u(2), and so on, i.e., vi := (u(1)⊗u(2))i := u(1)i ⊗u(2)i
for each index i.

Theorem 1. (REPRESENTER THEOREM FOR SOFT HOLONOMIC AND SOFT POINT-
WISE CONSTRAINTS). Let p(·) be continuous, nonnegative and in L 1(X), and let
f o be a local minimizer of the functional (4) over F .

(i) Let also the following hold: ∀i ∈ Nm, Xi ⊆ X is open and ∀x ∈ Xi, there is
an open neighborhood N of (x, f o(x)) for which φ≥

i ∈ C 1(N). Then, f o satisfies
on X

250 G. Gnecco et al.

γL f o(x)+
m

∑
i=1

p(x)1Xi(x) ·∇ f φ≥
i (x, f o(x)) = 0, (5)

where γL := [γ1L, . . . ,γnL]′ is a spatially-invariant operator2, and ∇ f φ≥
i is the gra-

dient w.r.t. the second vector argument f of the function φ≥
i .

(ii) Suppose now that the sets Xi are disjoint and each set Xi is made up of a
single point xi, and that φ≥

i has the form

φ≥
i (x, f (x)) = ∑

j∈Nn

φ≥
i, j(x, f j(x)) ,

where φ≥
i, j(x, f j(x)) := (1− yi, j · f j(x))+, and the yi, j’s belong to the set {−1,1}.

Then, f o satisfies on X (for j = 1, . . . ,n)

γ jL f o
j (x)+

m

∑
i=1

p(x)1Xi(x) ·∂ f j φ
≥
i, j(x, f o

j (x)) = 0 , (6)

where ∂ f j φ
≥
i, j(x, f o

j (x)) is a suitable element of the subdifferential3 ∂ f j φ
≥
i, j(x, f o

j (x)).

(iii) Let the assumptions of either item (i) or item (ii) hold. If, moreover, X =R
d,

L is invertible on W k,2(X), and there exists a free-space Green’s function g of L
that belongs to W k,2(X), then f o can be represented as

f o(·) =
m

∑
i=1

γ−1g(·) �⊗ φ≥
i (·, f o(·)) , (7)

where g �⊗ φ≥
i := g⊗ω≥

i and

ω≥
i :=↑ φ≥

i (·, f o(·)) :=−p(·)1Xi(·)∇ f φ≥
i (·, f o(·))

under the assumptions of (i), while the n components of ω≥
i are defined as

ω≥
i, j :=↑ φ≥

i (·, f o(·)) :=−p(·)1Xi(·)∂ f j φ
≥
i, j(·, f o(·))

under the assumptions of (ii).

Proof. (i) is proved by fixing arbitrarily η ∈ C k
0 (X ,Rn) (the set of functions from

X to R
n that are continuously differentiable up to order k, and have compact sup-

port), then computing

2 Here we use again an overloaded notation, as made for the operator P.
3 Let Ω ⊆ R

d be a convex set. We recall that the subdifferential of a convex function u :
Ω → R at a point x0 ∈ Ω is the set of all the subgradients of u at x0, that is the set of all
vectors v ∈ R

d such that f (x)− f (x0)≥ v′(x−x0).

Learning as Constraint Reactions 251

0 = lim
ε→0

Ls(f o + εη)−Ls(f o)

ε

=

∫
X

(
γL f o(x)+

m

∑
i=1

p(x)1Xi(x) ·∇ f φ≥
i (x, f o(x))

)′
η(x)dx .

The first equality has been derived by the local optimality of f o, whereas the second
one has been derived by exploiting the assumption that ∀x ∈ Xi there is an open
neighborhood N of (x, f o(x)) for which φ≥

i ∈ C 1(N). Finally, the proof is com-
pleted applying the fundamental lemma of the calculus of variations (for which we
refer, e.g., to Section 2.2 in [7]).

(ii) Let us fix arbitrarily η ∈ C k
0 (X ,Rn), with the additional condition that

η(x) = 0 for all x∈∪m
i=1Xi. Proceeding likewise in the proof of item (i), one obtains

lim
ε→0

Ls(f o + εη)−Ls(f o)

ε
=

∫
X

(γL f o(x))′ η(x)dx = 0 . (8)

Since, for each index j = 1, . . . ,n, γ jL f o
j is a distribution, formula (8) implies that

the support of γ jL f o
j is a subset of {x1, . . . ,xm}, which is a set of finite cardinal-

ity. By Theorem XXXV in Chapter 3 of [19], γ jL f o
j is made up of a finite linear

combination of Dirac delta’s and their partial derivatives up to some finite order,
centered on x1, . . . ,xm. Now, all the coefficients associated with the partial deriva-
tives of any order of the Dirac delta’s are 0, as it can be checked by choosing a
function η ∈ C ∞

0 (X ,Rn) such that only its j-th component η j is different from 0,
and η j(x) = 0 for all x ∈ ∪m

i=1Xi (even though some partial derivatives of some or-
der of η j may be different from 0 for some x ∈∪m

i=1Xi). Concluding, γ jL f o
j satisfies

on X

γ jL f o
j (x) =

m

∑
i=1

Biδ (x− xi) , (9)

where the Bi’s are constants. Notice that (9) is of the same form as (6).
Now, we look for lower and upper bounds on the Bi’s. For simplicity of exposi-

tion, in the following we suppose m = 1, so there is only one constant B1 (however,
the next arguments hold also for the case m > 1). We denote by η j+ any func-
tion in C k

0 (X ,Rn) such that only its j-th component η j+
j is different from 0, and

η j+
j (x1)> 0. Once η j+ has been fixed, we denote by η j− the function −η j+. The

following possible cases show up.

Case (a): (1− y1, j · f o
j (x1))+ < 0. In this case, one obtains

lim
ε→0+

Ls(f o + εη j+)−Ls(f o)

ε

=
∫

X
γ jL f o

j (x)η
j+
j (x)dx = B1η j+

j (x1)≥ 0 , (10)

252 G. Gnecco et al.

and

lim
ε→0+

Ls(f o + εη j−)−Ls(f o)

ε

=

∫
X

γLj f o
j (x)η

j−
j (x)dx =−B1η j+

j (x1)≥ 0 , (11)

then B1 = 0 (since η j+
j (x1) > 0). Notice that the “≥” in formulas (10) and (11)

follow by the local optimality of f o, whereas the first equalities by the left/right
differentiability4 of the function (·)+.

Case (b): (1− y1, j · f o
j (x1))+ > 0. Similarly, in this case, one obtains

lim
ε→0+

Ls(f o + εη j+)−Ls(f o)

ε

=

∫
X

(
γ jL f o

j (x)− y1, j p(x)1Xi(x)
)

η j+
j (x)dx

= (B1 − y1, j p(x1))η j+
j (x1)≥ 0 , (12)

and

lim
ε→0+

Ls(f o + εη j−)−Ls(f o)

ε

=
∫

X

(
γ jL f o

j (x)− y1, j p(x)1Xi(x)
)

η j−
j (x)dx

= −(B1 − y1, j p(x1))η j+
j (x1)≥ 0 , (13)

then B1 = y1, j p(x1).

Case (c): (1− y1, j · f o
j (x1))+ = 0 and y1, j =−1. In this case, one obtains

lim
ε→0+

Ls(f o + εη j+)−Ls(f o)

ε

=

∫
X

(
γ jL f o

j (x)− y1, j p(x)1Xi(x)
)

η j+
j (x)dx

= (B1 − y1, j p(x1))η j+
j (x1)≥ 0 , (14)

and

lim
ε→0+

Ls(f o + εη j−)−Ls(f o)

ε

=
∫

X
γLj f o

j (x)η
j−
j (x)dx =−B1η j+

j (x1)≥ 0 , (15)

then B1 ∈ [y1, j p(x1),0] = [−p(x1),0].

4 Depending on the sign of yi, j .

Learning as Constraint Reactions 253

Case (d): (1− y1, j · f o
j (x1))+ = 0 and y1, j = 1. Finally, in this case, one obtains

lim
ε→0+

Ls(f o + εη j+)−Ls(f o)

ε

=

∫
X

γ jL f o
j (x)η

j+
j (x)dx = B1η j+

j (x1)≥ 0 , (16)

and

lim
ε→0+

Ls(f o + εη j−)−Ls(f o)

ε

=
∫

X

(
γ jL f o

j (x)− y1, j p(x)1Xi(x)
)

η j−
j (x)dx

= −(B1 − y1, j p(x1))η j+
j (x1)≥ 0 , (17)

then B1 ∈ [0,y1, j p(x1)] = [0, p(x1)].
Concluding, one obtains (6) summarizing the results of the analysis of cases (a)-

(d), and applying the definition of subdifferentiability to the function (·)+.

(iii) follows by the Euler-Lagrange equations (5) (resp., (6)) of item (i) (resp.,
(ii)), the definition of the free-space Green’s function g of L as the solution of Lg= δ
(where δ denotes the Dirac delta, centered in 0), and the stated assumptions on L
and g. ��

Item (i) of Theorem 1 applies, e.g., to the case of a function φ≥
i that is continu-

ously differentiable everywhere (or at least a function φ≥
i that is “seen as” a contin-

uously differentiable function at local optimality, in the sense that (x, f o(x)) is not a
point of discontinuity of any partial derivative of φ≥

i). However, a function φ≥
i deriv-

ing from a unilateral constraint may not be continuously differentiable everywhere.
In such a case, one may approximate such a function by a continuously differen-
tiable approximation, or (for certain φ≥

i ’s) deal directly with the nondifferentiable
case, as shown in Theorem 1 (ii) for a particular choice of such functions. We re-
mark that the classic supervised learning is a degenerate case of Theorem 1 (i), in
which one sets p(x) 1Xi(x) = p(x)δ (x−xi). Such a degenerate case is considered in
Theorem 1 (ii) for the case of a particular nondifferentiable function φ≥

i , but such a
result can also be extended to other differentiable or nondifferentiable functions φ≥

i .
Finally, in Theorem 1 (iii) one can recognize both the ingredients of a parsimonious
knowledge-based solution, i.e., the free-space Green’s function g and the functions
ω≥

i , mixed by convolution. Indeed, note that, by defining ω≥ := ∑m
i=1 ω≥

i , formula
(7) can be re-written as f o = γ−1g⊗ω≥ and that, under the assumptions of Theo-
rem 1 (iii), it follows by such an expression that the Fourier transform f̂ o of f o (by
Fourier transform of a vector-valued function we mean the vector of Fourier trans-
forms of each component) is f̂ o = γ−1ĝ · ω̂≥. Since under the assumptions of Theo-
rem 1 (iii) the operator L is invertible and has g⊗ as its inverse, from f o = γ−1g⊗ω≥
we get also ω≥ = γL f o, which is just a compact expression of the solution (7) to
the Euler-Lagrange equations (5) or (6).

254 G. Gnecco et al.

2.2 Hard Constraints

We now consider hard holonomic constraints. The following theorem prescribes
the representation of the solution of the associated learning problem. Given a set
of m holonomic constraints (defined, in general, on possibly different open subsets
Xi), we denote by m(x) the number of constraints that are actually defined in the
same point x of the domain. We denote by X̂ any open subset of X , where the
same subset of constraints is defined in all its points, in such a way that m(x) is
constant on the same X̂ . By “cl” we denote the closure in the Euclidean topology.
Finally, recall that a constraint φ̌i(x, f (x))≥ 0 is said to be active in x0 ∈ X̂ at local
optimality iff φ̌i(x0, f o(x0)) = 0, otherwise it is inactive in x0 at local optimality.

Theorem 2. (REPRESENTER THEOREM FOR HARD HOLONOMIC CONSTRAINTS,
CASE OF FUNCTIONAL LAGRANGE MULTIPLIERS). Let us consider the minimiza-
tion of the functional (3) in the case of m< n hard bilateral constraints of holonomic
type, which define the subset

Fφ := { f ∈ F : ∀i ∈Nm,∀x ∈ Xi ⊆ X : φi(x, f (x)) = 0}

of the function space F , where ∀i ∈ Nm : φi ∈ C k+1(cl(Xi)×R
m). Let f o be any

constrained local minimizer of class C 2k(X ,Rn) of the functional (3). Let us as-
sume that for any X̂ and for every x0 in the same X̂ we can find two permutations
σ f and σφ of the indexes of the n functions f j and of the m constraints φi, such that
φσφ (1), . . . ,φσφ (m(x0)) refer to the constraints actually defined in x0, and the Jacobian
matrix

∂ (φσφ (1), . . . ,φσφ (m(x0)))

∂ (f o
σ f (1)

, . . . , f o
σ f (m(x0))

)
, (18)

evaluated in x0, is not singular. Then, the following hold.

(i) There exists a set of functions λi : X̂ → R, i ∈ Nm, such that, in addition to
the above constraints, f o satisfies on X̂ the Euler-Lagrange equations

γL f o(x)+
m

∑
i=1

λi(x)1Xi(x) ·∇ f φi(x, f o(x)) = 0, (19)

where γL := [γ1L, . . . ,γnL]′ is a spatial-invariant operator, and ∇ f φi is the gradient
w.r.t. the second vector argument f of the function φi.

(ii) Let γ−1g := [γ−1
1 g, . . . ,γ−1

n g]′. If for all i one has Xi =X =R
d, L is invertible

on W k,2(X), and there exists a free-space Green’s function g of L that belongs to
W k,2(X), then f o has the representation

f o(·) =
m

∑
i=1

γ−1g(·) �⊗ φi(·, f o(·)) , (20)

where g �⊗ φi := g⊗ωi and ωi(·) :=↑ φi(·, f o(·)) := −λi(·)1Xi(·)∇ f φi(·, f o(·)).

Learning as Constraint Reactions 255

(iii) For the case of m < n unilateral constraints of holonomic type, which define
the subset Fφ̌ :=

{
f ∈ F : ∀i ∈Nm,∀x ∈ Xi ⊆ X : φ̌i(x, f (x)) ≥ 0

}
of the func-

tion space F , (i) and (ii) still hold (with every occurrence of φi replaced by φ̌i) if one
requires the nonsingularity of the Jacobian matrix (see (18)) to hold when restrict-
ing the constraints defined in x0 to the ones that are active in x0 at local optimality.
Moreover, each Lagrange multiplier λi(x) is nonpositive and equal to 0 when the
correspondent constraint is inactive in x at local optimality.

Proof. The proof adapts to the case of hard holonomic constraints the one of Theo-
rem 1 above. For completeness, it is detailed in Appendix 2. ��

Notice that, due to the definition of ωi, without loss of generality, one can define
λi(x) := 0 for all x ∈X \Xi. Likewise in Theorem 1, by defining ω :=∑m

i=1 ωi, for-
mula (20) can be re-written as f o = γ−1g⊗ω , and, under the assumptions of Theo-
rem 2 (ii),(iii), one can write f̂ o = γ−1ĝ · ω̂. We also mention that a similar result can
be proven for the case of hard point-wise constraints (in which one has discrete sets
Xi composed of the |Xi| elements x(i,1),x(i,2), . . . ,x(i,|Xi|)), and for combinations of
soft and hard constraints (e.g., soft point-wise constraints on supervised examples
mixed with hard holonomic constraints, in which case the Lagrange multipliers are
distributions instead of functions, as detailed in Appendix 2).

3 Support Constraint Machines

The next definition formalizes a concept that plays a basic role in the proposed
learning paradigm.

Definition 1. The function ω≥
i in Theorem 1 (iii) (resp., the function ωi in Theorem

2 (ii)) is called the reaction of the i-th constraint and ω≥ := ∑m
i=1 ω≥

i (resp. ω :=
∑m

i=1 ωi) is the overall reaction of the given constraints.

We emphasize the fact that the reaction of a constraint is a concept associated with
the constrained local minimizer f o. In particular, two different constrained local
minimizers may be associated with different constraint reactions. A similar remark
holds for the overall reaction of the constraints. Loosely speaking, under the as-
sumptions of Theorem 1 (iii) or Theorem 2 (ii),(iii), the reaction of the i-th constraint
provides the way under which such a constraint contributes to the expansion of f o.
So, in this case solving the learning problem is reduced to finding the reactions of
the constraints.

Proposition 1. Under the assumptions of the respective representer theorems (The-
orem 1 (iii) and Theorem 2 (ii),(iii)), the reactions of the constraints are uniquely
determined by the constrained local minimizer f o.

Proof. For the case of soft constraints (Theorem 1 (iii)), the statement follows di-
rectly by the definition of the reactions of the constraints ω≥

i (·). For the case of
hard constraints (Theorem 2 (ii),(iii)), the proof can be given by contradiction. Let
us assume that there exist two different sets of Lagrange multipliers associated with

256 G. Gnecco et al.

the same constrained local minimizer f o: {λi, i = 1 . . . ,m} and
{

λ i, i = 1 . . . ,m
}

,

with at least one λi �= λ i. According to Theorem 2 (i), f o satisfies the Euler-
Lagrange equations (19). Without loss of generality, for each x ∈ X̂ , one can
re-order the constraints and the associated Lagrange multipliers in such a way
that the first m(x) constraints are the ones actually defined in x ∈ X̂ , and as-
sume that λi(x) = λ i(x) = 0 for all indexes i > m(x), as the corresponding con-
straint reactions are equal to 0 in x due to the definition of ωi. Subtracting the
two expressions of f o in terms of the two sets of Lagrange multipliers, one obtains

∑m
i=1(λi −λ i)∇ f φi = (λ(D)−λ (D))

′ ∂ (φ1,...,φm(x))

∂ (f1,..., fm(x))
= 0 , where λ(D) := [λ1, . . . ,λm(x)]′

and λ (D) := [λ 1, . . . ,λ m(x)]
′. Now, distinct multipliers are only compatible with the

singularity of the Jacobian matrix, which contradicts the assumption on the invert-
ibility of (18). ��

A remarkable difference between the case of soft and hard constraints is the fol-
lowing. For soft constraints, the solution provided by Theorem 1 (iii) is based on the
assumption of knowing the probability density of the data p(·). For hard constraints,
instead (see Theorem 2 (ii),(iii)), one needs to compute the Lagrange multipliers
λi(·) associated with the constraints, and also to check the (hard) satisfaction of the
constraints.

Summing up, and removing the superscript “≥” in φ≥
i and ω≥

i when the meaning
is clear from the context, the solution of the learning problem is fully representable
by the reactions ωi of the constraints φi, as it is depicted in Fig. 1, where ∇ f de-
notes the gradient with respect to f , λi(x) is the Lagrange multiplier, and p(x) is
the probability density. Interestingly, in the two cases, each constraint reaction has
exactly the same dependency on the gradient of the constraint with respect to its
second vector-valued argument but, while in the case of hard constraints the La-
grange multipliers need to be determined so as to impose the hard fulfillment of
the constraints, in the case of soft constraints one exploits the probability density of

Fig. 1 Constraint reactions in the generic point x ∈X corresponding to the cases of hard and
soft constraints, where one can see, resp., the roles of the Lagrange multiplier associated with
each constraint and of the probability density in x. For illustrative purposes, the case n = 2 is
considered here. The reaction of the constraint φi in x is a vector orthogonal to the level lines
of φi(x, f o(x)), interpreted as a function of its second vector-valued argument only.

Learning as Constraint Reactions 257

the data - which comes from the problem formulation - in the representation of the
constraint reactions. Both λi(x) and p(x) play a crucial role in determining the con-
straint reactions. For a given point x, the weights λi(x) need to be computed in such
a way not to violate the constraints at x, whereas in case of soft-fulfillment, p(x) -
which is the typical weight that is high (low) in regions of high (low) data density
- is used to compute the constraint reactions. Now, we introduce the following two
concepts.

Definition 2. A support constraint is a constraint associated with a reaction that
is different from 0 at least in one point of the domain X . A support constraint
machine is any learning machine capable of finding a (local or global) solution to
either of the problems of learning from constraints formulated in Theorems 1 or 2,
when such a solution is expressed by either the representation (7) or the one (20).

So, under the assumptions of Theorem 1 (iii) or Theorem 2 (ii),(iii), the solution
f o can be obtained by the knowledge of the reactions associated merely with the
support constraints. This motivates the use of the terminology “support constraints”
as an extension of the classical concept of “support vectors” used in kernel meth-
ods [20]. Interestingly, support vectors are particular cases of support constraints.
Indeed, the connection with kernel methods arises because, under quite general con-
ditions, the free-space Green’s function g associated with the operator L is a kernel
of a RKHS (see, e.g., [10]). Finally, we mention that for convex problems of learning
from constraints, convex optimization algorithms can be used to find the reactions
of the constraints (hence, to determine the support constraints).

4 Case Studies

4.1 Supervised Learning from Examples

The classic formulation is based on soft constraints and consists in finding f � ∈
argmin f∈FLs(f), where Ls(f) is given in formula (4) with p(x)1Xi(x)= p(x)δ (x−
xi) and each set Xi is a singleton. By yi, j we denote a real number for regression
and an element of the set {−1,1} for classification. As before, we denote by f o

a local minimizer (of which a global one f � is a particular case). There are dif-
ferent possible choices for φ≥

i (x, f (x)), which typically depend mostly on whether
one faces regression or classification problems. The quadratic loss VQ(u) := 1

2 u2

is associated with the bilateral constraints φi, j(f j(x)) = (yi, j − f j(x)), which origi-
nate5 - in the case of soft constraints - the term φ≥

i (f (x)) = ∑ j∈Nn VQ ◦φi, j(f j(x)) =
1
2 ∑ j∈Nn(yi, j − f j(x))2. For every j ∈Nn and x ∈ X , by Theorem 1 the j-th compo-
nent of the reaction of the i-th constraint is

5 In the following, we write φ≥
i (f (x)) instead of φ≥

i (x, f (x)) since there is no explicit
dependence on x.

258 G. Gnecco et al.

ω≥
i, j(x) = (↑ φ≥

i (f o(x))) j =−p(x)1Xi(x)
∂

∂ f j
φ≥

i (f o(x))

= −p(x)δ (x− xi)
∂

∂ f j

(
1
2 ∑

h∈Nn

(yi,h − f o
h (x))

2

)

= p(x)(yi, j − f o
j (x))δ (x− xi) .

The hinge loss VH(u) = (u)+ is associated with the unilateral constraint φ̌i, j(f (x)) =
1− yi, j · f j(x), which gives rise to φ≥

i (f (x)) = ∑ j∈Nn VH ◦ φ̌i, j(f j(x)) = ∑ j∈Nn(1−
yi, j · f j(x))+. In this case, the reaction of the i-th constraint is given by

ω≥
i, j(x) = (↑ φ≥

i (f o(x))) j =−p(x)1Xi(x)∂ f j φ
≥
i (f o(x))

= −p(x)δ (x− xi)∂ f j

(
(1− yi, j · f o

j (x))+
)
,

where −∂ f j

(
(1− yi, j · f o

j (x))+
)

is equal to 0 if (1 − yi, j · f o
j (x)) < 0 and to yi, j

if (1− yi, j · f o
j (x)) > 0, whereas if (1− yi, j · f o

j (x)) = 0, −∂ f j

(
(1− yi, j · f o

j (x))+
)

denotes an element (to be found) either of the set [0,1], when yi, j = 1, or of [−1,0],
when yi, j =−1.

In both cases, due to the presence of the Dirac delta, we end up with

f o
j (x) =

1
γ j

m

∑
i=1

g⊗ω≥
i, j(x) =

m

∑
i=1

αi, jg(x− xi), (21)

where the αi, j’s are suitable scalar coefficients (different in the case of hinge or
quadratic loss). The classical solution schemes of Ridge Regression and Support
Vector Machines can be applied to find the αi, j’s.

We conclude with a remark on the notion of constraint reaction in the classic
case of supervised learning from examples. In the case of the quadratic loss, it is
clear that there is a non-null reaction whenever the associated hard constraint is not
satisfied. This happens iff yi, j �= f o

j (xi) for at least one index j. This corresponds to
the well-known fact that usually all the examples are support vectors (apart from the
case of an interpolating solution). On the opposite side, a set of support vectors that
is a proper subset of all the examples usually arises in the hinge loss case.

4.2 Linear Constraints with Supervised Examples Available

Let X = R
d and ∀i ∈ Nm, ∀x ∈ X let φi(f (x)) := a′i f (x)− bi(x) = 0, where

ai ∈ R
n and bi(x) is a real-valued function. We consider hard holonomic bi-

lateral constraints that can be written as A f (x) = b(x), where A ∈ R
m,n, and

b ∈ C 2k
0 (X ,Rm) is a smooth vector-valued function with compact support. We

assume n > m and rank(A) = m. We discuss the solution for the class of so-
called rotationally-symmetric differential operators P, as defined by [10]. These are
operators of the form P := [

√ρ0D0,
√ρ1D1, . . . ,

√ρκ Dκ , . . . ,
√ρkDk]

′ , where the

Learning as Constraint Reactions 259

operators Dκ satisfy D2r = Δ r = ∇2r and D2r+1 = ∇∇2r (Δ denotes the Lapla-
cian operator and ∇ the gradient, with the additional condition D0 f = f , see also
[18, 25]), ρ0,ρ1, . . . ,ρκ , . . . ,ρk ≥ 0, and ρ0,ρk > 0. Such operators correspond via
L = (P�)′P to L = ∑k

κ=0(−1)κρκ ∇2κ , which is an invertible operator on W k,2(Rd)
(see, e.g., Lemma 5.1 in [10]). In addition, we assume that γ = γ̄ > 0, where γ̄ has
constant and equal components, and again, an overloaded notation is used. We also
assume that md additional supervised pairs (xκ ,yκ) (κ = 1, . . . ,md) induce soft con-
straints expressed in terms of the quadratic loss. A slight variation of Theorem 2
(see Theorem 3, reported for completeness in Appendix 2, and applied here with
μ = 1), implies that a constrained local minimizer f o of the associated functional
satisfies the Euler-Lagrange equations

γ̄L f o +A′λ +
1

md

md

∑
κ=1

(f o(·)− yκ)δ (·− xκ) = 0. (22)

After some straightforward computations (see Appendix 3 for details), one obtains
for the overall constraint reaction (of both hard and soft constraints) the expression

ω(x) = c(x)+ γ̄
md

∑
κ=1

Qα(ql)
κ δ (x− xκ) ,

where the α(ql)
κ ’s (κ = 1, . . . ,md) are suitable coefficients to be determined (and

“ql” stands for “quadratic loss”), whereas c(x) := γ̄A′(AA′)−1Lb(x) and Q := In −
A′[AA′]−1A, where In is the identity matrix of size n. Finally, as a unilateral variation
of this example, we mention the remarkable case of a unilateral constraint f (x)≥ 0
(componentwise), which makes sense when the components of f represent, e.g.,
mass or probability densities.

4.3 Box Constraints

To fix ideas, let us consider, as a simple sketch, the case of the constraint defined
by the rule ∀x ∈ B ⊂ X : f (x)− 1 = 0 [16], with B = [a,b] ⊂ R. As depicted in
Fig. 2(b), after softening the constraint in the way illustrated by [16], the reaction
of the constraint becomes a rectangular impulse, instead of a Dirac distribution as
in the case of supervised learning from point-wise examples. However, the latter
can be still thought as a degenerate case of the rectangular impulse. For the case in
which l in (3) is not finite and the infinite-order differential regularization operator
that corresponds to the Gaussian kernel with width σ is used, Theorem 1 (iii) for a
single box provides for the solution the representation (up to a positive constant)

(g⊗ 1B) (x) ∝ er f ((x− a)/σ)− er f ((x− b)/σ),

where 1B(·) is the characteristic function of B. This clearly indicates that the solu-
tion can be thought of as the response of a system with a certain free-space Green’s
function g, which we call plain kernel, to a Dirac delta (supervised pair) or to a

260 G. Gnecco et al.

rectangular impulse (box constraint). The latter case is just an example to show that
the representation of the solution is not based on the plain kernel anymore, but on
a function that arises from its marriage with the reaction of the constraint. Basi-
cally, the emergence of plain kernels is just a consequence of the degeneration of
the reaction of the constraint to a Dirac distribution.

ω ω(a) (b)

(d)(c)

Fig. 2 (a) Constraint reactions corresponding to a classic supervised pair (b) and to the (soft-
ened) constraint ∀x ∈ [a,b] : f (x) = 1 (box constraint). In (c) and (d) we can see the emer-
gence, resp., of the plain and box kernel. Here, the infinite-order differential regularization
operator in (3) is such that the free-space Green’s function of L yields the classic Gaussian
kernel.

5 Discussion

We have introduced a general framework of learning that involves agents acting
in a constraint-based environment, for hard and soft constraints of holonomic type
and for soft point-wise constraints. The application of the theory to the chosen case
studies illustrates the generality of the approach, which can be fully grasped as we
acquire the notion of constraint reaction. The theory presented in this chapter ex-
tends the framework of kernel machines to more general hard and soft constraints,
and opens the doors to an in-depth re-thinking of the notion of plain kernel that,
under some assumptions, was proved to be the Green’s function of the differential
operator [10] used in the formulation of the learning problem. Interestingly, the no-
tion of constraint reaction and the corresponding representer theorems show that
the solution to the learning problem is given in terms of new kinds of kernels that,
unlike the plain kernels, also involve the structure of the corresponding constraints:
indeed, they originate from the marriage of the plain kernels with the reactions of
the constraints. Finally, when the probability density of the data is unknown, the
theory suggests to explore the numerical solution of the Euler-Lagrange equations
by using unsupervised data, e.g., to learn the probability density itself.

Learning as Constraint Reactions 261

Acknowledgements. G. Gnecco and M. Sanguineti were partially supported by the project
“Methodologies for the Approximate Solution of Team Optimization and Strategic Interac-
tion Problems” granted by INDAM-GNAMPA (National Institute of High Mathematics -
National Group for Mathematical Analysis, Probability, and Their Application) and the Pro-
getto di Ricerca di Ateneo 2012 “Models and Computational Methods for High-Dimensional
Data”, granted by the University of Genoa.

Appendix 1

The next lemma, which is a consequence of the Implicit Function Theorem, is ex-
ploited in the proof of Theorem 2 in Section 2.2. For a scalar-valued function u of
various vector arguments, we denote by ∇iu the column vector of partial derivatives
of u with respect to all the components of the i-th vector argument. Instead, for a
vector-valued function u of various vector arguments, ∇iu denotes the matrix whose
h-th row is the transpose of the column vector ∇iuh.

Lemma 1. Let Ω ⊆R
d, Y ⊆R

n1 , Z ⊆R
n2 be open subsets, and φ : Ω ×Y ×Z →

R
n2 a given function. Let also y : Ω → Y and z : Ω → Z be other given functions,

which satisfy the (vector-valued) holonomic and bilateral constraint

φ(x,y(x),z(x)) = 0 ,∀x ∈ Ω .

Suppose also that φ ∈ C k+1(Ω ×Y ×Z ,Rn2) for some positive integer k ≥ 1 and
that, for each x ∈ Ω , the Jacobian matrix

∇3φ(x,y(x),z(x)) :=

⎛
⎜⎜⎝

∂φ1(x,y(x),z(x))
∂ z1

. . . ∂φ1(x,y(x),z(x))
∂ zn2

.
∂φn2 (x,y(x),z(x))

∂ z1
. . .

∂φn2 (x,y(x),z(x))
∂ zn2

⎞
⎟⎟⎠ (23)

is nonsingular (possibly after interchanging locally some components of y(x) by an
equal number of components of z(x), and redefining the function φ and the vec-
tors y(x) and z(x) according to such a replacement). Now, let ηy be an arbitrary
function in C k

0 (Ω ,Rn1) with compact support ΩC contained in an open ball of suf-
ficiently small radius, and consider a perturbation Δy(x) := εηy(x) of the func-
tion y(x), where ε ∈ R is sufficiently small. Then, there exists a unique function
ηz ∈ C k

0 (Ω ,Rn2) with compact support ΩC such that the perturbed holonomic and
bilateral constraint

φ(x,y(x)+Δy(x),z(x)+Δz(x)) = 0 ,∀x ∈ Ω

is satisfied for Δz(x) of the form

Δz(x) = εηz(x)+O(ε2) , (24)

262 G. Gnecco et al.

where the “hidden constant” inside the “big O” notation above does not depend6

on x, and ηz(x) has the expression

ηz(x) =−(∇3φ(x,y(x),z(x)))−1(∇2φ(x,y(x),z(x)))ηy(x) . (25)

Moreover, for each h∈ {1, . . . ,k} and i∈{1, . . . ,n2}, one has, for the i-th component
Δzi of Δz,

∂ h

∂x j1 . . .∂x jh
Δzi(x) = ε

∂ h

∂x j1 . . .∂x jh
ηzi(x)+O(ε2) , (26)

where, again, the “hidden constants” inside the “big O” notations above do not
depend on x.

Proof. Fix x = x0 ∈ Ω . Since φ ∈ C k+1(Ω ×Y ×Z ,Rn2) for k ≥ 1 and the Ja-
cobian matrix (23) is nonsingular, one can apply the Implicit Function Theorem,
according to which, on a suitable open ball B of (0,0) of sufficiently small radius
ε > 0, there exists a unique function u ∈ C k+1(B,Rn2) such that u(0,0) = 0 and

φ(x+Δx,y(x)+Δy,z(x)+ u(Δx,Δy)) = 0 , ∀(Δx,Δy) ∈ B . (27)

Moreover, since7 k+ 1 ≥ 2, each component ui(Δx,Δy) of the function u(Δx,Δy)
has the multivariate Taylor expansion

ui(Δx,Δy) = ∑
|α |=1

Dα ui(0,0)(Δx,Δy)α +O(‖(Δx,Δy)‖2) , (28)

where (Δx,Δy)α := ∏d
j=1(Δx j)

α j ∏n1
j=1(Δy j)

αd+ j , and the term O(‖(Δx,Δy)‖2) de-

notes a function of class C k+1(B), infinitesimal at (0,0) with order at least 2,
where the “hidden” constant inside the “big O” notation above depends only on
the local behavior of φ on a neighborhood of (x,y(x),z(x)), and is independent
from x itself, provided that, after the initial choice x0 for x, x varies inside a

6 In this formula and in the next one (26) there is, instead, a dependence of the hid-
den constants on the specific choice of ηy, which may be removed by further assuming
‖ηy‖C k

0 (Ω ,Rn1) ≤ My for some given positive constant My.
7 In the lemma, we have made the assumption φ ∈ C k+1(Ω ×Y ×Z ,Rn2) instead of the

looser one φ ∈ C k(Ω ×Y ×Z ,Rn2) in order to be able to express the remainder in
Taylor’s polynomial (28) by the integral Lagrange’s form, instead, e.g., of the Peano’s
form (however, for simplicity of notation, in formula (28) we have not reported the explicit
expression of the remainder in the integral Lagrange’s form). Considering for simplicity
the case of a scalar-valued function u(x) of class C 2 depending on a scalar argument x, we
recall that one has the expression

f (x+Δx) = f (x)+ f ′(x)Δx−
∫ Δx

0
(t −Δx) f ′′(x+ t)dt ,

where the last term is the remainder expressed in the integral Lagrange’s form. This for-
mula can be generalized to the multivariate case, and such an extension is used to be able
to obtain terms of order O(ε2) in (26).

Learning as Constraint Reactions 263

compact subset ΩC of the projection of the set8 B + (x0,y(x0)) on Ω . Now, let
ηy ∈ C k

0 (ΩC,R
n1)⊆ C k

0 (Ω ,Rn1) and set Δx = 0 and Δy = Δy(x) := εηy(x). Then,
we define each component Δzi(x) of the function Δz(x) as

Δzi(x) := ui(0,εηy(x))

= ∑
|α |=1

Dα ui(0,0)(0,εηy(x))
α +O(‖(0,εηy(x))‖2)

= ε ∑
|α |=1

Dα ui(0,0)(0,ηy(x))
α +O(ε2) , (29)

where the replacement of the term O(‖(0,εηy(x))‖2) by the one O(ε2) follows by
the fact that ηy(x) is fixed and uniformly bounded. Then, (24) follows by setting

ηz,i(x) := ∑
|α |=1

Dα ui(0,0)(0,ηy(x))
α ,

which shows that the function ηz,i is in C k
0 (ΩC,R) ⊆ C k

0 (Ω ,R), likewise ηy is in
C k

0 (ΩC,R
n1) ⊆ C k

0 (Ω ,Rn1). Finally, the application of the Implicit Function The-
orem shows also that the vector ηz(x) with components ηz,i(x) has the expression

ηz(x) =−(∇3φ(x,y(x),z(x)))−1(∇2φ(x,y(x),z(x)))ηy(x) .

Finally, (26) is derived directly by (24), by computing its partial derivatives of order
h (i.e., exploiting the expression of the remainder of Taylor’s polynomial (28) in
Lagrange’s integral form, the rule of differentiation under the integral’s sign, the
chain rule, and the fact that each component of the function ηy is bounded on
ΩC, together with its partial derivatives - up to the order k - with respect to the
components of x). ��

The meaning of Lemma 1 is the following: in order to be still able to satisfy the
holonomic and bilateral constraint, a perturbation Δy(x) := εηy(x) of the function
y(x) implies a perturbation Δz(x) := εηz(x) (apart from an infinitesimal of order
greater than ε) of the function z(x), where ηz depends only on ηy and suitable partial
derivatives of φ evaluated at the current solution (x,y(x),z(x)), but does not depend
on ε . The formula (26) shows that also the partial derivatives of Δz(x) up to the
order k have similar expressions.

Appendix 2

This appendix reports the complete proof of Theorem 2 in Section 2.2.

Proof. (i) Let f o be a constrained local minimizer over F of the functional E (f) =
‖ f ‖2

P,γ defined in formula (3). Fix x0 ∈ X̂ and a compact subset XC ⊂ X̂ con-
tained in an open ball of sufficiently small radius, and containing x0, and, after

8 Here, we denote by B+(x0,y(x0)) the translation of the set B by (x0,y(x0)).

264 G. Gnecco et al.

performing the permutations σφ and σ f , re-order the constraints (and the compo-
nents of f , resp.) in such a way that the ones with indexes σφ (1), . . . ,σφ (m(x0))
(σ f (1), . . . ,σ f (m(x0)), resp.) are the first m(x0) ones. Due to an application of
Lemma 1 in Appendix 1, if one fixes arbitrarily the functions ηi ∈ C k

0 (XC) for
i = m(x0)+ 1,m(x0)+ 2, . . . ,n, then, for every sufficiently small |ε| > 0, the bilat-
eral holonomic constraints are met for a function f whose components f j have the
following expressions:

f1 = f o
1 + εη1 +O(ε2) ,

f2 = f o
2 + εη2 +O(ε2) ,

. . .

fm(x0) = f o
m(x0)

+ εηm(x0) +O(ε2) ,

fm(x0)+1 = f o
m(x0)+1 + εηm(x0)+1 ,

fm(x0)+2 = f o
m(x0)+2 + εηm(x0)+2 ,

. . .

fn = f o
n + εηn , (30)

where the functions ηi ∈ C k
0 (XC), for i = 1, . . . ,m(x0), are still determined by

Lemma 1. In particular, by setting y(x)= [f o
m(x0)+1(x), f o

m(x0)+2(x), . . . , f o
n (x)]

′, z(x)=

[f o
1 (x), . . . , f o

m(x0)
(x)]′, φ = [φ1, . . . ,φm(x0)]

′, ηy = [ηm(x0)+1,ηm(x0)+2, . . . ,ηn]
′,

and ηz = [η1, . . . ,ηm(x0)]
′, one has

ηz(x) =−(∇3φ(x,y(x),z(x)))−1(∇2φ(x,y(x),z(x)))ηy(x) . (31)

Moreover, due to (26), the partial derivatives, up to the order k, of the first m(x0)
components of f , have expressions similar to (30), and contain terms of order O(ε2).
This implies that E (f) can be written as

E (f) =
n

∑
j=1

γ j < P(f o + εη) j,P(f o + εη) j >+O(ε2)

=
n

∑
j=1

γ j < P f o
j ,P f o

j >+2ε
n

∑
j=1

γ j < P f o
j ,Pη j >

+ε2
n

∑
j=1

γ j < Pη j,Pη j >+O(ε2)

=
n

∑
j=1

γ j < P f o
j ,P f o

j >+2ε
n

∑
j=1

γ j < P f o
j ,Pη j >+O(ε2) .

Moreover, by an application of Green’s formula (see, e.g., Proposition 5.6.2 in [3]),
we have

< P f o
j ,Pη j >=< (P�)′P f o

j ,η j >=< L f o
j ,η j >,

Learning as Constraint Reactions 265

where P� is the formal adjoint of the operator P. Now, we define locally the row
vector function λ (x) as follows:

λ (x) := −[γ1(L f o)1(x), . . . ,γm(x0)(L f o)m(x0)(x)](∇3φ(x,y(x),z(x)))−1 . (32)

Then, with such a definition, and exploiting formula (31), one obtains

m(x0)

∑
j=1

γ j < P f o
j ,Pη j > =

m(x0)

∑
j=1

γ j < L f o
j ,η j >

=

∫
X

λ (x)(∇2φ(x,y(x),z(x)))ηy(x)dx .

Summing up, one has

E (f)−E (f o) = 2ε
∫

X

(
[γm(x0)+1(L f o)m(x0)+1(x), . . . ,γn(L f o)n(x)]

+λ (x)(∇2φ(x,y(x),z(x)))
)

ηy(x)dx+O(ε2) .

Now, since E (f)−E (f o) ≥ 0 for |ε| > 0 sufficiently small due to the local opti-
mality of f o, and ηy ∈ C k

0 (XC,R
n−m(x0)) is arbitrary, by applying the fundamental

lemma of the calculus of variations (see, e.g., Section 2.2 in [7]) we conclude that

[γm(x0)+1(L f o)m(x0)+1(x), . . . ,γn(L f o)n(x)]+λ (x)(∇2φ(x,y(x),z(x))) = 0

on XC. This, together with the definition (32) of λ (x), shows that (19) holds on XC.
Finally, by varying the point x0, one obtains (19) on the whole X̂ .

(ii) follows by (19), the definition of the free-space Green’s function g of L as the
solution of Lg = δ (where δ denotes the Dirac delta, centered in 0), and the stated
assumptions on L and g.

(iii) For the case of unilateral constraints, of course the constraints that are in-
active in x0 at local optimality are not taken into account locally, so the condition
about the nonsingularity of the Jacobian matrix has to be referred only to the con-
straints that are active in x0 at local optimality. Moreover, all the arguments used
to derive (i) and (ii) still hold (of course, restricting the analysis to the active con-
straints in x0 at local optimality, and replacing the φi’s by the φ̌i’s), since, for every
sufficiently small |ε|> 0, a function f constructed as in the proof of (i) still satisfies
with equality the active constraints in x0 at local optimality.

Finally, we show that each Lagrange multiplier function λi(x) is nonpositive.
Without loss of generality, we can restrict the analysis to the points of continuity
of λi(x). Suppose by contradiction that there exists one such point x̂0 ∈ X̂ such
that λi(x̂0) > 0. Then, by continuity λi(x) > 0 on a sufficiently small open ball
centered on x̂0. For simplicity of notation, we also suppose that all the constraints
defined on x̂0 are active in x̂0 at local optimality. Then, due to the condition about the

266 G. Gnecco et al.

nonsingularity of the Jacobian matrix, there is a vector u = [u1, . . . ,um(x̂0)]
′ such that

∇3φ̌ (x̂0,y(x̂0),z(x̂0))u = ei, where ei is a column vector of all 0’s, with the exception
of the i-th component, which is 1. Then, by an application of the Implicit Function
Theorem (likewise in the proof of Lemma 1), for every sufficiently small ε > 0
(but in this case, not for every sufficiently small ε < 0) one can construct a feasible
smooth perturbation f (x) of f o(x) such that its components f j satisfy

f1(x) = f o
1 (x)+ εη1(x)+O(ε2) ,

f2(x) = f o
2 (x)+ εη2(x)+O(ε2) ,

. . .

fm(x̂0)(x) = f o
m(x̂0)

(x)+ εηm(x̂0)(x)+O(ε2) ,

fm(x̂0)+1(x) = f o
m(x̂0)+1(x) ,

fm(x̂0)+2(x) = f o
m(x̂0)+2(x) ,

. . .

fn(x) = f o
n (x) , (33)

for suitable functions η1, . . . ,ηm(x̂0) ∈ C k
0 (XC) such that η1(x̂0) = u1, η2(x̂0) = u2,

. . . , ηm(x̂0)(x̂0) = um(x̂0), and such that E (f)−E (f o), apart from an infinitesimal of
order O(ε2), is directly proportional to

ε[γ1(L f o)1(x̂0), . . . ,γm(x0)(L f o)m(x̂0)(x̂0)]u =−ελ (x̂0)ei =−ελi(x̂0)< 0 ,

which contradicts the local optimality of f o. Then, one has λi(x̂0)≤ 0. ��
The following theorem is a slight variation of Theorem 2, and is exploited in the

example in Section 4.2.

Theorem 3. (REPRESENTER THEOREM FOR HARD HOLONOMIC CONSTRAINTS

MIXED WITH SOFT QUADRATIC POINT-WISE CONSTRAINTS, CASE OF DISTRI-
BUTIONAL LAGRANGE MULTIPLIERS). Let us consider the minimization of the
functional

L ′
s (f) :=

1
2

‖ f ‖2
P,γ +

μ
md

md

∑
κ=1

n

∑
j=1

VQ(yκ , j − f j(xκ))

=
1
2

n

∑
j=1

γ j < P f j,P f j >+
μ

2md

md

∑
κ=1

n

∑
j=1

(yκ , j − f j(xκ))
2 (34)

(a particular case of the functional (4)), where μ ≥ 0 and md is the number of
supervised examples, in the case of m < n hard bilateral constraints of holonomic
type, which define the subset

Fφ := { f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X : φi(x, f (x)) = 0}

Learning as Constraint Reactions 267

of the function space F , where ∀i∈Nm : φi ∈C ∞(cl(Xi)×R
m). Let f o ∈FC be any

constrained local minimizer of (34), and let the holonomic constraints be defined in
such a way that either L f o ∈ C 0(X ,Rn) or they are of the form A f (x) = b(x),
where A ∈ R

m,n with m < n and rank(A) = m, and b ∈ C 2k
0 (X ,Rm). Let us assume

that for any X̂ and for every x0 in the same X̂ we can find two permutations σ f

and σφ of the indexes of the n functions f j and of the m constraints φi, such that
φσφ (1), . . . ,φσφ (m(x0)) refer to the constraints actually defined in x0, and the Jacobian
matrix

∂ (φσφ (1), . . . ,φσφ (m(x0)))

∂ (f o
σ f (1)

, . . . , f o
σ f (m(x0))

)
, (35)

evaluated in x0, is not singular. Suppose also that (35) is of class C ∞(X̂ ,Rn). Then,
the following hold.

(i) There exists a set of distributions λi defined on X̂ , i ∈ Nm, such that, in
addition to the above constraints, f o satisfies on X̂ the Euler-Lagrange equations

γL f o +
m

∑
i=1

λi1Xi(·) ·∇ f φi(·, f o(·))+ μ
md

md

∑
κ=1

(f o(·)− yκ)δ (·− xκ) = 0, (36)

where γL := [γ1L, . . . ,γnL]′ is a spatially-invariant operator, and ∇ f φi is the gradient
w.r.t. the second vector argument f of the function φi.

(ii) Let γ−1g := [γ−1
1 g, . . . ,γ−1

n g]′. If for all i one has Xi =X =R
d, L is invertible

on W k,2(X), and there exists a free-space Green’s function g of L that belongs to
W k,2(X), then f o has the representation

f o(·) =
m

∑
i=1

γ−1g(·) �⊗ φi(·, f o(·))− μ
md

md

∑
κ=1

(f o(·)− yκ)γ−1g(·− xκ) , (37)

where g �⊗ φi := g⊗ωi and ωi(·) :=↑ φi(·, f o(·)) := −λi(·)1Xi(·)∇ f φi(·, f o(·)).
(iii) For the case of m < n unilateral constraints of holonomic type, which define

the subset Fφ̌ :=
{

f ∈ F : ∀i ∈ Nm,∀x ∈ Xi ⊆ X , φ̌i(x, f (x)) ≥ 0
}

of the func-

tion space F , (i) and (ii) still hold (with every occurrence of φi replaced by φ̌i)
if one requires the nonsingularity of the Jacobian matrix (see (35)) to hold when
restricting the constraints defined in x0 to the ones that are active in x0 at local op-
timality. Moreover, each Lagrange multiplier λi is nonpositive and locally equal to
0 when the correspondent constraint is locally inactive at local optimality.

Proof. For μ = 0 (or equivalently, when no supervised examples are available) and
an additional smoothness assumption on f o, the theorem reduces to Theorem 2. For
the general case μ ≥ 0, one can show that the differences with respect to the proof
of Theorem 2 are the following:

• there is an additional term μ
md

∑md
κ=1(f o(x)− yκ)δ (x− xκ) in the Euler-Lagrange

equations, due to the presence of the supervised examples;

268 G. Gnecco et al.

• in general, the Lagrange multipliers λi(·) are not functions, likewise in Theorem
2, but distributions, obtained by a variation of formula (32), which is well-defined
in a distributional sense since the Jacobian matrix (35) is locally invertible and
infinitely smooth, and since either L f o ∈ C 0(X ,Rn) or A f (x) = b(x) hold (with
the stated assumptions on A and b). More precisely, formula (32) is replaced by

λ :=− [γ1(L f o)1, . . . ,γm(x0)(L f o)m(x0)](∇3φ(·,y(·),z(·)))−1

+

(
μ

md

md

∑
κ=1

[(yκ ,1 − f o
1), . . . ,(yκ ,m(x0)− f o

m(x0)
)]

δ (·− xκ)

)
(∇3φ(·,y(·),z(·)))−1 , (38)

where now λ is a row vector distribution;
• differently from Theorem 2, additional smoothness of f o is not required, since

only (35) is required to be infinitely smooth. ��

Appendix 3

This appendix reports the complete derivations for the determination of the con-
straint reactions in the example of Section 4.2.

Let us determine the vector of distributional Lagrange multipliers λ . We start
noting that

AL f (x) = A
k

∑
κ=0

(−1)κρκ ∇2κ f (x)

=
k

∑
κ=0

(−1)κρκ A∇2κ f (x)

=
k

∑
κ=0

(−1)κρκ ∇2κ A f (x)

=
k

∑
κ=0

(−1)κρκ ∇2κ b(x)

= Lb(x) ,

where Lb ∈ C 0
0 (X ,Rm) has compact support. Hence, from (22) we get

γ̄Lb(x)+A

[
A′λ (x)+

md

∑
κ=1

(f o(x)− yκ)

md
δ (x− xκ)

]
= 0 .

So, the Lagrange multiplier distribution λ is given by

λ =−[AA′]−1
(

γ̄Lb+
1

md

md

∑
κ=1

A(f o(·)− yκ)δ (·− xκ)

)
.

Learning as Constraint Reactions 269

Now, if we plug this expression for λ into the Euler-Lagrange equations (22),
we get

γ̄L f o(x) = c(x)+
1

md

md

∑
κ=1

Q(yκ − f o(x))δ (x− xκ),

where c(x) := γ̄A′(AA′)−1Lb(x) and Q := In−A′[AA′]−1A. Let α(ql)
κ := 1

md
γ̄−1(yκ −

f o(xκ)). By inverting the operator L, we get

f o(x) = γ̄−1
∫

X
g(ζ)c(x− ζ)dζ +

md

∑
κ=1

Qα(ql)
κ g(x− xκ). (39)

So, the overall constraint reaction (of both hard and soft constraints) is

ω(x) = c(x)+ γ̄
md

∑
κ=1

Qα(ql)
κ δ (x− xκ) .

The coefficients α(ql)
κ can be determined by the following scheme. Denote by

y := [y1, . . . ,ymd] ∈ R
n,md the matrix of targets, where the κ-th column is associ-

ated with the corresponding example xκ , and α(ql) := [α(ql)
1 , . . . ,α(ql)

md] ∈ R
n,md . By

the definition of α(ql) we get

γ̄mdα(ql) +Qα(ql)G = y− γ̄−1
∫

X
g(ζ)H(ζ)dζ ,

where G is the Gram matrix of the input data and the kernel g, and H : X → R
n,md

is the matrix-valued function whose κ-th column is given by the function c(xκ −·).
The existence of a solution α(ql) to the linear system above follows by a slight
modification of Theorem 1 in [10] (since for ρ0 > 0, ‖ ·‖P,γ̄ is a Hilbert-space norm
on W k,2(Rd) by Proposition 3 in [10], and the square loss is convex and continuous)
and the nonsingularity of the Jacobian matrix (35) associated with the set of hard
constraints A f (x) = b(x).

We conclude discussing the admissibility of the obtained solution (39). By an
application of Theorem 3 in [10] about the smoothness properties of free-space
Green’s functions, it follows that, for this problem, g ∈ W k,2(Rd). This implies that
f o ∈ F , L ′

s (f o) is finite, and f o is a constrained global minimizer, too (thanks to
the convexity of the problem).

References

1. Adams, R.A., Fournier, J.F.: Sobolev Spaces, 2nd edn. Academic Press (2003)
2. Argyriou, A., Micchelli, C.A., Pontil, M.: When is there a representer theorem? Vector

versus matrix regularizers. Journal of Machine Learning Research 10, 2507–2529 (2009)
3. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces.

Applications to PDEs and Optimization. SIAM, Philadelphia (2006)

270 G. Gnecco et al.

4. Diligenti, M., Gori, M., Maggini, M., Rigutini, L.: Multitask kernel-based learning with
logic constraints. In: Proc. 19th European Conf. on Artificial Intelligence, pp. 433–438
(2010)

5. Diligenti, M., Gori, M., Maggini, M., Rigutini, L.: Bridging logic and kernel machines.
Machine Learning 86, 57–88 (2012)

6. Dinuzzo, F., Schoelkopf, B.: The representer theorem for Hilbert spaces: A necessary
and sufficient condition. In: Proc. Neural Information Processing Systems (NIPS) Con-
ference, pp. 189–196 (2012)

7. Giaquinta, M., Hildebrand, S.: Calculus of Variations I, vol. 1. Springer (1996)
8. Gnecco, G., Gori, M., Melacci, S., Sanguineti, M.: Learning with hard constraints. In:

Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov,
N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 146–153. Springer, Heidelberg (2013)

9. Gnecco, G., Gori, M., Melacci, S., Sanguineti, M.: A theoretical framework for super-
vised learning from regions. Neurocomputing 129, 25–32 (2014)

10. Gnecco, G., Gori, M., Sanguineti, M.: Learning with boundary conditions. Neural Com-
putation 25, 1029–1106 (2013)

11. Gnecco, G., Gori, M., Melacci, S., Sanguineti, M.: Foundations of support constraints
machines. Neural Computation (to appear)

12. Gori, M., Melacci, S.: Constraint verification with kernel machines. IEEE Transactions
on Neural Networks and Learning Systems 24, 825–831 (2013)

13. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer (2000)
14. Kunapuli, G., Bennett, K.P., Shabbeer, A., Maclin, R., Shavlik, J.: Online knowledge-

based support vector machines. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M.
(eds.) ECML PKDD 2010, Part II. LNCS (LNAI), vol. 6322, pp. 145–161. Springer,
Heidelberg (2010)

15. Mangasarian, O.L., Wild, E.W.: Nonlinear knowledge-based classification. IEEE Trans-
actions on Neural Networks 19, 1826–1832 (2008)

16. Melacci, S., Gori, M.: Learning with box kernels. IEEE Transactions on Pattern Analysis
and Machine Intelligence 35(11), 2680–2692 (2013)

17. Melacci, S., Maggini, M., Gori, M.: Semi–supervised learning with constraints for multi–
view object recognition. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.)
ICANN 2009, Part II. LNCS, vol. 5769, pp. 653–662. Springer, Heidelberg (2009)

18. Poggio, T., Girosi, F.: A theory of networks for approximation and learning. Technical
report. MIT (1989)

19. Schwartz, L.: Théorie des distributions. Hermann, Paris (1978)
20. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Uni-

versity Press (2004)
21. Sun, Z., Zhang, Z., Wang, H., Jiang, M.: Cutting plane method for continuously con-

strained kernel-based regression. IEEE Transactions on Neural Networks 21, 238–247
(2010)

22. Suykens, J.A.K., Alzate, C., Pelckmans, K.: Primal and dual model representations in
kernel-based learning. Statistics Surveys 4, 148–183 (2010)

23. Theodoridis, S., Slavakis, K., Yamada, I.: Adaptive learning in a world of projections.
IEEE Signal Processing Magazine 28, 97–123 (2011)

24. Tikhonov, A.N., Arsenin, V.Y.: Solution of ill-posed problems. W.H. Winston, Washing-
ton, DC (1977)

25. Yuille, A.L., Grzywacz, N.M.: A mathematical analysis of the motion coherence theory.
International Journal of Computer Vision 3, 155–175 (1989)

Baseline-Free Sampling
in Parameter Exploring Policy Gradients:
Super Symmetric PGPE

Frank Sehnke and Tingting Zhao

Abstract. Policy Gradient methods that explore directly in parameter space are
among the most effective and robust direct policy search methods and have drawn
a lot of attention lately. The basic method from this field, Policy Gradients with
Parameter-based Exploration, uses two samples that are symmetric around the cur-
rent hypothesis to circumvent misleading reward in asymmetrical reward distributed
problems gathered with the usual baseline approach. The exploration parameters are
still updated by a baseline approach – leaving the exploration prone to asymmetric
reward distributions. In this paper we will show how the exploration parameters
can be sampled quasi-symmetrically despite having limited instead of free parame-
ters for exploration. We give a transformation approximation to get quasi symmetric
samples with respect to the exploration without changing the overall sampling distri-
bution. Finally we will demonstrate that sampling symmetrically for the exploration
parameters as well is superior to the original sampling approach, in terms of sam-
ples needed and robustness.

Subtracting an optimal baseline minimizes the variance of gradient estimates with
their unbiasedness being maintained, which can provide more stable gradient esti-
mates and thus also lead to faster convergence. However, the optimal baseline tech-
nique cannot avoid misleading reward in asymmetrical reward distributed problems.
The superiority of the proposed symmetrical sampling over optimal baseline will be

Frank Sehnke
Center for Solar Energy and Hydrogen Research
(Zentrum für Sonnenenergie- und Wasserstoff-Forschung),
Industriestr. 6, Stuttgart, BW 70565 Germany
e-mail: frank.sehnke@zsw-bw.de

Tingting Zhao
Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
e-mail: tingting@sg.cs.titech.ac.jp

c© Springer International Publishing Switzerland 2015 271
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_13

272 F. Sehnke and T. Zhao

demonstrated through experiments. It will also be shown that combining symmetri-
cal sampling, where misleading rewards are present, with an optimal baseline, where
they are not, is virtually indistinguishable in performance to the full symmetrical ap-
proach, strengthening the assumption that misleading rewards are the main source
of confusion.

We will stress that the new approach is not only more efficient in complex search
spaces with respect to samples needed and requires no baseline whatsoever, but that
it also shows an increased robustness in more erratic search spaces. This is demon-
strated for a problem domain with constraints introduced in the reward function
by penalty terms. Here the full symmetrical sampling produces significantly fewer
samples that violate the constraints.

1 Introduction

1.1 State of the Art and Problem Definition

Policy Gradient (PG) methods that explore directly in parameter space have some
major advantages over standard PG methods, as described in [1, 2, 3, 4, 5, 6]
and [7] and have therefore drawn a lot of attention in the last years. The basic
method from the field of Parameter Exploring Policy Gradients (PEPG) [8], Policy
Gradients with Parameter-based Exploration (PGPE) [1], uses two samples that are
symmetric around the current hypothesis to circumvent misleading reward in asym-
metrical reward distributed problems, gathered with the usual baseline approach.
In [4] it is shown that Symmetric Sampling (SyS) is superior even to the optimal
baseline, despite the fact that the variance of the gradient estimate is lower for
the optimal baseline approach. The exploration parameters, however, are still up-
dated by a baseline approach – leaving the exploration prone to asymmetric reward
distributions.

While the optimal baseline improved this issue substantially [4], it is likely that
removing the baseline altogether by symmetric samples with respect to the explo-
ration parameters will again be superior. The exploration parameters are standard
deviations that are bounded between zero and infinity, hence for them there exist no
correct symmetric samples. We will, however, show how the exploration parameters
can be sampled quasi-symmetrically. We give a transformation approximation to get
quasi symmetric samples without changing the overall sampling distribution, so that
the PGPE assumptions based on normal distributed samples still hold. We also will
implement the optimal baseline approach for a fair comparison between baseline-
free and baseline sampling. The resulting method of sampling symmetrically with
respect to the problem parameters and the exploration parameters is called Super
Symmetric Sampling (SupSyS) and the PGPE variant that utilizes SupSyS is named
Super Symmetric PGPE (SupSymPGPE).

We will stress that SupSyS is not only more efficient in complex search
spaces with respect to samples needed and requires no baseline whatsoever,
but that it also shows an increased robustness in more erratic search spaces. This

Baseline-Free Sampling in Parameter Exploring Policy Gradients 273

is demonstrated for a problem domain with constraints introduced in the reward
function by penalty terms. Here SupSyS produces significantly fewer samples that
violate the constraints.

1.2 Motivation

While performance and robustness is the main focus in this paper for suggesting
SupSyS, the motivation for this work stems from the wish to avoid a baseline and
hence avoid collecting a history over past samples. There are several reasons why
this is an advantage or even mandatory in some cases:

• Lazy Evaluation: Lazy evaluation is a technique to reduce computational or time
effort by evaluating only a subset of the problem. Lazy evaluation is frequently
used in evolutionary algorithms [9, 10, 11]. The reward/fitness scope can change
drastically while changing the degree of lazy evaluation, and even between dif-
ferent evaluation subsets. A baseline that averages over a substantial amount of
past samples while using high degrees of lazy evaluation becomes useless. A
good example from the field of robotics is the walking task. If a robot’s task is to
cover some distance by locomotion, it makes sense to first evaluate the behavior
in short time spans, in order to distinguish behaviors that don’t move at all from
ones that manage to cover some distance at least. As learning progresses, the
evaluation time span has to be increased further and further to distinguish behav-
iors that let the robot move in a straight line for a very long time from behaviors
that move the robot in a slight curve or let it fall over after some time (in the
humanoid case). One can divide the distance covered by the evaluation time to
get some form of normalized reward, but still effects like gaining momentum at
the beginning will change the reward for different evaluation times.

• Moving target and Artificial Curiosity: In some cases there is not one fixed goal
of learning, but a continually evolving entity. One extreme example of such a
moving target is Artifical Curiosity [12]. What all moving target problems – in-
cluding artificial curiosity – have in common is that the goal changes over time,
and with it the reward gained for certain behaviors changes also. In such a setting
a baseline is useless.

• No cost function (only comparison operator): There are also cases where no real
reward function is available since only a comparison operator is defined for the
problem. One example is learning to play board games by playing against vari-
ations of the same player program, like for example the training of an artificial
Go player shown in [13]. In this case, the natural definition of reward is just bet-
ter than the other solution. Though a reward function can be constructed [13], a
direct comparison is more straight forward.

• One less meta parameter: Since the damping factor for a decaying moving
average baseline or the sample batch size for an optimal baseline are much
less sensitive than the two step size parameters, PGPE is considered to have
only 2 meta parameters. Changing the baseline parameter with increasing sam-
pling complexity of the problem can, however, make a substantial difference in

274 F. Sehnke and T. Zhao

convergence speed. With SupSymPGPE this parameter vanishes altogether and
we actually arrive at a method with only 2 meta parameters.

1.3 Outline

In Section 2 we will summarize the derivation of PGPE with standard and opti-
mal baselines. We will proceed with deriving SupSymPGPE. The section is final-
ized by demonstrating how SupSyS can be applied to Multimodal PGPE. Section
3 will demonstrate via experiments that sampling symmetrically also for the explo-
ration parameters is superior in terms of samples needed and robustness compared
to the original sampling approach, if confronted with search spaces with significant
amounts of local optima or with regions of high slopes due to penalty terms intro-
duced by constraints. We also show via experiments that combining SupSyS where
misleading rewards are present with an optimal baseline where they are not, is vir-
tually indistinguishable in performance to the full symmetrical approach, strength-
ening the assumption that misleading rewards are the main source of confusion. In
Section 4 we will conclude the paper with some open questions for future work and
a summary of the presented findings.

2 Method

In this section we derive the super-symmetric sampling method. We show how the
method relates to SyS by sampling with the standard and the optimal baseline,
thereby summarizing the derivations from [1] and [4] for SyS and optimal baseline
sampling PGPE.

2.1 Parameter-Based Exploration

To stay concordant with the nomenclature of [1], [14] and [4], we assume a Marko-
vian environment that produces a cumulative reward r for a fixed length episode,
history, trajectory or roll-out h. In this setting, the goal of reinforcement learning is
to find the optimal policy parameters θθθ that maximize the agent’s expected reward

J(θθθ) =
∫

H
p(h|θθθ)r(h)dh. (1)

An obvious way to maximize J(θθθ) is to estimate ∇θθθ J and use it to carry out gradient
ascent optimization. The probabilistic policy used in standard PG is replaced with
a probability distribution over the parameters θθθ for PGPE. The advantage of this
approach is that the actions are deterministic, and an entire history can therefore be
generated from a single parameter sample. This reduction in samples-per-history is
what reduces the variance in the gradient estimate (see [1] for details).

We name the distribution over parameters ρρρ , in accordance with [1]. The
expected reward with a given ρρρ is

Baseline-Free Sampling in Parameter Exploring Policy Gradients 275

J(ρρρ) =
∫

ΘΘΘ

∫
H

p(h,θθθ |ρρρ)r(h)dhdθθθ . (2)

Differentiating this form of the expected return with respect to ρρρ and applying sam-
pling methods (first choosing θθθ from p(θθθ |ρρρ), then running the agent to generate h
from p(h|θθθ)) yields the following gradient estimator:

∇ρρρ J(ρρρ)≈ 1
N

N

∑
n=1

∇ρρρ log p(θθθ |ρρρ)r(hn). (3)

Assuming that ρρρ consists of a set of means {μi} and standard deviations {σi} that
determine an independent normal distribution for each parameter θi in θθθ , gives the
following forms for the derivative of the characteristic eligibility log p(θθθ |ρρρ) with
respect to μi and σi

∇μi log p(θθθ |ρρρ) = (θi − μi)

σ2
i

, (4)

∇σi log p(θθθ |ρρρ) = (θi − μi)
2 −σ2

i

σ3
i

, (5)

which can be substituted into Eq. (3) to approximate the μμμ and σσσ gradients.

2.2 Sampling with a Baseline

Given enough samples, Eq. (3) will determine the reward gradient to arbitrary accu-
racy. However each sample requires rolling out an entire state-action history, which
is expensive. Following [15], we obtain a cheaper gradient estimate by drawing a
single sample θθθ and comparing its reward r to a baseline reward b given e.g. by
a moving average over previous samples. Intuitively, if r > b we adjust ρρρ so as to
increase the probability of θθθ , and r < b we do the opposite. If, as in [15], we use a
step size αi = ασ2

i in the direction of positive gradient (where α is a constant) we
get the following parameter update equations:

Δ μi = α(r− b)(θi − μi),

Δσi = α(r− b)
(θi − μi)

2 −σ2
i

σi
. (6)

Usually the baseline is realized as decaying or moving average baseline of the form:

b(n) = γr(hn−1)+ (1− γ)b(n− 1),

or

b(n) =
N

∑
n=N−m

r(hn)/m. (7)

276 F. Sehnke and T. Zhao

In [4] it was shown recently that an optimal baseline can be found for PGPE and the
algorithm converges significantly faster with an optimal baseline.

2.3 Sampling with an Optimal Baseline

Like explained above, it is known that the variance of gradient estimates can be
reduced by subtracting a baseline b: for PGPE, a modified gradient estimate is
given by

∇ρ Ĵb(ρ) =
1
N

N

∑
n=1

(r(hn)− b)∇ρ log p(θ n|ρ).

The above moving-average baseline contributes to reducing the variance of gra-
dient estimates. However, it was shown [16] that the moving-average baseline is not
optimal; the optimal baseline is, by definition, given as the minimizer of the vari-
ance of gradient estimates with respect to a baseline. Following this line, the optimal
baseline for PGPE and its theoretical property are given as follows:

Let b∗ be the optimal baseline for PGPE that minimizes the variance:

b∗ := argmin
b

Var[∇ρρρ Ĵb(ρρρ)].

Then the following theorem gives the optimal baseline for PGPE:

Theorem 1. The optimal baseline for PGPE is given by

b∗ =
E[r(h)‖∇ρρρ log p(θθθ |ρρρ)‖2]

E[‖∇ρρρ log p(θθθ |ρρρ)‖2]
,

and the excess variance for a baseline b is given by

Var[∇ρρρ Ĵb(ρρρ)]−Var[∇ρρρ Ĵb∗(ρρρ)] =
(b− b∗)2

N
E[‖∇ρρρ log p(θθθ |ρρρ)‖2].

The above theorem gives an analytic form expression of the optimal baseline
for PGPE. When expected return r(h) and the squared norm of characteristic el-
igibility ‖∇ρρρ log p(θθθ |ρρρ)‖2 are independent of each other, the optimal baseline is
reduced to average expected return E[r(h)]. However, the optimal baseline is gen-
erally different from the average expected return. Thus, using the average expected
return as the baseline will lead to suboptimal variance reduction. The above theo-
rem also shows that the excess variance is proportional to the squared difference
of baselines (b− b∗)2 and the expected squared norm of characteristic eligibility
E[‖∇ρρρ log p(θθθ |ρρρ)‖2], and is inverse-proportional to sample size N.

Variance reduction due to an optimal baseline is significant whenever the optimal
baseline is estimated accurately. An accurately estimated optimal baseline requires
a large number of samples that are statistically independent of samples used for the
estimation of policy gradients. Yet such large numbers of independent samples are
usually not available in practice, because gathering samples is often costly. Thus,

Baseline-Free Sampling in Parameter Exploring Policy Gradients 277

we want to keep the number of samples as small as possible. However, when the
number of samples is small, the estimated optimal baseline is not reliable enough.
In order to sovle this problem, we resort to reusing the previously collected samples.

The optimal baseline given above is categorized as an on-policy [17] method,
where data drawn from the current target policy is used to estimate the optimal
baseline. On the other hand, off-policy methods are more flexible in the sense that a
data collecting policy and the current target policy can be different. Below, we ex-
tend the on-policy optimal baseline in PGPE to an off-policy scenario, which allows
us to reuse previously collected data in a consistent manner.

Let us consider an off-policy scenario where a data collecting policy and the
current target policy are different in general. In the context of estimating the optimal
baseline in PGPE, we consider two hyper-parameters, ρρρ for the target policy to learn
and ρρρ ′ for data collection. Let us denote samples collected with hyper-parameter
ρρρ ′ by D′:

D′ = {(θθθ ′
n,h

′
n

)}N′
n=1

i.i.d∼ p(h,θθθ |ρρρ ′) = p(h|θθθ)p(θθθ |ρρρ ′).

If we naively use data D′ to estimate optimal baseline in Theorem 1, we have an
inconsistency problem.

Importance sampling [18] is a technique to systematically resolve this distribu-
tion mismatch problem. The basic idea of importance sampling is to weight samples
drawn from a sampling distribution to match the target distribution, which gives a
consistent gradient estimator:

1
N′

N′

∑
n=1

w(θθθ ′
n)r(h

′
n)

N′→∞−→ E[r(h)],

where

w(θθθ) =
p(θθθ |ρρρ)
p(θθθ |ρρρ ′)

is called the importance weight. An intuition behind importance sampling is that if
we know how “important” a sample drawn from the sampling distribution is in the
target distribution, we can make adjustment by importance weighting.

Let b∗IW be the optimal baseline with importance sampling, we call it importance
weighted optimal baseline (IW-OB). Then the following theorem gives IW-OB:

Theorem 2. The optimal constant baseline estimated by using data D’ is given by

b∗IW =
Ep(h,θθθ |ρρρ ′′′)[r(h)w

2(θθθ)‖∇ρρρ log p(θθθ |ρρρ)‖2]

Ep(h,θθθ |ρρρ ′′′)[w2(θθθ)‖∇ρρρ log p(θθθ |ρρρ)‖2]
,

where Ep(h,θθθ |ρρρ ′′′)[·] denotes the expectation of the function of random variables h and
θθθ with respect to (h,θθθ)∼ p(h,θθθ |ρρρ ′′′).

The above theorem gives the importance weighted optimal baseline, which effi-
ciently reuses samples collected from a sampling distribution that is different from
the current target distribution.

278 F. Sehnke and T. Zhao

2.4 Symmetric Sampling

While sampling with a baseline is efficient and reasonably accurate for most scenar-
ios, especially if one uses the optimal baseline, it has several drawbacks. In particular,
if the reward distribution is strongly skewed then the comparison between the sample
reward and the baseline reward is misleading. A more robust gradient approximation
can be found by measuring the difference in reward between two symmetric sam-
ples on either side of the current mean. That is, we pick a perturbation εεε from the
distribution N (0,σσσ), then create symmetric parameter samples θθθ+ = μμμ + εεε and
θθθ− = μμμ − εεε . Defining r+ as the reward given by θθθ+ and r− as the reward given by
θθθ−. We can insert the two samples into Eq. (3) and make use of Eq. (5) to obtain

∇μi J(ρρρ)≈
εi(r+− r−)

2σ2
i

, (8)

which resembles the central difference approximation used in finite difference meth-
ods. Using the same step sizes as before gives the following update equation for the
μμμ terms

Δ μi =
αεi(r+− r−)

2
. (9)

The updates for the standard deviations are more involved. As θθθ+ and θθθ− are by
construction equally probable under a given σσσ , the difference between them cannot
be used to estimate the σσσ gradient. Instead we take the mean r++ r−

2 of the two
rewards and compare it to the baseline reward b. This approach yields

Δσi = α
(

r++ r−

2
− b

)(
ε2

i −σ2
i

σi

)
. (10)

SyS removes the problem of misleading rewards, and therefore improves the μμμ gra-
dient estimates. It also improves the σσσ gradient estimates, since both samples are
equally probable under the current distribution, and therefore reinforce each other as
predictors of the benefits of altering σσσ . Even though symmetric sampling requires
twice as many histories per update, [1] and [4] have shown that it gives a consider-
able improvement in convergence quality and time.

2.5 Super-Symmetric Sampling

While SyS removes the misleading baseline problem for the μμμ gradient estimate,
the σσσ gradient still uses a baseline and is prone to this problem. On the other hand,
there is no correct symmetric sample with respect to the standard deviation, because
the standard deviation is bounded on the one side to 0 and is unbounded on the pos-
itive side. Another problem is that 2

3 of the samples are on one side of the standard
deviation and only 1

3 on the other - mirroring the samples to the opposite side of
the standard deviation in some way, would therefore deform the normal distribu-
tion so much, that it would no longer be a close enough approximation to fulfill the
assumptions that lead to the PGPE update rules.

Baseline-Free Sampling in Parameter Exploring Policy Gradients 279

Algorithm 1. The PGPE algorithm with Reward Normalisation and Symmetric
Sampling. sss is P sized vector with P the number of parameters. The baseline is
updated accordingly after each step. α is the learning rate or step size.

Initialise μμμ to μμμ init
Initialise σσσ to σσσ init

while TRUE do
draw perturbation εεε ∼ N (000, IIIσσσ 2)
θθθ+ = μμμ + εεε
θθθ− = μμμ − εεε
evaluate r+ = r(h(θθθ+))
evaluate r− = r(h(θθθ−))
m := max(r,m)
update baseline b accordingly

sss = [si] i with si := (εi)
2−σ2

i
σi

rμ = (r+−r−)
2m−r+−r−

rσ = r++r−−2b
2(m−b)

update μμμ = μμμ +αrrrμ εεε
if rrrσ ≥ 0 then

σσσ = σσσ +αrrrσ sss
end if

end while

Fig. 1 Normal distribution and two first ap-
proximations of the ’mirrored’ (at the median
deviation) distribution

Fig. 2 Normal distribution and the final ap-
proximation of the ’mirrored’ distribution

We therefore chose to define the normal distribution via the mean and the median
deviation φφφ . The median deviation is due to the nice properties of the normal distri-
bution simply defined by: φφφ = 0.67449 ·σσσ. We can therefore draw samples from the
new defined normal distribution: εεε ∼ Nm(0,φφφ).

280 F. Sehnke and T. Zhao

The median deviation has by construction an equal amount of samples on either
side and solves therefore the symmetry problem of mirroring samples. The update
rule Eq. (9) stays unchanged while Eq. (10) is only scaled by 1

0.67449 (the factor that
transforms φφφ in σσσ) that can be substituted in ασσσ .

While the update rules stay the same for normal distributed sampling using the
median deviation (despite a larger ασσσ), the median deviation is still also bounded on
one side, so that samples cannot be simply transfered to the other side by subtrac-
tion. A first approximation to transfer every sample to a sample on the other side of
the median deviation is the exponential:

ε∗i = φi · sign(εi) · e
φi−|εi|

φi . (11)

This mirrored distribution has a standard deviation of 0.908 times the original stan-
dard deviation and looks like depicted in Fig. 1 (red curve).

This distribution is bounded on both sides and reaches neither absolute 0 nor
infinity and is therefore a numerical stable transformation (especially important
if float32 are used, for instance when calculating on a GPU). Because of the
smaller standard deviation the convergence process is biased towards smaller σσσ .
This is not critical for problems that converge relatively fast with a relatively high
step size for the σσσ update. If the algorithm converges under a low step size the bias
becomes relevant.

A closer approximation needs to be used for a general method. Because the mir-
roring cannot be solved in closed form we resort to approximation via a polynomial
that can be transfered to an infinite series. We found a good approximation for mir-
roring samples by:

ai =
φi− | εi |

φi
, ε∗i = sign(εi) ·φi ·

⎧⎨
⎩e

c1
|ai |3−|ai|
log(|ai |) +c2|ai| if ai ≤ 0

eai/(1.− a3
i)

c3ai if ai > 0,
(12)

with the following constants: c1 = −0.06655,c2 = −0.9706,c3 = 0.124. This mir-
rored distribution has a standard deviation of 1.002 times the original standard de-
viation and looks like depicted in Fig. 2. Fig. 3 shows the regions of samples that
are mapped into each other while generating the quasi symmetric samples.

In addition to the symmetric sample with respect to the mean hypothesis, we can
also generate two quasi symmetric samples with respect to the median deviation.
We named this set of four samples super symmetric samples or SupSyS samples.
They allow for completely baseline free update rules, not only for the μμμ update but
also for the σσσ updates.

Therefore the two symmetric sample pairs are used to update μμμ according to
Eq. (9). σσσ is updated in a similar way by using the mean reward of each symmetric
sample pair, there r++ is the mean reward of the original symmetric sample pair and
r−− is the mean reward of the mirrored sample pair. The SupSyS update rule for the
σσσ update is given by:

Baseline-Free Sampling in Parameter Exploring Policy Gradients 281

Fig. 3 Normal distribution and the regions
that are mapped into each other by ’reflect-
ing’ the samples on the other side of the me-
dian deviation

Fig. 4 Visualization of the 2D Rastrigin
function

Δσi =
α ε2

i −σ 2
i

σi
(r++− r−−)

2
. (13)

Since the mirroring of exploration parameters is not linear, Eq. 13 becomes inaccu-
rate if σ is changed towards ε∗i . We therefore split the sigma update rule into two
cases:

ετ =

{
ε if (r++− r−−)≥ 0

ε∗ if (r++− r−−)< 0.
(14)

Eq. 13 changes to

Δσi =
ασ

ετ2
i −σ 2

i
σi

|r++− r−−|
2

. (15)

2.6 Multimodal Super-Symmetric Sampling

For completeness we show how SupSyS works with multimodal distributions over
the parameters θi. However, the experiments in Section 3 were done with the stan-
dard unimodal version. Following [19] in MultiPGPE ρρρ consists of a set of mixing
coefficients {πk

i }, means {μk
i } and standard deviations {σ k

i } defining an indepen-
dent mixture of Gaussians for each parameter θi:

p(θi|ρi) =
K

∑
k=1

πk
i N (θi|μk

i ,(σ k
i)

2), (16)

282 F. Sehnke and T. Zhao

Algorithm 2. The PGPE algorithm with Reward Normalisation and Super Sym-
metric Sampling. TTT is a 2×P matrix and sss a vector of size P, with P the number of
parameters. α is the learning rate or step size.

Initialise μμμ to μμμ init
Initialise σσσ to σσσ init

while TRUE do
draw perturbation εεε ∼ N (000, IIIσσσ 2)
generate εεε∗ by mirroring εεε
θθθ 1 = μμμ + εεε
θθθ 2 = μμμ − εεε
θθθ 3 = μμμ + εεε∗
θθθ 4 = μμμ − εεε∗
evaluate r1 to r4 = r(h(θθθ 1)) to r(h(θθθ 4))
m := max(r,m)

TTT = [ε
ε∗]

if r1 + r2 ≥ r3 + r4 then
sss = [si]i with si := ε2

i −σ2
i

σi
else

sss = [si]i with si := ε∗2
i −σ2

i
σi

end if

rrrμ =
[

(r1−r2)
2m−r1−r2 ,

(r3−r4)
2m−r3−r4

]
rσ =

(r1+r2)−(r3+r4)
4m−r1−r2−r3−r4

update μμμ = μμμ +αrrrμ TTT
update σσσ = σσσ +α rσ sss

end while

where
K

∑
k=1

πk
i = 1, πk

i ∈ [0,1] ∀i,k.

From the sum and product rules follows that sampling from a mixture distribu-
tion as defined in (16) is equivalent to first choosing a component according to the
probability distribution defined by the mixing coefficients, then sampling from that
component:

p(θi|ρi) =
K

∑
k=1

p(k|πππ)N (θi|μk
i ,(σ k

i)
2),

if we define πk = p(k|πππ) as the prior probability of picking the kth Gaussian.

Baseline-Free Sampling in Parameter Exploring Policy Gradients 283

This suggests what is called simplified MultiPGPE and leads to the follow-
ing gradient calculations: First pick k with probability πk

i , then set the mixing
coefficients to:

lk
i = 1, lk′

i = 0 ∀k′ �= k.

If we again use a step size αi = ασ2
i in the direction of positive gradient (where α is

a constant) the following parameter update equations for MultiPGPE are obtained:

Δπk
i = απ(r− b)lk

i ,

Δ μk
i = αμ(r− b)lk

i (θi − μk
i),

Δσ k
i = ασ (r− b)lk

i
(θi − μk

i)
2 − (σ k

i)
2

σ k
i

. (17)

For the simplified version of MultiPGPE we also can use SupSyS. That is, we
pick again a perturbation εεε from the distribution N (000,σσσ), then create symmetric
parameter samples

θθθ+ = μμμ + εεε , θθθ− = μμμ − εεε.

Again defining r+ as the reward given by θθθ+ and r− as the reward given by θθθ−, we
obtain

∇μk
i
J(ρρρ)≈ εi(r+− r−)

2(σ k
i)

2
, (18)

which resembles again the central difference approximation used in finite difference
methods. Using the same step sizes as before gives the following update equation
for the μ terms

Δ μk
i =

αμεi(r+− r−)
2

. (19)

By generating super symmetric samples with ε∗ following Eq. 12, we receive the
mean reward r++ for the ε samples and r−− for the ε∗ samples and obtain the update
equations for the σ terms under consideration of Eq. 14

Δσ k
i =

ασ
ετ2

i −σ k2
i

σ k
i

|r++− r−−|
2

. (20)

Note again that SupSyS is only possible for the simplified version of MultiPGPE.
This is the reason that no mixing coefficient lk

i appears in above equations because
it is assumed to be 1 (or 0). For MultiPGPE a baseline is still required for the πππ
updates — so it is only applicable if a (useful) baseline can be obtained.

2.7 Reward Normalisation for SupSymPGPE

It is important to make the step size independent from the (possibly unknown) scale
of the rewards by introducing a normalisation term. This is standard for all PGPE
variants. However, for SupSymPGPE it contradicts with the motivation of using no

284 F. Sehnke and T. Zhao

Algorithm 3. The simplified MultiPGPE algorithm with SupSyS and Reward Nor-
malisation. TTT is a 2 × P matrix and sss a vector of size P, with P the number of
parameters. α is the learning rate or step size.

Initialise πππ to πππ init
Initialise μμμ to μμμ init
Initialise σσσ to σσσ init

while TRUE do
draw Gaussians kkkn ∼ p(kkk|πππ)
draw perturbation εεε ∼ N (000, IIIσσσ 2

kkk)
generate εεε∗ by mirroring εεε
θθθ 1 = μμμkkk + εεε
θθθ 2 = μμμkkk − εεε
θθθ 3 = μμμkkk + εεε∗
θθθ 4 = μμμkkk − εεε∗
evaluate r1 to r4 = r(h(θθθ 1)) to r(h(θθθ 4))
m := max(r,m)
update baseline b accordingly

TTT = [ε
ε∗]

if r1 + r2 ≥ r3 + r4 then

sss = [si]i with si :=
ε2

i −σ2
i,k

σi,k

else
sss = [si]i with si :=

ε∗2
i −σ2

i,k
σi,k

end if

rrrp =
[

r1+r2−2b
2(m−b) , r3+r4−2b

2(m−b)

]
rrrμ =

[
(r1−r2)

2m−r1−r2 ,
(r3−r4)

2m−r3−r4

]
rσ = (r1+r2)−(r3+r4)

4m−r1−r2−r3−r4

update πππkkk = πππkkk +α ∑rrrp

Normalize all πππ i to ||1||
update μμμkkk = μμμkkk +αrrrμ TTT
update σσσ kkk = σσσ kkk +α rσ sss

end while

baseline, that is to have no need for a sample history. Remembering the best so far
received reward requires both a history of rewards and the prerequisite that the re-
wards stay the same over time. In cases like described in 1.2 reward normalization is
not possible. In cases where SupSymPGPE is used for performance reasons, reward
normalization is still an important step.

Let m be the maximum reward the agent can receive, if this is known, or the
maximum reward received so far if it is not. We normalise the μμμ updates by dividing

Baseline-Free Sampling in Parameter Exploring Policy Gradients 285

them by the difference between m and the mean reward of the respective symmetric
samples, and we normalise the σσσ updates by dividing by the difference between m
and the mean of all four samples, yielding

Δ μi = αμ
εi(r+− r−)

2m− r+− r−
,

Δσi = ασ

ετ2
i −σ 2

i
σi

(r++− r−−)
2m− r++− r−− . (21)

3 Experiments and Results

We use the square function as search space instance with no local optima and
the Rastrigin function (see Fig. 4) as search space with exponentially many local
optima, to test the different behavior of SupSym- and SyS-PGPE. We also show
the performance of both methods on a real world example that optimizes installed
capacities of renewable energies in a distributed energy system. This experiment
shows how both methods cope with constraints that are implemented as penalty
terms in the reward function and resemble regions with steep slopes or cliffs in the
search space. The two meta-parameters connected with SyS-PGPE as well as with
SupSymPGPE, namely the step sizes for the μμμ and σσσ updates, were optimized for
every experiment via a grid search. The Figures 5 to 9 show the means and standard

Fig. 5 Convergence plots of PGPE (SyS-PGPE), optimal baseline PGPE (OB-PGPE), con-
ditional SupSymPGPE with optimal baseline (OB-ConSupSymPGPE) and SupSymPGPE on
the 100 dimensional square function. The mean and standard deviation of 200 independent
runs are shown.

286 F. Sehnke and T. Zhao

Fig. 6 Convergence plots of PGPE and SupSymPGPE on the 10 dimensional Rastrigin func-
tion. The mean and standard deviation of 200 independent runs are shown.

deviations of 200 independent runs each. Figure 13 shows the means and standard
deviations of 20 independent runs.

3.1 Square Function

It can be seen in Fig. 5 that for a search space with no local optima SupSymPGPE
shows no advantage over standard SyS-PGPE. However, despite using 4 samples
per update the performance is also not reduced by using SupSymPGPE — the two
methods become merely equivalent. Also the use of the optimal baseline makes no
apparent difference.

3.2 Rastrigin Function

The situation changes drastically if the Rastrigin function is used as test function.
Not only needs SupSymPGPE about half the samples compared to PGPE, the effect
seems also to become stronger the higher dimensional the search space gets (see
Fig. 6 to Fig. 9).

We also added SupSymPGPE plots with the meta parameters optimal (less
greedy) for SyS-PGPE to show that the effect is not only due to the (optimal) more
aggressive meta parameters. This runs were also more efficient than for PGPE, the
effect was however not so distinct.

Baseline-Free Sampling in Parameter Exploring Policy Gradients 287

Fig. 7 Convergence plots of PGPE, PGPE with 4 samples (SyS-PGPE-4-Sampels), condi-
tional SupSymPGPE (ConSupSymPGPE) and SupSymPGPE on the 100 dimensional Rastri-
gin function. The mean and standard deviation of 200 independent runs are shown.

In Fig. 7 we also show a standard PGPE experiment with 4 samples (2 SyS sam-
ples — SyS-PGPE-4-Sample) instead of 2 to show that the improved performance
is not due to the different samples per update.

Fig. 7 additionally shows an experiment there symmetric samples are only drawn
if the first sample(s) result in worse reward than a decaying average (ConSup-
SymPGPE) or optimal baseline (OB-ConSupSymPGPE). We will call this kind of
sampling conditional sampling. The intuitive idea behind symmetric samples was
initially that changing the parameters away from the current hypotheses if the sam-
ple resulted in lower than average reward may move the mean hypothesis still in a
worse region of the parameter space. Search spaces like the one given in the Rast-
rigin function can visualize this problem (see Fig. 11). For ConSupSymPGPE one
Sample is drawn. If the reward is larger than the baseline then an update is done im-
mediately. If not, a symmetric sample is drawn. If the mean reward connected with
both samples better than the baseline an SyS-PGPE update is done. If also this mean
reward is worse than the baseline, a full SupSymPGPE update with 2 additional
SyS samples is performed. As can be seen in Fig. 7 the performance for ConSup-
SymPGPE is worse by some degree — the difference is however small enough that
the optimal baseline approach becomes challenging for SupSymPGPE, like can be
seen in Fig. 8. This last result gives a clue that the improvement in performance of
SupSymPGPE is indeed due to misleading rewards due to asymmetry in the search
space.

288 F. Sehnke and T. Zhao

Fig. 8 Convergence plots of PGPE (SyS-PGPE), optimal baseline PGPE (OB-PGPE), condi-
tional SupSymPGPE with optimal baseline (OB-ConSupSymPGPE) and with standard base-
line (ConSupSymPGPE) and SupSymPGPE on the 100 dimensional Rastrigin function. The
mean and standard deviation of 200 independent runs are shown.

The optimal meta-parameters are an exponential function of the search space di-
mension, like to expect, so that we observe a line in the loglog-plot of Fig. 10. For
SupSyS-PGPE the meta-parameters are about 2 times larger than for SyS-PGPE. This
is partly because SupSymPGPE uses four samples per update instead of two. But the
optimal meta-parameters are also larger than for the SyS-PGPE-4-Sample experiment
so that the symmetric nature of the four SupSyS samples obviously brings additional
stability in the gradient estimate than a pure averaging over 4 samples would.

3.3 Renewable Energy Problem

We also used PGPE for optimizing distributed energy systems that consist of a range
of electrical power producers including conventional and renewable sources as well
as different consumers, long and short term storages, converters and power sinks.
The whole system is included in a simulation framework for virtual- and hybrid
power plants called P2IONEER. An overview of the included technologies and how
they interact is shown in Fig. 12. The goal of optimization is to achieve a certain
fraction of renewable energies (up to 100%) with the lowest Levelised Cost of Elec-
tricity (LCoE). Time-series for wind, photovoltaics (PV) and water power produc-
tion from real sites are feed into the system as well as demand and temperature
profiles and are simulated together with on site availability of biomass and storage
capacities for natural gas and the like.

Baseline-Free Sampling in Parameter Exploring Policy Gradients 289

Fig. 9 Convergence plots of PGPE and SupSymPGPE on the 1000 dimensional Rastrigin
function. The mean and standard deviation of 200 independent runs are shown.

Fig. 10 Optimal meta-parameters for the multi-dimensional Rastrigin function for PGPE
and SupSymPGPE

This optimization problem is extremely complex since most of the free param-
eters are highly correlated and intertwined. Changing for example only the in-
stalled amount of wind power plants will not improve the LCoE if the PV and

290 F. Sehnke and T. Zhao

Fig. 11 Visualization of 4 super symmetric sample (blue squares) around the mean hypoth-
esis (red square) in a zoom view of the Rastrigin function. The first sample (rightmost) is
worse than the current baseline and would lead to an update in a direction that is worse in
the baseline-PGPE case. Due to the symmetric sample (leftmost) this error in judgment is
compensated. This symmetric sample pair would lead to a decrease in the exploration param-
eters in both dimensions that would increase the probability to remain in the local optima.
The second pair of symmetric samples is correcting that and even increases the exploration
parameters slightly.

storage capacities are not also adjusted appropriately. But what makes the problem
interesting for SupSymPGPE is that it shows several constraints that are included
as penalty terms in the reward function resembling very steep slopes in the search
space. While testing the performance of SupSymPGPE compared to standard PGPE
on this problem it became apparent that SupSymPGPE behaves much better in this
kind of setting. SupSymPGPE can cope with the constraints introduced in the re-
ward function much better and not only converges to the optimal LCoE with much
less samples but also does that much smoother by avoiding samples that violate
the given constraints much more efficient. Figure 13 shows the results on this opti-
mization problem. Again we also made one experiment for SupSymPGPE with the
optimal, less greedy, meta-parameters for PGPE to show that the effect is not solely
due to the fact that SupSymPGPE allows for higher step sizes. Please note that the
convergence curves for SupSymPGPE are also much smother than for PGPE that
stems from PGPE generating more samples that violate the given constraints.

The experiments were done with wind, PV and water time series from a region
in central Germany. The goal is a 100% renewable power supply for the region
for the years 2011 to 2012. All constraints and surrounding conditions have been
investigated and were used from that in reality existing region.

Baseline-Free Sampling in Parameter Exploring Policy Gradients 291

Fig. 12 The available technologies and the energy flow in P2IONEER

Fig. 13 Convergence plots of PGPE and SupSymPGPE on the Renewable Energy problem.
The mean and standard deviation of 20 independent runs are shown.

292 F. Sehnke and T. Zhao

4 Conclusions and Future Work

We introduced SupSymPGPE, a completely baseline free PGPE that uses quasi-
symmetric samples wrt. the exploration parameters. We showed that on the Rastri-
gin function, as example for a test function with exponentially many local optima,
this novel method is clearly superior to standard SyS-PGPE and that both meth-
ods become equivalent in performance if the search space lack distracting local op-
tima. The performance was tested for the standard and the optimal baseline. We also
showed an example problem with several constraints introduced as penalty terms to
the reward function there SupSymPGPE also outperformed standard PGPE clearly.
In all experiments so far conducted (also ones not listed here) SupSymPGPE was
never less efficient than standard PGPE. The most compelling property is, however,
that SupSymPGPE is much more robust if search spaces become erratic.

For future work we want to highlight that SupSymPGPE can be easily combined
with other extensions of PGPE. Multi-modal PGPE [19] can be equipped straight for-
ward with SupSyS, like shown in 2.6. Experimental results on this is considered as
interesting future work. Also the natural gradient used for PGPE in [3] can be defined
over the SupSyS gradient instead over thevanilla gradient. While it is hard to imagine a
sampling scheme that is symmetric to full covariancesamples onecan easily genereate
super symmetric samples in the rotated space defined by a covariance matrix.

While importance sampling is a very effective method to reduce the needed eval-
uations, like shown by [5] it cannot be applied to SupSymPGPE directly. It can
however be used if SupSymPGPE is used for performance reasons and a base-
line is available by adding standard PGPE updates for the sample history and Sup-
SymPGPE updates for the direct samples. Another alternative would be to use Im-
portance Mixing that was used for the same reasons in [20].

Finally a big open point for future work is the validation of the mere theoretical
findings also for robotic tasks, for SupSymPGPE and its combination with other
PGPE extensions. Since in robotic tasks an experienced experimentator will define
the reward function well (reward shaping), it is expected that the reward landscape
tends to be closer to the square function than to the Rastrigin function and con-
straints may be avoided or introduced in a less harmful way. So we guess that the
impact on robotic behavior learning will be less drastic than in the presented cases.

Acknowledgments. This work was funded by the Zentrum für Sonnenenergie- und
Wasserstoff- Forschung and MEXT Scholarship.

References

1. Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., Schmidhuber, J.:
Parameter-exploring policy gradients. Neural Networks 23(4), 551–559 (2010)

2. Rückstieß, T., Sehnke, F., Schaul, T., Wierstra, D., Sun, Y., Schmidhuber, J.: Exploring
parameter space in reinforcement learning. Paladyn. Journal of Behavioral Robotics 1(1),
14–24 (2010)

3. Miyamae, A., Nagata, Y., Ono, I.: Natural Policy Gradient Methods with Parameter-
based Exploration for Control Tasks. In: NIPS, pp. 1–9 (2010)

Baseline-Free Sampling in Parameter Exploring Policy Gradients 293

4. Zhao, T., Hachiya, H., Niu, G., Sugiyama, M.: Analysis and improvement of policy gra-
dient estimation. Neural networks: the Official Journal of the International Neural Net-
work Society, 1–30 (October 2011)

5. Zhao, T., Hachiya, H., Tangkaratt, V., Morimoto, J., Sugiyama, M.: Efficient sam-
ple reuse in policy gradients with parameter-based exploration. arXiv preprint
arXiv:1301.3966 (2013)

6. Stulp, F., Sigaud, O.: Path integral policy improvement with covariance matrix adapta-
tion. arXiv preprint arXiv:1206.4621 (2012)

7. Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J.: Natural evolution strategies. In:
Evolutionary Computation, CEC 2008, pp. 3381–3387. IEEE (2008)

8. Sehnke, F.: Parameter Exploring Policy Gradients and their Implications. PhD thesis,
München, Technische Universität München, Diss., 2012 (2012)

9. Henderson, P., Morris Jr., J.H.: A lazy evaluator. In: Proceedings of the 3rd ACM
SIGACT-SIGPLAN Symposium on Principles on Programming Languages, pp. 95–103.
ACM (1976)

10. Heinemann, P., Streichert, F., Sehnke, F., Zell, A.: Automatic calibration of camera to
world mapping in robocup using evolutionary algorithms. In: IEEE Congress on Evolu-
tionary Computation, CEC 2006, pp. 1316–1323. IEEE (2006)

11. Heinemann, P., Sehnke, F., Streichert, F., Zell, A.: An automatic approach to online color
training in robocup environments. In: 2006 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 4880–4885. IEEE (2006)

12. Schmidhuber, J.: Developmental robotics, optimal artificial curiosity, creativity, music,
and the fine arts. Connection Science 18(2), 173–187 (2006)

13. Grüttner, M., Sehnke, F., Schaul, T., Schmidhuber, J.: Multi-dimensional deep memory
atari-go players for parameter exploring policy gradients. In: Diamantaras, K., Duch,
W., Iliadis, L.S. (eds.) ICANN 2010, Part II. LNCS, vol. 6353, pp. 114–123. Springer,
Heidelberg (2010)

14. Sehnke, F.: Efficient baseline-free sampling in parameter exploring policy gradients: Su-
per symmetric pgpe. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P.,
Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 130–137. Springer,
Heidelberg (2013)

15. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning 8, 229–256 (1992)

16. Greensmith, E., Bartlett, P.L., Baxter, J.: Variance reduction techniques for gradient es-
timates in reinforcement learning. Journal of Machine Learning Research 5, 1471–1530
(2004)

17. Sutton, R.S., Barto, G.A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

18. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, Berlin
(1996)

19. Sehnke, F., Graves, A., Osendorfer, C., Schmidhuber, J.: Multimodal parameter-
exploring policy gradients. In: 2010 Ninth International Conference on Machine Learn-
ing and Applications (ICMLA), pp. 113–118. IEEE (2010)

20. Sun, Y., Wierstra, D., Schaul, T., Schmidhuber, J.: Efficient natural evolution strategies.
In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computa-
tion, pp. 539–546. ACM (2009)

Sparse Approximations to Value Functions
in Reinforcement Learning

Hunor S. Jakab and Lehel Csató

Abstract. We present a novel sparsification and value function approximation
method for on-line reinforcement learning in continuous state and action spaces.
Our approach is based on the kernel least squares temporal difference learning al-
gorithm. We derive a recursive version and enhance the algorithm with a new spar-
sification mechanism based on the topology obtained from proximity graphs. The
sparsification mechanism – necessary to speed up the computations – favors data-
points minimizing the divergence of the target-function gradient, thereby also con-
sidering the shape of the target function. The performance of our sparsification
and approximation method is tested on a standard benchmark RL problem and
comparisons with existing approaches are provided.

1 Introduction

Reinforcement learning addresses the problem of learning optimal decision making
strategies (policies) for diverse control problems. RL puts special emphasis on the
autonomous nature of the learning process. The learning agent develops an efficient
policy to reach a predefined goal, without external inference, the only information
source being its state and the reward signal that it receives from the environment.
Whilst the definition of autonomy is difficult, the design of a generic autonomous
learning “agent” is based on the idea that the agent explores its environment and
aims to collect “rewards” – i.e. to exploit too – during exploration [22]. Given a
reinforcement learning algorithm, one needs to build the reward function for it to be
applied to a given application domain.

Approximate reinforcement learning (RL) methods are algorithms dealing
with real-world problems that are characterized by continuous, high dimensional

Hunor S. Jakab · Lehel Csató
Babeş-Bolyai University, Faculty of Mathematics and Computer Science
e-mail: {jakabh,csatol}@cs.ubbcluj.ro

c© Springer International Publishing Switzerland 2015 295
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_14

296 H.S. Jakab and L. Csató

state-action spaces and noisy measurements. The purpose of this chapter is to in-
vestigate the problem of accurately estimating value functions for a given policy in
continuous RL problems, also called policy evaluation[22].

Policy evaluation is the process of estimating the utility of a state or state-action
pair when the learning agent starts from that state (state-action pair) and follows
a fixed strategy (policy) for an infinite number of steps. The function that maps
states to utility values is called a value function and it needs to be represented by a
function approximation framework. Many reinforcement learning methods rely on
the accurate approximation of value functions, which can be used to derive greedy
policies that choose the action which leads to the state with highest utility value.
Thus the accuracy of value functions around decision boundaries (regions where
the utility values change rapidly) is especially important. Traditionally the represen-
tation of value functions on continuous domains has been treated using linear maps
with non-linear features (ex. using different order polinomial, fourier or wavelet ba-
sis)[11], neural networks [16], non-parametric approximators [7] etc. To improve
the accuracy of the approximated value functions a large variety of algorithms have
been proposed.

In this article we focus on linear least-squares algorithms for temporal differ-
ence learning [2]. These algorithms similarly to most RL algorithms, require a lot
of hand-tuning to work in different application domains. One of the major research
areas within RL is to eliminate the need for hand-tuning and to develop methods
which can be applied generically to a large variety of problems. A popular way to
address this design issue is by applying a nonlinear extension of the algorithm using
“kernelization”. Kernelization in turn raises the problem of complexity, over-fitting,
and increased computational cost. To avoid these problems, different sparsification
mechanisms are employed which are meant to eliminate non-essential training-data
based on a given selection criteria. The quality of the sparsification procedure influ-
ences the accuracy and the generalization capability of the function approximator.

The ability of an RL algorithm to operate on-line, to acquire training-data se-
quentially by interacting with its environment, is crucial. In this setting, the training
data acquired during environment interaction presents some spatio-temporal charac-
teristics which in our opinion can be exploited to develop a superior approximation
framework. To do this we introduce a proximity-graph based sparsification mecha-
nism which is based on the on-line construction of a proximity-graph that captures
the temporal correlation of the training data. The resulting graph is a coarse repre-
sentation of the manifold upon which the training data lies, and it allows the spar-
sification to fine-tune itself by increasing the density of support points1 in the areas
where the function changes rapidly. At the same time our algorithm reduces the
density of support-points in areas where the target function hardly changes, keep-
ing computational costs down. We apply the sparsification mechanism to the kernel
least squares temporal difference learning (KLSTD) [29] algorithm. We also intro-
duce a recursive version of KLSTD that is much better suited to the on-line learning
scenario frequently seen in reinforcement learning.

1 Support points are similar to the support points in Parzen-windowing or in vector-
quantization summarizing in a few – weighted – samples a large amount of input location.

Sparse Approximations to Value Functions in Reinforcement Learning 297

The rest of this paper is structured as follows: In Section 2 we introduce some
of the basic notions related to reinforcement learning and the notation which we
will be using throughout the rest of the paper. Section 3 surveys some of the recent
value function approximation methods from the literature. In section 4 we introduce
the kernel least squares algorithm for value approximation, while in section 4.1 we
present our first major contribution, a recursive version of KLSTD.The sparsifica-
tion problem is introduced in Section 5, and in Section 5.1 the second major contri-
bution of the paper, the laplacian sparsification mechanism is presented. Section 6
deals with the problem of iteratively constructing proximity graphs to be used in our
laplacian sparsification mechanism. The complete value approximation algorithm
based on our recursive version of KLSTD together with the laplacian sparsifica-
tion method is presented in detail in Section 7. Section 8 presents the experimental
results and Section 9 concludes the paper.

2 Notation and Background

We introduce the notation we will be using and sketch the background material re-
quired to understand the proposed methods. We mention first that in RL data results
from interacting with the environment and consequently the successive states of the
agent, the actions taken in those states and the corresponding rewards define the
training data. Moreover – bringing the method closer to applicability – we assume
that data is acquired on-line. The size of the training data therefore is not fixed and
it expands continuously as the interaction process takes place.

To describe the environment where the learning process takes place we use the
formalism of Markov decision processes (MDP) [15], commonly used for modeling
reinforcement learning problems:

An MDP is a quadruple M (S,A,P,R), where S is the (possibly infinite) set of
states, A is the set of actions, P(s′|s,a) : S× S×A → [0,1] describes the usually
unknown transition probabilities, and R(s,a) : S×A→ R is the instantaneous reward
function defining the feedback to the learner.

The decision making mechanism is modeled with the help of an action selection
policy: π : S×A → [0,1]. Here π is the conditional probability distribution – π(a|s)
– of taking action a while being in the state s. In reinforcement learning the goal
is to find the optimal policy π∗, that maximizes the expected discounted cumulative
reward received by the learner:

π∗ = argmax
π

Eπ
[
∑∞

t=0 γtRt
]

An important element of many RL algorithm is a representation of the utility of
the state or state-action pairs as value functions Vπ : S →R or action-value functions
Qπ : S×A →R:

Vπ(s) = Eπ
[
∑∞

t=0 γtRt |s0 = s
]

; Qπ(s,a) = Eπ
[
∑∞

t=0γtRt |s0 = s,a0 = a
]

298 H.S. Jakab and L. Csató

Value functions express the expected long term discounted reward received when
starting from a given state or state-action pair and following a given policy π . The
majority of reinforcement learning algorithms can be included in two main cate-
gories: value based and model-based methods. Model-based algorithms [7], [6] ap-
proximate both the system dynamics and the state-value function and apply dynamic
programming for the derivation of the optimal policy. In both of these categories the
accurate and consistent estimation of state or state-action values plays an essential
role.

Since this paper focuses on value approximation, from now on we consider the
action selection policy to be fixed. This restriction gives rise to a so-called Markov
Reward process [23] which we will refer to as MRP. Throughout the rest of this
paper for ease of exposition we will omit the policy from the notation. For better
readability we will use state value functions V (·) for the derivation of our algo-
rithms, since their extension to state-action value functions is straightforward.

3 Related Work in Value Approximation

The approximation of value functions can be accomplished by different function
approximation architectures. There have been attempts to use neural networks [16],
hierarchical function approximation [26], non-parametric methods [19],[20],[9].

Estimation and approximation of value functions is easiest with a linear model:
the value is a linear function of the state. These models are too simple to be applied
for RL problems. A non-linear extension is to consider models that are linear in
their parameters but non-linearly map the inputs to the output space, called linear-
in weight models [21], or generalized linear models [13]. Linear regression models
with non-linear features have been preferred for approximate policy evaluation, due
to their good convergence properties and relative ease of analysis. The main draw-
back of linear-in-weight regression models is the difficulty in obtaining good fea-
tures for each problem. One way to reduce the hand-tuning required is to decouple
the approximation of value functions or state-transition dynamics from the con-
struction of problem-specific feature functions which transform the input data into
a more interpretable form. The proto-value function framework presented in [12]
achieves this by using diffusion wavelets and the eigenvectors of a graph laplacian
for the automatic construction of feature functions. Another popular approach is to
use kernel methods for this purpose [18] by formulating the algorithms in such a
way that feature functions only appear in dot product form. Gaussian processes are
a good example of this, and have been successfully used in a number of references
for approximating both value functions and system transition dynamics [6],[7]. An-
other class of value approximation algorithms is based on the least squares min-
imization principle and use linear architectures with updates known from tempo-
ral difference learning [2],[1]. Least squares based methods are believed to have
better sample efficiency, however the expressive power of linear architectures is
largely determined by the quality of the feature functions that they use. The learning

Sparse Approximations to Value Functions in Reinforcement Learning 299

algorithms from this class can also be kernelised as seen in [29]. An overview of
kernel-based value approximation frameworks can be found in [24].

4 Kernel Least Squares Value Approximation

LSTD is based on a generalized linear approximation to the value function using a
set of predefined feature vectors:

Ṽ (s) = φ(s)T wH , where φ(s) = [φ1(s), . . . ,φd(s)]
T . (1)

Here wH = [w1, . . . ,wd]
T is the vector containing the feature weights, and d is the

dimension of the feature space. Notice that wH ∈R
d , i.e. it has to match the dimen-

sion of the feature space where the input s is projected and superscript H signifies
this fact. In temporal difference we incrementally update the value function based
on the temporal difference error [22]:

δt+1 = Rt+1 + γṼt(st+1)− Ṽt(st) = Rt+1 − (φ(st)− γφ(st+1))
T wH

t (2)

and the parameter update – using the learning parameter αt – is the following:

wH
t+1 ← wH

t +αtδt+1φ(st).

where t is time and, since each datum is new, it is also the sample number. In the
limit of infinite time t, the algorithm leads to a converged vector wH that satisfies
E[φ(st)δt+1] = 0 [23]. We are looking at its equilibrium value, by replacing the
theoretical average with the sample average, to obtain the following equation:

1
n

n

∑
t=0

φ(st)δt+1 = 0 (3)

Substituting δt+1 from eq. (2) – and dropping n, the sample size – we obtain:(
∑n

t=0 φ(st)(φ(st)− γφ(st+1))
T
)

w = ∑n
t=0 φ(st)Rt (4)

If we use the following notation:

ÃH = ∑ n
t=0 φ(st)(φ(st)− γφ(st+1))

T , b̃H = ∑ n
t=0 φ(st)Rt ,

Then the equation becomes: ÃHwH = b̃H , a linear problem. For this system we have
the following properties:

• The matrix ÃH is a sum of individual outer products, therefore it can be calculated
incrementally;

• Each component in the sum is a square matrix with the size of the feature space;
• When ÃH is invertible, there is a direct solution for wH , see e.g. [2].

300 H.S. Jakab and L. Csató

The problem with the solution presented above is that manually constructing suit-
able feature representations for each problem-domain is time-consuming and error
prone. To alleviate this drawback, a non-linear extension via “kernelisation” of the
above algorithm has been introduced in [28], briefly sketched in what follows. To
eliminate the direct projection into the feature space, we assume that the projec-
tion is into a reproducing kernel Hilbert space [25, 18]. The solutions to the lin-
ear systems can then be written as a linear combination of the feature images of

the inputs, i.e. wH def
= ∑n

t=1 wiφ(si). This is equivalent with a re-parametrization of
the problem from eq. (4), where (1) we are looking for w = [w1, . . . ,wn] as coeffi-
cients solving the problem, and (2) we express all equations in terms of a dot prod-
uct φ(si)

T φ(s j) → k(si,s j) (called kernel transformation of the problem). The re-
parameterized problem optimizes w and the system is w∗ = Ã−1b̃ with parameters:

Ã =
n

∑
t=0

k(st)
[
kT (st)− γkT (st+1)

]
, b̃ =

n

∑
t=0

k(st)Rt , (5)

where Ã, b̃ are the re-parametrized entities of eq. (4) and k(·, ·) is an arbitrary kernel
function [18]. k(s) = [k(s,s1), . . . ,k(s,sn)]

T is the vector of kernels at the new data s
and the training data set {si |i = 1,n}. An important consequence is that the expres-
sion for the value function – originally in feature space, eq. (1) – is expressed using
kernels too:

Ṽ (s) =
n

∑
i=0

wik(s,si), ∀ s ∈ S. (6)

In what follows we reduce the computational time required to obtain the vector w,
by first proposing a recursive calculation of the matrix Ã−1 and vector b, then present
a sparsification mechanism that reduces the number of parameters in the system.

4.1 Recursive Computation

We assume that we are reading the elements of the data-set one by one. When n
inputs have been processed, the size Ã is n, consequently the computation of w is
O(n3). On-line learning makes this problem worse since it requires the inversion
of Ã to be performed at each step which is highly impractical. The computational

burden of the matrix inversion can be mitigated by keeping Ct
def
= Ã−1

t and updating
it incrementally. Suppose we have processed t data-points – therefore Ct ∈ R

txt and
b̃ ∈R

tx1 – and let us write implicitly update to Ãt+1:

Ãt+1 =
t

t + 1

⎛
⎜⎝
⎡
⎣Ãt 0

0T 0

⎤
⎦+

⎡
⎢⎣

k(st ,s1)
...

k(st ,st+1)

⎤
⎥⎦ ·
⎡
⎢⎣

k(st ,s1)− γk(st+1,s1)
...

k(st ,st+1)− γk(st+1,st+1)

⎤
⎥⎦

T⎞
⎟⎠

def
=

t
t + 1

([
Ãt 0
0T 0

]
+

[
u
u∗

][
v
v∗

]T
)

(7)

Sparse Approximations to Value Functions in Reinforcement Learning 301

where – in the second line – we defined, for a more concise notation, the vectors
u,v ∈R

t×1 and the scalars u∗ and v∗. We also see that the inclusion of the new input
increases the size of the matrix Ãt+1. With the above notation we can express the
recursion for the new value of the inverse, that is:

Ct+1 = Ã−1
t+1 =

t + 1
t

[
Ãt +uvT v∗u

u∗vT u∗v∗

]−1

=

[
Ct −Ctu/u∗

−vTCt/v∗ 1+vTCt u
u∗v∗

]
(8)

where we used the inversion rules for block matrices and the Sherman-Woodbury
formula, similarly to [5]. Notice the particular simplicity of the update: as its name
suggests, it is indeed a rank-one update, involving only the last line and column of
a – potentially large – matrix. The iterative update of bt is:

b̃t+1 =
t

t + 1

([
b̃t

0

]
+

[
u
u∗

]
Rt

)
(9)

Combining the above defined representation of the inverse of Ã with Eq. (5), the
optimal coefficients for the approximation of the target function after processing the
(t + 1)-th input data-point can be obtained as:

wt+1 =Ct+1b̃t+1 =

[
Ct −Ctu/u∗

−vTCt/v∗ 1+vT Ct u
u∗v∗

]([
b̃t

0

]
+

[
u
u∗

]
Rt

)

=

[
wt(

Rt − vT wt
)
/v∗

]
=

[
wt(

Rt − (Ṽ (st)− γṼ(st+1))
)
/v∗

]
(10)

In the rest of this paper we will refer to the presented iterative algorithm as kernel
recursive least squares temporal difference learning algorithm or (KRLSTD). For a
detailed derivation of a policy iteration algorithm based on the least squares value
function approximation method, see [10].

In the next section we present a new type of sparsification mechanism to keep the
matrix Ã at a small fixed size. Since the sparsification depends on the values of the
inputs, we need a “good” subset, the criteria presented on the next section.

5 Sparsification of the Representation

Sparsification reduces the computational cost of kernel-based algorithms by
finding a small set of data-points called dictionary, which will be used as basis
set for subsequent computation. The subject of selecting a representative set of
data-points for reducing computational cost in case of kernel methods has been
studied in-depth in the scientific literature. To achieve sparsity a large number of dif-
ferent approaches have been employed. Error-insensitive cost functions in support
vector machine regression, reduction of the rank of the kernel matrix by low-rank
approximations, greedy feature construction algorithms, using a Bayesian prior to
force sparsity in case of fully probabilistic models etc. For non-parametric kernel

302 H.S. Jakab and L. Csató

methods this process can also be called feature selection, since the feature represen-
tation of a data-point is determined by the subset of data-points in the dictionary.

The commonly used sparsification method in RL [8] uses approximate linear in-
dependence (ALD) as a criterion for discarding data-points. In this context a new
point is approximated by the linear combination of dictionary points in feature
space, and the approximation error is as follows:

ε = min
α

‖∑d
i=1αiφ(si)−φ(s∗)‖2 (11)

Here φ(s) are the feature images of the corresponding data-points, s∗ is the new
data point and αi are the variational coefficients. Minimizing the error from (11)
and applying the kernel trick leads to the following expression fo the approximation
coefficients:

α = K−1k(s∗) (12)

where Ki, j = k(si,s j) is the kernel matrix and k(s∗) =
[
k(s1,s∗) . . .k(sn,s∗)

]
is the

vector of kernel values computed on the new data-point s∗.
If the approximation error is below a predefined threshold ν the data-point is dis-

carded and the kernel-matrix is updated using the linear combination coefficients
αi

2. Otherwise the new data-point is incorporated into the dictionary. In [4] a
sparsification mechanism for Gaussian processes is presented which considers the
influence of individual data-points in the approximation accuracy. The method is
based on calculating the Kullback-Leibler divergence between two posterior Gaus-
sian process distributions: one with a new data-point included and one without. The
data-point that causes the smallest change in the posterior mean is discarded. Unfor-
tunately this can only be applied when we have a full probabilistic model available
as in the case of Gaussian Processes. Moreover the kernel hyper-parameters have a
major influence on the accuracy of this method.

Proponents of sparsification methods based on approximate linear dependency
argue that one of its major advantages is that it is not affected by noise in the training
data, since it does not take into account the training labels, only the linear dependency
of inputs in feature space. In the problem-domain of reinforcement learning, however
this becomes a drawback since for the accurate approximation of value functions, the
information contained in the training labels needs to be taken into account.

In what follows we introduce a sparsification mechanism that puts a larger empha-
sis on the characteristics of the target-function in the selection process of dictionary
data-points. Our method can be applied on-line, is not dependent on the initial values
of the kernel hyper-parameters and it has only one parameter that requires tuning.

5.1 Laplacian Sparsification Criteria

The main idea of our method is to approximate the manifold upon which the
training-data lies, and use the characteristics of this manifold to adjust the density of

2 For a detailed description of the update procedure see [3]

Sparse Approximations to Value Functions in Reinforcement Learning 303

training data-points contained in the dictionary in specific regions of the input space.
To obtain a coarse representation of the manifold we propose the on-line construc-
tion of a similarity graph based on the observed state-transitions of the system. The
graph construction mechanism uses the information contained in the sequential na-
ture of the training data to create edges between vertexes(states or state-action pairs)
that are successively traversed3. The spectral information contained in the Laplacian
of a properly constructed similarity graph can be exploited when deciding on the in-
clusion or removal of a new data-point to the dictionary.

To provide the necessary background some notions from graph theory are needed.
Let G (E,V) be an undirected graph with E and V denoting the set of edges and

vertices respectively. We define the unnormalized graph Laplacian associated with
G(E ,V) as: LG = DG −AG , where AG is the weighted adjacency matrix of G and
DG

i,i = ∑ j 	=i AG
i, j is a diagonal matrix containing the node degrees on the diagonal.

An interesting property of the graph Laplacian is that it is symmetric, positive
semi-definite, and it gives rise to the discrete Laplacian operator Δ :

f : V →R Δ f (si) =
n

∑
j=1

AG
i j [f (si)− f (s j)] (13)

For a given set of data-points consisting of the vertexes of G : si ∈V i = 1, |V |
the Laplacian operator applied to the function f is expressed as:

Δ f = LG f where f = [f (s1) . . . f (sn)]
T (14)

For now we assume that the graph approximates the manifold upon which the
training data-points are situated, and the shortest paths calculated on G between
two points approximate the geodesic distances between them4.

Let us denote the approximated function f and the neighbor set of a vertex si as
neig(si) = {s j ∈V |AG

i, j 	= 0}. The vertexes of the graph G (E,V) are the location of
samples from the target function. To obtain a sparse dictionary we introduce a score
function μ(·) for a vertex si ∈ V as the weighted sum of the squared differences
between target function values of si and its neighbouring vertexes:

μ(si ∈V) = ∑
s j∈neig(si)

AG
i j [f (si)− f (s j)]

2 (15)

Summing up the individual vertex scores gives an overall measure about the quality
of the dictionary set:

∑
si∈V

μ(si) =
n

∑
i, j=1

AG
i j [f (si)− f (s j)]

2 = fT LG f (16)

3 The on-line construction of the similarity graph is explained in detail in section 6
4 Geodesic distance is the distance between states along the manifold determined by the

transition dynamics of the MRP.

304 H.S. Jakab and L. Csató

Fig. 1 Dictionary points (black stars) obtained after processing 5 roll-outs (≈ 450 data-
points) – red dots – for the mountain-car control problem using different sparsification tech-
niques. Figure (a): ALD sparsification. Figure (b) our proximity graph-based sparsification.
The maximum number of dictionary points was set to 100, KLSTD approximation used.

The above presented score is equivalent to applying the discrete Laplacian operator
to the target function, and can be interpreted as the overall divergence of the gradient
of f . In Section 7 we describe the complete sparsification algorithm that uses the
score from Eq. 16 as a criterion to construct an optimal dictionary.

5.2 Illustrative Example

To illustrate how the above proposed sparsification mechanism changes the den-
sity of the dictionary data-points in different regions of the approximated func-
tion, we performed a simple experiment on approximating the value function for
a fixed policy π on the mountain-car control problem (A detailed description is
given in section 8.2). Figure 1 illustrates the differences between approximate
linear dependence-based sparsification and our Laplacian-based method. The de-
gree of sparseness in case of ALD is controlled by the threshold parameter ν from
section 5. To be able to compare the two algorithms, we adjusted the upper limit on
the dictionary size in case of our method to match the number of dictionary points
produced by the threshold ν in case of ALD.

The red dots on figure 1 show all the training data-points, the black stars show
the elements of the dictionary after sparsification has been performed. The hori-
zontal and vertical axis correspond to the two elements of the state vector and the
state values are color coded in the background. Performing sparsification based on
the maximization of the score from (16) leads to a higher sample-density in re-
gions where the function changes rapidly (fig. 1b). At the same time the algorithm
keeps a sufficient number of data-points in slowly changing regions to obtain good
approximation accuracy.

6 On-Line Proximity Graph Construction

The information contained in the sequential nature of the training data in RL can
be used to construct a manifold that reflects the state-transitions of the underly-
ing MDP and the true geodesic distance between training data-points. We present

Sparse Approximations to Value Functions in Reinforcement Learning 305

two modalities for storing this information iteratively in so-called proximity graphs
encountered in dimensionality reduction and surface reconstruction methods from
point-cloud sets.

Let G (E,V) be a proximity graph that is the representation of a manifold upon
which the training data-points are located.

We denote the new data-point which needs to be added to the existing graph
structure with si and an edge between two vertexes si and s j as esi,s j . After the
addition of the new data-point to the graph vertex set V =V ∪{si} new edges need
to be constructed which connect it to existing vertexes in G . Existing work [17],
[27] on graph edge construction has focused on treating training data as either i.i.d
or batch data. Since the approximation algorithm proposed by us operates on-line
we present iterative versions of two well-known edge construction methods, the k-
nearest-neighbor(KNN) and the extended sphere of influence (ε-SIG) methods.

6.1 Extended Sphere of Influence Graphs

The extended sphere of influence graph (eSIG) produces a good description of non-
smooth surfaces and can accommodate variations in the point sample density [17].
In this approach, edges are constructed between vertexes with intersecting spheres
of influence:

E = E ∪{esi,s j = ‖si − s j‖2 | (R(si)+R(s j))> ‖si − s j‖} (17)

R(si) = ‖si − sk‖2

In the above formula R(si) denotes the radius of the sphere of influence of si and
sk is the k-th nearest neighbor of si. The sphere of influence of a graph vertex is
the sphere centered at the point, with radius given by its distance to its k-th nearest
neighbor. Disconnected components can appear with this construction, however ad-
justing k the sphere of influence radius can be increased which helps in alleviating
this problem.

6.2 KNN Edge Construction

The K-nearest neighbor method eliminates the problem of unconnected sub-graphs
but introduces new problems such as : connections between points that are too far
in state-space, asymmetric property of the adjacency matrix and increased computa-
tional cost. This strategy effectively limits the number of outgoing connections that
a node can have by selecting the k nearest neighbors of xt and creating an edge to
them with length equal to their spatial distance.

esi,s j =

{
‖si − s j‖2 if s j ∈ knn(si)

0 otherwise
i = 1 . . .n (18)

306 H.S. Jakab and L. Csató

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

Fig. 2 Dictionary points (black dots) and graph structure (blue lines) before and after node
removal. Figure (a) shows the node to be removed (red circle), its neighbours (red circles
with dots) and the removable edges (red lines). On (b) we see the resulting graph with the
newly created edges shown in red.

Here we used knn(si) to denote the set containing the k vertexes nearest to si. The
value of k also determines the number of edges present in the graph.

To achieve symmetry in the obtained proximity graph, we use undirected edges.
As a consequence, when creating edges between data-points si and s j we update the
adjacency matrix as follows: AG

i, j = AG
j,i = ‖si − s j‖2.

6.3 Updating the Graph Structure

The deletion of a vertex from the graph G (E,V) also removes the edges connecting
it to its neighbors. In order to keep the information contained in the original edges
about the topology we use the following pruning algorithm:

Let us denote the vertex which is to be removed by s∗. After removal of s∗ we get
a new graph structure G ′(V ′,E ′) with the following components:

V ′ =V \ {s∗} E ′ = E \ {e(s∗,s)|s ∈ neig(s∗)}∪Enew (19)

where e(s∗,s) denotes an edge between the vertexes s∗ and s of the graph G(E,V).
The set Enew contains the new edges between former neighbors of s∗ with weights
equal to the sum of the edge weights that connected them to s∗:

Enew = {e(si,s j) = ‖si,s
∗‖+ ‖s j,s

∗‖|si,s j ∈ neig(s∗),e(si,s j) 	∈ E} (20)

Figure 2 illustrates the removal procedure on a sample graph structure obtained after
interacting for 400 steps with the mountain-car environment.

The addition of the new edges serves two purposes: First the connected prop-
erty of the graph is maintained, secondly it can be shown that using the previ-
ously defined update the shortest path distance matrix of the graph will remain
the same except for removing the row and column corresponding to the index of
s∗. In consequence the geodesic distances between the remaining graph nodes are
preserved.

Sparse Approximations to Value Functions in Reinforcement Learning 307

7 The KSLTD Algorithm with On-Line Laplacian
Sparsification

The algorithm described in this section is used to incrementally construct a
similarity graph, decide upon the addition of a new data-point to the dictionary and
calculate the linear coefficients for the approximation of the value function.

To obtain a representative set of data-points we use the score function defined in
Eq. (15) and the iterative update steps of the KLSTD data structures from Eq. (8)
and (9). In the KLSTD setting, the target function values f (s) from the laplacian
sparsification criterion in Eq. (16) are replaced by the approximated values given
by the KLSTD coefficients w∗ and the actual composition of the dictionary D, ac-
cording to Eq. (10). According to this the score function for an individual data-point
takes the following form:

μ(si) = ∑
s j∈neig(si)

AG
i, j(

|D|
∑
t=1

w∗
t (k(si,st)− k(s j,st))

2 (21)

Let us denote the upper limit to the size of the dictionary by maxBV . Whenever
the upper limit has been reached a dictionary point is selected to be discarded, based
on the score from Eq. 21. Discarding a data-point has two consequences: (1) the
KRLSTD coefficients C and b̃ and (2) the structure of the graph G (E,V) need to
be updated accordingly. Due to the linear relationship between the approximation
coefficients and the KRLSTD parameters, the parameters w∗, the rows and columns
of C and the corresponding entries of b̃ can be arbitrarily permuted. For example if
we want to discard data-point si from D where |D| = n The following permutation
can be performed:

w∗ = [w∗
1 . . .w

∗
i . . .w

∗
n]

T → [w∗
1 . . .w

∗
n . . .w

∗
i]

T

b̃ =
[
b̃1 . . . b̃i . . . b̃n

]T → [
b̃1 . . . b̃n . . . b̃i

]T
The i-th row and column of C can be exchanged with the last row and column:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1,1 . . .C1,i . . .C1,n
...

Ci,1 . . .Ci,i . . .Ci,n
...

Cn,1 . . .Cn,i . . .Cn,n

⎤
⎥⎥⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎢⎢⎣

C1,1 . . .C1,n . . .C1,i
...

Cn,1 . . .Cn,n . . .Cn,i
...

Ci,1 . . .Ci,n . . .Ci,i

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

The final step of the update after the above transformations is to simply delete
the last row and column of C and the last entry from the approximation coefficient
vector w∗ and b̃

308 H.S. Jakab and L. Csató

Algorithm 1. KRLSTD with Laplacian sparsification

1: KRLSTD data structures: Ã1 = k(s1,s1),C1 = 1
k(s1,s1)

, b̃1 = k(s1,s1) · r1

2: Dictionary parameters: D1 = {s1}, maxBV=const, n=1
3: Graph parameters: G (E,V) E = /0 V = s1
4: repeat
5: get a new training data-point {st , Rt}
6: Dt = Dt−1 ∪{st}
7: expand proximity graph G (E,V) Eq. (17),(18)
8: update Ct →Ct+1, b̃t → b̃t+1 Eq. (8),(9)
9: calculate new approximation coefficients w∗

t Eq. (10)
10: if |Dt |>= maxBV then
11: calculate scores: μ(si) i = 1,n n = |Dt | Eq. (21)
12: select least significant point s∗ = argmins(μ(s)|s ∈ Dt)
13: eliminate s∗ from the dictionary: Dt = Dt \{sr}
14: update Ct+1 , b̃t+1 and w∗

t+1 Eq. (22),(22)
15: update G (E,V) Eq. (19),(20)
16: else
17: dictionary remains unchanged
18: end if
19: until approximation coefficients w∗ converged
20: Output: D w∗

8 Performance Evaluation

To measure the performance of our policy evaluation framework in a continuous
Markov reward process we make use of two quality measures: the Bellman Er-
ror (BE) and the mean absolute error with respect to the true value function.

The Bellman error expresses the ability of the approximator to predict the value
of the next state based on the current state’s approximated value. It also indicates
how well the function approximator has converged

BE(Ṽ (s)) = R(s)+ γ
∫

s′∈S
P(s′|s,a)

∫
a∈A

π(a|s)Ṽ(s′)dads′ − Ṽ(s) (23)

According to a study in [24] the Bellman error gives an upper bound on the approx-
imation of ṽ:

‖V − Ṽ‖∞ ≤ ‖BE(Ṽ)‖∞

1− γ
(24)

The mean absolute error simply compares the accuracy of the approximated value
of a set of states to the values given by the true value function. It is defined as the
sum of the absolute differences between approximated and true state values:

MAE(Ṽ (.)) =

∫
s∈S

|ṽ(s)−V(s)|ds (25)

Sparse Approximations to Value Functions in Reinforcement Learning 309

y

x

f

y

.

Fig. 3 Illustrations of the (a) car on the hill and (b) swinging Atwood’s machine dynamics
systems

In our experiments we approximate the above integral by the sample average eval-
uated over a predefined set of data-points sampled from the state space of the
corresponding MRP.

The true value function V used as a baseline in our experiments is calculated in
all experimental settings using exhaustive Monte Carlo approximation and can be
considered very close to the actual value function induced by the policy π .

To test the performance of our methods on higher dimensional data we choose
the problem of learning the state value functions of highly non-linear dynamical
systems. In this setting we model the value function of the dynamical system with
the help of a KLSTD approximator, where inputs are states and the outputs are the
associated values:

Ṽπ(st)
n

∑
i=0

w∗
i k(si,st)∼ Eπ

[
∞

∑
i=0

γt ri|ri = R(si),s0 = st

]
(26)

For testing we used two well-known toy problems from reinforcement learning:
the Car on hill (a.k.a mountain car) (Fig. 3a) control and the swinging Atwood’s
machine (Fig. 3b).

8.1 Experimental Setup

To assess the performance of the algorithms we averaged the results of a large num-
ber of experiments performed on data generated from the dynamical systems. In
each experiment we generated training and test-points, sampled from trajectories5

where the start states were chosen randomly from within the state-boundaries of the
system. For each sampled state-action vector we also collected the corresponding
immediate reward, defined by the reward function.

To generate the system inputs we used a fixed Gaussian policy with a linear con-
troller of the following form: π(a,s) ∼ N(ctrl(s),Σ) where ctrl(s) = ∑d

i=1 αisi is
the controller, αi being the linear coefficients and d the dimensionality of the state
vector, Σ = diag(σ) is the d dimensional diagonal covariance matrix.

5 A trajectory is a set of successive states starting from an initial state and applying a fixed
policy, until a terminal state has been reached.

310 H.S. Jakab and L. Csató

We also perturbed the transition probabilities of the systems with a Gaussian
distributed noise of variance: σ = 0.01 to simulate real-world conditions. Another
important detail of our experimental setup is the initialization of the kernel hyper-
parameters in case of ALD and the initialization of the nearest neighbor count value
k in the graph construction algorithms. The kernel function that we used in our
experiments was the Gaussian kernel with added Gaussian noise. The kernel hyper-
parameters (the characteristic length scale, the noise variance and the signal vari-
ance) were optimized using a scaled conjugate gradient optimization to fit the data
as well as possible. For setting the nearest neighbor count value k we used the di-
mensionality of the input data-points as a reference.

In what follows we describe each of the studied dynamical systems and present
the test results.

8.2 Car on Hill Control Problem

The first test system is the well-known mountain-car control problem [22], shown
schematically in Fig. 3.a. A car is placed in the a valley and the goal is to apply a
sequence forces along the longitudinal axis of the car such that it will climb out the
valley. This problem imposes a two dimensional continuous state space s =

[
x v

]
composed of the position of the car x and its speed v = ẋ. The applied action is
one dimensional and continuous. To demonstrate the benefits of our Laplacian-
based sparsification mechanism for the approximation accuracy we performed 15
experiments each having 150 episodes consisting of 350 steps each – ∼ 45000
training-points – for this problem. To see the effects of the sparsification on the
approximation accuracy, we performed the same experiments for a number of dif-
ferent maximum dictionary sizes. Figure 4.a shows the mean absolute errors with
respect to the true value function.

According to our experiments, the Laplacian-based sparsification mechanism
leads to a lower approximation error than standard ALD for all maximum dictio-
nary sizes. The approximation accuracy even increases slightly when the dictionary
size is drastically reduced as opposed to ALD where having fewer dictionary points
raises the approximation error. This may be attributed to the better placement of
data-points into regions of the state-space where the target function changes more
rapidly.

Figure 4.b shows the evolution of the Bellman error from the same perspective. It
can be seen that the Laplacian-based sparsification mechanism with knn or ε − SIG
proximity graphs performs better at low dictionary sizes than ALD, the difference
becoming more obvious as the dictionary size is further decreased. Figure 5.a illus-
trates the evolution of the mean Bellman error as a function of the number of training
points used for the estimation of the approximation parameters w from section 4. We
calculated the dictionary beforehand based on a fixed training data set using each
of the three sparsification methods. When small number of training data is used, the
three dictionaries perform similarly. However when the training-data size increases
the dictionary obtained by ALD leads to unstable value estimates, whereas using the

Sparse Approximations to Value Functions in Reinforcement Learning 311

357 245 188 164 134 114 105 91 83 63 43

0.3

0.31

0.32

0.33

0.34

0.35

0.36

Nr. of dictionary points

m
ea

n
sq

ua
re

d
ab

so
lu

te
 e

rr
or

ALD
LAP
ε−SIG

356 241 186 156 130 113 103
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Nr. of dictionary points

m
ea

n
sq

ua
re

d
B

el
lm

an
 e

rr
or

ALD
LAP
ε−SIG

(a) (b)

Fig. 4 Evolution of the mean absolute error for different maximum dictionary sizes averaged
over 15 experiments, in case of standard ALD sparsification, and our Laplacian based sparsi-
fication with knn and ε −SIG proximity graphs. The horizontal axis represents the maximum
number of dictionary points, the vertical axis on figure (a) shows the mean squared absolute
error while on figure (b) the mean squared Bellman error. Measurement of the errors was
done on 3600 equally distributed points from the state space.

10
0

10
1

10
2

0.1

0.2

0.3

0.4

0.5

0.6

Nr. of roll−outs

M
ea

n
Be

llm
an

 E
rr

or

ALD
LAP
ε−SIG

357 245 188 164 134 114 105
2

3

4

5

6

7

8

9

10

11

12

Nr. of dictionary points

Di
ct

io
na

ry
 c

al
cu

la
tio

n
tim

e

ALD
LAP
ε−SIG

(a) (b)

Fig. 5 (a) Mean Bellman error as a function of training data set size. (b)Time required for
the computation of the dictionary from approximately 45000 data-points using ALD and
Laplacian-based sparsification with knn and ε −SIG proximity graphs.

dictionary obtained by the Laplacian-based sparsification we obtain more accurate
and stable values.

8.3 Swinging Atwood’s Machine

The swinging Atwood’s machine is composed of two weights connected by a rope
and two pulleys, the larger weight can be moved only in the vertical plane, while
the smaller weight can rotate freely around the second pulley. A schematic repre-
sentation of the system with a sample trajectory described by the smaller weight
can be seen on fig. 3(b). The goal of the control problem is to guide the ver-
tical force applied to the larger weight in such a manner that the small weight
moves roughly along a circle with a given radius. The state representation is four

312 H.S. Jakab and L. Csató

317 126 112 104 97 95 92 84 78 76

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Nr. of dictionary points

m
ea

n
sq

ua
re

d
B

el
lm

an
 e

rr
or

ALD
LAP
ε−SIG

317 126 112 104 97 95 92 84 78 76

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Nr. of dictionary points

m
ea

n
sq

ua
re

d
ab

so
lu

te
 e

rr
or

ALD
LAP
εSIG

(a) (b)

Fig. 6 Evolution of the mean squared bellman error (a) and the mean absolute error (b) as a
function of maximum dictionary size, for the swinging Atwood’s machine control problem.
The horizontal axis shows the maximum number of basis vectors allowed while the vertical
axis shows the error values. The uneven distribution of the numbers on the horizontal axis is
due to the fact that ALD does not put on upper limit on the dictionary size, it is determined by
the threshold parameter. Therefore the Laplacian and eSIG algorithms are adjusted to contain
the same number of dictionary points as resulted from ALD sparsification

dimensional, s
def
= [l, l̇,θ ,ω], where l is the length of the rope from the second pulley

to the smaller weight; l̇ is the rate of change in the rope’s length; θ is the angle of
the smaller weight; ω is the angular velocity. Our implementation of this system is
based on a simplified version of the dynamic equations from [14], where a detailed
description of the system and its unstable dynamics is also given.

Figure 8.3 illustrates the performance of the three sparsification algorithms (ALD,
Laplacian with knn (LAP) and Laplacian with extended sphere of influence graphs
(eSIG)) as a function of the maximum size of the dictionary. The two sub-figures
correspond to the mean squared absolute error and the mean squared Bellman error.
Similarly to the case of the car-on-hill control problem, when the maximum size
of the dictionary is reduced the two laplacian based sparsification mechanisms pro-
duce more accurate estimates both when measured according to the Bellman and
the absolute error. In case of the swinging Atwood’s machine the extended sphere
of influence graph construction produces the best results.

9 Conclusion

We have seen a number of proposed methods for reducing the computational costs
of kernel-based value function approximation. As a major contribution of this work
we presented a new method that exploits the spatio-temporal relationship between
training data-points and the shape of the target function to be approximated. Our
method can adjust the density of the dictionary set according to the characteristics
of the target function, leading to better approximation accuracy in value function
approximation and as a consequence faster convergence rates in value-based rein-
forcement learning algorithms.

Sparse Approximations to Value Functions in Reinforcement Learning 313

The computational complexity of the presented approximation framework is in-
fluenced by the nearest neighbor search in case of graph expansion and the search
for vertexes with minimal score in case of the sparsification mechanism. The cal-
culation of the individual scores of each graph vertex vi ∈ V has a computational
complexity of O(0) since the scores can be stored and updated on-line for each ver-
tex. Compared to the cost of approximate linear independence test our methods are
slower as it can be seen from 5(b), but not by orders of magnitude, the difference be-
comes significant only by large dictionary sizes. The better approximation accuracy
and faster convergence rates compensate for the higher computational requirements.

The use of proximity graphs for sparsification enables the extension of our meth-
ods with different distance-substitution kernels operating on graphs. An superficial
exploration of this subject can be found in [9]. Our method also opens up ways
to different exploration strategies like probabilistic road-maps or rapidly explor-
ing random trees and experience replay mechanisms aimed at reducing the number
of actual trials needed for learning. The use of proximity graphs for sparsification
enables the extension of our methods with different distance-substitution kernels
operating on graphs. A superficial exploration of this subject can be found in [9].
Our method also opens up ways to different exploration strategies like probabilis-
tic road-maps or rapidly exploring random trees and experience replay mechanisms
aimed at reducing the number of actual trials needed for learning.

The authors acknowledge the support of the Romanian Ministry of Education and
Research via grant PN-II-RU-TE-2011-3-0278.

References

1. Boyan, J.A.: Technical update: Least-squares temporal difference learning. Machine
Learning 49(2-3), 233–246 (2002)

2. Bradtke, S.J., Barto, A.G., Kaelbling, P.: Linear least-squares algorithms for temporal
difference learning. Machine Learning, 22–33 (1996)

3. Csató, L.: Gaussian Processes – Iterative Sparse Approximation. PhD thesis, Neural
Computing Research Group (March 2002)

4. Csató, L., Opper, M.: Sparse representation for Gaussian process models. In: Leen, T.K.,
Dietterich, T.G., Tresp, V. (eds.) NIPS, vol. 13, pp. 444–450. The MIT Press (2001)

5. Csató, L., Opper, M.: Sparse on-line Gaussian Processes. Neural Computation 14(3),
641–669 (2002)

6. Deisenroth, M.P., Rasmussen, C.E.: PILCO: A Model-Based and Data-Efficient Ap-
proach to Policy Search. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th Inter-
national Conference on Machine Learning, Bellevue, WA, USA (June 2011)

7. Deisenroth, M.P., Rasmussen, C.E., Peters, J.: Gaussian process dynamic programming.
Neurocomputing 72(7-9), 1508–1524 (2009)

8. Engel, Y., Mannor, S., Meir, R.: The kernel recursive least squares algorithm. IEEE
Transactions on Signal Processing 52, 2275–2285 (2003)

9. Jakab, H., Csató, L.: Manifold-based non-parametric learning of action-value functions.
In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks (ESANN),
Bruges, Belgium, pp. 579–585. UCL, KULeuven (2012)

10. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. J. Mach. Learn. Res. 4, 1107–
1149 (2003)

314 H.S. Jakab and L. Csató

11. Maei, H., Szepesvari, C., Bhatnagar, S., Precup, D., Silver, D., Sutton, R.: Conver-
gent temporal-difference learning with arbitrary smooth function approximation. In: Ad-
vances in Neural Information Processing Systems NIPS 22, pp. 1204–1212 (2009)

12. Mahadevan, S., Maggioni, M.: Value function approximation with diffusion wavelets and
laplacian eigenfunctions. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural
Information Processing Systems 18, pp. 843–850. MIT Press, Cambridge (2006)

13. McCullagh, P., Nelder, J.A.: Generalized Linear Models. Chapman & Hall, London
(1989)

14. Olivier, P., Perez, J.-P., Simó, C., Simon, S., Weil, J.-A.: Swinging atwood’s machine:
Experimental and numerical results, and a theoretical study. Physica D 239, 1067–1081
(2010)

15. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York (1994)

16. Riedmiller, M.: Neural fitted q iteration: first experiences with a data efficient neural
reinforcement learning method. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M.,
Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 317–328. Springer, Heidel-
berg (2005)

17. Ruggeri, M.R., Saupe, D.: Isometry-invariant matching of point set surfaces. In: Euro-
graphics Workshop on 3D Object Retrieval (2008)

18. Schölkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge (2002)
19. Seeger, M.W., Kakade, S.M., Foster, D.P.: Information consistency of nonparametric

gaussian process methods
20. Sugiyama, M., Hachiya, H., Kashima, H., Morimura, T.: Least absolute policy iteration

for robust value function approximation. In: Proceedings of the 2009 IEEE International
Conference on Robotics and Automation, ICRA 2009, Piscataway, NJ, USA, pp. 699–
704. IEEE Press (2009)

21. Sugiyama, M., Kawanabe, M.: Machine Learning in Non-Stationary Environments: In-
troduction to Covariate Shift Adaptation (2012)

22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)
23. Szepesvári, C.: Algorithms for Reinforcement Learning. Morgan & Claypool Publishers

(2011)
24. Taylor, G., Parr, R.: Kernelized value function approximation for reinforcement learn-

ing. In: Proceedings of the 26th Annual International Conference on Machine Learning,
ICML 2009, New York, NY, USA, pp. 1017–1024. ACM (2009)

25. Vapnik, V.N.: Statistical learning theory. John Wiley (1997)
26. Vollbrecht, H.: Hierarchic function approximation in kd-q-learning. In: Proc. Fourth

Int. Knowledge-Based Intelligent Engineering Systems and Allied Technologies Conf.,
vol. 2, pp. 466–469 (2000)

27. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4) (2007)
28. Xu, X., Hu, D., Lu, X.: Kernel-based least squares policy iteration for reinforcement

learning. IEEE Transactions on Neural Networks, 973–992 (2007)
29. Xu, X., Xie, T., Hu, D., Lu, X.: Kernel least-squares temporal difference learning. Inter-

national Journal of Information Technology, 55–63 (2005)

Neural Networks Solution of Optimal Control
Problems with Discrete Time Delays and
Time-Dependent Learning of Infinitesimal
Dynamic System

Tibor Kmet and Maria Kmetova

Abstract. The paper presented describes two possible applications of artificial neu-
ral networks. The first application is related to solve optimal control problems with
discrete time delays in state and control variables subject to control and state con-
straints. The optimal control problem is transcribed into nonlinear programming
problem which is implemented with feed forward adaptive critic neural network to
find optimal control and optimal trajectory. The proposed simulation methods are
illustrated by the optimal control problem of nitrogen transformation cycle model
with discrete time delay of nutrient uptake. The second application deals with back-
propagation learning of infinite-dimensional dynamical systems. The proposed sim-
ulation methods are illustrated by the back-propagation learning of continuous mul-
tilayer Hopfield neural network with discrete time delay using optimal trajectory
as teacher signal. Results show that adaptive critic based systematic approach are
promising in obtaining the optimal control with discrete time delays in state and con-
trol variables subject to control and state constraints and that continuous Hopfield
neural networks are able to approximate signals generated from optimal trajectory.

1 Introduction

The essence of this paper, which elucidates and clarifies on our previous work [14],
is to use neural networks methods for studying non-linear complex systems. We

Tibor Kmet
Constantine the Philosopher University, Department of Informatics,
Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
e-mail: tkmet@ukf.sk

Maria Kmetova
Constantine the Philosopher University, Department of Mathematics,
Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
e-mail: mkmetova@ukf.sk

c© Springer International Publishing Switzerland 2015 315
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_15

316 T. Kmet and M. Kmetova

examine in depth the simulation process of nitrogen transformation cycle thought a
dynamical model based on adaptive critic designs and feed forward neural networks.
It is assumed that the phytoplankton production must be simultaneously optimized
both locally as well as globally. For this strategy we use methods from control of
nonlinear systems with discrete time delays to obtain optimal trajectory. In addition
we examine the approximation of the optimal trajectory. In this simulation we make
use of Hopfield neural network with discrete time delays.

It is well known that the ability of artificial neural networks to approximate arbi-
trary nonlinear functions plays a primary role in the use of such networks as com-
ponent or subsystems in identifiers and controllers [25]. Besides, it has been used
for universal function approximation to solve optimal control problems forward in
time to approximate co-state variable. Co-state variables play important role also
in back-propagation learning of infinite-dimensional dynamical systems [24] in the
case of time-dependent recurrent learning. The paper presented describes two pos-
sible applications of artificial neural networks. The first application is related to
solve optimal control problems with discrete time delays in state and control vari-
ables subject to a control and state constraints. The second application is concerned
to back-propagation learning of infinite-dimensional dynamical systems. Optimal
control of nonlinear systems with discrete time delays in state and control variables
is one of the most active subjects in control theory. There are rarely analytical so-
lutions [7] although several numerical computation approaches have been proposed
e.g. see [9], [11], [18], [23]. The most of the literature dealing with numerical meth-
ods for the solution of general optimal control problems focuses on algorithms for
solving discretized problems. The basic idea of these methods is to apply nonlinear
programming techniques to the resulting finite dimensional optimization problem
[3], [9]. Then neural networks are used as universal function approximation to solve
finite dimensional optimization problems forward in time with ”adaptive critic de-
signs” [16], [17], [25]. For the neural network, a feed forward neural network with
one hidden layer, a steepest descent error back-propagation rule, a hyperbolic tan-
gent sigmoid transfer function and a linear transfer function were used.

The paper presented extends adaptive critic neural network architecture proposed
by [13] to the optimal control problems with discrete time delays in state and control
variables subject to control and state constraints. This paper is organized as follows.
In Section 2, optimal control problems with delays in state and control variables
subject to control and state constraints are introduced. We summarize the necessary
optimality conditions, give a short overview of the basic results including the itera-
tive numerical methods. In Section 3, we discuss the discretization methods for the
given optimal control problem and formulate the resulting nonlinear programming
problems. Section 4 presents a short description of adaptive critic neural network
synthesis for the optimal control problem with delays in state and control variables
subject to control and state constraints. We also present a new algorithm to solve op-
timal control problems. In Section 5 we present a description of back-propagation
learning of infinite-dimensional dynamical systems and propose a new algorithm
to calculate gradient of cost function. In Section 6, we present a description of the
model of nitrogen transformation cycle with discrete time delay in nutrients uptake.

Adaptive Critic Neural Network and Delay Optimal Control Problems 317

We apply the new proposed methods to the model presented to compare short-term
and long-term strategies of nutrients uptake by phytoplankton. Numerical results are
also given. Conclusions are being presented in Section 7.

2 The Optimal Control Problem

We consider the nonlinear control problem with delays in state and control variables
subject to control and state constraints. Let x(t) ∈ Rn and u(t) ∈ Rm denote the state
and control variable, respectively in a given time interval [t0, t f]. The optimal control
problem is to minimize

J(u) = g(x(t f))+
∫ t f

t0
f0(x(t),x(t − τx),u(t),u(t − τu))dt (1)

subject to

ẋ(t) = f (x(t),x(t − τx),u(t),u(t − τu)),

x(t) = φs(t), u(t) = φc(t), t ∈ [t0 − τu, t0],

ψ(x(t f)) = 0, c(x(t),u(t))≤ 0, t ∈ [t0, t f],

where τx ≥ 0 and τu ≥ 0 are discrete time delay in the state and control variable,
respectively. The functions g : Rn → R, f0 : Rn+m → R, f : Rn+m → Rn, c :
Rn+m →Rq and ψ : Rn+m →Rr, 0≤ r ≤ n are assumed to be sufficiently smooth on
appropriate open sets and the initial conditions φs(t), φc(t) are continuous functions.
The theory of necessary conditions for the optimal control problem of form (1) is
well developed, see e.g. [9], [11], [19]. We introduce an additional state variable

x0(t) =
∫ t

0
f0(x(s),x(s− τx),u(s),u(s− τu)ds

defined by the

ẋ0(t) = f0(x(t),x(t − τx),u(t),u(t − τu), x0(t) = 0, t ∈ [t0 − τx, t0].

Then the augmented Hamiltonian function for problem (1) is

H (x,xτx ,u,uτu ,λ ,μ) =
n

∑
j=0

λ j f j(x,xτx ,u,uτu)+
q

∑
j=0

μ jc j(x,u),

where λ ∈ Rn+1 is the adjoint variable and μ ∈ Rq is a multiplier associated to the in-
equality constraints. Assume that τx, τu ≥ 0, (τx,τu) �= (0,0) and τx

τu
∈Q for τu > 0

or τu
τx

∈ Q for τx > 0. Let (x̂, û) be an optimal solution for (1.) Then the necessary
optimality condition for (1) implies [9] that there exist a piecewise continuous and
piecewise continuously differentiable adjoint function λ : [t0, t f]→ Rn+1, a piece-

318 T. Kmet and M. Kmetova

wise continuous multiplier function μ : [t0, t f] → Rq, μ̂(t) ≥ 0 and a multiplier
σ ∈ Rr satisfying

λ̇ j(t) = −∂H

∂x j
(x̂(t), x̂(t − τx), û(t), û(t − τu),λ (t),μ(t))− (2)

χ[t0,t f −τx]
∂H

∂xτx j
(x̂(t + τx), x̂(t), û(t + τx), û(t − τu + τx),λ (t + τx),μ(t + τx)),

λ j(t f) = gxj (x̂(t f))+σψx j (x̂(t f)), j = 0, . . . ,n, (3)

0 = −∂H

∂u j
(x̂(t), x̂(t − τx), û(t), û(t − τu),λ (t),μ(t))− (4)

χ[t0,t f −τu]
∂H

∂uτu j
(x̂(t + τu), x̂(t − τx + τu), û(t + τu), û(t),λ (t + τu),μ(t + τu)),

j = 1, . . . ,m.

Furthermore, the complementary conditions hold, i.e. in t ∈ [t0, t f], μ(t) ≥ 0,
c(x(t),u(t)) ≤ 0 and μ(t)c(x(t),u(t)) = 0. Herein, the subscript x, xτx , u and uτu

denotes the partial derivative with respect to x, xτx , u and uτu , respectively.
For the free terminal time t f , an additional condition needs to be satisfied:

H (t f) =

(
n

∑
j=0

λ j f j(x,u)+
q

∑
j=0

μ jc j(x,u)

)
|t f = 0. (5)

and define H (i) and φ as follows [2]:

H (i) = λ (i+ 1)(xi+ h f (xi,xi−k,ui,ui−l),

φ = G +σψ .

3 Discretization of the Optimal Control Problem

The direct optimization methods for solving the optimal control problem are based
on a suitable discretization of (1), see e.g. [3], [9]. We assume that τu = l τx

k with
l,k ∈ N. Defining hmax =

τx
k gives the maximum interval length for an elementary

transformation interval that satisfies τx
hmax

= k ∈ N and τu
hmax

= l ∈ N. The minimum

grid point number for an equidistant discretization mesh Nmin =
t f −t0
hmax

. Choose a
natural number K ∈ N and set N = KNmin. Let ti ∈ 〈t0, t f 〉, i = 0, . . . ,N, be an
equidistant mesh point with ti = t0 + ih, i = 0, . . . ,N, where h = b−a

N is a time step
and t f = Nh+ t0. Let the vectors xi ∈ Rn+1, ui ∈ Rm, i = 0, . . . ,N, be an approx-
imation of the state variable and control variable x(ti), u(ti), respectively at the
mesh point ti. Euler’s approximation applied to the differential equations yields
xi+1 = xi + h f (xi,xi−k,ui,ui−l), i = 0, . . . ,N − 1. Choosing the optimal variable
z := (x0,x1, . . . ,xN−1,u0, . . . ,uN−1) ∈ RNs , Ns = (n + m)N, the optimal control

Adaptive Critic Neural Network and Delay Optimal Control Problems 319

problem is replaced by the following discretized control problem in the form of
nonlinear programming problem with inequality constraints: Minimize

J(z) = G(xN) = g((x1, . . . ,xn)
N)+ xN

0 (6)

subject to

xi+1 = xi + h f (xi,xi−k,ui,ui−l), i = 0, . . . ,N − 1, (7)

x−i = φx(t0 − ih), i = k, . . . ,0, u−i = φu(t0 − ih), i = l, . . . ,0,

ψ(xN) = 0, c(xi,ui)≤ 0, i = 0, . . . ,N − 1.

In a discrete-time formulation we want to find an admissible control which mini-
mizes objective function (6). Let us introduce the Lagrangian function for the non-
linear optimization problem (6):

L (z,λ ,σ ,μ) =
N−1

∑
i=0

λ i+1(−xi+1 + xi + h f (xi,xi−k,ui,ui−l))+G(xN)+

N−1

∑
i=0

μ ic(xi,ui)+σψ(xN).

The first order optimality conditions of Karush-Kuhn-Tucker [18] for the problem
(6) are:

0 = Lxi(z,λ ,σ ,μ) = λ i+1 −λ i + hλ i+1 fxi(xi,xi−k,ui,ui−l)+ (8)

hλ i+k+1 fxi
τx
(xi+k,xi,ui+k,ui−l+k)+ μ icxi(xi,ui),

i = 0, . . . ,N − k− 1,

0 = Lxi(z,λ ,σ ,μ) = λ i+1 −λ i + hλ i+1 fxi(xi,xi−k,ui,ui−l)+ μ icxi(xi,ui),

i = N − k, . . . ,N − 1,

0 = LxN (z,λ ,σ ,μ) = GxN (xN)+σψxN (xN)−λ N , (9)

0 = Lui(z,λ ,σ ,μ) = hλ i+1 fui(xi,xi−k,ui,ui−l)+

hλ i+l+1 fui
τu
(xi+l ,xi−k+l ,ui+l ,ui)+ μ icui(xi,ui),

i = 0, . . . ,N − l− 1, (10)

0 = Lui(z,λ ,σ ,μ) = hλ i+1 fui(xi,xi−k,ui,ui−l)+ μ icui(xi,ui),

i = N − l, . . . ,N − 1,

0 = Lh(s,λ ,μ ,h) = φh +
N−1

∑
i=0

Hh(i)+
N−1

∑
i=0

μ ich(x
i,ui). (11)

Eqs. (8)− (11) represent the discrete version of the necessary condition (2) - (4)
for optimal control problem (1).

320 T. Kmet and M. Kmetova

x1

Input Layer Hidden Layer Output Layer

x2

x3

xn

y1

wjk

wj0

vki

vk0

y2

y3

ym

x =10

z =10

z Σ1 1 1=f v +vi 0xi()
i=1

n

z Σ2 i 20=f v +v2 xi()
i=1

n

zr i r0Σ=f v +vr xi()
i=1

n

y z wΣ w1 1 1=g +k 0k()
k=1

r

y z wΣ w2 k 20=g +2 k()
k=1

r

y w z wΣ3 30=g +3k k()
k=1

r

.

.

.

.

.

.

.

.

.

.

.

.

y z wΣ wm mk m0= +g k()
k=1

r

.

.

.

Fig. 1 Feed forward neural network topology with one hidden layer, vki, w jk are values of
connection weights, vk0, w j0 are values of bias, f(.), g(.) are activation functions

4 Adaptive Critic Neural Network for an Optimal Control
Problem with Control and State Constraints

It is well known that a neural network can be used to approximate the smooth time-
invariant functions and the uniformly time-varying functions [6], [21]. Experience
has shown that optimization of functional over admissible sets of functions made
up of linear combinations of relatively few basis functions with a simple structure
and depending nonlinearly on a set of ”inner” parameters e.g., feed-forward neu-
ral networks with one hidden layer and linear output activation units often provides
surprisingly good suboptimal solutions [1], [8], [15]. Fig. 1 shows a feed forward
neural networks with n inputs node, one hidden layer of r units and m output units.
Let x = [x1, . . . ,xn]

′ and y = [y1, . . . ,ym]
′ be the input and output vectors of the net-

work, respectively. Let V = [v1, . . . ,vr]
′ be the matrix of synaptic weights between

the input nodes and the hidden units, where vk = [vk0,vk1 . . . ,vkn]; vk0 is the bias of
the kth hidden unit, and vki is the weight that connects the ith input node to the kth
hidden unit.

Let also W = [w1, . . . ,wm]
′ be the matrix of synaptic weights between the hidden

and output units, where wj = [wj0,wj1 . . . ,wjr]; wj0 is the bias of the jth output
unit, and wjk is the weight that connects the kth hidden unit to the jth output unit.
The response of the kth hidden unit is given by zk = tanh(∑n

i=0 vkixi) , k = 1, . . . ,r,
where tanh(.) is the activation function for the hidden units. The response of the
jth output unit is given by y j = ∑r

k=0 wjkzk, j = 1, . . . ,m. The multiple layers of
neurons with nonlinear transfer functions allow the network to learn nonlinear and
linear relationships between the input and output vectors. The number of neurons in
the input and output layers is given by the number of input and output variables, re-
spectively. The multi-layered feed forward networks shown in Fig. 2 is trained using
the backpropagation algorithm with supervised learning. Basically, it is a gradient
descent, a parallel distributed optimization technique to minimize the error between
the network and the target output [20] (least mean squared (LMS) algorithm). To

Adaptive Critic Neural Network and Delay Optimal Control Problems 321

Action

Action

State Eq.
()6

State Eq.
()6

Costate Eq.
()7

Optimal Control
Eq. ()9

Critic

Critic

Critic

u ,
i,a

μ
i,a

u ,
i,t

u ,
i+j,a

x
i+j

x
i

x
i+j+1

j=0

μ
i,t

λ
i+l+

,
1,c l,a

x , u
i+l i+

μ
i+j,a

x
i+1

ε
c

ε
a

λ
i+1,c

λ
i+j+1,c

u
i
, λ

i
μ

i
,

λ
i,c

λ
i,t λ

i+k+1
, x

,c k,ai+ i+k
, u , μ

i,a

j=j+1while j<max(l,k)-

Signal line

Back-propagating Path

Fig. 2 Architecture of adaptive critic feed forward network synthesis, xi-input signal to the
action and critic network, ûi,a, μ̂ i,a and λ̂ i,c are output signal from action and critic network,
respectively and ûi,t , μ̂ i,t and λ̂ i,t are solutions of equation (10) and co-state equation (8),
respectively

solve the equations (10) we are concerned with the following nonlinear projection
equation (for detail description see [26]):

αF (PX (y))+ y−PX(y) = 0, (12)

where α > 0 is a constant, F : Rl → Rl , X = {y ∈ Rl | yimin ≤ yi ≤ yimax} and
PX : Rl → X is a projection operator defined by PX (y) = (PX (y1), . . . ,PX (yl))

PX(yi) =

⎧⎨
⎩

yimin : yi < yimin

yi : yimax ≤ yi ≤ yimax

yimax : yi > yimax,

which can be solved by the following dynamic model

ẏ(t) = −β (αF (PX (y))+ y−PX(y)). (13)

Note that yimin and yimax are lower and upper limits of yi, i = 1, . . . , l. Asymptotic
and exponential stability of the present recurrent neural network (13) are proven
in [26]. The equilibrium points of (13) coincide with the solutions of (12). We can
state the algorithm to solve the optimal control problem using the adaptive critic
and recurrent neural network. In the Pontryagin’s maximum principle for deriving
an optimal control law, the interdependence of the state, co-state and control dy-
namics is made clear. Indeed, the optimal control û and multiplier μ̂ is given by

322 T. Kmet and M. Kmetova

Eq. (10), while the co-state Eqs. (8) - (9) evolves backward in time and depends on
the state and control. The adaptive critic design based on neural networks [17] is
shown in Fig. 2. It consists of two networks at each node: an action network, the
inputs for which are the current states and its outputs are the corresponding control
û and multiplier μ̂ , and the critic network for which the current states are inputs and
current co-states are outputs for normalizing the inputs and targets (zero mean and
standard deviations). For detail explanation see [20]. Based on Fig. 2 the adaptive
critic design based on neural networks procedure of the optimal control problem is
summarized in Algorithm 1. In the adaptive critic synthesis, the action and critic
network were selected such that they consist of n+m subnetworks, respectively,
each having n− 3n− 1 structure (i.e. n neurons in the input layer, 3n neurons in
the hidden layer and one neuron in the output layer). The training procedure for the
action and critic networks, respectively are given by [17]. From the free terminal
condition (ψ(x)≡ 0) from Eqs. (8) - (9) we obtain that λ i

0 =−1, i = N, . . . ,0 and
λ N

j = 0, j = 1, . . . ,N. We use this observation before proceeding to the actual train-

Algorithm 1. Algorithm to solve the optimal control problem.
Input: Choose t0, t f , N - number of steps, time step h, α > 0, β > 0, εa, εc and εrnn -

stopping tolerance for action, critic and recurrent neural network, respectively,
x−i = φs(t0 − ih), i = k, . . . ,0, u−i = φc(t0 − ih), i = l, . . . ,0 -initial values.

Output: Set of final approximate optimal control û(t0 + ih) = ûi and optimal trajectory
x̂(t0 +(i+1)h) = x̂i+1, i = 0, . . . ,N −1, respectively

1 Set the initial weight W a = (V a,W a), W c = (V c,W c)
for i ← 0 to N −1 do

2 while erra ≥ εa and errc ≥ εc do
3 for j ← 0 to max(k, l) do
4 Compute ui+ j,a, μ i+ j,a and λ i+ j+1,c using action (W a) and critic (W c)

neural networks, respectively and xi+ j+1 by Eq. (7)

5 Compute λ i,t , ui,t , and μ i,t using Eqs. (8), (10) and (13) with
X = {(ui,μ i) ∈ Rm+q|μ i ≥ 0},
F (ui,μ i) = (Lui(z,λ ,σ ,μ),−c(xi,ui)) and stopping tolerance εrnn.

6 if i = N −1 then
7 X = {(uN−1,μN−1,σ) ∈ Rm+q+r|μN−1 ≥ 0,},

F (uN−1,μN−1,σ) = (LuN−1(z,λ ,σ ,μ),−c(xN−1,uN−1),−ψ(xN)) with
λ N = GxN (xN)+σψxN (xN)

8 errc =‖ λ i,t −λ i,c ‖
9 erra =‖ (u,μ)i,t − (u,μ)i,a ‖

10 With the data set xi, λ i,t update the weight parameters W c

11 With the data set xi, (u,μ)i,t update the weight parameters W a

12 Set λ i,c = λ i,t , (u,μ)i,a = (u,μ)i,t

13 Set λ̂ i = λ i,t , (ûi, μ̂ i) = (u,μ)i,t

14 Compute x̂i+1 using Eq. (7) and ûi

15 return λ̂ i, ûi, μ̂ i, x̂i+1

Adaptive Critic Neural Network and Delay Optimal Control Problems 323

ing of the adaptive critic neural network. Further discussion and detail explanation
of these adaptive critic methods can be found in [13], [16], [17] and [20].

5 Discrete Time Delay Continuous Hopfield Neural Network
Learning

Hopfield neural nets are fully conected which extended the ideas of linear associa-
tive memories by adding cyclic connections [4]. In 1984, Hopfield [5] showed how
an analog electrical circuit could behave as a small network of neurons with graded
response. He derived a Lyapunov function for the network to check for stability and
used it as a content-addressable memory. The differential equations derived by Hop-
field for the electrical circuit using Kirchhoffs laws could be reduced to the system
of differential equations. We can use a continuous Hopfield net to model a dynam-
ical systems that carries out its computations by the change of its states with time
delays. Let us consider a supervised learning to teach discrete time delay dynamic
to the discrete time delay continuous Hopfield neural network. In the learning of
nonlinear dynamics, the following form of multilayer continuous Hopfield neural
network with discrete time delay we utilize:

ẋ(t) = F(x(t),x(t − τ),W)

= −Ax(t)+Wo f (Whx(t)+Whdx(t − τ)), (14)

where x = (x1, . . . ,xn), f = (f1, . . . , fn), A is diagonal matrix, Wo is a weight matrix
between hidden and output layer, Wh,Whd are weight matrix between input and hid-
den layer and W = (A,Wh,Whd,Wo). Function f is tanh(.) activation function. For
a given continuous initial condition φ(t), t ∈ 〈−τ,0〉 there exists unique solution
x(t) satisfying Eq. (14) for t ∈ 〈0,T 〉. The aim is to find the weight parameters W
that give rise to a solution x(t) approximately following a teacher signal p(t), where
p(t) is a solution of the following delay differential equation:

ṗ(t) = G(x(t),x(t − τ)). (15)

First, the cost function is defined for the weight parameters W as

E(W) =

∫ T

0

1
2

n

∑
i=1

(xi(t)− pi(t))
2dt. (16)

Then, the cost function (16) is minimized by the steepest descent method

wj+1 = wj −η
∂E
∂w

(W j), (17)

where w∈W.To compute gradient of function (16) we use time-dependent recurrent
learning (TDRL) [24]. In the TDRL algorithm the gradients are computed by using

324 T. Kmet and M. Kmetova

the Lagrange multipliers λ (t) = (λ1(t), . . . ,λn(t)). For detail explanation see [24].
We can rewrite the cost function E(W) as

L(W) =

∫ T

0

1
2

n

∑
i=1

(
(xi(t)− pi(t))

2 −λi(t)(ẋi(t)−Fi(x(t),x(t − τ),W))
)

dt.

(18)

Partial derivatives with respect to weight coefficients w ∈W are calculated as

∂L
∂w

=
∫ T

0

n

∑
i=1

[(xi(t)− pi(t))
∂xi(t)

∂w
−λi(t)

˙∂xi(t)
∂w

+λi(t)
Fi(x(t),x(t − τ),W)

∂w

+λi(t)
n

∑
j=1

Fi(x(t),x(t − τ),W)

∂x j(t)

∂x j(t)

∂w
+λi(t)

n

∑
j=1

Fi(x(t),x(t − τ),W)

∂x j(t − τ)
∂x j(t − τ)

∂w

−λi(t)
∂w

(ẋi(t)−Fi(x(t),x(t − τ),W))]dt (19)

If x(t) is a solution of Eq. (14), then the final term of Eq. (19) vanishes. Since
∂x(t)
∂w = 0 for t ∈ 〈−τ,0〉 the fourth term of (19) can be written by the transformation

s = t − τ as

∫ T

0

n

∑
i=1

λi(t)
n

∑
j=1

Fi(x(t),x(t − τ),W)

∂x j(t − τ)
∂x j(t − τ)

∂w
dt =

∫ T−τ

−τ

n

∑
i=1

λi(t + τ)
n

∑
j=1

Fi(x(t + τ),x(t),W)

∂x j(t)

∂x j(t)

∂w
ds =

∫ T

0

n

∑
i=1

λi(t + τ)
n

∑
j=1

Fi(x(t + τ),x(t),W)

∂x j(t)

∂x j(t)

∂w
χ〈0,T−τ〉ds.

The derivatives ∂L
∂w become

∂L
∂w

=

∫ T

0

n

∑
i=1

[(xi(t)− pi(t))
∂xi(t)

∂w
−λi(t)

˙∂xi(t)
∂w

+λi(t)
Fi(x(t),x(t − τ),W)

∂w

+λi(t)
n

∑
j=1

Fi(x(t),x(t − τ),W)

∂x j(t)

∂x j(t)

∂w
(20)

+λi(t + τ)
n

∑
j=1

Fi(x(t + τ),x(t),W)

∂x j(t)
∂x j(t)

∂w
χ〈0,T−τ〉dt.

Lagrange multipliers are solutions of the following discrete time delay differen-
tial equations with terminal condition λ (T) = 0.

− λ̇i(t) =
n

∑
j=1

λ j(t)
Fj(x(t),x(t − τ),W)

∂xi(t)
(21)

Adaptive Critic Neural Network and Delay Optimal Control Problems 325

+
n

∑
j=1

λ j(t + τ)
Fj(x(t + τ),x(t),W)

∂xi(t)
χ〈0,T−τ〉+(xi(t)− pi(t)).

Since Lagrange multipliers λ (t) satisfy Eq. (21) with terminal condition λ (T) =
0 and ∂x(t)

∂w = 0, the first, the second, the third and the fourth terms of Eq. (20) vanish.
We can state the following algorithm for time dependent recurrent learning.

Algorithm 2. Time dependent recurrent learning algorithm to determine weight
matrix of time delay continuous Hopfield neural network.

Input: Choose T, τ, xT (t) - teacher signal, maxit, εE , - stopping tolerance,
φ(t), t ∈ 〈−τ,0〉, -initial condition.

Output: Weight matrix W= (A,Wo,Wh,Wdh);
1 Set the initial weight W= (A,Wo,Wh,Wdh), i = 0

while errE ≥ εE and i ≤ maxit do
2 Compute solution x(t) of Eq. (14) on the interval 〈0,T 〉 with initial condition

φ(t), t ∈ 〈−τ,0〉,
3 Compute solution λ (t) of Eq. (19) on the interval 〈T,0〉 with terminal condition

λ (T) = 0
4 Compute E(W) by Eq. (15)

5 Compute ∂ L
∂W =

∫ T
0 ∑n

i=1 λi(t)
Fi(x(t),x(t−τ),W)

∂W by Eq. (22)

6 Compute α∗ = min g(α) = E
(

W i −α ∂ J(Wi)
∂W

)
7 Set W i+1 =W i −α∗ ∂ L(W i)

∂W
8 Compute E(W i+1) by Eq. (15)
9 Set errE = abs(E(W i+1 −E(W i))

10 return W
i+1 = (W i+1

o ,W i+1
h ,W i+1

dh)

The partial derivatives ∂L
∂w can be calculated by the following form:

∂L
∂aii

=

∫ T

0
xi(t)λi(t)dt,

∂L
∂wo

i j
=

∫ T

0
λi(t) f j(t)dt

∂L
∂wh

i j

=

∫ T

0

n

∑
k=1

λk(t)w
o
ki f ′i (t)x j(t)dt, (22)

∂L
∂whd

i j

=

∫ T

0

n

∑
k=1

λk(t)w
o
ki f ′i (t)x j(t − τ)dt,

where f j(t) = tanh
(

∑n
k=1(w

h
jkxk(t)+whd

jk xk(t − τ))
)
.

326 T. Kmet and M. Kmetova

6 Nitrogen Transformation Cycle

The aerobic transformation of nitrogen compounds [12] includes: Specific groups of
microorganisms participate in transformation of nitrogen compounds. Heterotrophic
bacteria (x1) assimilate and decompose the soluble organic nitrogen compounds
DON (x6) derived from detritus (x5). Ammonium (x7), one of the final decom-
position products undergoes a biological transformation into nitrate (x9). This is
carried out by aerobic chemoautotrophic bacteria in two stages: ammonia is first
oxidized by nitrifying bacteria from the genus Nitrosomonas (x2) into nitrites
(x8) that serve as an energy source for nitrating bacteria mainly from the genus
Nitrobacter (x3). The resulting nitrates may be assimilated together with ammo-
nia and soluble organic forms of nitrogen by the phytoplankton (x4), whereby the
aerobic transformation cycle of nitrogen compounds is formed. The individual vari-
ables x1, . . . ,x9 represent nitrogen concentrations contained in the organic as well
as in inorganic substances and living organisms presented in a model. The follow-
ing system of ordinary differential equations is proposed as a model for the nitrogen
transformation cycle:

ẋi(t) = xi(t)Ui(x(t))− xi(t)Ei(x(t))− xi(t)Mi(x(t))), i = 1,2,3,

ẋ4(t) = x4(t − τ)(U4(x(t − τ))−Ei(x(t − τ))−Mi(x(t − τ))),

ẋ5(t) =
4

∑
i=1

xiMi(x)−K5x5(t),

ẋ6(t) = K5x5(t)− x1(t)U1(x(t))+ x4(t)E4(x(t))− x4(t)P6(x(t)),

ẋ7(t) = x1(t)E1(x(t))− x2(t)U2(x(t))− x4(t)P7(x(t)), (23)

ẋ8(t) = x2(t)E2(x(t))− x3(t)U3(x(t)),

ẋ9(t) = x3(t)E3(x(t))− x4(t)P9(x(t)),

where xi(t) are the concentration of the recycling matter in microorganisms, the
available nutrients and detritus, respectively. The constant τ stands for the discrete
time delay in uptake of nutrients by phytoplankton. Functions occurring in the
model are given in Table 1 in ecological and mathematical notation, respectively.
Three variables u = (u(1),u(2),u(3)) express the preference coefficients for update
of x6, x7, x9. It can be expected that the phytoplankton will employ control mecha-
nisms in such a way as to maximize its biomass over a given period t f of time:

J(u) =
∫ t f

0
x4(t)dt → max (24)

under the constraint

C(x,u) := b1U4(x,u)+ b2P6(x,u)+ b3P9(x,u)+ b4E4(x,u)≤W (I), (25)

ui ∈ [0,uimax] f or i = 1,2,3.

Adaptive Critic Neural Network and Delay Optimal Control Problems 327

Table 1 Description of functions occurring in the model

Ui(x) = Kixi+5
1+gixi+5

, i = 1,2,3
p = u1x6 +u2x7 +u3x9

U4(x) = K4 p
1+g4 p Ui - uptake rate

Li(x) = a2i−1Ui(x)
1+a2iUi(x)

+1− a2i−1
a2i

Li - excretion activity

Mi(x) = g2i+3 +g2i+4Li(x) Mi - mortality rate
Ei(x) = Ui(x)Li(x), i = 1, . . . ,4 Ei - excretion rate
Pi(x) = K4uixi

1+g4 p , i = 6,7,9 Pi - uptake rate.

The last inequality expresses the fact that amount of energy used for ”living ex-
penses” (synthesis, reduction and excretion of nutrients) by phytoplankton cannot
exceed a certain value W (I) which depends on light intensity I (for detail explana-
tion see [12]). We are led to the following optimal control problems:
(1) instantaneous maximal biomass production with respect to u:

ẋ4 = x4(U4(x,u)−E4(x,u)−M4(x,u))→ max (26)

under the constraint C(x,u)≤W (I), for all t ∈ [t0, t f] and ui ∈ [0,uimax], i=1,2,3 (To
maximize (26) is equivalent to find the maximum of the function

p(u) = u1x6 + u2x7 + u3x9

under the constraint C(x,u)≤W (I), ui ∈ [0,uimax] for i=1,2,3.),

(2) global maximal biomass production with respect to u:

J(u) =
∫ t f

t0
x4(t)dt → max

(27)

under the constraintC(x,u)≤W(I), for all t ∈ [t0, t f] and ui ∈ [uimin,uimax] for i=1,2,3.
We introduce an additional state variable

x0(t) =
∫ t

0
x4(s)ds. (28)

We are led to the following optimal control problem: Maximize

x0(t f) (29)

under the constraints

c1(x,u) = C(x,u)−W(I),≤ 0

328 T. Kmet and M. Kmetova

ci+1(x,u) = uimin − ui ≤ 0,

ci+4(x,u) = ui − uimax ≤ 0, i = 1,2,3.

Discretization of Eqs. (23) and (24) using Eqs. (8)−(9) and (6) leads to minimize

−xN
0

subject to

xi+1 = xi + hF(xi−k,xi,ui,ui−l), i = 0, . . . ,N − 1,

λ i = λ i+1 + hλ i+1Fxi(xi−k,xi,ui,ui−l)+

hλ i+k+1Fxi
τx
(xi+k,xi,ui+k,ui−l+k)+ μ icxi(xi,ui), (30)

λ i
0 = −1, i = 0, . . . ,N − 1,

λ N = (−1,0,0,0,0,0,0,0,0,0), (31)

0 = hλ i+1Fui(xi−k,xi,ui,ui−l)+

hλ i+l+1Fui
τu
(xi+l ,xi−k+l ,ui+l ,ui)+ μ icui(xi,ui),

where the vector function F(x,u) = (−x4,F1(x,u), . . . ,F9(x,u)) is given by Eq. (24)
and by right-hand side of Eq. (23).

6.1 Numerical Simulation

The solution of optimal control problem (29) with state and control constraints us-
ing adaptive critic neural network and NLP methods are displayed in Fig. 3. In the
adaptive critic synthesis, the critic and action network were selected such that they
consist of nine and four subnetworks, respectively, each having 9-27-1 structure (i.e.
nine neurons in the input layer, twenty seven neurons in the hidden layer and one

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Time

S
ho

rt
 T

er
m

 O
pt

im
al

 C
on

tr
ol

 u
(t

)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Time

O
pt

im
al

 C
on

tr
ol

 u
(t

)

u
2
(t)

u
2
(t)

u
1
(t)

u
1
(t)

u
3
(t)

u
3
(t)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Time

S
ho

rt
 T

er
m

 O
pt

im
al

 C
on

tr
ol

 u
(t

)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Time

O
pt

im
al

 C
on

tr
ol

 u
(t

)

u
3
(t)

u
1
(t)

u
2
(t)

u
1
(t)

u
2
(t)

u
3
(t)

Fig. 3 Adaptive critic neural network simulation of optimal control û(t) and ū(t) with initial
condition ψs(t) = (0.1,0.1,0.2,0.8,0.4,0.5,0.6,0.7, .1) for t ∈ [−1,0]

Adaptive Critic Neural Network and Delay Optimal Control Problems 329

neuron in the output layer). The proposed neural network is able to meet the conver-
gence tolerance values that we choose, which led to satisfactory simulation results.
Simulations show that there is a very good agreement between short-term and long-
term strategy and proposed neural network is able to solve nonlinear optimal control
problem with state and control constraints. The optimal strategy is the following.
In the presence of high ammonium concentration, the uptake of DON and nitrate is
stopped. If the concentration of ammonium drops below a certain limit value, phy-
toplankton start to assimilate DON or nitrate dependently on values b2, b3. If the

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

time

x(
t)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

time

x D
H

N
N

(t
)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

time

u(
t)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

time

u D
H

N
N

(t
)

Fig. 4 Optimal trajectory x̄(t) and its continuous Hopfield neural network approximation
xDHNN(t) with initial condition ψ(t) = (0.1,0.1,0.2,0.8,0.4,0.5,0.6,0.7, .1), for t ∈ [−1,0]
(x̄4(t), xDHNN4(t) - dash-dash line, x̄6(t), xDHNN6(t) - dotted line, x̄7(t), xDHNN7(t) -
dash-dot line, optimal control ū(t) and its continuous Hopfield neural network approxi-
mation uDHNN(t) (ū1(t), uDHNN4(t) - dash-dash line, ū2(t), uDHNN2(t) - dotted line,
ū3(t), uDHNN3(t) - dash-dot line)

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

time

x(
t)

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

time

x D
H

N
N

(t
)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

time

u(
t)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

time

u D
H

N
N

(t
)

Fig. 5 Optimal trajectory x̄(t) and its continuous Hopfield neural network approxima-
tion xDHNN(t) with initial condition ψ(t)= (0.01,0.01,0.02,0.08,0.04,0.05,0.06,0.07, .01),
for t ∈ [−1,0] (x̄4(t), xDHNN4(t) - dash-dash line, x̄6(t), xDHNN6(t) - dotted line,
x̄7(t), xDHNN7(t) - dash-dot line, optimal control ū(t) and its continuous Hopfield neural
network approximation uDHNN(t) (ū1(t), uDHNN4(t) - dash-dash line, ū2(t), uDHNN2(t) -
dotted line, ū3(t), uDHNN3(t) - dash-dot line)

330 T. Kmet and M. Kmetova

concentration of all three forms of nitrogen are low, all of them are assimilated by
phytoplankton at the maximal possible rate, e.i. ûi(t) = uimax for all t ∈ [t0, t f] (Fig-
ure 3). Our results are quite similar to those obtained in [12] by using Pontryagins
maximum principle.

Optimal trajectories found by short term strategy were used as teacher signals for
continuous Hopfield neural network to find weight matrix W = (A,Wo,Wh,Wdh).
Numerical solutions are shown in Figs. 4, 5. It follows from Figs. 4 that proposed
discrete time delay continuous Hopfield neural network is able to approximate dis-
crete time delay differential equations signals.

7 Conclusion

The purpose of the paper is twofold. Firstly, a single new network adaptive critic
approach is presented for optimal control synthesis with discrete time delay in state
and control variables subject to control and state constraints. Using Euler’s meth-
ods the optimal control problem is transcribed into a discrete-time high-dimensional
nonlinear programming problem. Adaptive critic design based on neural networks
and the iterative programming algorithm were developed to seek for the state, co-
state and control variables of the constrained optimal control problem with time
delay. These approach is applicable to wide class of nonlinear systems. Simula-
tion studies have demonstrated with an optimal control problems related to nitrogen
transformation cycle including phytoplankton production. Using MATLAB, a sim-
ple simulation model based on adaptive critic neural network was constructed. Nu-
merical simulations have shown that adaptive critic neural network is able to solve
nonlinear optimal control problem with discrete time delay and with control and
state constraints.

The second goal is to develop efficient learning algorithm for discrete time delay
continuous Hopfield neural network to approximate general discrete time delay dif-
ferential equations signals. Simulations, using MATLAB show that time-dependent
recurrent learning is able to approximate discrete time delay differential equations.

Acknowledgements. The paper was worked out as a part of the solution of the scientific
project number KEGA 010UJS-4/2014 and VEGA 1/0699/12.

References

1. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal func-
tion. IEEE Transactions on Information Theory 39, 930–945 (1993)

2. Bryson Jr., A.E.: Dynamic Optimization. Addison-Wesley Longman Inc., New York
(1999)

3. Buskens, C., Maurer, H.: SQP-methods for solving optimal control problems with control
and state constraints: adjoint variable, sensitivity analysis and real-time control. Journal
of Computational and Applied Mathematics 120, 85–108 (2000)

Adaptive Critic Neural Network and Delay Optimal Control Problems 331

4. Hopfield, J.J.: Neural Networks and physical systems with emergent collective compu-
tational abilities. Proc. Natl. Acad. Sci. 79, 2554–2554 (1982)

5. Hopfield, J.J.: Neurons with graded response have collective computational properties
like those of two-state neurons. Proc. Nat. Acad. Sci. 81, 3088–3092 (1984)

6. Hornik, M., Stichcombe, M., White, H.: Multilayer feed forward networks are universal
approximators. Neural Networks 3, 256–366 (1989)

7. Hrinca, I.: An Optimal Control Problem for the Lotka-Volterra System with Delay. Non-
linear Analysis, Theory, Methods, Applications 28, 247–262 (1997)

8. Gnecco, A.: A Comparison Between Fixed-Basis and Variable-Basis Schemes for Func-
tion Approximation and Functional Optimization. Journal of Applied Mathematics 2012,
article ID 806945 (2012)

9. Gollman, L., Kern, D., Mauer, H.: Optimal control problem with delays in state and con-
trol variables subject to mixed control-state constraints. Optim. Control Appl. Meth. 30,
341–365 (2009)

10. Chai, Q., Loxton, R., Teo, K.L., Yang, C.: A class of optimal state-delay control prob-
lems. Nonlinear Analysis: Real World Applications 14, 1536–1550 (2013)

11. Kirk, D.E.: Optimal Control Theory: An Introduction. Dover Publications, Inc., Mineola
(1989)

12. Kmet, T.: Material recycling in a closed aquatic ecosystem. I. Nitrogen transformation
cycle and preferential utilization of ammonium to nitrate by phytoplankton as an optimal
control problem. Bull. Math. Biol. 58, 957–982 (1996)

13. Kmet, T.: Neural network solution of optimal control problem with control and state
constraints. In: Honkela, T. (ed.) ICANN 2011, Part II. LNCS, vol. 6792, pp. 261–268.
Springer, Heidelberg (2011)

14. Kmet, T., Kmetova, M.: Adaptive Critic Neural Network Solution of Optimal Control
Problems with Discrete Time Delays. In: Mladenov, V., Koprinkova-Hristova, P., Palm,
G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp.
483–494. Springer, Heidelberg (2013)

15. Makozov, Y.: Uniform approximation by neural networks. Journal of Approximation
Theory 95, 215–228 (1998)

16. Padhi, R., Unnikrishnan, N., Wang, X., Balakrishnan, S.N.: Adaptive-critic based op-
timal control synthesis for distributed parameter systems. Automatica 37, 1223–1234
(2001)

17. Padhi, R., Balakrishnan, S.N., Randoltph, T.: A single network adaptive critic (SNAC)
architecture for optimal control synthesis for a class of nonlinear systems. Neural Net-
works 19, 1648–1660 (2006)

18. Polak, E.: Optimization Algorithms and Consistent Approximation. Springer, Heidelberg
(1997)

19. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The Mathe-
matical Theory of Optimal Process. Nauka, Moscow (1983) (in Russian)

20. Rumelhart, D.F., Hinton, G.E., Wiliams, R.J.: Learning internal representation by error
propagation. In: Rumelhart, D.E., McClelland, D.E. (eds.) PDP Research Group: Parallel
Distributed Processing: Foundation, vol. 1, pp. 318–362. The MIT Press, Cambridge
(1987)

21. Sandberg, E.W.: Notes on uniform approximation of time-varying systems on finite time
intervals. IEEE Transactions on Circuits and Systems-1: Fundamental Theory and Ap-
plications 45, 305–325 (1998)

22. Sharif, H.R., Vali, M.A., Samat, M., Gharavisi, A.A.: A New Algorithm for Optimal
Control of Time-Delay Systems. Applied Mathematical Science 5, 595–606 (2011)

332 T. Kmet and M. Kmetova

23. Sun, D.Y., Huang, T.C.: A solutions of time-delayed optimal control problems by the use
of modified line-up competition algorithm. Journal of the Taiwan Institute of Chemical
Engineers 41, 54–64 (2010)

24. Tokuda, I., Tokunaga, R., Aihara, K.: Back-propagation learning of infinite-dimensional
dynamical systems. Neural Networks 16, 1179–1193 (2003)

25. Werbos, P.J.: Approximate dynamic programming for real-time control and neural mod-
elling. In: White, D.A., Sofge, D.A. (eds.) Handbook of Intelligent Control: Neural
Fuzzy, and Adaptive Approaches, pp. 493–525 (1992)

26. Xia, Y., Feng, G.: A New Neural Network for Solving Nonlinear Projection Equations.
Neural Network 20, 577–589 (2007)

Applying Prototype Selection and Abstraction
Algorithms for Efficient Time-Series
Classification

Stefanos Ougiaroglou∗, Leonidas Karamitopoulos, Christos Tatoglou,
Georgios Evangelidis, and Dimitris A. Dervos

Abstract. A widely used time series classification method is the single nearest
neighbour. It has been adopted in many time series classification systems because of
its simplicity and effectiveness. However, the efficiency of the classification process
depends on the size of the training set as well as on data dimensionality. Although
many speed-up methods for fast time series classification have been proposed and
are available in the literature, state-of-the-art, non-parametric prototype selection
and abstraction data reduction techniques have not been exploited on time series
data. In this work, we present an experimental study where known prototype selec-
tion and abstraction algorithms are evaluated both on original data and a dimension-
ally reduced representation form of the same data from seven popular time series
datasets. The experimental results demonstrate that prototype selection and abstrac-
tion algorithms, even when applied on dimensionally reduced data, can effectively
reduce the computational cost of the classification process and the storage require-
ments for the training data, and, in some cases, improve classification accuracy.

1 Introduction

Classification methods based on similarity search have been proven to be effective
for time series data analysis. More specifically, the one-Nearest Neighbour (1-NN)
classifier is a widely-used method. It works by assigning to an unclassified time
series the class label of its most similar training time series. The main drawback

Stefanos Ougiaroglou · Georgios Evangelidis
Department of Applied Informatics, School of Information Sciences,
University of Macedonia, 156 Egnatia St, GR-54006, Thessaloniki, Greece
e-mail: {stoug,gevan}@uom.gr
Leonidas Karamitopoulos · Christos Tatoglou · Dimitris A. Dervos
Information Technology Department, Alexander TEI of Thessaloniki,
GR-57400 Sindos, Greece
e-mail: lkaramit@otenet.gr, xtatty@gmail.com, dad@it.teithe.gr

∗ S. Ougiaroglou is supported by the State Scholarships Foundation of Greece (I.K.Y.).

c© Springer International Publishing Switzerland 2015 333
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_16

334 S. Ougiaroglou et al.

of similarity-based classifiers is that all similarities between an unclassified time
series item and the training time series items must be computed. For large and high
dimensional time series training sets, the high computational cost involved renders
the application of such classifiers prohibitive. Time series classification performance
can be improved through indexing, representation and/or data reduction.

Indexing accelerates classification, but works well only in low dimensionality
spaces. Thus, one must first use a dimensionality reduction technique to acquire a
representation of the original data in lower dimensions. A representation may be
considered as a transformation technique that maps a time series from the original
space to a feature space, retaining the most important features. There have been
several time series representations proposed in the literature, mainly for the purpose
of reducing the intrinsically high dimensionality of time series [12].

The main goal of data reduction is to reduce the computational cost of the k-NN
classifier and the storage requirements of the training set. Data Reduction Tech-
niques (DRTs)1 [31, 14, 20, 30, 33, 18, 16, 7, 21] build a small representative set of
the initial training data. This set is called the condensing set and has the benefits of
low computational cost and storage requirements while keeping the accuracy at high
levels. DRT algorithms may be grouped into two categories: (i) Prototype Selection
(PS) [14], and, (ii) Prototype Abstraction (PA) (or generation) [31]. Both categories
share the same motivation. However, they differ on the way the condensing set is
constructed. PS algorithms select some training items and use them as representa-
tives, whereas, PA algorithms generate new item representatives by summarizing on
similar training items.

Data reduction has recently been exploited for fast time series classification.
More specifically, [8] and [34] propose PS algorithms for speeding-up 1-NN time
series classification. The disadvantage of these methods is that they are parametric.
The user must define the size of the condensing set by trial-and-error.

The present work has been motivated by the following two observations: (a) to the
best of our knowledge, state-of-the-art non-parametric PS and PA algorithms have
not been evaluated neither on original time series nor on their reduced dimension-
ality representations, and, (b) PA algorithms that we have proposed (RHC [24, 23],
AIB2 [25, 22]) have not been evaluated on time series data. The contribution of this
paper is the experimental evaluation of two PS algorithms, namely, CNN-rule [17]
and IB2 [3, 2], and three PA algorithms, namely, RSP3 [28], RHC [24] and AIB2 [25,
22]. The algorithms are evaluated both against original time series datasets and their
reduced dimensionality representations.

Our study adopts the Piecewise Aggregate Approximation (PAA) [19, 35] time
series representation method. The goal is to investigate the degree to which clas-
sification accuracy gets affected when applying data reduction on dimensionally
reduced time series. PAA is an effective and very simple dimensionality reduction
technique that segments a time series into h consecutive sections of equal-width and
calculates the corresponding mean for each section. The series of these means is the
new representation of the original data.

1 One can claim that dimensionality reduction is also data reduction. However, we consider
DRTs only from the item reduction point of view.

Data Reduction for Efficient Time-Series Classification 335

The rest of the paper is organized as follows. Section 2 discusses the details of
the five aforementioned DRTs. Section 3 presents the experimental setup and the
results obtained, and Section 4 concludes the paper.

2 Data Reduction Techniques

In this section, we present the five DRTs used in our experimentation. They are
based on a simple idea: data items that do not represent decision boundaries between
classes are useless for the classification process. Therefore, they can be discarded.
The idea is that the k-NN classifier achieves similar accuracy using either the train-
ing set or the condensing set. However, condensing set scanning is more efficient
than training set scanning. Consequently, DRTs try to select or generate a sufficient
number of items that lie in data areas close to decision boundaries. The DRTs we
deal with in this section are non-parametric. They automatically determine the size
of the condensing set based on the level of noise and the number of classes in the
data (the more the classes, the more boundaries exist and, thus, the more items get
selected or generated). Therefore, expensive trial-end-error procedures for parame-
ter tuning are avoided.

2.1 Prototype Selection Algorithms

2.1.1 Hart’s Condensing Nearest Neighbour Rule (CNN-Rule)

CNN-rule [17] is the earliest and the best known PS algorithm. It uses two sets,
CS and T S. Initially, a training item is placed in CS, while all the other training
items are placed in T S. Then, CNN-rule tries to classify the content of T S by using
the 1-Nearest Neighbour (1-NN) classifier on the content of CS. When an item is
misclassified, it is considered to lie in a data area close to decision boundaries.
Thus, it is transferred from T S to CS. The algorithm terminates when there are no
transfers from TS to CS during a complete pass of TS. The final instance of set CS
constitutes the condensing set.

Algorithm 1 presents the pseudo-code of CNN rule: it starts with a training set T S
and returns a condensing set CS. Initially, CS has only a training item (lines 1 and 2).
Then, for each training item x ∈ T S (line 5), the algorithm retrieves and examines
the class label of its nearest neighbour (line 6). If the class label of x differs from
that of its nearest neighbour (line 7), x is moved to CS (lines 8–9). The repeat-until
loop terminates when there are no more T S items to migrate from T S to CS (lines
4,10,13).

The multiple passes on data ensure that the remaining (discarded) items in T S can
be correctly classified by applying the 1-NN classifier on the condensing set. The
algorithm is based on the following simple idea: items that are correctly classified by
1-NN, are considered to lie in a central-class data area and thus, they are ignored.On
the other hand, items that are misclassified, are considered to lie in a close-class-
border data area, and thus, they are placed in the condensing set. The weak point of

336 S. Ougiaroglou et al.

Algorithm 1. CNN-rule
Input: T S
Output: CS

1: CS ←∅

2: pick an item of T S and move it to CS
3: repeat
4: stop ← T RUE
5: for each x ∈ T S do
6: NN ← Nearest Neighbour of x in CS
7: if NNclass �= xclass then
8: CS ←CS∪{x}
9: T S ← T S−{x}

10: stop ← FALSE
11: end if
12: end for
13: until stop == T RUE
14: discard T S
15: return CS

the CNN-rule is that the resulting condensing set depends on the ordering by which
training set items are considered. This means that different condensing sets may be
constructed by considering the same training set data in a different order.

There are many other condensing algorithms that either extend the CNN-rule,
or they are based on the same idea. Some of the these algorithms are the Re-
duced Nearest Neighbour (RNN) rule [15], the Selective Nearest Neighbour (SNN)
rule [27], the Modified CNN rule [11], the Generalized CNN rule [10], the Fast
CNN algorithms [4, 5], Tomek’s CNN rule [29], the Patterns with Ordered Projec-
tion (POP) algorithm [26, 1], the recently proposed Template Reduction for k-NN
(TRkNN) [13] and the IB2 algorithm [3, 2].

2.1.2 IB2

IB2 belongs to the well-known family of Instance-Based Learning (IBL) algo-
rithms [3, 2] and is based on the CNN-rule. In effect, IB2 constitutes a simple one
pass variation of the CNN-rule. Algorithm 2 presents IB2 in pseudo-code. Each
training item x ∈ T S is classified using 1-NN classifier on the current CS (line 4).
If x is classified correctly, it is discarded (line 8). Otherwise, x is transferred to CS
(line 6).

Contrary to the CNN-rule, IB2 does not ensure that all discarded items can be
correctly classified by the final version of the condensing set. However, since it is a
one-pass algorithm, it is very fast, i.e., it involves low preprocessing computational
cost. In addition, IB2 builds its condensing set incrementally. New training items
can be taken into consideration after the creation of the condensing set. Therefore,
IB2 is appropriate for dynamic/streaming environments whereby new training items
arrive in an one-by-one fashion. Certainly, IB2 can not deal with data streams with

Data Reduction for Efficient Time-Series Classification 337

Algorithm 2. IB2
Input: T S
Output: CS

1: CS ←∅

2: an item is chosen at random to migrate from T S to CS
3: for each x ∈ T S do
4: NN ← Nearest Neighbour of x in CS
5: if NNclass �= xclass then
6: CS ←CS∪{x}
7: end if
8: T S ← T S−{x}
9: end for

10: return CS

concept drift [32]. IBL-DS [6] adopts the idea of the family of IBL algorithms and
can deal with such data. It is worth mentioning that, contrary to the CNN-rule and to
many other DRTs, IB2 does not require that all training data reside in main memory.
Therefore, it can be applied in devices whose memory is insufficient for storing all
the training data. Of course, like the CNN-rule, IB2 is a data ordering dependent
algorithm.

2.2 Prototype Abstraction Algorithms

2.2.1 Abstraction IB2 (AIB2)

The AIB2 algorithm constitutes a PA variation of IB2. Therefore, it inherits all the
aforementioned properties of IB2. The idea behind AIB2 is quite simple: prototypes
should be at the center of the data area they represent. Therefore, the correctly clas-
sified items are not ignored. In effect, they contribute to the final condensing set by
repositioning their nearest prototype. This is achieved by adopting the concept of
prototype weight. Each prototype is characterized by a weight value. It denotes the
number of items it represents.

Algorithm 3 presents the pseudo code of the algorithm. Initially, the condensing
set (CS) has only one item whose weight is initialized to one (lines 1–3). For each
training item x, AIB2 retrieves from the current CS its nearest prototype NN (line 5).
If x is misclassified, it is placed in CS and its weight is initialized to one (lines 6–8).
Otherwise, the attributes of NN are updated by taking into account its current weight
and the attributes of x. In effect, NN “moves” towards x (lines 10–12). Finally, the
weight of NN is increased by one (line 13) and x is removed (line 15).

AIB2 aims at improving the efficiency of IB2 by building a condensing set with
better prototypes than IB2. Each prototype lies close to the center of the data area it
represents. Therefore AIB2 is able to achieve higher classification accuracy. More-
over, the repositioned prototypes reduce the items placed in the final condensing set.

338 S. Ougiaroglou et al.

Algorithm 3. AIB2
Input: T S
Output: CS

1: CS ←∅

2: move a random item y from T S to CS
3: yweight ← 1
4: for each x ∈ T S do
5: NN ← Nearest Neighbour of x in CS
6: if NNclass �= xclass then
7: xweight ← 1
8: CS ←CS∪{x}
9: else

10: for each attribute attr(i) do

11: NNattr(i) ← NNattr(i)×NNweight+xattr(i)

NNweight+1
12: end for
13: NNweight ← NNweight +1
14: end if
15: T S ← T S−{x}
16: end for
17: return CS

Hence, AIB2 can achieve higher reduction rates and even lower preprocessing cost
than IB2.

2.2.2 RSP3

The RSP3 algorithm belongs to the popular family of Reduction by Space Partition-
ing (RSP) algorithms [28]. This family includes three PA algorithms. All of them
are based on the idea of the early PA algorithm of Chen and Jozwik [9]. Chen and
Jozwik’s Algorithm (CJA) works as follows: First, the most distant items A and B of
the training set that define its diameter are retrieved. Then, the training set is divided
into two subsets, SA and SB. SA includes training items that lie closer to A, whereas,
SB includes training items that lie closer to B. Then, CJA proceeds by selecting
to divide subsets that include items of more than one classes (non-homogeneous
subsets). The subset with the largest diameter is divided first. If all subsets are ho-
mogeneous, CJA divides the largest homogeneous subset. This procedure continues
until the number of subsets becomes equal to a user specified value. In the end,
for each subset S, CJA averages the items in S and creates a mean item that is as-
signed the label of the majority class in S. The created mean items constitute the
final condensing set.

Algorithm 4 lists in pseudo-code a possible implementation of CJA. It accepts
a training set (TS) and the number of prototypes n that will be generated. The al-
gorithm uses a data structure to store the created subsets. Initially, the entire T S is
stored in S (line 2). Then, the non-homogeneous subset C with the largest diameter
is divided into two subsets (lines 4,8). If all subsets are homogeneous, CJA divides

Data Reduction for Efficient Time-Series Classification 339

the homogeneous subset C with the largest diameter (lines 5–7). Both subsets are
added to S, while C is removed (lines 9–11). The procedure for constructing subsets
continues until n subsets have been created (line 3). The last step is the mean compu-
tation (or prototype generation) for each subset and its inclusion in the condensing
set (CS) (lines 13–18).

Algorithm 4. CJA
Input: T S, n
Output: CS

1: S ←∅

2: add(S, T S)
3: for i = 2 to n do
4: C ← select the non-homogeneous subset ∈ S with the largest diameter
5: if C ==∅ {All subsets are homogeneous} then
6: C ← select the homogeneous subset ∈ S with the largest diameter
7: end if
8: (Sx,Sy)← divide C into two subsets
9: add(S, Sx)

10: add(S, Sy)
11: remove(S, C)
12: end for
13: CS ←∅

14: for each subset T ∈ S do
15: r ← compute the mean item by averaging the items in T
16: r.label ← find the most common class label in T
17: CS ←CS∪{r}
18: end for
19: return CS

CJA selects the next subset that will be divided by examining its diameter. The
idea is that a subset with a large diameter probably includes more training items.
Therefore, if this subset is divided first, a higher reduction rate will be achieved. A
desirable property is that CJA builds the same condensing subset regardless of the
ordering of the data in the training set. However, it has two weak points. The first is
that the algorithm is parametric. The user has to specify the number of prototypes.
This usually involves tuning via a costly trial-end-error procedure. In certain do-
mains, this property may be desirable, since it allows one to control the size of the
condensing subset. However, it prohibits the automatic determination of the size of
the condensing subset in accordance with the nature of the available data. This con-
stitutes a drawback for the algorithm, in general. The second weakness is that the
items that do not belong to the most common class of the subset are not represented
in the condensing set. Since the mean item of each subset is labeled by the most
common class, items that belong to other classes are practically ignored.

RSP1 deals with the second drawback. More specifically, RSP1 computes as
many mean items as the number of different classes in each subset. Therefore, it

340 S. Ougiaroglou et al.

averages the items that belong to each class in the subset. Of course, RSP1 builds
larger CSs than CJA. However, it attempts to improve accuracy since it takes into
account all training items.

RSP1 and RSP2 differ on how they select the next subset to be divided. Similar to
CJA, RSP1 uses the subset diameter as the splitting criterion. In contrast, RSP2 uses
as its splitting criterion the highest overlapping degree. This criterion assumes that
items that belong to a specific class lie as close to each other as possible while items
that belong to different classes lie as far as possible. According to [28], it is better
to divide the subset with the highest overlapping degree. The overlapping degree
of a subset is the ratio of the average distance between items belonging to different
classes and the average distance between items that belong to the same class.

RSP3 adopts the concept of homogeneity. A subset is homogeneous when it in-
cludes items of only a specific class. The algorithm continues dividing the created
subsets until all of them become homogeneous. RSP3 can use either the largest
diameter or the highest overlapping degree as spiting criterion. Actually, since all
non-homogeneous subsets are divided, the choice of splitting criterion becomes an
issue of secondary importance.

Algorithm 5 lists the pseudo-code of RSP3. It utilizes a data structure S to hold
the unprocessed subsets. Initially, the whole training set (T S) is an unprocessed
subset and is put in S (line 2). At each repeat-until iteration, RSP3 selects the subset
C with the highest splitting criterion value (line 5) and checks if C is homogeneous
or not. If it is homogeneous, the mean item is computed by averaging the items in
C and is placed in the condensing set (CS) as a prototype (lines 6–9). Otherwise,
C is divided into two subsets D1 and D2 (line 11) in the CJA fashion. These new
subsets are added to S and C is removed from S (lines 12–14). The repeat-until loop
continues until S becomes empty (line 16), i.e., all subsets are homogeneous.

Certainly, RSP3 generates more prototypes for the “close border” data areas and
fewer for the “central” data areas. RSP3 is the only non-parametric algorithm of the
RSP family (CJA included). It is worth mentioning that like CJA, RSP1 and RSP2,
the condensing set built by RSP3 does not depend on the data order in the training
set. The procedure for finding the most distant items in each subset is quite expen-
sive. Thus, the main drawback of RSP3 is that it usually involves high preprocessing
computation cost. In cases of large datasets, this drawback may render its execution
prohibitive.

2.2.3 Reduction through Homogeneous Clusters (RHC)

RHC [24, 23] is also based on the concept of homogeneity. Initially, the whole train-
ing set is considered as a non-homogeneous cluster C. RHC begins by computing a
mean item for each class (class-mean) in C. Then, it applies k-means clustering on
C using the class means as initial means. The clustering procedure builds as many
clusters as the number of classes in C. The aforementioned clustering procedure is
applied recursively on each non-homogeneous cluster. In the end, the means of the
homogeneous clusters are stored in the condensing set as prototypes.

Data Reduction for Efficient Time-Series Classification 341

Algorithm 5. RSP3
Input: T S
Output: CS

1: S ←∅

2: add(S, T S)
3: CS ←∅

4: repeat
5: C ← select the subset ∈ S with the highest splitting criterion value
6: if C is homogeneous then
7: r ← calculate the mean item by averaging the items in C
8: r.label ← class of items in C
9: CS ←CS∪{r}

10: else
11: (D1,D2)← divide C into two subsets
12: add(S, D1)
13: add(S, D2)
14: remove(S, C)
15: end if
16: until IsEmpty(S)
17: return CS

Algorithm 6 lists the pseudo-code of RHC. It utilizes a queue data structure, Q,
to store clusters. Initially, the training data (TS) is considered as an unprocessed
cluster. Therefore, it is placed in Q (line 2). At each one iteration, the algorithm
examines the head C of Q (line 5). Then, it checks whether C is a homogeneous
cluster or not. If it is homogeneous (line 6), the mean of C is placed in the con-
densing set (CS) (line 8) and its items are removed. If C is non-homogeneous, the
algorithm computes the class means (M): one class mean for each of the classes in
C (lines 11–14). Then, RHC calls k-means clustering, with parameters C and M.
k-means produces a new set of clusters (clusters) (line 15) that are enqueued into Q
(lines 16–18). The algorithm stops iterating when Q becomes empty (line 20), i.e.,
all clusters are homogeneous.

Like RSP3, RHC builds many prototypes for close-class-border data areas and
fewer for the non-close-class-border data areas. By using the class means as initial
means for the k-means clustering, the algorithm attempts to quickly find homoge-
neous clusters and achieve high reduction rates (the larger the clusters built, the
higher the reduction rates achieved). Moreover, since RHC is based on k-means
clustering, it is very fast and can easily be integrated into much of the existing soft-
ware. In addition, RHC is independent on the ordering of the data in the training set.
The results of the experimental study in [24, 23] indicate that RHC achieves higher
reduction rates (smaller CSs) and is faster than RSP3 and CNN-rule, while accuracy
remains high.

342 S. Ougiaroglou et al.

Algorithm 6. RHC
Input: T S
Output: CS

1: Q ←∅

2: Enqueue(Q, T S)
3: CS ←∅

4: repeat
5: C ← Dequeue(Q)
6: if C is homogeneous then
7: r ← mean of C
8: CS ←CS∪{r}
9: else

10: M ←∅

11: for each class L in C do
12: mL ← mean of L
13: M ← M∪{mL}
14: end for
15: clusters ← K-MEANS(C, M)
16: for each cluster cl ∈ clusters do
17: Enqueue(Q, cl)
18: end for
19: end if
20: until IsEmpty(Queue)
21: return CS

3 Experimental Study

3.1 Experimental Setup

The five DRT algorithms presented were evaluated on seven known time series
datasets distributed by the UCR time-series classification/clustering website2. Ta-
ble 1 summarizes on the datasets used. All datasets are available in a training/testing
form. We merged the training and testing parts and then we randomized the resulting
datasets. No other data transformation was performed. All algorithms were coded
in C and as a similarity measure we used the Euclidean distance.

We report on the experiment we conducted with a certain value for the parameter
of the PAA representation. We applied the PAA representation on time series by
setting the number of dimensions equal to twelve (h=12). Most of the research work
provides experimental results with values of h ranging from 2 to 20. We found that
lower values of h have a negative effect on classification accuracy, whereas, higher
values produce time series that cannot be efficiently indexed by multi-dimensional
indexing methods. Hence, we decided to use h=12.

All experiments were run twice, once on the original time series and once on
their 12-dimensional representations. We wanted to test how the combination of

2 http://www.cs.ucr.edu/˜eamonn/time_series_data/.

http://www.cs.ucr.edu/~eamonn/time_series_data/

Data Reduction for Efficient Time-Series Classification 343

Table 1 Time-series datasets description

Time-series dataset Size (time-series) Length (Attr.) Classes

Synthetic Control (SC) 600 60 6
Face All (FA) 2250 131 14

Two-Patterns (TP) 5000 128 4
Yoga (YG) 3300 426 2
Wafer (WF) 7164 152 2

Sweadish Leaf (SL) 1125 128 15
CBF 930 128 3

data reduction and dimensionality reduction affects the performance of 1-NN clas-
sification.

We evaluated the five DRTs by estimating four measurements, namely, accuracy
(ACC), classification cost (CC), reduction rate (RR), and, preprocessing cost (PC).
Cost measurements were estimated by counting the distance computations multi-
plied by the number of time series attributes (time series length). Of course, RR
and CC measurements relate to each other: the lower the RR, the higher is the CC.
However, CC measurements can express the cost introduced by the dimensional-
ity of data. We report on the average values of these measurements obtained via
five-cross-fold validation.

3.2 Comparisons

Tables 2 and 3 present the experimental measurements. Table 2 presents the results
obtained on the original datasets while table 3 presents the results obtained on the
12-dimensional representations of the datasets we got after applying PAA on them.
Both tables include the measurements obtained by applying the 1-NN classifier on
the non-reduced data (conventional 1-NN). Each table cell includes the four mea-
surements obtained by first applying a DRT on the original or 12-dimensional time
series datasets (preprocessing step) and then by using 1-NN on the resulting con-
densing set (classification step). The cost measurements are in million (M) distance
computations. The PC measurements do not include the small cost overhead intro-
duced by PAA execution.

It is noted that 1-NN classification on the 12-dimensional datasets is very fast. In
most cases, the preprocessing and classification cost are extremely low, while classi-
fication accuracy remains at high, acceptable levels. Therefore, a first conclusion is
that one can obtain efficient time series classifiers by combining prototype selection
or abstraction algorithms with time-series dimensionality reduction representations.

It is worth mentioning that the three PA algorithms, RSP3, RHC and AIB2,
achieved higher classification accuracy than the conventional 1-NN. In the case
of SC dataset, accuracy improvement was very high. Almost in all cases, RSP3
achieved the highest accuracy. However, it is the slowest method in terms of both
preprocessing and classification (RSP3 had the lowest reduction rates). The high

344 S. Ougiaroglou et al.

Table 2 Experimental results on original datasets

Dataset
Original dimensionality

Conv. 1-NN CNN IB2 RSP3 RHC AIB2

SC

Acc (%): 91.67 90.17 89.00 98.33 98.67 99.83
CC (M): 3.46 0.67 0.53 1.38 0.09 0.34
RR (%): - 80.50 84.67 60.08 97.29 90.13
PC (M): - 7.77 1.31 16.22 2.39 1.14

FA

Acc (%): 95.07 91.60 91.02 95.46 93.02 92.94
CC (M): 106.11 19.87 18.38 51.65 12.93 16.08
RR (%): - 81.28 82.68 51.32 87.81 84.84
PC (M): - 216.36 48.96 533.70 140.41 43.27

TP

Acc (%): 98.50 94.68 93.60 98.10 93.72 97.06
CC (M): 512.00 85.66 76.83 243.51 55.50 61.88
RR (%): - 83.27 85.00 52.44 89.16 87.92
PC (M): - 1169.75 205.95 2085.42 150.49 177.88

YG

Acc (%): 93.76 91.58 89.55 92.85 90.94 90.49
CC (M): 742.26 138.56 108.92 229.82 93.85 100.26
RR (%): - 81.33 85.33 69.04 87.36 86.49
PC (M): - 1854.74 254.41 4072.30 162.61 240.73

WF

Acc (%): 99.87 99.69 99.62 99.82 99.55 99.65
CC (M): 1248.30 13.59 11.72 26.88 9.37 9.71
RR (%): - 98.91 99.06 97.85 99.25 99.22
PC (M): - 165.88 31.42 7196.75 63.69 25.78

SL

Acc (%): 52.36 49.87 48.18 52.00 52.80 51.56
CC (M): 25.92 15.94 14.80 19.00 12.80 14.65
RR (%): - 38.51 42.89 26.69 50.60 43.49
PC (M): - 112.17 31.39 1537.07 57.01 31.02

CBF

Acc (%): 98.39 98.17 97.63 99.78 98.60 99.68
CC (M): 17.71 1.29 1.15 1.97 0.40 0.59
RR (%): - 92.74 93.49 88.87 97.74 96.67
PC (M): - 15.06 3.50 78.48 7.26 2.01

Avg

Acc (%): 89.94 87.97 86.94 90.91 89.62 90.17
CC (M): 379.40 39.37 33.19 82.03 26.42 29.07
RR (%): - 79.51 81.87 63.76 87.03 84.11
PC (M): - 505.96 82.42 2217.13 83.37 74.55

PC measurements are attributed to the costly procedure for finding the most distant
items in each created subset (see Subsection 2.2 or [28] for details).

RHC, AIB2 and IB2 had much lower preprocessing cost than the other two meth-
ods. This happened because IB2 and AIB2 are one-pass algorithms and RHC is
based on a version of k-means that is sped-up by the class mean initializations (see
Subsection 2.2 or [24] for details). In addition, RHC builds the smallest CSs. In all
cases, RHC achieved higher reduction rates than the other DRTs. Thus, the corre-
sponding classifiers had the lowest classification costs.

Data Reduction for Efficient Time-Series Classification 345

Table 3 Experimental results on datasets with 12 dimensions

Dataset
12 dimensions

Conv. 1-NN CNN IB2 RSP3 RHC AIB2

SC

Acc (%): 98.50 97.00 95.83 98.83 98.17 98.50
CC (M): 0.69 0.06 0.05 0.12 0.03 0.03
RR (%): - 90.75 93.13 82.96 95.75 95.13
PC (M): - 0.89 0.13 3.45 0.52 0.10

FA

Acc (%): 87.91 83.78 82.31 87.07 84.49 84.36
CC (M): 9.72 2.89 2.53 4.80 2.08 2.22
RR (%): - 70.23 74.01 50.58 78.59 77.21
PC (M): - 30.36 5.95 50.91 13.16 5.30

TP

Acc (%): 97.56 93.52 91.38 96.66 94.34 94.48
CC (M): 48.00 8.22 6.86 20.42 6.69 5.39
RR (%): - 82.89 85.72 57.45 86.06 88.77
PC (M): - 103.86 17.34 196.00 17.63 14.56

YG

Acc (%): 92.36 90.39 88.03 91.03 90.03 89.67
CC (M): 20.91 4.41 3.50 6.71 3.13 3.12
RR (%): - 78.91 83.26 67.90 85.02 85.06
PC (M): - 52.23 8.04 110.56 4.26 7.30

WF

Acc (%): 99.79 99.62 99.51 99.40 99.25 99.50
CC (M): 98.55 1.21 1.01 1.86 1.01 0.99
RR (%): - 98.77 98.97 98.11 98.97 99.00
PC (M): - 15.63 2.57 495.63 4.64 2.44

SL

Acc (%): 52.62 49.07 48.62 51.20 51.20 49.78
CC (M): 2.43 1.54 1.37 1.78 1.32 1.35
RR (%): - 36.76 43.67 26.69 45.69 44.40
PC (M): - 11.33 2.86 56.00 4.99 2.84

CBF

Acc (%): 100.00 99.57 99.35 99.68 99.57 99.46
CC (M): 1.66 0.06 0.06 0.12 0.04 0.04
RR (%): - 96.34 96.56 92.63 97.47 97.55
PC (M): - 0.66 0.19 7.32 0.70 0.14

Avg

Acc (%): 89.82 87.57 86.43 89.12 88.15 87.96
CC (M): 25.99 2.63 2.20 5.12 2.04 1.88
RR (%): - 79.24 82.19 68.05 83.94 83.87
PC (M): - 30.71 5.30 131.44 6.56 4.67

The classification accuracy achieved by RHC was usually higher than IB2 and
CNN-rule and as high as AIB2. In some cases, RHC and AIB2 were more accurate
than RSP3. Considering the above, one may conclude that, since RHC ans AIB2
deal with all comparison criteria, they are efficient speed-up methods for time-series
data. Finally, the experimental results illustrate that AIB2 is an efficient variation of
IB2. In all cases, AIB2 achieves higher performance than IB2.

No DRT can be said to comprise the best speed-up choice. If classification accu-
racy is the most critical criterion, RSP3 may be preferable. On the other hand, if fast

346 S. Ougiaroglou et al.

classification and/or fast construction of the condensing set are more critical than
accuracy, RHC or AIB2 may be a better choice.

4 Conclusions

Efficient time series classification is an open research issue that attracts the interest
of the data mining community. This paper proposes the use of non-parametric state-
of-the-art prototype selection and abstraction algorithms for efficient and effective
time series classification.

The experimental study conducted demonstrates that by combining prototype
selection or abstraction algorithms with dimensionality reduction, one can obtain
accurate and very fast time series classifiers. In addition, the study reveals that pro-
totype abstraction algorithms are preferable to prototype selection algorithms when
applied on time series data. The prototype abstraction algorithms examined in the
study can achieve even higher accuracy than the conventional 1-NN classifier.

References

1. Aguilar, J.S., Riquelme, J.C., Toro, M.: Data set editing by ordered projection. Intell.
Data Anal. 5(5), 405–417 (2001),
http://dl.acm.org/citation.cfm?id=1294007.1294010

2. Aha, D.W.: Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms. Int. J. Man-Mach. Stud. 36(2), 267–287 (1992),
http://dx.doi.org/10.1016/0020-73739290018-G,
doi:10.1016/0020-7373(92)90018-G

3. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach.
Learn. 6(1), 37–66 (1991),
http://dx.doi.org/10.1023/A:1022689900470,
doi:10.1023/A:1022689900470

4. Angiulli, F.: Fast condensed nearest neighbor rule. In: Proceedings of the 22nd Inter-
national Conference on Machine Learning, ICML 2005, pp. 25–32. ACM, New York
(2005)

5. Angiulli, F.: Fast nearest neighbor condensation for large data sets classification. IEEE
Trans. on Knowl. and Data Eng. 19(11), 1450–1464 (2007),
http://dx.doi.org/10.1109/TKDE.2007.190645,
doi:10.1109/TKDE.2007.190645

6. Beringer, J., Hüllermeier, E.: Efficient instance-based learning on data streams. Intell.
Data Anal. 11(6), 627–650 (2007),
http://dl.acm.org/citation.cfm?id=1368018.1368022

7. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning
algorithms. Data Min. Knowl. Discov. 6(2), 153–172 (2002),
http://dx.doi.org/10.1023/A:1014043630878,
doi:10.1023/A:1014043630878

8. Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Insight: efficient and effective instance
selection for time-series classification. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.)
PAKDD 2011, Part II. LNCS (LNAI), vol. 6635, pp. 149–160. Springer, Heidelberg
(2011)

http://dl.acm.org/citation.cfm?id=1294007.1294010
http://dx.doi.org/10.1016/0020-73739290018-G
http://dx.doi.org/10.1023/A:1022689900470
http://dx.doi.org/10.1109/TKDE.2007.190645
http://dl.acm.org/citation.cfm?id=1368018.1368022
http://dx.doi.org/10.1023/A:1014043630878

Data Reduction for Efficient Time-Series Classification 347

9. Chen, C.H., Jóźwik, A.: A sample set condensation algorithm for the class sensitive
artificial neural network. Pattern Recogn. Lett. 17(8), 819–823 (1996),
http://dx.doi.org/10.1016/0167-86559600041-4,
doi:10.1016/0167-8655(96)00041-4

10. Chou, C.H., Kuo, B.H., Chang, F.: The generalized condensed nearest neighbor rule as a
data reduction method. In: Proceedings of the 18th International Conference on Pattern
Recognition, ICPR 2006, vol. 02, pp. 556–559. IEEE Computer Society, Washington,
DC (2006), http://dx.doi.org/10.1109/ICPR.2006.1119,
doi:10.1109/ICPR.2006.1119

11. Devi, V.S., Murty, M.N.: An incremental prototype set building technique. Pattern
Recognition 35(2), 505–513 (2002)

12. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining
of time series data: experimental comparison of representations and distance measures.
Proc. VLDB Endow. 1(2), 1542–1552 (2008),
http://dl.acm.org/citation.cfm?id=1454159.1454226

13. Fayed, H.A., Atiya, A.F.: A novel template reduction approach for the k-nearest neighbor
method. Trans. Neur. Netw. 20(5), 890–896 (2009),
http://dx.doi.org/10.1109/TNN.2009.2018547,
doi:10.1109/TNN.2009.2018547

14. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor clas-
sification: Taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3),
417–435 (2012), http://dx.doi.org/10.1109/TPAMI.2011.142,
doi:10.1109/TPAMI.2011.142

15. Gates, G.W.: The reduced nearest neighbor rule. IEEE Transactions on Information The-
ory 18(3), 431–433 (1972)

16. Grochowski, M., Jankowski, N.: Comparison of instance selection algorithms ii. results
and comments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.)
ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 580–585. Springer, Heidelberg (2004)

17. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information The-
ory 14(3), 515–516 (1968)

18. Jankowski, N., Grochowski, M.: Comparison of instances seletion algorithms i. algo-
rithms survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.)
ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)

19. Keogh, E.J., Pazzani, M.J.: A simple dimensionality reduction technique for fast simi-
larity search in large time series databases. In: Terano, T., Liu, H., Chen, A.L.P. (eds.)
PAKDD 2000. LNCS (LNAI), vol. 1805, pp. 122–133. Springer, Heidelberg (2000)

20. Lozano, M.: Data Reduction Techniques in Classification processes. (Phd Thesis). Uni-
versitat Jaume I (2007)

21. Olvera-López, J.A., Carrasco-Ochoa, J.A., Martı́nez-Trinidad, J.F., Kittler, J.: A re-
view of instance selection methods. Artif. Intell. Rev. 34(2), 133–143 (2010),
http://dx.doi.org/10.1007/s10462-010-9165-y,
doi:10.1007/s10462-010-9165-y

22. Ougiaroglou, S., Evangelidis, G.: Efficient data abstraction using weighted IB2 proto-
types. Computer Science and Information Systems 11(2), 665–678 (2014)

23. Ougiaroglou, S., Evangelidis, G.: RHC: Non-parametric cluster-based data reduction for
efficient k-nn classification. Pattern Analysis and Applications (accepted, 2014)

http://dx.doi.org/10.1016/0167-86559600041-4
http://dx.doi.org/10.1109/ICPR.2006.1119
http://dl.acm.org/citation.cfm?id=1454159.1454226
http://dx.doi.org/10.1109/TNN.2009.2018547
http://dx.doi.org/10.1109/TPAMI.2011.142
http://dx.doi.org/10.1007/s10462-010-9165-y

348 S. Ougiaroglou et al.

24. Ougiaroglou, S., Evangelidis, G.: Efficient dataset size reduction by finding homoge-
neous clusters. In: Proceedings of the Fifth Balkan Conference in Informatics, BCI 2012,
pp. 168–173. ACM, New York (2012),
http://doi.acm.org/10.1145/2371316.2371349,
doi:10.1145/2371316.2371349

25. Ougiaroglou, S., Evangelidis, G.: AIB2: An abstraction data reduction technique based
on IB2. In: Proceedings of the 6th Balkan Conference in Informatics, BCI 2013,
pp. 13–16. ACM, New York (2013),
http://doi.acm.org/10.1145/2490257.2490260,
doi:10.1145/2490257.2490260

26. Riquelme, J.C., Aguilar-Ruiz, J.S., Toro, M.: Finding representative patterns with or-
dered projections. Pattern Recognition 36(4), 1009–1018 (2003),
http://www.sciencedirect.com/science/
article/pii/S003132030200119X,
doi:http://dx.doi.org/10.1016/S0031-32030200119-X

27. Ritter, G., Woodruff, H., Lowry, S., Isenhour, T.: An algorithm for a selective nearest
neighbor decision rule. IEEE Trans. on Inf. Theory 21(6), 665–669 (1975)

28. Sánchez, J.S.: High training set size reduction by space partitioning and prototype ab-
straction. Pattern Recognition 37(7), 1561–1564 (2004)

29. Tomek, I.: Two modifications of cnn. IEEE Transactions on Systems, Man and Cyber-
netics SMC-6(11), 769–772 (1976), doi:10.1109/TSMC.1976.4309452

30. Toussaint, G.: Proximity graphs for nearest neighbor decision rules: Recent progress. In:
34th Symposium on the INTERFACE, pp. 17–20 (2002)

31. Triguero, I., Derrac, J., Garcia, S., Herrera, F.: A taxonomy and experimental study on
prototype generation for nearest neighbor classification. Trans. Sys. Man Cyber Part
C 42(1), 86–100 (2012),
http://dx.doi.org/10.1109/TSMCC.2010.2103939,
doi:10.1109/TSMCC.2010.2103939

32. Tsymbal, A.: The problem of concept drift: definitions and related work. Tech. Rep.
TCD-CS-2004-15, The University of Dublin, Trinity College, Department of Computer
Science, Dublin, Ireland (2004)

33. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-basedlearning algo-
rithms. Mach. Learn. 38(3), 257–286 (2000),
http://dx.doi.org/10.1023/A:1007626913721,
doi:10.1023/A:1007626913721

34. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series clas-
sification using numerosity reduction. In: Proceedings of the 23rd International Con-
ference on Machine Learning, ICML 2006, pp. 1033–1040. ACM, New York (2006),
http://doi.acm.org/10.1145/1143844.1143974,
doi:10.1145/1143844.1143974

35. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary lp norms. In: Pro-
ceedings of the 26th International Conference on Very Large Data Bases, VLDB 2000,
pp. 385–394. Morgan Kaufmann Publishers Inc., San Francisco (2000),
http://dl.acm.org/citation.cfm?id=645926.671689

http://doi.acm.org/10.1145/2371316.2371349
http://doi.acm.org/10.1145/2490257.2490260
http://www.sciencedirect.com/science/article/pii/S003132030200119X
http://www.sciencedirect.com/science/article/pii/S003132030200119X
http://dx.doi.org/10.1016/S0031-32030200119-X
http://dx.doi.org/10.1109/TSMCC.2010.2103939
http://dx.doi.org/10.1023/A:1007626913721
http://doi.acm.org/10.1145/1143844.1143974
http://dl.acm.org/citation.cfm?id=645926.671689

Enforcing Group Structure through the Group
Fused Lasso

Carlos M. Alaı́z, Álvaro Barbero, and José R. Dorronsoro

Abstract. We introduce the Group Total Variation (GTV) regularizer, a modification
of Total Variation that uses the �2,1 norm instead of the �1 one to deal with multidi-
mensional features. When used as the only regularizer, GTV can be applied jointly
with iterative convex optimization algorithms such as FISTA. This requires to com-
pute its proximal operator which we derive using a dual formulation. GTV can also
be combined with a Group Lasso (GL) regularizer, leading to what we call Group
Fused Lasso (GFL) whose proximal operator can now be computed combining the
GTV and GL proximals through proximal Dykstra algorithm. We will illustrate how
to apply GFL in strongly structured but ill-posed regression problems as well as the
use of GTV to denoise colour images.

1 Introduction

The irruption of big data, i.e., the need to study problems having very large sample
sizes or very large dimensions or both, has resulted in a renewed interest in linear
models, either because processing large samples with non-linear models is com-
putationally demanding, or because a large dimension yields rich enough patterns
so that methods enlarging pattern dimension such as the kernel trick add marginal
value. Among linear models, Mean Squared Error is the simplest fitting function
although it is well known that, in order to ensure good generalization, some regular-
izer has to be added to impose some property or structure in the resultant model, or
just because the initial problem may be ill-posed. Classic choices include ‖w‖2

2 (this
leads to the ridge regression model, which does not impose any particular struc-
ture on the solution) and ‖w‖1 (resulting in the Lasso [12] model, which enforces
sparsity). Recently, more �1-based regularizers such as Group Lasso [14] or Fused
Lasso [13], have been introduced.

Carlos M. Alaı́z · Álvaro Barbero · José R. Dorronsoro
Departamento de Ingenierı́a Informática & Instituto de Ingenierı́a del Conocimiento,
Universidad Autónoma de Madrid, 28049 Madrid, Spain
e-mail: {carlos.alaiz,alvaro.barbero,jose.dorronsoro}@uam.es

© Springer International Publishing Switzerland 2015 349
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_17

350 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

From a general point of view all these regularized models can be stated as the
problem of finding a w∗ ∈R

M which minimizes a certain functional f (w) = fL(w)+
fR(w) of the weights, with fR the regularization term which somehow bounds the
complexity of the model and fL the loss functional. In more detail, assume a training
set composed by P input patterns, {xp}P

p=1, with xp ∈ R
M , and their corresponding

targets {yp}P
p=1, yp ∈ R. If X ∈ R

P×M is the matrix having input patterns as rows
and y ∈R

P is the target vector, the overall problem for square loss can be written as

min
w∈RM

{ f (w)} = min
w∈RM

{ fL(w)+λ fR(w)} = min
w∈RM

{‖Xw− y‖2
2+λ fR(w)

}
, (1)

where λ is a parameter to control the strength of the regularizer.
In what follows, we will explain different choices of fR and the models to which

they lead, and we will generalize the Fused Lasso model to a group framework,
leading to the Group Fused Lasso model, in which the different groups of coeffi-
cients are forced to be sparse using a regularizer à la GL and piece-wise constant
through what we call the Group Total Variation (GTV) regularizer, a generalization
of the Total Variation of FL. Although this may seem as a strong regularization, such
a structure can emerge naturally in problems where the features have some spatial
location (and thus coefficients of nearby regions should be similar) and each feature
has a multidimensional nature (for example, several signals of the same geographi-
cal source). As shown in the experiments, in these cases the GFL model can detect
the underlying structure of the data and build a model capturing it.

As a particular case of a multidimensional signal with spatial structure we can
consider colour images (or videos), where each pixel has a trivial 2-dimensional
spatial position (or 3-dimensional considering the temporal dimension in a video)
and a multidimensional nature (the pixels are composed by three variables corre-
sponding to the RGB layers). A pixel is equal to the adjacent one if all the three
RGB coefficients are equal, so it is natural to enforce constancy at group levels.
Moreover, using the GTV and a distance term to a reference signal we can force
a colour image to be near to the observed one but with said smooth structure, thus
denoising the observed image.

The structure of this chapter is as follows. First, in Sect. 2 we will review some
of the classical structured linear models and define our proposed regularizer, the
Group Total Variation, and the corresponding linear model, the Group Fused Lasso.
We will show how to solve this model using proximal methods in Sect. 3. We shall
illustrate the behaviour of GFL over some examples in Sect. 4, and we will close the
chapter in Sect. 5 with a discussion and pointers to further work.

2 Group Fused Lasso and Group Total Variation

A first selection of the regularizer is the �2 norm, i.e., to penalize the Euclidean
norm of the weights with fR(w) = 1

2‖w‖2
2 (also known as Tikhonov regularization).

The resultant model is called Regularized Least Squares (RLS), or, alternatively,
Ridge Regression. The corresponding optimization problem is:

Enforcing Group Structure through the Group Fused Lasso 351

min
w∈RM

{
1
2
‖Xw− y‖2

2+
λ
2
‖w‖2

2

}
,

which has a closed-form solution given by:

w∗ = (X�X +λ I)−1X�y, (2)

where I ∈ R
M×M denotes the identity matrix.

Taking fR(w) = ‖w‖1 = ∑M
i=1 |wi| results in the Lasso approach (LA), which

forces some of the coefficients wi to be identically 0, thus producing an implicit
feature selection since only those inputs corresponding to nonzero coefficients have
an impact in the model. The optimization problem becomes then:

min
w∈RM

{
1
2
‖Xw− y‖2

2+λ‖w‖1

}
.

In some problems the features can present a spatial structure which we may want
the models to capture. One way to do this is to enforce similarity among the coeffi-
cients corresponding to nearby features. If we do not consider any multidimensional
feature structure, this can be achieved using a Total Variation (TV) regularizer which
penalizes the differences between consecutive coefficients:

TV1(w) =
M

∑
i=2

|wi −wi−1|= ‖Dw‖1,

where D ∈ R
(M−1)×M is the differencing matrix

D =

⎛
⎜⎜⎜⎝
−1 1

−1 1
. . .

. . .
−1 1

⎞
⎟⎟⎟⎠ ,

that is, Di,i = −1, Di,i+1 = 1 and Di j = 0 elsewhere. As we are using the �1 norm
of the differences between weights, some of these differences will be identically
zero, and thus the value of the weights across those entries will be constant. Such
regularizer can be further extended by adding a Lasso-like term to enforce weight
sparsity, resulting in the combined regularizer λ fR(w) = λ1‖w‖1+λ2‖Dw‖1, whose
minimization problem is:

min
w∈RM

{
1
2
‖Xw− y‖2

2+λ1‖w‖1 +λ2‖Dw‖1

}
.

The resulting model is called the Fused Lasso (FL).
Neither LA nor FL do consider any possible group structure on the problem fea-

tures and, therefore, the resulting models will not reflect it even if it may be present.
Assume, however, that the pattern features x have such a group structure. We may

352 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

then see x as a collection of multidimensional features, that is, x has NV components
that come in N groups with V features each and therefore has the form

x = (

x1︷ ︸︸ ︷
x1,1,x1,2, . . . ,x1,V ,

x2︷ ︸︸ ︷
x2,1,x2,2, . . . ,x2,V , . . .

xN︷ ︸︸ ︷
xN,1,xN,2, . . . ,xN,V)

�.

The first subscript in xn,v indicates the group (or the multidimensional feature)
and the second subscript the group feature so x is decomposed in N blocks xn =
(xn,1, . . . ,xn,V)

� that contain V variables.
In this framework, the behaviour of the weights should reflect this structure. In

particular, and looking for a similar effect to the one of LA, all the coefficients of
a particular group should be zero, or nonzero, at the same time, so the sparsity is
achieved at the group level (a multidimensional feature is considered as irrelevant
or relevant as a whole, and not each component independently as in the traditional
LA model). This behaviour is obtained using a regularization based on the �2,1 norm,
which is defined, for a vector w with the previous structure, as

‖w‖2,1 =
N

∑
n=1

‖wn‖2 =
N

∑
n=1

√
V

∑
v=1

w2
n,v,

which is just the �1 norm of the �2 group norms. This leads to the Group Lasso
model (GL) whose regularizer is then fR(w) = ‖w‖2,1, and which is solution of the
problem:

min
w∈RM

{
1
2
‖Xw− y‖2

2+λ‖w‖2,1

}
.

In this work we will extend GL to a fused setting, introducing first a new Group
Total Variation regularizer (GTV) defined as:

GTV(w) =
N

∑
n=2

√
V

∑
v=1

(wn,v −wn−1,v)2.

This regularizer enforces the differences between consecutive groups to be iden-
tically zero, i.e, the coefficients will be piece-wise constant at group level, with
wn,v = wn−1,v for v = 1, . . . ,V . We can consider now a full regularization func-
tional that adds the GTV term defined above to the standard �2,1 regularizer of
GL, which can be written in compact notation using a group differencing matrix
D̄ ∈ R

(N−1)V×NV as:

λ fR(w) = λ1‖w‖2,1 +λ2‖D̄w‖2,1, with D̄ =

⎛
⎜⎜⎜⎝
−I I

−I I
. . .

. . .
−I I

⎞
⎟⎟⎟⎠ ,

and where I ∈ R
V×V stands for the identity matrix. Therefore, we arrive to the fol-

lowing optimization problem:

Enforcing Group Structure through the Group Fused Lasso 353

1 2 3 4 5 6 7 8 9 10

−5

0

5

Feature

W
ei

gh
t

LA WEIGHTS

1 2 3 4 5 6 7 8 9 10
Feature

GL WEIGHTS

1 2 3 4 5 6 7 8 9 10

−5

0

5

Feature

W
ei

gh
t

FL WEIGHTS

1 2 3 4 5 6 7 8 9 10
Feature

GFL WEIGHTS

Fig. 1. Example of the structures induced by the different models

min
w∈RM

{
1
2
‖Xw− y‖2

2,1+λ1‖w‖2,1 +λ2‖D̄w‖2,1

}
. (3)

We call this model Group Fused Lasso (GFL). Notice that if V = 1 we recover FL,
and if V = M, i.e., there is a single group with M variables, GFL boils down to a
variant of FL using a TV2 regularizer, also known as �2-Variable Fusion [3].

The difference between the models described above is illustrated in Fig. 1, with
an example of the structures enforced by LA (some weights identically zero), GL
(some groups of weights identically zero), FL (piece-wise constant weights) and the
proposed GFL (piece-wise constant groups of weights).

We will solve the GFL optimization problem through convex proximal optimiza-
tion techniques; we will essentially apply a variant of the FISTA algorithm which,
in turn, requires that we can compute the proximal operator of the GFL regularizer,
something we will do in next section. We point out that GFL with only the group

354 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

‖D̄w‖2,1 penalty has been introduced in [7]. However, its solution is different from
ours, as it reduces this GFL to a GL model that is then solved by a group LARS
algorithm. We believe our approach to be better suited to deal with the full general
GFL case.

3 Solving Group Fused Lasso with Proximal Methods

All the �1 regularizers of Sect. 1 lead to convex but non-differentiable optimization
problems, which prevents solving them by standard gradient-based methods. How-
ever, they fit very nicely under the paradigm of Proximal Methods (PMs), a set of
techniques to optimize convex but possibly non-smooth functions via the splitting
of the objective in several “easier” parts. We briefly review this paradigm next, and
then we instantiate it for the particular case of GFL.

3.1 Proximal Methods

The proximal methods (see e.g. [9]) are a branch of techniques to minimize convex
but possibly non-smooth functions by splitting the objective into easier terms and
minimizing them independently via its proximal operator.

In our case, recall that the function to be minimized in (1) is fL(w) + fR(w),
where we include the penalty factor λ in fR(w) for the sake of notation. As shown
next, the intuitive idea of the PMs is to minimize this sum through the iterative min-
imization of fL (using a gradient descent step) and fR (using its proximal operator,
defined below).

Denote by ∂h(w) the subdifferential at w of a convex function h (i.e., the set of
all the subgradients of h at w [10]); since both terms fL(w) and fR(w) are convex,
w∗ will be a minimum of fL(w)+ fR(w) iff zero belongs to the subdifferential [4]:

w∗ = arg min
w∈RM

{ fL(w)+ fR(w)} ⇐⇒ 0 ∈ ∂ (fL(w
∗)+ fR(w

∗)). (4)

By the Moreau–Rockafellar [11] theorem, the right-hand side subdifferential can
be separated as ∂ fL(w∗)+ ∂ fR(w∗), and as fL(w) is differentiable, the optimality
condition can be rewritten in the following equivalent expressions:

0 ∈ ∂ fL(w
∗)+ ∂ fR(w

∗) ⇐⇒ 0 ∈ ∇ fL(w
∗)+ ∂ fR(w

∗)
⇐⇒ −γ∇ fL(w

∗) ∈ γλ ∂ fR(w
∗)

⇐⇒ w∗ − γ∇ fL(w
∗) ∈ w∗+ γ∂ fR(w

∗)
⇐⇒ w∗ − γ∇ fL(w

∗) ∈ (I + γ∂ fR)(w
∗),

which are satisfied for any γ > 0. Thus, at an optimal w∗ the set function (I +
γ∂ fR)

−1 verifies
w∗ ∈ (I + γ∂ fR)

−1 (w∗ − γ∇ fL(w
∗)) . (5)

Enforcing Group Structure through the Group Fused Lasso 355

Now, if F is a convex, lower semicontinuous function, its proximal operator at w
with step γ > 0 is defined as

zw = proxγ;F (w) = arg min
z∈RM

{
1
2
‖z−w‖2

2 + γF(z)

}
. (6)

Notice that the proximal operator can also be characterized in function of the subd-
ifferential using the optimality condition of (4):

zw = proxγ;F (w) ⇐⇒ 0 ∈ zw −w+ γ∂F(zw) ⇐⇒ zw ∈ (I + ∂F)−1(w).

Moreover, for a general convex F , it can be shown [4] that ∂F is a monotone op-
erator and, while in principle (I + ∂F)−1 would be just a set-function, it is actu-
ally uniquely valued. Therefore, it defines a function for which proxγ;F (w) = zw =

(I+∂F)−1(w) holds, which is an equivalent definition of the proximal operator that
justifies the iterative algorithm described next (nevertheless, the definition through
problem (6) is still crucial at it provides a general way to compute the proximal
operators for non-trivial functions). Thus, going back to (5), it follows that

w∗ = proxγ; fR (w
∗ − γ∇ fL(w

∗)) .

This fixed-point equation immediately suggests an iterative algorithm of the form

wk+1 = proxγ; fR

(
wk − γ∇ fL(w

k)
)
,

which converges because the proximal operator of a convex function turns out to be
firmly non-expansive [10]. This is at the heart of the well known proximal gradient
method [9] and of its ISTA and FISTA (Fast Iterative Shrinkage–Thresholding Al-
gorithm) extensions [5]. In particular, we will focus on FISTA, based on the pair of
equations:

wk = prox 1
L ; fR

(
zk − 1

L
∇ fL(z

k)

)
,

zk+1 = wk +
tk − 1
tk+1 (wk −wk−1), where tk+1 =

1
2

(
1+
√

1+ 4t2
k

)

and L is a Lipschitz constant for ∇ fL. The main advantage of FISTA is its conver-
gence rate, O(1/k2), in contrast with the O(1/k) sublinear convergence of ISTA and
the proximal gradient method [5].

Notice that all these algorithms require at each step the computation of the prox-
imal operator at the current wk. We discuss next these operators for GFL.

356 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

3.2 Proximal Operators for GFL

We turn now our attention to the particular application of FISTA to the GFL
problem.

In order to solve (3) for the complete GFL regularizer, we need the proximal op-
erator of the sum of the GTV and GL terms. Both regularizers are not separable, in
the sense that their joint proximal operator cannot be built by the usual expedient of
applying consecutively the proximal operators of GTV and GL (this strategy is pos-
sible, for example, in the case of the TV and the �1 norm regularizers). However, we
can still solve the proximal problem by the Proximal Dykstra (PD) [9] algorithm,
which allows to compute the proximal operator of the sum of several terms com-
bining their individual proximal operators in an iterative fashion (see the scheme in
Fig. 3). Therefore we will first focus on computing the proximal operators of GL
and GTV separately, which will be later combined through PD.

In our case, the proximal operator of the GL regularizer is just the group soft-
thresholding [2] defined as:

proxγ;‖·‖2,1
(wn,v) = wn,v

(
1− γ

‖wn‖2

)+

,

which is a generalization of the soft-thresholding of the �1 regularizer. Indeed, any
group wn with a norm less than γ is zeroed.

Thus we have to derive now the proximal operator for the GTV regularizer. In
particular, we will follow an analogous argument to the one in [3] for TV. We have
to solve

proxγ;GTV (w) = arg min
z∈RM

{
1
2
‖z−w‖2

2+ γ‖D̄z‖2,1

}
, (7)

which is a particular case of the more general problem

inf
z∈RM

{ f (z)+ γr(Bz)},

where B ≡ D̄, r(·) ≡ ‖ · ‖2,1 and f (y) ≡ 1
2‖y−w‖2

2. In turn, this problem can be
straightforwardly rewritten as

inf
z,v

{ f (z)+ γr(v)} s.t. v = Bz,

with z ∈ R
M and v ∈ R

(N−1)V . Its Lagrangian is given by

L (z,v;u) = f (z)+ γr(v)+ u · (Bz− v),

with u ∈ R
(N−1)V . Therefore [11], we can transform the equivalent saddle point

problem infz,v {supu L (z,v,u)} into the dual problem

inf
u

{
f ∗(−B�u)+ γr∗

(
1
γ

u

)}
, (8)

Enforcing Group Structure through the Group Fused Lasso 357

by means of the Fenchel Conjugate (FC [4]), which is in general defined for a func-
tion F as

F∗(x̂) =− inf {F(x)− x · x̂}.
Thus, going back to problem (7), we have to compute the FCs of f and r for the

particular case of the proximal operator of GTV. For f (z) = 1
2‖z−w‖2

2 the problem
for computing the FC of f becomes:

f ∗(s) =− inf
z∈RM

{
1
2
‖z−w‖2

2 − z · s
}
.

The optimum of this problem is clearly z∗ = w+ s, and substituting back we get

f ∗(s) =−
(

1
2
‖s‖2

2 − (w+ s) · s
)
=

1
2

s · s+ s ·w.

The conjugate of r(z), which in our case is the �2,1 norm, can be derived using the
definition of the FC and the conjugate of the �2 norm:

r∗(s) =− inf
z∈R(N−1)V

{‖z‖2,1 − z · s}=− inf
z∈R(N−1)V

{
N−1

∑
n=1

‖zn‖2 − zn · sn

}

=
N−1

∑
n=1

− inf
zn∈RV

{‖zn‖2 − zn · sn}=
N−1

∑
n=1

‖sn‖∗2

=
N−1

∑
n=1

ι‖sn‖2≤1 = ι∧N−1
n=1 ‖sn‖2≤1,

where when going from the second to the third row we have used that the FC of
the �2 norm is the indicator function of the unitary ball (which takes the value of 0
inside the ball, and the value of ∞ otherwise), and therefore r∗(s) is equal to ∞ if
any group has a norm greater than 1, and equal to 0 if not.

We can now obtain the dual problem of (7) by substituting the FCs f ∗ and r∗
computed above into (8):

min
u∈R(N−1)V

{
1
2
‖D̄�u‖2

2 − u�D̄w+ ι∧N−1
n=1 ‖un‖2≤γ

}

≡ min
u∈R(N−1)V

{
1
2
‖D̄�u−w‖2

2

}
s.t. ‖un‖2 ≤ γ, for n = 1, . . . ,N − 1, (9)

where we have completed squares and changed the indicator function to a set of
constraints. Since problem (9) is quadratic with simple convex constraints, it can be
easily solved using Projected Gradient (PG), which basically consists on iterating a
gradient descent step followed by a projection onto the feasible region.

After that, zw (i.e., the result of the proximal operator) can be recovered from the
dual solution u∗ through the equality

358 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

zw = w− D̄�u∗,

which follows from the condition 0 = ∇zL = zw −w+B�u∗.
To finish this section, we observe that the form of the GTV regularizer implicitly

assumes a 1-dimensional spatial structure for the data, as we only consider differ-
ences between a group of features wn and the two adjacent groups wn−1 and wn+1.
However, many problems of interest, such as image processing, present a natural
multidimensional structure that cannot be captured by the �2,1 penalty. Working
only with the GTV penalty, and as in [3], a solution for this is to combine sev-
eral 1-dimensional GTV penalties to obtain a multidimensional GTV. For example,
for problems with a 2-dimensional structure, we penalize changes in both row and
column-wise adjacent features. More precisely, denoting the i-th row by w[i,·] and
the j-th column by w[·, j], we can define the 2-dimensional GTV regularizer as

GTV2d(w) = ∑
i

GTV(w[i,·])+∑
j

GTV(w[·, j]).

This can be easily extended to more than two dimensions but, again, notice that this
multidimensional GTV regularizer is the sum of 1-dimensional GTVs.

With respect to how to compute the proximal operator of multidimensional GTV
regularizers, notice that those terms corresponding to the same dimension (for in-
stance, the terms GTV(w[i,·]) corresponding to the different columns) apply over
different variables, and are therefore trivially separable, so the proximal operator
of the summation of a particular dimension can be computed just by composing
the individual proximal operators. Nevertheless, each complete summation applies
over all the variables, and they cannot be separated (in the 2-dimensional case, both
∑i GTV(w[i,·]) and ∑ j GTV(w[·, j]) cover all the variables). In order to combine the
proximal operators of these summations we can use once again the PD algorithm.
This is illustrated in Fig. 2.

∑
j GTV(w[i,·]) + ∑

j GTV(w[·, j])

PG over Dual PG over Dual

Separ. Separ.

PD

TWO-DIMENSIONAL GTV

Fig. 2. Scheme of the computations of the proximal operator of the 2-dimensional GTV. The
1-dimensional proximal operators are solved using PG, and those corresponding to different
rows (or columns) are just composed (the Separ. boxes have no cost). Finally, the proximal
operator of both summations are combined with PD.

Enforcing Group Structure through the Group Fused Lasso 359

1
2 ‖Xw− y‖2

2 + λ1‖w‖2,1 + λ2 GTV(w)

∇ Gr. Soft-Thr. PG over Dual

PD

FISTA

ONE-DIMENSIONAL GFL

1
2 ‖Xw− y‖2

2 + λ1‖w‖2,1 + ∑
i λ2 GTV(w[i,·]) + ∑

j λ2 GTV(w[·, j])

∇ Gr. Soft-Thr. PG over Dual PG over Dual

Separ. Separ.

PD

FISTA

TWO-DIMENSIONAL GFL

Fig. 3. Scheme of the computations of the one and 2-dimensional GFL model. First, the
proximal operator of the individual 1-dimensional GTV terms (using PG) and of the �2,1
norm (which is the group soft-thresholding) are computed. All these proximal operators are
then merged applying PD. Finally, the proximal operator of fR and the gradient of fL are
combined with FISTA.

Similarly, for the case of a complete multidimensional GFL linear model, we
should use PD to combine the proximal operators of each 1-dimensional GTV and
that of the GL term, as shown in Fig. 3.

4 Experiments

In this section we will illustrate through two synthetic experiments the differences
between the structured linear models defined above; in particular, we shall see how
GFL is able to detect structure both on the weights of an underlying linear model and
also on the features of a structured problem, providing in some particular contexts

360 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

a much simpler and meaningful model with a performance (in terms of test error)
similar to that of RLS. Also, we will present an application of the GTV regularizer
to RGB image denoising tasks.

4.1 Synthetic Example: Structured Weights

Data structure may have two main sources. A first one would be in the patterns
themselves, in which there can exist a relationship between the features based on
some similarity among their sources. We illustrate such a behaviour in Sect. 4.2, in-
cluding how the different structured models can handle with it. A second possibility,
which we consider here, is structure in the generative models that is reflected into
pattern structure.

Therefore, this example corresponds to a synthetic structured linear problem
where the generative model is defined by a structured vector of weights. Concretely,
pattern features are divided into 100 3-dimensional groups, that is, N = 100 and
V = 3. Total dimension is, thus, 300, and our goal is to check if the different linear
models are able to detect this underlying structure.

The true model weights are generated randomly as four consecutive segments
of 25 groups with constant values for the three group coordinates. This defines a
weights vector

wtr = (wtr
1 , . . . ,w

tr
25︸ ︷︷ ︸

Block 1

,wtr
26, . . . ,w

tr
50︸ ︷︷ ︸

Block 2

,wtr
51, . . . ,w

tr
75︸ ︷︷ ︸

Block 3

,wtr
76, . . . ,w

tr
100︸ ︷︷ ︸

Block 4

)�, (10)

where the three components of any two groups belonging to the same block i are
equal,

wtr
n = wtr

m = ci =

⎛
⎝ci

1
ci

2
ci

3

⎞
⎠ ∀n,m ∈ Block i;

ci is either identically zero, or all the three coordinates are different from zero.
Therefore, wtr is built in such a way that it makes the features of a group to be si-
multaneously either active or inactive and in such a way that adjacent features have
a block behaviour (the weights are included in Fig. 4a, where each colour represents
a different feature within the group).

The true wtr is then perturbed to obtain a weight vector w̃ of the form w̃n,v =
wtr

n,v +ηn,v with η ∼ N (0;0.1) white Gaussian noise with a standard deviation of
0.1. Random independent patterns xp are then generated by a N (0;1) distribution,
and the values yp = w̃ · xp + η̂ p with η̂ ∼ N (0;0.1) then define the targets to be
fit by the regression models; we remark that these targets are generated using the
perturbed vector w̃. The underlying spatial structure of the weights of (10) is re-
flected in the yp values. Moreover, if the number of generated training patterns P is
well below the number of features (300), the problem will become ill-posed.

We tackle this regression problem considering 600, 300, 100 and 50 training
patterns and using five linear models: Regularized Least Squares (RLS), Lasso (LA),

Enforcing Group Structure through the Group Fused Lasso 361

Group Lasso (GL), Fused Lasso (FL) and the proposed Group Fused Lasso (GFL).
In the latter two cases, the linear models applied are the complete 1-dimensional
FL and GFL, that is, including both regularization terms (the �1/�2,1 one, and the
TV/GTV one). All the models are solved using FISTA with the proper proximal
operator, except RLS, which has the closed-form solution (2).

The corresponding regularization parameters are chosen over an initial dataset so
that the estimated weights are closest to the true (structured) weights in the �1 dis-
tance. Once the optimal parameters are fixed, 100 different experiment are generated
(varying the random input patterns and the perturbed weights, and consequently the
targets) in order to average the results.

Table 1 presents the results in terms of the distance between the recovered
weights w and the true weights wtr, both with the �1 distance, ‖w−wtr‖1 and the �2

one, ‖w−wtr‖2. The superscripts denote the ranking of the models; the same rank
is repeated if the differences are not significant under a Wilcoxon signed rank test
for zero median, with a significance level of 5%. As it can be seen, GFL achieves
the lowest distances in all the cases for both measures. Only FL is comparable,
whereas RLS, LA and GL values are clearly worse for the 600 and 300 pattern
problems and markedly fail when used with few training samples. The advantage
of GFL increases as the problem becomes more ill-posed. As reference values, the
distances of the perturbed weights to the true ones are ‖w̃−wtr‖1 = 23.93± 1.04
and ‖w̃−wtr‖2 = 1.73± 0.07. When the number of patterns is large enough, RLS
obtains comparable results as it has enough information to recover the perturbed
weights. Meanwhile, FL and GFL improve this base distance because they do not
consider only the error, but also the smoothness of the structure, attaining weights
that are even closer to the true weights than the perturbed ones. When the number

Table 1. Distance between the original structured weights and the recovered ones, training
with 600, 300, 100 and 50 patterns. The superscript denotes a model’s ranking.

Model P = 600 P = 300 P = 100 P = 50

�1 DISTANCE

RLS 23.91(4)±1.04 137.12(5)±60.13 1337.56(5)±22.40 1387.48(5)±17.89
LA 23.72(3)±1.03 43.58(3)±9.47 1155.96(4)±92.45 1304.73(3)±53.44
GL 26.77(5)±1.55 55.28(4)±12.36 1121.88(3)±94.29 1319.27(4)±56.74
FL 9.42(2)±1.45 11.16(2)±1.76 18.03(2)±3.72 76.67(2)±34.72
GFL 8.32(1)±1.36 10.10(1)±1.60 16.68(1)±3.36 27.20(1)±7.58

�2 DISTANCE

RLS 1.73(4)±0.07 9.89(5)±4.32 111.97(4)±3.09 124.45(3)±2.15
LA 1.72(3)±0.07 3.22(3)±0.70 111.96(4)±9.29 129.73(5)±4.97
GL 2.06(5)±0.11 4.15(4)±0.90 103.96(3)±9.03 128.34(4)±4.97
FL 0.74(2)±0.10 0.88(2)±0.13 1.46(2)±0.25 6.20(2)±2.77
GFL 0.65(1)±0.10 0.77(1)±0.12 1.31(1)±0.23 2.11(1)±0.58

362 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

of patterns decrease, the FL and GFL values are close to the reference ones, while
those of RLS, LA and GL are far away.

Moreover, Fig. 4b shows how for a 600 pattern sample FL and GFL recover quite
well the inherent structure of the problem, obtaining constant weights, while RLS,
LA and GL tend to the perturbed weights. As the number of patterns gets down to
50 (Fig. 4c), RLS, LA and GL lose the structured reference, whereas FL and GFL
always produce structured weights.

4.2 Synthetic Example: Structured Features

In the previous example, the structure of the problem is imposed through the struc-
tured lineal model given by the weights of (10). Therefore, the underlying generator
of the target is, indeed, structured, and thus the GFL model can capture this nature.
In the next synthetic experiment, the problem structure is given by the relationship
between the features. This is a more plausible framework in real world settings,
where some of the features may be highly correlated due, for instance, to some
proximity on their location. Therefore, the structure is imposed through the inputs
of the problem, instead of through the underlying weights (indeed, as explained
below, the true weights are randomly generated, and consequently unstructured).

Here each synthetic input pattern xp has the following block structure:

xp = (xp
1 , . . . ,x

p
25︸ ︷︷ ︸

Block 1

,xp
26, . . . ,x

p
50︸ ︷︷ ︸

Block 2

,xp
51, . . . ,x

p
75︸ ︷︷ ︸

Block 3

,xp
76, . . . ,x

p
100︸ ︷︷ ︸

Block 4

)�, (11)

with 3-dimensional blocks where all the multidimensional features of the same
block are equal on their three coordinates. A generative vector of weights wtr is ran-
domly generated following a N (0,1) and it is kept fixed for the whole experiment.
The random independent patterns xp are generated using a N (0,1) distribution with
the structure of (11) (indeed, only 4 features are generated, one per block, and they
are repeated 25 times to compose the 4 blocks). Then they are perturbed with white
noise N (0,0.01); thus the patterns are not perfectly piece-wise constant. Finally,
the target values are computed as yp = wtr · xp + η̂ p with η̂ ∼ N (0,0.25).

Since for this particular structured problem, all three coordinates in a block are
essentially the same, a vector of weights w̄ leading to the same targets can be defined
averaging the true weights of each block. These weights, which we call structured,
could provide a more robust prediction, as the resultant linear model would not rely
in any particular representative feature of each group. Formally, w̄ can be computed
substituting all the true weights of a block by the average of the weights of that
particular block:

w̄n =
1

25 ∑
m∈Block i

wtr
m , ∀n ∈ Block i.

If there were no noise then these structured weights will lead to the same target as
the original ones given the constancy of the features, and thus w̄ minimizes the error
while also providing valuable information about the structure of the problem.

Enforcing Group Structure through the Group Fused Lasso 363

20 40 60 80 100

0

10

20

Group

W
ei

gh
t

TRUE WEIGHTS

20 40 60 80 100
Group

PERTURBED WEIGHTS

Cmp 1

Cmp 2

Cmp 3

(a) True and perturbed weights.

20 40 60 80 100
0

10
20

Group

W
ei

gh
t

RLS WEIGHTS

20 40 60 80 100
Group

LA WEIGHTS

20 40 60 80 100
Group

GL WEIGHTS

20 40 60 80 100

0

10

20

Group

W
ei

gh
t

FL WEIGHTS

20 40 60 80 100
Group

GFL WEIGHTS

(b) Results with 600 patterns.

20 40 60 80 100
0

10
20

Group

W
ei

gh
t

RLS WEIGHTS

20 40 60 80 100
Group

LA WEIGHTS

20 40 60 80 100
Group

GL WEIGHTS

20 40 60 80 100

0

10

20

Group

W
ei

gh
t

FL WEIGHTS

20 40 60 80 100
Group

GFL WEIGHTS

(c) Results with 50 patterns.

Fig. 4. Weights for the Structured Weights Problem

Once the problem is defined, the same five linear models of Sect. 4.1 are com-
pared, again using 600, 300, 100 and 50 training patterns. The optimal regularization
parameters are chosen over an initial dataset to minimize the Mean Absolute Error
(MAE), as in this case there is not a unique reference vector (both wtr and w̄ are

364 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

equivalent). A test set of 1000 patterns is also generated and kept fixed; the experi-
ment is repeated 100 times changing the random input patterns.

An example of the weights obtained by each model is presented in Fig. 5. The
GFL and FL models capture the underlying structure of the problem (converging
to the structured weights w̄), whereas LA and GL attain a noisy version of them.
On the contrary, RLS fails to recover any structure, and it produces much more
complex weights. Nevertheless, the RLS weights are nearer to the true ones wtr and
hence they have less test error, but this model ignores any relationship between the
features. This is discussed in more detail below.

Table 2 quantifies the distance between the weights of each model and the struc-
tured weights w̄. Using this measure1, it is clear that GFL recovers the structure
with a higher precision than the rest of the models; RLS performs worst when the
number of training patterns is large, since this model does not consider any structure
and when there is sufficient information it tends to recover wtr. Nevertheless, with
the small training size (50 patterns) it also gets structured weights as a collateral
effect: if the problem is undetermined with redundant features (as in this case with-
out taking into account the noise), for every linear model there exists an equivalent
model that assigns the same weight to all the identical features, and thus it has the
same quadratic error (the features are indistinguishable) but less �2 norm. This is
why, with redundancy on the features, RLS also tends to assign the same weight to
all of the identical features.

The results over the test set are shown in Table 3. As reference, a prediction using
the generative true weights wtr obtains a MAE of 1.95, and a Mean Squared Error
(MSE) of 0.61, whereas using w̄ the errors are 2.32 and 0.84 respectively (slightly
larger because of the noise in the patterns). It is worth noting that, although the
true and the structured weights are very different, as shown in Fig. 5a, they produce
similar outputs since the underlying problem is ill-posed (the features of the same
block are almost the same). The best error rates, for both the MAE and MSE, are
attained by RLS when the number of patterns is large enough, because RLS tends
to the unstructured but true weights wtr, whereas the other models build a more
structured solution, though with a slightly higher error. When the number of pat-
terns gets smaller, the differences vanishes because RLS also obtains a structured
solution, since there is not information to get a complex one. Nevertheless, the dif-
ferences are small, and all the models perform quite similarly, but again notice that
the FL and GFL models are the simpler and more meaningful ones, closer to the
structured weights w̄ from the beginning.

Finally, it is worth commenting that the piece-wise constant weights of GFL and
FL suggest the use of a hierarchical model of just 12 features, namely the four
3-dimensional features xp

bi
that result from averaging each one of the blocks,

xp
bi
=

1
25 ∑

n∈Block i

xp
n .

1 The different scale with respect to Table 1 is because the entries of w̄ are averages of the
original weights, which are randomly generated with zero mean; therefore the entries of w̄
are near zero.

Enforcing Group Structure through the Group Fused Lasso 365

20 40 60 80 100
−0.4
−0.2

0
0.2
0.4

Group

W
ei

gh
t

TRUE WEIGHTS

20 40 60 80 100
Group

STRUCTURED WEIGHTS

Cmp 1

Cmp 2

Cmp 3

(a) True and structured weights.

20 40 60 80 100
−0.4
−0.2

0
0.2
0.4

Group

W
ei

gh
t

RLS WEIGHTS

20 40 60 80 100
Group

LA WEIGHTS

20 40 60 80 100
Group

GL WEIGHTS

20 40 60 80 100
−0.4
−0.2

0
0.2
0.4

Group

W
ei

gh
t

FL WEIGHTS

20 40 60 80 100
Group

GFL WEIGHTS

(b) Results with 600 patterns.

20 40 60 80 100
−0.4
−0.2

0
0.2
0.4

Group

W
ei

gh
t

RLS WEIGHTS

20 40 60 80 100
Group

LA WEIGHTS

20 40 60 80 100
Group

GL WEIGHTS

20 40 60 80 100
−0.4
−0.2

0
0.2
0.4

Group

W
ei

gh
t

FL WEIGHTS

20 40 60 80 100
Group

GFL WEIGHTS

(c) Results with 50 patterns.

Fig. 5. Weights for the structured features problem

366 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

Table 2. Distance between the underlying structured weights and the recovered ones, training
with 600, 300, 100 and 50 patterns. The superscript denotes the ranking, and the results are
scaled by 10.

Model P = 600 P = 300 P = 100 P = 50

�1 DISTANCE (·10)

RLS 1370.04(5)±53.61 1197.71(5)±61.02 589.82(5)±47.16 10.17(3)±1.25
LA 22.73(4)±1.04 22.83(3)±0.98 22.62(3)±1.06 24.40(5)±16.49
GL 15.26(3)±1.70 23.48(4)±1.06 23.74(4)±1.11 24.19(4)±25.09
FL 6.86(2)±0.82 7.01(2)±0.77 7.89(2)±0.90 8.28(2)±1.19
GFL 5.36(1)±0.75 2.11(1)±0.56 6.62(1)±0.87 7.11(1)±1.28

�2 DISTANCE (·10)

RLS 99.21(5)±3.58 86.50(5)±4.29 42.68(5)±3.33 0.73(3)±0.09
LA 1.64(4)±0.08 1.65(3)±0.07 1.63(3)±0.07 1.79(4)±1.34
GL 1.18(3)±0.11 1.70(4)±0.08 1.71(4)±0.08 1.90(5)±2.26
FL 0.58(2)±0.07 0.58(2)±0.06 0.63(2)±0.07 0.66(2)±0.09
GFL 0.49(1)±0.07 0.17(1)±0.07 0.55(1)±0.06 0.56(1)±0.09

Table 3. Test MAE and MSE for the structured data problem, training with 600, 300, 100 and
50 patterns. The superscript denotes the ranking, and the results are scaled by 10.

Model P = 600 P = 300 P = 100 P = 50

MAE (·10)

RLS 2.19(1)±0.03 2.28(1)±0.04 2.48(1)±0.09 2.82(3)±0.25
LA 2.38(4)±0.03 2.39(3)±0.03 2.57(3)±0.10 2.79(2)±0.26
GL 2.39(5)±0.03 2.38(2)±0.03 2.52(2)±0.09 2.80(2)±0.24
FL 2.35(2)±0.02 2.39(4)±0.03 2.52(2)±0.09 2.75(1)±0.23
GFL 2.35(3)±0.02 2.38(2)±0.03 2.51(2)±0.09 2.78(2)±0.24

MSE (·10)

RLS 0.75(1)±0.02 0.81(1)±0.03 0.96(1)±0.07 1.25(3)±0.24
LA 0.87(4)±0.02 0.89(3)±0.02 1.03(3)±0.08 1.23(2)±0.25
GL 0.88(5)±0.02 0.88(2)±0.02 0.99(2)±0.07 1.23(2)±0.22
FL 0.86(2)±0.01 0.89(4)±0.02 0.99(2)±0.07 1.19(1)±0.21
GFL 0.86(3)±0.01 0.88(2)±0.02 0.99(2)±0.07 1.21(2)±0.22

In fact, this is exactly what these two models are doing, considering these meta-
features instead of the original ones. Although the experiment of Sect. 4.1 also re-
sulted into structured weights, in that case the structure was induced by the underly-
ing weights, while in this experiment it is the features where the structure lies, and
therefore a sensible approach is to average all those which are similar.

Enforcing Group Structure through the Group Fused Lasso 367

4.3 Image Denoising

In this section we will show how the GTV regularizer can be applied to denoise
colour images. Notice that GTV is a natural choice for this, as images have a nat-
ural spatial structure where pixels change smoothly and can be considered nearly
constant in nearby regions (except in objects borders).

In fact, TV regularization has been extensively used for this task [6] on gray level
images, in the form of the denoising model

min
Irc

{
1
2
‖Irc − Ĩ‖2

2 + γ TV2d(Irc)

}
, (12)

for a noisy image Ĩ and some 2-dimensional form of TV, whose block structure
permits abrupt changes and thus the preservation of the borders of the images. The
parameter γ determines the balance between the similarity to the observed noisy
image Ĩ and the smoothness of the recovered image. By definition, the solution
of (12) is just the proximal operator of the TV regularizer with step γ .

When dealing with colour images a possible option is to apply TV denoising
independently to each of the three RGB layers, resulting in the problem:

min
Irc

{
1
2
‖Irc − Ĩ‖2

2 + γ
3

∑
n3=1

TV2d(Ĩ[·,·,n3])

}
, (13)

where (Ĩ[·,·,1], Ĩ[·,·,2], Ĩ[·,·,3]) are the three colour layers of the noisy image Ĩ (each layer
Ĩ[·,·,n3], obtained varying the first two indices and fixing the third one, is a matrix with
the same dimensions as the image). Because the three regularizers apply to different
coordinates, problem (13) can be solved applying the proximal operator of the 2-
dimensional TV independently to each one of the colour layers, that is, denoising
each layer like a gray level image. However, using this approach the relationship
between the different layers is ignored, whereas in natural images the change in the
three colours tend to occur at the same point.

A group approach is thus a natural strategy, as each pixel can also be considered
a multi-valued 3-dimensional feature. Therefore, GTV fits in this problem as it will
denoise an image using the entire problem structure. Specifically, the proximal op-
erator of the 2-dimensional GTV can be employed, which is defined and solved as
explained in Sect. 3:

min
Irc

{
1
2
‖Irc − Ĩ‖2

2 + γ GTV2d(Ĩ)

}
.

In the experiments that follow these denoising algorithms are applied to five dif-
ferent colour images with different noise models (which represent different effects,
as discussed in [8]):

Peppers This image is perturbed with additive Gaussian noise, Ĩ = Itr+η , with
η ∼N (0;0.05). This type of noise usually models thermal noise and,

368 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

also, the limiting behaviour of other noises that arise during acquisi-
tion of images and their transmission.

House Perturbed with speckle noise, that is, multiplicative uniform noise,
with Ĩ = Itr+ηItr, where η is uniform with 0 mean and variance 0.25,
η ∼ U (;0.25). The speckle noise arises in coherent light imaging
(like radar images) mainly due to random fluctuations in the return
signal.

Lena Perturbed with Poisson noise, where each perturbed pixel is generated
from a Poisson distribution with mean the original pixel, Ĩ ∼ P(Itr).
This noise represents variations in the number of photons sensed at a
given exposure level.

Mandrill Perturbed with salt and pepper noise, which for grey images sets at
random some of the pixel to either black or white. In this case, it is
adapted so approximately the 10% of the pixels of each colour layer
is set to the minimum or the maximum value. This type of noise is
related with errors in the analogue to digital conversion and bit errors.

Squares Perturbed with both additive Gaussian and Poisson noises with the
same distributions as before.

Fig. 6. Example of the image denoising results for Peppers (from left to right and top to
bottom, the original image, the noisy version and the recovery images using TV and GTV)

Enforcing Group Structure through the Group Fused Lasso 369

Fig. 7. Example of the image denoising results for Lena (from left to right and top to bottom,
the original image, the noisy version and the recovery images using TV and GTV)

Table 4. SNR and ISNR of the recovered images for the five proposed examples with the
respective noises, using TV and GTV as recovering algorithms. The superscript denotes the
ranking considering significant differences between the means.

Model Orig (SNR) TV (SNR) GTV (SNR) TV (ISNR) GTV (ISNR)

Peppers 8.11±0.01 15.80±0.37 18.13±0.37 7.69(2)±0.37 10.02(1)±0.37
House 7.94±0.01 16.74±0.07 17.20±0.07 8.80(2)±0.06 9.25(1)±0.07
Lena 21.99±0.01 25.48±0.11 26.63±0.25 3.49(2)±0.11 4.65(1)±0.25
Mandrill 9.94±0.04 15.51±0.19 16.81±0.12 5.57(2)±0.21 6.87(1)±0.13
Squares 8.35±0.01 22.87±0.15 23.93±0.16 14.52(2)±0.15 15.58(1)±0.16

The goal here is to compare the potential advantages of the 2-dimensional signal
recovery using GTV over that of TV. Therefore, for each image the optimal TV
and GTV penalties are selected as the ones that give the best Improvement in Sig-
nal to Noise Ratio (ISNR [1]) over a single perturbed sample, where the ISNR
of a recovered image Irc, from a noisy perturbation Ĩ of an original image Itr, is
defined as:

370 C.M. Alaı́z, Á. Barbero, and J.R. Dorronsoro

ISNR(Irc; Ĩ; Itr) = 10log10
‖Irc − Itr‖2

2

‖Ĩ− Itr‖2
2

.

This is equivalent to the difference between the signal to noise ratio (SNR) of the
recovered image, SNR(Irc; Itr) and the SNR of the original noisy image, SNR(Ĩ; Itr),
where

SNR(I; Itr) = 10log10
‖Itr‖2

2

‖I− Itr‖2
2

.

Once the optimal parameters are obtained, they are used to test TV and GTV de-
noising over 25 other different perturbations that follow the same distributions.

As an illustration, Figs. 6 and 7 include, for two of the five experiments, the
original image, an example of the noisy image and the image recovered using both
TV and GTV.

Numerically, in all cases GTV performed better than TV, as shown in Table 4,
where the superscripts denote that all the means are significantly different (using
again a Wilcoxon signed rank test for zero median, with a significance
level of 5%).

5 Conclusions

In this work we have proposed the Group Total Variation (GTV) regularizer, com-
bining the multidimensional group-sparse features of the Group Lasso regularizer
with the block spatial structure of the Total Variation penalty used by Fused Lasso.
This regularizer enforces a multidimensional feature to be piece-wise constant at
group level, being adjacent groups equal in all the different variables at the same
time. In addition, we have shown how to deal with this regularizer computing its
proximal operator, which is the basic tool to apply it, both independently and with
other regularizers. The GTV regularizer thus appears as a useful tool to reconstruct
multidimensional patterns with a spatial structure that reflects smooth changes along
the group features. Colour image denoising fits nicely in this framework and we have
shown that, for a variety of noise models, GTV performs better than the simpler TV
approach of applying 1-dimensional Total Variation independently on each colour.
Moreover, and although not done in this work, image deconvolution can also be
tackled using the proposed GTV regularizer. In particular, there are methods such
as SALSA [1] and TwIST [6] which can generalize a denoising method to address
also deconvolution problems.

Furthermore, this GTV regularizer can be merged with a Group Lasso (GL) term,
leading to the linear model that we call Group Fused Lasso (GFL). The associated
optimization problem for training this model can be solved using FISTA and the
proximal operator of GTV and GL. We have illustrated over a synthetic example
how GFL effectively captures block structure when present, and makes use of it to
address linear ill-posed problems with a number of features much larger than the
sample size.

Enforcing Group Structure through the Group Fused Lasso 371

This kind of spatial structure can be found in other real world problems, partic-
ularly those for which the underlying data features are associated to geographical
locations. Any sensible linear regression models for such problems should assign
similar weight values to spatially close features, which is exactly the behaviour that
GFL enforces. As further work we intend to study the advantages of GFL in such
a kind of problems, which will require the use of the complete 2-dimensional GFL
model as explained at the end of Sect. 3, and also to analyse the numerical complex-
ity of the proposed models and possible ways to improve it.

Acknowledgements. With partial support from Spain’s grant TIN2010-21575-C02-01 and
the UAM–ADIC Chair for Machine Learning.

References

1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using
variable splitting and constrained optimization. IEEE Transactions on Image Process-
ing 19(9), 2345–2356 (2010)

2. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Convex Optimization with Sparsity-
Inducing Norms (2011), http://www.di.ens.fr/˜fbach/opt_book.pdf

3. Barbero, A., Sra, S.: Fast newton–type methods for total variation regularization. In:
Proceedings of the 28th International Conference on Machine Learning (ICML 2011),
New York, NY, USA, pp. 313–320 (2011)

4. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer (2011)

5. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear in-
verse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

6. Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new twist: Two-step iterative shrink-
age/thresholding algorithms for image restoration. IEEE Transactions on Image Process-
ing 16(12), 2992–3004 (2007)

7. Bleakley, K., Vert, J.P.: The group fused Lasso for multiple change-point detection.
ArXiv e-prints (2011)

8. Bovik, A. (ed.): Handbook of Image and Video Processing. Academic Press, Inc., New
York (2000)

9. Combettes, P., Pesquet, J.: Proximal splitting methods in signal processing, pp. 185–212.
Springer (2011)

10. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting.
Multiscale Modeling & Simulation 4(4), 1168–1200 (2005)

11. Rockafellar, R.T.: Convex Analysis (Princeton Landmarks in Mathematics and Physics).
Princeton University Press (1996)

12. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser.
B 58(1), 267–288 (1996)

13. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness
via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 67(1), 91–108 (2005)

14. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society – Series B: Statistical Methodology 68(1), 49–67
(2006)

http://www.di.ens.fr/~fbach/opt_book.pdf

© Springer International Publishing Switzerland 2015
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,

373

Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_18

Incremental Anomaly Identification in Flight
Data Analysis by Adapted One-Class SVM
Method*

Denis Kolev, Mikhail Suvorov, Evgeniy Morozov, Garegin Markarian,
and Plamen Angelov

Abstract. In our work we used the capability of one-class support vector machine
(SVM) method to develop a novel one-class classification approach. Algorithm is
designed and tested, aimed for fault detection in complex technological systems,
such as aircraft. The main objective of this project was to create an algorithm
responsible for collecting and analyzing the data since the launch of an aircraft
engine. Data can be transferred from a variety of sensors that are responsible for
the speed, oil temperature and etc. In order to provide high generalization level
and sufficient learning data sets an incremental algorithm is considered. The pro-
posed method analyzes both “positive”/”normal” and “negative”/ ”abnormal”
examples. However, overall model structure is based on one-class classification
paradigm. Modified SVM-base outlier detection method is verified in comparison
with several classifiers, including the traditional one-class SVM. This algorithm
has been tested on real flight data from the Western European and Russia. The test
results are presented in the final part of the article.

Keywords: Flight Data Analysis, Fault Detection and Identification, one class
SVM.

1 Introduction

In this paper we present a novel one class classification technique based on
support vector machines (SVM) principles [12]. One class classification methods

Denis Kolev . Mikhail Suvorov . Evgeniy Morozov

Moscow State University, Russia
e-mail: {denis.g.kolev,severe013}@gmail.com, morozov_msu@mail.ru

Garegin Markarian . Plamen Angelov
Lancaster University, LA14WA, UK
e-mail: {p.angelov,g.markarian}@lancs.ac.uk

374 D. Kolev et al.

represent a wide set of various machine learning approaches that assume a single
class solution of a (fault detection or other) problem containing majority of the
samples [15].

One-class classification methods are widely used [13] techniques for fault
identification in complex systems [15]. The regular (non-faulty) system perfor-
mance is presented like a “base” class under the assumption that the data produced
by the normally functioning system have a more structured pattern as compared to
a rather random pattern of anomalies. Getting the set of all possible system faults
is a difficult task using traditional approaches. We needed to use all previous da-
tasets or try to simulate all possible fault detection for best result. Only after that
we could use our algorithm. Moreover we needed to obtain all possible combina-
tions of alarms.

Often, conventional data analysis algorithms of the technical systems (for ex-
ample, fault detection in flight data) are based on the set of predefined logical
rules (that use thresholds and conditions). For example, in flight data analysis
(FDA) systems such as Express Analysis (EA) used by SKAT [16] or Automated
Ground Station (AGS) used by Sagem [17] each possible event/fault is listed and
special logical condition is mapped to it. During the analysis process registered
data is verified for the appearance of such logical conditions. If any condition is
satisfied, the corresponding event is declared.

Such logical conditions use a limited subset of registered physical variables
(features) and a large number of thresholds, predefined by the aircraft manufactur-
er (in the case of a FDA system). Usually predefined rules are verified over huge
number of flights and used threshold are usually derived by the manufacturer
based on technical details of the system considered. However, standard FDA tech-
niques have several systemic disadvantages. The one of the most important is the
fact that, that in the most of the cases provided rules and thresholds are describing
general conditions, which may not fit properly for some given machine. Thus,
sometimes it is required to adapt the rule-based detection algorithm for every ma-
chine/aircraft manually. Also, a limited event list does not allow the detection of
any novel event. Due to the nature of rule-based algorithms, some interactions
between features’ values are also not taken into account [18], as each rule takes
into account only a relatively small subset of registered parameters.

Proposed method is related to the family of data-driven approaches. Usually,
such type of techniques do not aim to describe the system using some determinis-
tic approaches like differential equations, finite state automates and etc. In general,
data-driven approaches just provide a parametric models which are fitted over
some batch of data that describes the system behavior, which is usually called
"learning set". Such type of modeling is useful in the cases when considered sys-
tem is very complex , for instance aircraft. Most of the data-driven models have
two main operation stages: "learning" and "application". Usually, these two stages
are split in the time and learning stage is performed before application stage.

Described algorithm was developed with special condition that it should be able
to utilize newly coming data without need to fit the algorithm over the full amount
of learning set. This means, that any new batch of data can be added to the learning

Incremental Anomaly Identification in Flight Data Analysis 375

set and the parametric model will be updated without re-initialization. The parame-
ters of the model are updated only using the newly coming data, but taking into
account all previous learning batch. This includes recursive nature of the mathemati-
cal expressions with no need to store/memorize past data but to accumulate instead
the statistically aggregated information, and the ability to update recursively the
parameters of the algorithm itself [13].

One of the most popular approaches in one-class classification is support vector
machine (SVM) algorithm [1]. Initially proposed as a linear classifier, it is possi-
ble to introduce non-linearity in the algorithm using the well-known “kernel trick”
[12]. The algorithm provides solution of the given empirical risk function for
which an incremental optimization procedure can also be developed. The standard
one-class SVM method [7] is trained over the data set that contains only “base”
class examples (“normal”, not faulty one).

One-class classification problem can also be used for solving outlier/anomaly
detection problem [5,7]. That is why this type of technique is convenient in the
cases, when most of the data from sensors can be associated with a single class.
This subset of data is usually described as the “base” class (the class of “normali-
ty”). All other data have too complex pattern or are not in large amount. Typically,
the one-class classifier [5,7,11] takes as an input a vector of the data samples and
produces as an output the label of that data sample/input features vector. The out-
put of the one-class classifier is trivial and represents a Boolean YES/NO (if the
sample belongs to the “base” class or not) [7].

In an offline scenario there is a training stage that precedes the classification
phase stage [13, chapter 8]. Experts or another system during the training phase
provide correct labeled data. In an online scenario the correct labels may be pro-
vided one by one or all at once [13, chapter 8], e.g. after each flight of an aircraft
if there was no any fault all samples are marked as “normal”. Also part of the
training samples can be negative (knowingly “abnormal”). In the presented meth-
od we use not only “normal” samples in the recursive one-class SVM, but also the
“abnormal”/”negative” ones. This is the main difference in comparison with the
traditional systems.

In the next section we show the problem formulation, then, we describe the
traditional SVM method as well as the incremental learning procedure and in last
sections we describe the developed technique and illustrate the results of the per-
formance of the algorithm. Finally, in the Conclusion, we discuss our future re-
search directions.

2 Problem Specifics

In this paper we present a novel technique for a single class SVM which is par-
ticularly suitable to perform fault detection. (FD). Very important task is to find a
right data set which contains information about all possible situations in the sys-
tem. As we mentioned already, it is almost impossible to simulate a variety of all
possible alarms and combinations of alarms especially in an plane during flight.

376 D. Kolev et al.

The one-class classification algorithms could be separated into two main
groups:

− Support Vector Machine (SVM) -based one-class classification;

− One-class classification by the means of distribution density (member-
ship) restoration.

In this work, the first group of methods will be investigated and tested on real
flight data from various aircraft producers.

Incremental learning requirement to the algorithm, that was mentioned earlier is
motivated by the nature of the considered problem. It is usually impossible to
collect the data, containing all possible operation modes. For this reason, it is not
acceptable to use the algorithms, which cannot be adapted to the new data sets
after initial training. Ideally, it should be possible to adapt/evolve the classifier
(fault detector) itself in terms of its structure and mechanism to fit the newly ob-
tained data pattern especially if the changes are of a structural nature [13].

The standard representation of the data, processed by machine learning algo-
rithms is in the form of multidimensional vectors [14] where the dimensionality is
equal to the number of features (usually, physical variables such as air speed, pitch
angle, altitude, etc.).

In mathematical terms, the data vector is represented as a set ܺ = ,ଵݔ} … , ,{்ݔ
where T is the duration of the whole period of observation. A subset of the ob-
served data is supposed to be used as training set although in incremental algo-
rithms this training data set is updated by appending it with the new data vectors
[13]. In an extreme case, some classifiers can start ‘from scratch’ with the very
first data vector used as a model of the normality [3, 13], but the classification rate
(and the precision, respectively) will only reach more meaningful and useful val-
ues accumulating a larger number of data vectors, as the parametric model con-
verges. So, in this respect we assume that the initial number of training data set,
especially when we describe a FDA system is more substantial.

For each time interval when a fault is detected and confirmed a label of “ab-
normal”/”faulty” can be added as soon as the confirmation is available.

The following quality measures are usually used to compare different fault de-
tection and identification methods:

• False positives (FP). This is defined as the ratio of the data vectors that
are marked as faulty by the method being interrogated, but in reality there
is no fault or event.

• False negatives (FN). This is defined as a ratio of the data vectors that are
supposed not to be faulty by the method that is being interrogated, but an
event actually took place.

• Total error (TE). This is the ratio of data vectors in which the identifica-
tion result of the method differs from the reality.

Incremental Anomaly Identification in Flight Data Analysis 377

In this study a legacy FDA system used in Russia called SKAT implementing a
method called Express Analysis (EA) which is based on a very large number of
thresholds and expert rules [16] is used as ‘ground truth’. The use of experts is
very expensive and this assumption means that in some cases a fault may have
taken place but not being noticed by the experts or vice versa. Therefore, the com-
parison is with EA (used in SKAT and AGS) and not necessarily with the reality.

3 Support Vector Machines

The main idea of the popular two-class SVM method is to solve the classification
problem by separating the data vectors in two groups by a hyper-plane [1]. This
hyper-plane is selected in such a way to maximize the “gap” between the classes.

Formally speaking, if we consider a learning set ܺ = ,ଵݔ)} ,(ଵݕ … , ,ݔ) ,{(ݕ ∀݅ = 1, … , ݔ ݉ ∈ ℝ, ݕ ∈ {−1, 1}, where ݔ is the
data object description (or just "object") and ݕ is corresponding class label. Two-
class SVM can be considered as a method for linear classifier fitting. Correspond-
ing classification model is: (ݔ)ݕ = ,ݔ)൫݂݊݃݅ݏ ,ݓ ൯(ߩ = ,ݔۃ)݊݃݅ݏ ۄݓ − (ߩ

where parameters to be fitted are ݓ ∈ ℝ - hyper-plane normal vector, and ߩ is
the bias. Model form provides simple geometrical explanation for the classifica-
tion: class labeled as "-1" is situated in the negative semi-space, defined by ݂(ݔ, ,ݓ .and class "1" is in the positive semi-space (ߩ

Hyper-plane fitting is performed with the idea to maximize the minimal dis-
tance to the closest points from each class in the way, that all the points are classi-
fied correctly. It can be shown, that such formulation can be expressed by follow-
ing optimization problem:

ቐ min௪,ఘ 12 ԡݓԡଶݕ(ݔۃ, ۄݓ − (ߩ ≥ 1 , ݅ = 1 … ݉

However, such formulation is not applicable for the cases when the classes are
not linearly-separable. In the cases, when it is impossible to distinguish the classes
by linear function, constraints of the problem define an empty set.

Linear SVM can be applied to linearly non-separable classes by modification of
the initial optimization problem statement. Constraints are changed by introduc-
tion of so called "slack variables", which allow misclassifications of the vectors in
the learning set. Resulting optimization problem is as follows:

۔ۖەۖ
ۓ min௪,ఘ 12 ԡݓԡଶ + ܥ ߦ

ୀଵݕ(ݔۃ, ۄݓ − (ߩ ≥ 1 − ݅ , ߦ = 1 … ߦ݉ ≥ 0 ݅ = 1 … ݉

378 D. Kolev et al.

From mathematical perspective, introduction of the slack variables defines an
unlimited set, so that feasible pair (ݓ, .always exist (ߩ

It can be shown, that ݓ = ∑ ୀଵݔߙ , where ߙ are Lagrange multipliers related
to the limitation ݕ(ݔۃ, ۄݓ − (ߩ ≥ 1 − . One of the most important propertiesߦ
of SVM is the sparsity of ߙ, because most of the ߙ are 0. Non-zero Lagrangian
multipliers correspond to vectors for which ݕ(ݔۃ, ۄݓ − (ߩ ≤ 1. If the classifier is
appropriate the amount of non-zero ߙ should be relatively small.

The characteristics ܯ(ݔ) = ,ݔۃ)ݕ ۄݓ − measures the "confidence" of the (ߩ
classification of ݔ. If ܯ(ݔ) < 0 then the misclassifies ݔ. Usually ܯ(ݔ) is re-
ferred as "margin".

However, in some cases linear model is too rough for classification rule estima-
tion. In that cases a "kernel trick" is applied. The general idea is that vec-
tors/samples are mapped into a higher dimensionality space and to solve the
classification problem there. “Kernel trick” [13], is based on displacement of “lin-
ear” dot product by non-linear function, called kernel. The kernel is assumed to
satisfy the Mercer’s conditions [5,12].

There are two main approaches to support vector one-class classification. The
first one is called Support Vector Descriptor (SVD), which attempts to find a hy-
per-sphere of minimal radius so that all data points are within given sphere. The
model is characterized by two main parameters: (ܽ, ܴ), ܽ ∈ ℝ, ܴ ∈ ℝ - sphere
center and radius respectively. Corresponding optimization problem is as follows:

۔ۖەۖ
ۓ min௪,ఘ 12 ܴଶ + ܥ ߦ

ୀଵԡݔ − ܽԡଶ ≤ ܴଶ + ݅ , ߦ = 1 … ߦ݉ ≥ 0 ݅ = 1 … ݉ (1)

In case of SVD the resulting hyper-sphere center can be presented as a sparse
linear combination of vectors from the learning set.

Second approach proposed by Scholkopf is based on linear separation model.
The idea is to "place" the base class data from the origin with maximal margin.The
optimization problem of the "hyper-plane" one-class SVM is given as follows:

 ቐଵଶ ଶ||ݓ|| + ܥ ∑ ୀଵߦ − → ߩ ݉݅݊௪కఘ< ,ݔ ݓ > ߩ− ≥ ݅ , ߦ− = 1 … ߦ݉ ≥ 0 (2)

w is the normal vector to the separating plane,
ρ is a free term of the hyper-plane;
In this work we focus on hyper-plane One-class SVM with optimization

problem (2).
In most of the cases selection of "penalization" parameter ܥ is performed by

cross-validation. However, hyper-plane model has a significant property, that

simplifies the selection of ܥ. If we assume that ܥ = ଵఔ, then ߥ is an upper bound

of error fraction of the model over learning set.

Incremental Anomaly Identification in Flight Data Analysis 379

This property was proven in [10], and is very useful in most of the practical cases
as it gives information about the asymptotic FP rate in one-class SVM methods.

The easiest way to solve the main optimization problem is through the dual
problem:

 ൞ ܹ = ଵଶ ∑ ∑ ۄݔݔۃߙߙ + 1) ߩ − ∑ ୀଵୀଵୀଵߙ) → ݉݅݊௪కఘ0 ≤ ߙ ≤ ଵ௩ ݅ = 1 … ݉1 − ∑ ୀଵߙ = 0 (3)

where α is the Lagrangian multiplier [8].
The optimal hyper-plane parameters that are solutions of (2) or, equivalently,

(3) can be obtained as a linear combination of the data samples:

ݓ = ∑ ୀଵݔߙ (4)

All points ݔ which are used for algorithm training and for which ݂(ݔ) ≤0 are called support vectors (SV). Here ݂(ݔ) = ,ݔۃ) ݊݃݅ݏ ۄݓ − (ߩ = sign (∑ ୀଵߙ ,ݔۃ ۄݔ − The margin function for one-class classification is . (ߩ
defined similarly, assuming that all ݕ = 1:

(ݔ)ܯ = ,ݔۃ ۄݓ − ߩ = ߙ
ୀଵ ,ݔۃ ۄݔ − ߩ

However, proposed linear model may be over-simplified for the considered ap-
plication domain. In order to introduce more flexible model, a kernel trick is used.
As one-class SVM preserve the sparse solution property, the computational model
is suitable for large learning datasets.

In this work flight data analysis is performed by applying one-class SVM with
a Gaussian kernel that replace the dot product:

(ݔ)݂ = ݊݃݅ݏ ൭ ߙ exp(−ߛԡݔ − ԡଶ)ݔ
ୀଵ − ൱ߩ

Hereafter we will present the algorithm for incremental one class SVM learning.
The optimization problem (3) is a quadratic one and it has a numerical solution

which is described by Karush-Kuhn-Tucker (KKT) conditions [9], which provide
both necessary and satisfactory conditions for the optimization problem (2) to
have an optimal solution:

డௐడఈ = ۔ۖەۖ (ݔ)ܯ

ۓ > ߙ ,0 = 0 = 0, 0 ≤ ߙ ≤ ଵ௩ < ߙ ,0 = ଵ௩
 (5)

 డௐడఘ = 1 − ∑ 1=݅݉݅ߙ = 0

380 D. Kolev et al.

One of the outcomes of (5) is formal division of the whole data set into the
three separate (non-overlapping) data sub-sets:

1. Subset C (correct): Data vectors which were correctly classified by the algo-
rithm, the corresponding margin function is positive

2. Subset M (marginal): Data vectors which are situated on the border line of the
“base” class, the margin function is equal to 0.

3. Subset E (errors) Data vectors that are misclassified by the algorithm and cor-
responding margin function is negative.

Learning set decomposition is essential for SVM model (the hyper-plane) to ac-
commodate newly obtained data vectors [8] (learn incrementally). Traditionally,
SVM model is trained in an offline mode, but analytically optimal solution can
also be obtained during online SVM parameters model update [10].

One can see that the model proposed can be characterized by 2 main parame-
ters: (ߙ, ,(ߩ ߙ ∈ ℝ, ߩ ∈ ℝ - vector of Lagrange multipliers and free term (for
fixed learning set). The idea is to add a newly coming data into the learning set by
assigning a weight ߙ for new data vector xc and modification of all weights relat-
ed to all other vectors. This method updates the SVM parameters with every new
data vector, xc by additive update of the parameters of the model(for more details,
please, see [10]):

௪ߙ = ൦ߙଵ⋮ௗߙௗߙௗ൪+൦Δαଵ⋮ΔαΔα ൪ (6)

௪ߩ = ௗߩ + Δρ (7)

The overall idea is to update the parameters of the model – the Lagrange multi-
pliers for all the previous data and set new multiplier for the newly obtained data
as well as change the free term value. As a result of the changes, the solution will
still satisfy the KKT conditions.

When newly obtained learning data sample comes, two options are possible:
If the newly obtained data vector is correctly classified, than no update is

needed, as setting corresponding αC value to be 0 is enough for KKT conditions
(5) to be fulfilled.

If the new data vector is misclassified by the algorithm, than it becomes a sup-
port vector (SV) and its αC value is above 0. Then so called "adiabatic" weight
modification takes place. Initially αC is set to 0, it is increased by a special proce-
dure until KKT conditions (5) are met. Adiabatic procedure includes 2 iterative
sub-steps: "increase of alpha" and "learning set reorganization".

The first one aims to increase αC of ݔ in the way that:

1. For all xi in the subset M (marginal cases) the Margin ܯ(ݔ) is situated
at 0.

2. For all xi in the subset C and E the Margin ܯ(ݔ) is positive and nega-
tive correspondingly.

Incremental Anomaly Identification in Flight Data Analysis 381

Along with the increase of αC, all Lagrange multipliers of data vectors in subset
M are changed as well. Free term ߩ is changed too. Lagrange multipliers from sets
C and E are supposed to be fixed. However, the margins of vectors from E and C
change along with the change of αC (and all Lagrange multipliers from M and ߩ).
Due to the change of margins of vectors from E and C changes and Lagrange mul-
tipliers from M, the increase of alpha is bounded. For instance, one of the vectors
from E may get margin equal to 0 (which is the lower bound for the vectors from

E), or Lagrange multiplier for the vector from M may hit 0 or
ଵ௩ (limitations for

each alpha). We will describe all possible situations when the step "increase of
alpha" a bit further. Hereafter we will describe the increase procedure in more
details [10]:.

Suppose initially we have a sample set ܺ = ,ଵݔ} … , } with correspondingݔ
values of Lagrange multipliers (ߙଵ, … , .which satisfy KKT ,ߩ) and free termߙ
We want to add a vector ݔ into learning set with initially assigned value ߙ = 0.
First of all, let's point that such value of ߙ is acceptable for the procedure defini-
tions, as it does not change the margin of any new vector. Lets' consider how shall
we change the model if we change ߙ by ∆ߙ

Denote set ܯ ⊆ ܯ ,ܺ = ൛ݔଵெ, … , ெ|ெ|ݔ ൟ - vectors from margin set. ߙெ ,ଵெߙ)= … , ெ|ெ|ߙ) - corresponding Lagrange multipliers. For sets C and E similar defi-
nitions are used.

Margin set equality equation can be expressed as follows: ܭொ ∗ ாߙ ெܭ + ∗ ߙ + ெெܭ ∗ ெߙ) + Δߙெ) + ݇ெ, ∗ ߙ) + (ߙ∆ − ߩ − Δߩ = 0

Therefore, taking into account KKT: ܳெெ ∗ Δߙெ + ݇ெ, ∗ ߙ∆ − Δߩ = 0 ܳெெ −∆ߙ∆ߩெ൨ = − 1݇ெ,൨ where ܳெெߙ∆ = 0 1்1 ܭெ൨ (8) ܭெெ ∈ ℝ|ெ|×|ெ| is the matrix of inner (dot) products between data vectors
from the subset M, (ܭெெ) = ,ெݔۃ ொܭ Matrices .ۄெݔ ∈ ℝ|ெ|×|ா| and ܭெ ∈ℝ|ெ|×|| denote inner product between sets M ans E and C correspondingly ݇ெ, - is the vector of inner products between the data vectors from the subset
M and the new vector ݔ; ∆ߙெ denotes the updates of Lagrange multipliers that correspond to the data
vectors from the subset M. ∆ߩ denotes the update of the free-term of the hyper-plane ∆ߩ = ெߙ∆ ,ߙ∆(ݔ)ఘߚ − = , ߙ∆(ݔ)ெߚ
where we define: ߚఘ(ݔ)ߚெ(ݔ)൨ = −ܳெିଵ 1݇ெ,൨,

382 D. Kolev et al.

Substituting this result in (8) we have following expression for the change of
the margin for some given vector ݔ: ∆ܯ(ݔ) = ,ݔ)߬ ݅ ∀ ,ߙ∆(ݔ ∈ ܧ ∪ ܥ ∪ ,{ݔ}
where:

߬(ݔ, (ݔ = ,ݔۃ ۄݔ + ݔۃெ, |(ܿ)|ெߚۄݔ
ୀଵ + (ܿ)ఘߚ

One can check that ∀ݔ ∈ ݔ :ܺ ∈ ⇒ ܯ ߬(ܿ) = 0
Therefore, for each value of ∆ߙ we may obtain corresponding

 ெ so that theߙ∆ߩ∆

margins of the vectors from M-set are still 0. However, the margins of the vectors
from E and C sets are not fixed, therefore if we change ∆ߙ too strong, we may
get some vectors from C-set with negative margins or positive margins at E-set.

Lets' consider simple example. As it was mentioned, the change of ߙ should
not come to the situation when any of vectors from E set has a positive margin.
Therefore: ∀ ݔா ∈ (ாݔ)ܯ ܧ + (ாݔ)ܯ∆ < 0 ⇒ (ாݔ)ܯ∆ < (ாݔ)ܯ− ,ݔ)߬ ⇒ ߙ∆(ݔ ≤ (ாݔ)ܯ−

Taking into account that ∆ߙ > 0 and ∀ ݔா ∈ (ாݔ)ܯ ܧ < 0 derived limitation
should be taken into account only for the ݔா ∈ ܧ ∶ ,ݔ)߬ (ݔ > 0, i.e. the vectors,
which margin is growing. Therefore, the final limitation is as follows:

ାܧ ∶ ݔ} ∈ ,ݔ)߬| ܧ (ݔ > ߙ∆ {0 < minாశ − ெ൫௫ಶ൯ఛ(௫,௫)൨
However, equality ∆ߙ = minாశ − ெ൫௫ಶ൯ఛ(௫,௫)൨ means that at least one vector from ܧା gets margin equal to 0.
Similar upper bound limitations for ∆ߙ could be derived for the limitations on

M set and C. Then the minimal upper bound is taken as ∆ߙ. However, increasing
the ߙ leads to structural change of the sets E, C and M, because at least one vec-
tor from the set related to the selected upper bound "hits" a bound of KKT condi-
tions, i.e. to low\high margin or Lagrange multiplier. The increase of αC proceeds
until one of the following conditions is satisfied:

1) For data vector ݔ in the subset C the function ܯ(ݔ) obtains value 0.
Then this data vector/point is moved to the subset M with α set to 0 and
αC is increased with the new structure of the data subsets.

2) For data vector ݔ in the subset E the function ܯ(ݔ) obtains value 0.
Then this data vector/point is moved to the subset M with α set to 0 and
αC is increased with the new structure of the data subsets.

Incremental Anomaly Identification in Flight Data Analysis 383

3) For data vector ݔ in the subset M the value of αi gets value ߙ = ଵ௩.

Then this data vector/point is moved to the subset E with α set to 0 and
αC is increased with the new structure of the data subsets.

4) For data vector ݔ in the subset M the value of α gets value 0. Then this
data vector/point is moved to the subset C with αC is increased with the
new structure of the data subsets.

ߙ (5 = ଵ௩. Then the new data vector is moved to the subset E and the al-

gorithm terminates.
(ݔ)ܯ (6 = 0. Then the new data vector is moved to data subset M with the

current αC and the algorithm terminates.

If the cases 1)-4) take place, than the structure of the sets E,C,M is changed,
therefore the matrix ܳெெିଵ and matrices of inner products should be recalculated.
All this operations could be performed in an optimized way, by moving replacing
of the rows of the matrices and using Woodberry matrix inverse rule.

4 The Proposed Method

Existing one-class classification techniques mainly use their own settings to re-
duce the FP rate (false alarms). In addition, we can assume that the low level of
FN (misses of real anomalies) is associated with the successful use of the model
with a properly chosen classification system. But we have high level of negative
reactions in practical application of this approach, because a vectors/points do not
belong to the “base” class are classified incorrectly. At present day flight data
processing using statistical approaches one of the most significant problems is the
high FN rate (misses). Two-class classification methods are also used to determine
for fault identification problem, but for the a successful operation of this method
we have to use the training set, which in real life is an elusive goal for each air-
craft. That is why we propose a model which contains information about all possi-
ble fault detections, which allows our algorithm to understand deviations, regard-
less of whether they were before or not. This also allows us to classify our model
as one-class classification-type incremental SVM.

We propose a new technique of weight distribution which is applied for FP and
FN errors separately. Also, we suggest the existence of two classes which are
labeled by 1 and -1 where 1 corresponds to the “base” class ((flight) data with no
faults), and -1 – to the “faulty” class.

The proposed method can be formulated as the following optimization problem:

۔ۖەۖ
ۓ ଵଶ ԡݓԡଶ ++ ଵఔభభ ∑ ݕ]ߦ = 1]ୀଵ + ଵఔమమ ∑ ݕ]ߦ = −1]ୀଵ − ߩ → >)ݕ݊݅݉ ,ݔ ݓ > (ߩ− ≥ ݅ ,ߦ− = 1, … , ߦ݉ ≥ 0, ݅ = 1, … , ݉ (9)

where ݉ଵ is the number of positive examples in the learning sample, ݉ଶ is the
number of negative examples.

384 D. Kolev et al.

The Lagrangian of the problem (9) can be formulated as follows: ݓ)ܮ, ,ߦ ,ߩ ,ߣ (ߤ = 12 ԡݓԡଶ + ଵఔభభ ∑ ݕ]ߦ = 1]ୀଵ + ଵఔమమ ∑ ݕ]ߦ = −1]ୀଵ − ߩ + ∑ ߩݕ)ߙ) − ݕ <ୀଵ ݔ , ݓ > (ߦ− .ݓ) (10)ߦߤ − .ݎ .ݐ ߙ : ≥ 0, ߤ ≥ 0 ݅ = 1 … ݉

Applying KKT conditions (in a differential form) we have the following opti-
mality conditions: డడ௪ = ݓ − ∑ ୀଵݔݕߙ = 0 (11) డడఘ = 1 − ∑ ୀଵݕߙ = 0 (12) డడక = ଵఔభభ ݕ] = 1] + ଵఔమమ ݕ] = −1] − ߙ − ߤ = 0 (13)

For the proposed optimization problem the margin function of a vector x by (ݔ)ܯ = ߩݕ− + ,ݔۃݕ .ۄݓ
The complementary slackness terms are represented as follows:

ߦ (1 = ߤ ݎ 0 = 0 (14)
ߙ (2 = ߩݕ ݎ 0 − ݕ < ,ݔ ݓ > ߦ− = 0 (15)

So, all the samples could be divided into three subsets in the same way as in the
regular SVM (Vapnik, 1998): 1) ߤ = ଵఔభభ ݕ] = 1] + ଵఔమమ ݕ] = −1] , ߙ = 0, ߦ = 0, (ݔ)ܯ ≥ 0 - cor-

rectly classified samples 2) ߤ > 0, ߙ > 0, ߦ = (ݔ)ܯ ,0 = ߦ− – samples, that are situated on the
border 3) ߤ = 0, ߙ = ଵఔభభ ݕ] = 1] + ଵఔమమ ݕ] = −1] , ߦ > 0, (ݔ)ܯ = – ߦ−

misclassified objects.

One can see that the listed sets are analogous of C, M and E respectively. Using
all results from formulas above we have the corresponding dual optimization
problem: − ଵଶ ∑ ∑ ݕݕߙߙ < ,ݔ ݔ >ୀଵୀଵ − 1)ߩ − ∑ ୀଵݕߙ) → .ݓ ݔܽ݉ .ݎ .ݐ

۔ۖەۖ
0ۓ < ߙ < ଵ݉ଵߥ1 ݕ] = 1] + ଶ݉ଶߥ1 ݕ] = −1]

1 − ݕߙ
ୀଵ = 0 (16)

Incremental Anomaly Identification in Flight Data Analysis 385

From our results we can see that changes in the initial dual problem formulation
give us a chance to use into account information about “negative” (“faulty”) class
with various regularization weights. Based on information above we propose an
algorithm for the incremental update of the SVM model to accommodate the new-
ly obtained data vectors.

The idea of the incremental algorithm for the proposed algorithm is similar to
the approach described in section III. The update is based on the two steps, de-
scribed at previous section: "increase of alpha", and "learning set reorganization".

Lets’ consider the optimization problem (16), in order to derive the incremental
algorithm. The functional can be represented as: − 12 ߙܭ்ߙ − >−1)ߩ ,ݕ ߙ >)

If a new vector ݔ is added, than the Lagrange multipliers should be updated.
The changes in ߙ and ߩ are performed in the same way, as described previously:
changes are performed only to the Lagrange multipliers related to M-set, preserv-
ing the margin sign for all the rest sets and KKT conditions. Thus: ܭொߙா + ெܭ ߙ + ெߙ)ெெܭ + Δߙெ) + ݇ெ,(ߙ + (ߙ∆ − ߩ) + Δࡹ࢟(ߩ = ,ࡹ࢟ۃ 0 ࡹࢻࢤ) + ۄ(ெߙ + ࢉࢻࢤ)ࢉ࢟ + (ߙ + ,ாݕۃ ۄாߙ ݕۃ + , ۄߙ = 0

Therefore, following conditions on the change of parameters

,ࡹ࢟ۃ ۄࡹࢻࢤ + ࢉࢻࢤࢉ࢟ =
ࡹࢻࢤࡹࡹࡷ − ࡹ࢟࣋ࢤ + ࢉࢻࢤࢉ,ࡹ = KMM is a matrix of ൫ݕݕݔۃெ, ,൯ – inner products of Margin set elementsۄெݔ

multiplied by their class labels. kM,ୡ is a vector of ൫ݕݕݔۃ, (൯. Vector form of the conditions 1) and 2ۄெݔ
could be represented as follows: ܳெெᇱ −∆ߙ∆ߩெ൨ = − ݇ெ,൨ݕ , ܳெெᇱߙ∆ = ெெ൨ܭ ெݕெ்ݕ 0

Therefore, similarly to the standard one-class SVM case ∆ߩ = ߙ∆ ,ߙ∆(ݔ)ఘߚ − = ߙ∆(ݔ)ெ,ߚ

Where ߚఘ(ݔ)ߚெ(ݔ)൨ = −ܳ′ெெିଵ ݇ெ,൨ (17)ݕ

The change of the margin value for the learning set vectors is expressed as follows:

Δܯ = ቌ ݕ , ,ெݕெܭ ,ாݕெெܭ ொܭ ൩ ∗ ߚఘ(ݔ)ߚெ(ݔ)൨ + ݇, ݇ெ, ݇ா, ቍ ∗ ߙ∆

386 D. Kolev et al.

The formulas provides a rule for the changes of the Lagrange multipliers of the
M-set depending on the changes of ߙ. One can see, that the change is propor-
tional to the ∆ߙ,where proportion coefficient is denoted as ߬(ݔ, (ݔ = ,ݕൣ ݇ெ,் ൧ ∗ ߚఘ(ݔ)ߚெ(ݔ)൨ + ݇,

Here ݇ெ, and ݇, denotes a vector(value) of inner product(s) between ݔ and ܯ or ݔ. The limitations over ∆ߙ are as follows:

1) All vectors in the Error Set have a negative margin: ܧା ∶ ݔ} ∈ ,ݔ)߬| ܧ (ݔ > ߙ∆ {0 ≤ min௫∈ாశ ቈ− ,ݔ)߬(ݔ)ܯ)ݔ

2) All vectors in the Correct Set have a positive margin: ିܥ: ݔ} ∈ ,ݔ)߬| ܥ (ݔ < ߙ∆ {0 ≤ min௫∈ష ቈ− ,ݔ)߬(ݔ)ܯ)ݔ

3) All components of ߙெ satisfy the limitations of (16): ܯା: {ݔ ∈ (ܿ)ெ,ߚ| ܯ > ߙ∆ {0 ≤ min௫∈ெశ ቈܥ(ݕ) − (ܿݔ)ெ,ߚߙ

ݔ} :ିܯ ∈ (ܿ)ெ,ߚ| ܯ < ߙ∆ {0 ≤ min௫∈ெష ቈ (ܿݔ)ெ,ߚߙ−

4) The ߙ satisfies the limitations of (16): Δαୡ ≤ (ݕ)ܥ − ߙ

According to the given limitations, maximal possible Δαୡ is chosen. When it is
found and the values of Lagrange multipliers are changed, one of the events 1)-6)
described in section III occurs, the actions of the OSA algorithm are similar to the
standard SVM. The updates of the parameters of the model proceeds until condi-
tions 5) or 6) are satisfied.

5 Tests on Benchmark Data Sets

To validate the proposed algorithm we applied it to a number of well-known
benchmark datasets comparing it against both offline (SVM, C4.5, kNN) and
online (eClass0 and eClass1) classifiers. The chosen classification problems are, in
fact, multiclass problems as datasets for one-class classification problems are
not widely represented. But these problems can be easily turned into one-class
with one of the classes assigned as base and the remaining classes considered as
outliers.

Incremental Anomaly Identification in Flight Data Analysis 387

Each dataset was split into training set and control set. Training sets were used
at the learning step while classifiers’ performance was evaluated by the control
set. We will not discuss tuning of the known algorithms concentrating on the pro-
posed algorithm instead. For the incremental one-class SVM a Gaussian kernel
was chosen which is a common practice. Its single parameter ߛ, determining the
spread of the base class, was determined by a cross-validation procedure. The
Pareto-optimal ߛ, bringing minima to FN and FP rates, was chosen for each da-
taset. SVM parameter ߥ was set to 0.05 for all datasets, thus limiting FP rate on
the training set. Table I shows total error of the compared algorithms on different
datasets.

Table 1 Total error on benchmark datasets, in %

Offline (batch mode) Online/incremental

SVM C4.5 kNN eClass0 eClass1

The pro-

posed

method

Pima 31.03 26.37 25.55 30.62 23.36 26.33

Iris 10.53 10.53

Wine 5.77 7.87 3.06 7.56 2.78 5.77

On the well separable datasets Wine and Iris all the algorithms performed quiet

similarly. On the Pima dataset the proposed incremental one-class SVM perfumed
slightly better than the standard SVM. C4.5, kNN and both eClass methods were
not applied to the Iris dataset, the corresponding fields are left blank. Table 1
shows that the proposed method provides competitive with standard methods re-
sults being, at the same time, online and incremental.

6 Tests on Real Flight Data

The proposed incremental one-class SVM method was applied to anomaly detec-
tion in flight data collected from 138 real Boeing 737-800 flights. Flight data,
recorded in a binary format, can be hardly processed by standard offline methods
as there are hundreds of aircraft parameters registered at frequencies up to
1000Hz. At the same time, as an aircraft operates in a changing environment
‘normal’ parameter values are changing as well. This makes online and incremen-
tal methods favorable.

Flight data, that is a set of parameter values registered at different frequencies,
was preprocessed, in order to represent every flight as a multidimensional time
series. All parameters were linearly interpolated to the same frequency. Tradition-
ally Flight Data Analysis (FDA) is performed by legacy systems, such as AGS
[17], determining periods of abnormal aircraft functioning (events). Their markup
was used in this study for two purposes: to provide a bootstrap training set for the

388 D. Kolev et al.

proposed algorithm, as well as to evaluate its performance on the full flight da-
taset. It should be mentioned that most of the events detected by the legacy sys-
tems are different kinds of pilot errors, hardly separable in the data space.

Two parameters of the proposed method, kernel spread ߛ and SVM ߥ-
parameter, were determined by a cross-validation procedure identifying the de-
pendence of different error rates from these parameters. Cross-validation was
performed over flight data registered during “approach” and “final approach”
phases, split into training and control sets. FP and FN rates on the control set are
shown in Figure 1 and Figure 2, respectively, representing these rates as functions
of parameters ߛ and ߥ.

Fig. 1 FP rate as a function of ࣇ and ࢽ

Fig. 2 FN rate as a function of ࣇ and ࢽ

Cross-validation showed, and it can be seen in Figure 1 and Figure 2, that the
dependence of FP and FN rates on the algorithm’s parameters is close to linear.
But FN rate can be decreased only by the cost of FP rate growth. The impact of
the change of the ߛ-parameter is stronger in comparison to the ߥ-parameter.

The maximum acceptable FP rate was defined by flight safety experts. Thus al-
gorithm’s parameters were adopted to decrease the FN rate with the limited FP
rate.

Incremental Anomaly Identif

To compare standard
flights were chosen as t
posed one) were fitted to
following parameter settin

The algorithms’ perfor
The proposed incremen

Marginal, Error and Corre
To reduce this computatio
classified samples was lim
al million vectors, contai
the available computation

SVM and the proposed
Figure 3. The curves are b
models.

Fig. 3 ROC curves, SVM (bl

The horizontal axis rep
positive rate, which can b
formance of the proposed

ROC-curves show that
are significantly better co
for the standard SVM ap
therefore 40% of FN is ob
FP, getting 85% of true-ne

fication in Flight Data Analysis 38

SVM approach [6] with the proposed approach twent
training set and both SVM models (offline and the pro
o this data. The cross-validation procedure provided th
ng: ߥଵ = 2, ଶߥ = 0.1, ߛ = 0.3

rmance was evaluated by the resting 118 flights.
ntal SVM approach is computationally demanding, as th
ect sets are increasing at every iteration of the algorithm
onal complexity, the size of the set, containing correctl
mited by 1000 vectors. Thus the model, fitted over seve
ined only 3000 support vectors, which is acceptable fo
nal resources.
d method performance is represented by ROC-curves i
built by varying the threshold parameter ߩ of each of th

lue) and the proposed approach (red)

presents the FP rate; the vertical axis represents the true
be calculated as 1 − The red line indicates the pe .ܰܨ

d method, the blue line – of the standard SVM.
 the results for the proposed incremental one-class SVM

omparing to the standard SVM. An acceptable 5% of F
pproach allows achieving only 60% of correct alarm
btained. The proposed method allows, for the same 5% o
egative rate, or 15% of FN.

89

ty
o-
he

he
m.
ly

er-
or

in
he

e-
er-

M
FP

ms,
of

390 D. Kolev et al.

7 Conclusion

In this work a new type of incremental, online SVM approach is proposed. It
builds upon recently reported online recursive one-class SVM approach [10] by
generalizing to also include in considerations the "negative" (faulty) data samples
as well as the "normal" ones, but is still one-class classification type. It was tested
on a number of benchmark data sets as well as on real flight data. Cross-validation
procedure was used to identify the parameters of the SVM algorithm. The results
presented in this paper show that the developed algorithm is superior to existing
analogues. The next step in the improvement of the results will be a reduction FN
rate. As the results indicate a very promising approach to achieve this aim is to
use autonomously learning classifiers such as eClass [3,13,19].

Acknowledgements. The research led in this project has received funding from the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n°
ACPO-GA-2010-265940, “SVETLANA”.

References

[1] Vapnik, V., Golowich, S.E., Smola, A.J.: Support Vector Method for Function Ap-
proximation, Regression Estimation and Signal Processing. In: Paper presented at the
meeting of the Advances in Neural Information Processing Systems 9 — Proceedings
of the 1996 Neural Information Processing Systems Conference (NIPS 1996), Dever,
CO, USA (1997)

[2] TU-204-100 Aircraft Operations Manual / Tupolev ANTK (1998)
[3] Angelov, P.: Anomalous System State Identification, GB1208542.9 (priority date

May 15, 2012)
[4] Koppel, M., Schler, J.: Authorship verification as a one-class classification problem.

In: Proceedings of the Twenty-First International Conference on Machine Learning
(ICML 2004), p. 62. ACM, New York (2004)

[5] Gretton, A., Desobry, F.: On-Line One-Class Support Vector Machines. An Applica-
tion to Signal Segmentation. In: IEEE ICASSP, vol. 2, pp. 709–712 (2003)

[6] Gâlmeanu, H., Andonie, R.: Implementation Issues of an Incremental and
Decremental SVM. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008,
Part I. LNCS, vol. 5163, pp. 325–335. Springer, Heidelberg (2008)

[7] Das, S., Oza, N.C.: Sparse Solutions for Single Class SVMs: A Bi-Criterion Ap-
proach. In: Proc. SDM, pp. 816–827. SIAM, Omnipress (2011)

[8] Jensen, S.: An Introduction to Lagrange Multipliers,
http://www.slimy.com/~steuard/teaching/tutorials/
Lagrange.html

[9] Gershwin, S.B.: KKT - Examples. MIT OpenCourseWare (2010)
[10] Tax, D.M.J., Laskov, P.: Online SVM learning: from classification to data descrip-

tion and back. Journal of Machine Learning Research 7, 1909–1936 (2006)
[11] Hill, S.I., Doucet, A.: Adapting Two-Class Support Vector Classification Methods to

Many Class Problems. In: Proc. ICML 2005 Proc. 22nd Intern. Conf. on Machine
Learning, pp. 313–320 (2005)

Incremental Anomaly Identification in Flight Data Analysis 391

[12] Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimat-
ing the support of a high dimensional distribution. Neural Computation 13(7), 1443–
1471 (2001)

[13] Angelov, P.: Autonomous Learning Systems: From Data Streams to Knowledge in
Real time. Willey (December 2012) ISBN: 978-1-1199-5152-0

[14] Bishop, C.: Machine Learning and Pattern Classification, 2nd edn. Springer (2009)
[15] Stibor, T., Timmis, J.I., Eckert, C.: A Comparative study of real-valued negative se-

lection to statistical anomaly detection techniques. In: Jacob, C., Pilat, M.L., Bentley,
P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 262–275. Springer, Hei-
delberg (2005)

[16] TU-204-100 Aircraft Operations Manual / Tupolev ANTK (1998)
[17] Analysis Ground Station (AGS), Sagem/SAFRAN, France,

http://www.sagem-ds.com/spip.php?rubrique230
(accessed November 8, 2012)

[18] Kolev, D., Zvikhachevskiy, D., Suvorov, M., Angelov, P.: Safety (and maintenance)
improvement Through automated flight data analysis March 19, 2012, Scale Focused
Research Project for project SVETLANA, Grant Agreement: ACPO-GA-2010-
265940 (2012)

[19] Angelov, P., Zhou, X.: Evolving Fuzzy-Rule-based Classifiers from Data Streams.
IEEE Trans. on Fuzzy Systems 16(6), 1462–1475 (2008)

Inertial Gesture Recognition with BLSTM-RNN

Grégoire Lefebvre, Samuel Berlemont, Franck Mamalet, and Christophe Garcia

Abstract. This chapter presents a new robust method for inertial MEM (MicroElec-
troMechanical systems) based 3D gesture recognition. The linear acceleration and
the angular velocity, respectively provided by the accelerometer and the gyrome-
ter, are sampled in time resulting in 6D values at each timestep, which are used
as inputs for our gesture recognition system. We propose to build a system based
on Bidirectional Long Short-Term Memory Recurrent Neural Networks (BLSTM-
RNN) for gesture classification from raw MEM data. We compare this system to
a statistical method based on HMM (Hidden Markov Model), to a geometric ap-
proach using DTW (Dynamic Time Warping), and to a specific classifier FDSVM
(Frame-based Descriptor and multi-class Support Vector Machine) using filtered
and denoised MEM data. Experimental results, on a dataset composed of 22 individ-
uals producing 14 gestures, show that the proposed approach outperforms classical
methods with an average classification rate of 95.57% and a standard deviation of
0.50 for 616 test gestures. Furthermore, these experiments underline that combining
accelerometer and gyrometer data gives better results than using a single inertial
description.

Grégoire Lefebvre · Samuel Berlemont
Orange Labs, R&D, Meylan, France
e-mail: {gregoire.lefebvre,samuel.berlemont}@orange.com
Franck Mamalet
Orange Labs, R&D, Rennes, France
e-mail: franck.mamalet@orange.com

Christophe Garcia
LIRIS, UMR 5205 CNRS, INSA-Lyon, F-69621, France
e-mail: christophe.garcia@liris.cnrs.fr

c© Springer International Publishing Switzerland 2015 393
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_19

394 G. Lefebvre et al.

1 Introduction

Accelerometers and gyrometers are nowadays present in our Smartphones. These
sensors capture hand movements when users grasp their devices. We can consider
two main issues: posture recognition and symbolic gesture recognition. In the first
case, the user maintains a posture during a certain period of time, keeping for in-
stance the device upside down. In the second situation, the user may produce a
gesture to execute a system command, like drawing a heart symbol in 3D space in
order to call its favorite phone number. Dynamic gesture recognition based on iner-
tial sensors is a very challenging task. Algorithms are confronted to numerous fac-
tors causing errors in the recognition process: dynamical differences (intense versus
phlegmatic gestures), temporal variations (slow versus fast movements), physical
constraints (device weight, human body elasticity, left or right-handed users, seated
or standing up users, users on the move, etc.), classification constraints (mono versus
multi users, open or closed world paradigm, etc.). Moreover, inertial MEM intro-
duce some noise in the data. For example, the accelerometer, as a 3-axis capacitive
mass spring system, interpret gravity as an acceleration in the opposite direction.
This constant bias is difficult to extract due to the reference frame of the sensor,
which is fixed in relation to the device (see [23] for more details).

Classically, several steps operate from signal data processing to gesture classifi-
cation with some intermediate steps like data clustering and gesture model learning.
The processing steps aim at building a more compact representation of the input
signals that characterize the corresponding gestures. Different methods can then be
applied: calibration, filtering, normalization or thresholding. Data clustering is often
applied to reduce the input space dimension and find class referent gesture vectors.
A learning phase of a gesture model follows this clustering step and finally a deci-
sion rule or a specific classifier is built in order to label the input data as a recognized
gesture or an unknown gesture.

In this chapter, we propose to learn an efficient gesture classifier without any
preprocessing method (i.e. from raw MEM data) using a BLSTM-RNN model. This
chapter is organized as follows. Section 2 presents a survey of sensor-based gesture
recognition. In section 3, we describe in detail the proposed gesture recognition
method. We present in depth experimental results in section 4. Finally, conclusions
and perspectives are drawn in section 5.

2 Accelerometer Based 3D Gesture Recognition

3D gesture recognition using accelerometers has been studied in recent years, and
for gesture classification three main strategies stand out which are based on statis-
tics, on geometry or on boosting classifiers.

The first strategy has been deeply studied in the last decade, the methods being
based on Hidden Markov Models (HMM) [12, 13, 14, 21] and Bayesian networks
[4]. Hofmann et al. [12] propose to use discrete HMM (dHMM) for recognizing
dynamic gestures thanks to their velocity profile. This approach consists of two

Inertial Gesture Recognition with BLSTM-RNN 395

levels and stages of recognition: a low-level stage essentially dividing the input data
space into different regions and assigning each of them to a representative codebook,
and a high-level stage taking the sequences of vector indexes from the first stage
and classifying them with discrete HMM. The experiments are performed using a
training set of 500 gestures with 10 samples per gesture realized by two persons.
Each sample represents hand orientations, acceleration data and finger joint angles.
A vector codebook is obtained by an input space clustering method (i.e. the K-means
algorithm). The clustering essentially serves as an unsupervised learning procedure
to model the shape of the feature vector distribution in the input data space. Here,
the observation alphabet size equals 120. The comparison between ergodic HMM
and left-to-right HMM shows similar results with 95.6% of correct recognition rate
for 100 gestures from two users describing German Sign Language.

Hand gesture recognition based on HMM is also proposed by Mantyla et al.
[18]. Their approach differs by a uniform vector quantization strategy based on 512
3D codewords. Here, minimum and maximum values of each acceleration compo-
nent were evaluated using the training data in order to define the bounding box of
the activity in the feature space. The experimental results show an average correct
recognition rate of 96% on a small dataset of six gesture categories. The input ac-
celeration data is low-pass Butterworth filtered after 100Hz sampling.

Similar results are presented in [13, 14]. Kallio et al. [13] use five HMM states
and a codebook size of eight for 16 gestures. The authors highlight that the per-
formances decrease when using four sequences for training the system instead of
20 sequences. The recognition rate falls from 95% to 75% even for this mono-user
case study. In [14], a 37 multi-user case is studied for 8 gestures, evaluating the ef-
fect of vector quantization and sampling. A rate of 96.1% of correct classification is
obtained with five HMM states and a codebook size of height. However, this study
can be considered as biased since the K-means clustering is performed from all the
available data set and not only the training database.

In opposition to the previous studies, and taking into consideration that gesture
data are correlated in time, Pylvänäinen proposes in [21] to build a system based
on continuous HMM (cHMM). Again, the results are convincing, with 96.76% on a
dataset providing 20 samples for 10 gestures performed by 7 persons. An evaluation
of the quantization and sampling effects is demonstrated, and the best performances
are obtained by using 7− 12 bits per sample and a frequency from 20 to 30Hz.

In [4], Cho et al. build Bayesian networks models based on the extraction, within
the acceleration signals, of primitives which correspond to portions of the signals
whose values increase or decrease monotonously. These primitives are recursively
decomposed in mid-points models, represented by the Gaussian distributions of the
samples whose time indexes are the mean of the extracted primitive end-points. Ges-
tures are classified based on a maximum likelihood matching to the models created.
Cho et al. show a mean correct recognition rate of 96.3% with a 4-fold test, with 11
gestures carried out 3 times by 100 users.

The second strategy for recognizing 3D gestures is based on distances between
geometric models. The goal is to provide a gallery of some gesture references to
model each gesture into class with time warping strategies and design a decision

396 G. Lefebvre et al.

rule for a test gesture regarding the respective distance to these referent instances.
On the contrary to the HMM strategy, no learning phase is needed but the compu-
tational time is high as a test gesture has to be compared to all referent instances.
Consequently, the main drawback of this approach is the necessity to find the most
relevant samples to represent a gesture class while keeping the number of these ref-
erents low in order to minimize the final evaluation processing time. Wilson et al.
in [22] compare Linear Time Warping (LTW) and Dynamic Time Warping (DTW)
to the HMM based strategy. Their experiments with 7 types of gesture from 6 users
shows an advantage for HMM with 90% in opposition to the score of LTW and
DTW of respectively 40% and 71% of correct recognition rate.

Liu et al. experiment with more success the DTW strategy in [17]. Gesture recog-
nition and user identification are performed with good recognition rates of respec-
tively 93.5% and 88%. The gesture data, performed over multiple days, consists
of 30 samples of 8 gestures for 8 individuals and the user recognition results are
obtained from 25 participants. The authors introduce an averaging window of 50
ms for reducing noise and erratic moves. It appears that preprocessing methods
are here crucial to increase the classification results. Likewise, in [1], Akl et al.
use DTW and affinity propagation for dimension reduction for recognizing 3D ges-
tures. 7 subjects participated producing 3700 gesture traces for a good classification
rate of 90%.

The third strategy for recognizing 3D gestures is to learn a specific classifier.
Hoffman et al. in [11] improve 3D gesture recognition with a linear classifier
and the Adaboost method, inspired by the method proposed in [15] for 2D sym-
bol writer recognition. The experiments show an accuracy of 98% for 13 gestures
made by 17 participants. Other studies focus on Support Vector Machine (SVM) like
in [24]. This study uses Frame-based Descriptor and multi-class SVM (FDSVM).
Each gesture is divided into segments, from which are extracted statistical descrip-
tors such as: mean, energy, entropy, standard deviation and correlation. These de-
scriptors form the feature vectors to be classified by a multi-class SVM. The ob-
tained results achieve 95.21% of good recognition for 12 gestures made by 10
individuals.

In [4], Cho et al. also use a confusion pair discrimination strategy, enhancing
their 96.3% average recognition rate to 96.9% with a bi-class SVM (i.e. letter O
versus number 6), in order to better separate similar gestures, which generate most
of the recognition errors.

Consequently, many strategies are explored with different paradigms and specific
data processing methods. However, theses approaches depend heavily on the choice
of descriptors which may not be optimal in general. Moreover, it is challenging
to compare these methods on different databases. To cope with these issues, we
develop hereafter our 3D gesture recognition method based on BLSTM-RNN that
learns to automatically extract relevant features from raw input data and compare it
with the main state-of-the-art methods on a common database.

Inertial Gesture Recognition with BLSTM-RNN 397

3 The Proposed Gesture Recognition Method

3.1 Bidirectional Long Short-Term Memory Recurrent Neural
Networks

Classical Recurrent Neural Networks (RNNs) are a common learning technique for
temporal sequence analysis. It can be seen as a particular neural network, which
can remember previous inputs and use them to influence the network output, using
recurrent connections in the hidden layers to store some information about the con-
text. Nevertheless, even if they are able to learn tasks which involve short time lags
between inputs and corresponding teacher signals, Hochreiter and Schmidhuber in
[10] have shown that this short-term memory becomes insufficient when dealing
with “real world” sequence processing, such as inertial gesture sequences.

In order to alleviate this problem, they introduced the Long Short Term Memory
RNNs (LSTM-RNN), which neurons contain a constant “memory cell” – namely
constant error carousel (CEC) –. This allows for constant error signal propagation
through time, and thus, provides remedies for the RNN’s problem of exponential
error decay [10]. Figure 1 presents in detail a LSTM neuron.

Improved versions of the LSTM-RNN were proposed by Graves et al. [9], adding
some multiplicative gates to control the access to the CEC. These gates are neurons
that can set (input gate), reset (forget gate) or hide (output gate) the internal value
of the CEC according to neuron input values and context. Additional direct connec-
tions – namely peephole – have also been introduced to achieve finer gate control
using the CEC value as input.

Furthermore, since in sequence classification, at a given timestep, past and future
context may have similar importance, Graves and Schmidhuber [9] also introduced
a so-called bidirectional LSTM-RNN model (BLSTM-RNN), that consists in two
separate hidden layers, the forward and backward layers able to deal respectively

Fig. 1 A LSTM neuron: the Constant Error Carousel (CEC) is controlled by three multiplica-
tive gates (input, forget and output). Peepholes enable to transmit directly the CEC value to
the gate, at a given timestep.

398 G. Lefebvre et al.

with past and future context. As shown in Figure 2, the output layer is connected to
both hidden layers in order to fuse past and future contexts.

Let’s give the following notations:

• G = {G0, ...,GT−1} is a gesture with T denoting the size of the sequence;
• Gt = (x0(t), ...,xN−1(t)) is a vector at timestep t and N being the sensor number;
• (o0(t), ...,on−1(t)) is the BLSTM-RNN output set at timestep t with n is the

number of gestures to be classified.

Fig. 2 A BLSTM-RNN architecture: the forward (resp. backward) layer processes the input
sequence in the (resp. reverse) order. Output layer concatenates hidden layers values at each
timestep to make a decision by considering both past and future contexts.

(B)LSTM-RNNs have proven their great ability to deal with temporal data in
many applications such as: phoneme classification [9], action classification [2], fa-
cial expression recognition [3], rhythm or timed event recognition [6], robot trajec-
tory learning [19], handwriting recognition [8, 7], or text recognition [5].

In this chapter, we consider gesture data using 6D input vectors through sampling
timestep. These data are correlated during the user gestural production, and time lags
between the beginning and the end of gesture can be long. Furthermore, past and
future context are both essential for gesture recognition. For these reasons, BLSTM-
RNN is chosen to classify the input MEM data sequence.

3.2 BLSTM-RNN Architecture, Training and Decision Rule

The proposed gesture classification scheme based on BLSTM-RNN is described in
Figure 3. First, the input layer consists in the concatenation of 3-axis accelerometer
and 3-axis gyrometer information synchronized in time (i.e. N = 6). Notice that our
system relies only on the raw MEMs data, without any preprocessing in opposition
to most of state-of-the-art methods. These data are only rescaled between −1 and
+1 according to the maximum value that sensors can provide.

Inertial Gesture Recognition with BLSTM-RNN 399

The forward and backward LSTM hidden layers are fully connected to the input
layer and consist in multiple LSTM neurons each with full recurrent connections.
Several experiments have been conducted with different hidden layer sizes and 100
neurons lead to the best results (cf. section 4.2).

The output layer has a size equals the number of gesture to classify (i.e. n = 14
in our experiments) . The SoftMax activation function is used for this layer to give
network responses oi(t) between 0 and 1, and a sum ∑i∈[0,n[oi(t) equals one, at every
timestep t. Classically, these outputs can be considered as posterior probabilities of
the input sequence to belong to a specific gesture class.

Fig. 3 BLSTM-RNN gesture classification architecture: input layer is a 6D inertial sequence.
The largest BLSTM-RNN output is computed at each timestep and a Max voting scheme
enables to determine the recognized gesture class.

This network is learned using classical on-line backpropagation through time
with momentum (i.e. learning rate 5e−4, momentum 0.2, experimented in section
4.2). As described in [9], on a training set, we target the same corresponding ges-
ture class at each timestep for each input example. For classifying a new gesture
sequence, we use a majority voting rule over the outputs along the sequence (i.e.
keeping only the most probable class argmaxi∈[0,n[oi(t) at each timestep) to deter-
mine the final gesture class.

4 Experimental Results

4.1 Inertial Gesture Dataset

To the best of our knowledge, the community does not provide yet any public dataset
for benchmarking inertial symbolic gesture recognition methods. Therefore, we col-
lected our own 3D gesture dataset to compare our classification method with classi-
cal approaches in this research field. Our dataset has been captured on an Android

400 G. Lefebvre et al.

Nexus S Samsung device. The sampling time is 40ms during the accelerometer and
gyrometer capture (i.e. a frequency of 25Hz). 22 novice participants, from 20 to
55 years old, all right-handed, performed five times each of the 14 symbolic ges-
tures that we designed. This corresponds to 1540 gestures. As shown in Figure 4,
the 14 symbolic gestures are divided into two families: linear gestures (e.g. north,
east, west and south flicks, and down, up, throw and pick gestures) and curvilin-
ear gestures (e.g. clockwise, counter-clockwise, letter Z, letter N, alpha and heart).
These choices make the dataset particularly difficult. For instance, there classically
are confusions between flick gestures and letter N and Z. Likewise, the clockwise
movement is often confused with alpha or heart symbols.

In order to locate and use only the informative part of the input sequence for per-
forming gesture classification, an automatic temporal segmentation is performed. As
described in [16], this temporal segmentation is based on a signal energy indicator
obtained by the difference of two instant power estimators. A gesture indicator I(t)
can be defined from two estimators E0(t) and E1(t) of the instant signal power P(t)
(see Equation 1). Some heuristics on this gesture indicator identify the beginning
and the end of a symbolic gesture before processing the recognition phase.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
P(t) = 1

2

√
∑N−1

i=0 xi(t)

E0(t) = δ0E0(t − 1)+ (1− δ0)P(t),δ0 ∈ [0;1]
E1(t) = δ1E1(t − 1)+ (1− δ1)P(t),δ1 ∈ [0;1] ,δ0 > δ1

I(t) = |E0(t)−E1(t))|
(1)

Fig. 4 Gesture dataset : the 14 symbolic gestures to be classified.

Inertial Gesture Recognition with BLSTM-RNN 401

For instance, Figure 5 shows raw input signals to be classified as a clockwise ges-
ture and the yellow parts correspond to segmented gestures. Six degrees of freedom
are then provided by the accelerometer and the gyrometer with respectively linear
accelerations and angular velocities. In Figure 6, we show the 3D gesture trajectory
reconstruction using Simpson’s 3/8 rule for numerical integration.

(a) Linear acceleration in 2D (b) Linear acceleration in 3D

(c) Angular velocity in 2D (d) Angular velocity in 3D

Fig. 5 Clockwise gesture sample : accelerometer and gyrometer features to be classified. The
yellow parts correspond to segmented gestures.

We then use three different configurations of our dataset to compare several state-
of-the-art methods with our solution. The first configuration (DB1) corresponds to
the personalization paradigm, where only one user is considered with few learning
examples. For this configuration we have used the 70 gestures of a participant in the
learning phase, and ask him to process 16 more instances of each gesture for test (i.e.
224 gestures). The second configuration (DB2) uses three instances of each gesture
per user for the learning phase: 924 gestures (i.e. 60% of all data) are used for the
learning phase and 616 gestures (i.e. 40%) for the test phase. This case corresponds
to a multi-user system and a closed world paradigm. The third configuration (DB3)
is composed of all samples from 17 users (i.e. 1190 gestures) and the test data uses
the other available gestures (i.e. 350 gestures from five unknown users). This case
is close to a real system trained with a several users and having to generalize to new

402 G. Lefebvre et al.

Fig. 6 Clockwise trajectory reconstruction using Simpson’s 3/8 rule for numerical
integration

users who want to use it without any training phase. Here, the third configuration
represents the open world paradigm.

Our experimental results aim at assessing the method based on BLSTM-RNN and
compare it to three state-of-the-art solutions: cHMM[21], DTW[20] and FDSVM
[24] methods. These three state-of-the-art solutions represent three main strategies
which are based on statistics, on geometry or on boosting classifier approaches. We
also compare our results obtained with BLSTM-RNN and LSTM-RNN methods.

For the three state-of-the-art solutions and in all experiments, we use normalized,
filtered and thresholded gesture signals. In opposition, LSTM-RNN and BLSTM-
RNN based solutions use raw MEM data. As shown in Figure 7, the main objective
for classical gesture recognition methods is to operate on preprocessed input signal
for facilitating gesture recognition. From the raw data, some signal processings are
operated to filter, normalize and threshold the gesture data.

We define (cf. Section 3 for notations) the normalized signal xnorm
i (t) by Equation

2 being a weighting by the inverse of the maximal Euclidean norm for every gesture
sequence element xi(t). Equation 3 gives the filtered signal x f ilter

i (t) with a low-pass
filter of smoothing parameter β . Equation 4 is the condition to keep an original data
in a thresholding process (i.e. two consecutive data differ from a measure Δ).

∀i ∈ {0, ...,n− 1},xnorm
i (t) =

xi(t)

maxT−1
t=0 ‖Gt‖

, (2)

∀i ∈ {0, ...,n− 1},x f ilter
i (t) = β x f ilter

i (t − 1)+ (1−β)xnorm
i (t),β ∈ [0,1], (3)

∀t ∈ {0, ...,T − 2},‖Gt −Gt+1‖> Δ ,Δ ∈ ℜ. (4)

Inertial Gesture Recognition with BLSTM-RNN 403

(a) Raw acceleration input signal (b) Normalized, filtered and thresh-
olded acceleration signal

Fig. 7 An alpha gesture with raw MEM data (a) and after preprocessing methods (b)

4.2 Preliminary Classification Results

We have conducted some experiments to explore the BLSTM architecture and find
the best configuration and parameters (i.e. learning rate and momentum). Figure 8
gives some primarily results with different BLSTM-RNN architectures and parame-
ters on DB3. Here, the inertial gesture recognition task is performed with the better
results obtained for a configuration of 100 LSTM neurons with a learning rate of
5e−4 and a momentum of 0.2.

In order to obtain the best results for the state-of-the-art methods, we have also
made some primarily experimentations to find the best parameters:

• The filtering process use a low-pass filter with a smoothing parameter β of 0.8 ;
• The thresholding process approximates a minimal local error Δ of 0.1 ;
• The cHMM based method is left-to-right and uses the maximum of likelihood as

a decision rule and is composed of nine states using Gaussian distribution ;
• The DTW based method uses a 5-nearest-neighbor classification ;
• The FDSVM based method applies polynomial kernel SVMs on 19-dimensional

feature descriptors (mean, energy, entropy, standard deviation and correlation)
for nine time segments with six signal dimensions, i.e. feature vectors of 1026
dimensions.

4.3 Classification Results

In the following, we use a three fold cross validation to obtain mean and standard
deviation, as shown in Table 1, which outlines the global performances of each
classifier for configurations DB1, DB2 and DB3 using either accelerometer or gy-
rometer data or both.

Firstly, when comparing these methods using a single input MEM sensor (ac-
celerometer or gyrometer), we can see that using only the gyrometer data is less

404 G. Lefebvre et al.

Fig. 8 Recognition rates for different BLSTM-RNN architectures on DB3 with multiple
learning configurations.

efficient than using the single accelerometer data. Moreover, when these two infor-
mation are combined, the global performances increase.

Secondly, considering coupled input data, this table shows that our BLSTM-RNN
based classifier gives the best results on DB2 and DB3, with respectively 95.57%±
0.50 and 92.57%± 2.85.

On DB1 configuration, the DTW and cHMM based methods achieve the equiv-
alent best performances (i.e. the mean recognition rates are upper than 99%, due
to the strong similarity between test and training gestures provided by the same
user) while our BLSTM-RNN approach is less efficient with 86.75%± 0.75. This
is mainly due to the reduced number of training data which leads to the classical
neural network over-fitting issue. The attempts made with smaller BLSTM-RNN
did not allow any improvement on generalization.

In comparison, the FDSVM solution provides good and stable performances with
an average recognition rate greater than 92% on the three datasets, but does not
achieve the best results.

The main conclusions of a deep analysis of confusion matrices on DB3 (i.e.
open world paradigm) are the following. The main drawback for the cHMM based
method in this context is the incorrect classification of some linear gestures as down,
throw and up gestures. 48% of the down and throw gestures are confused with N
gestures and 52% of the up gestures are indeed confused with pick gestures. These
gestures share indeed some features that proved to be difficult to distinguish for this
method.

Inertial Gesture Recognition with BLSTM-RNN 405

Table 1 Classification rates on DB1, DB2 and DB3 using accelerometer (acc), gyrometer
(gyr), and both sensors (acc+gyro)

Databases DB1 DB2 DB3

Methods Mean & Standard Deviation

cHMM acc 99.02% ± 0.81% 83.99% ± 1.09% 80.09% ± 2.82%

cHMM gyro 95.05% ± 2.62% 70.92% ± 0.74% 70.76% ± 0.58%

cHMM acc+gyro 99.86% ± 0.20% 85.79% ± 0.67% 82.76% ± 1.41%

DTW acc 99.40% ± 0.21% 92.59% ± 0.20% 90.29% ± 2.07%

DTW gyro 95.39% ± 0.56% 80.63% ± 2.39% 79.81% ± 1.72%

DTW acc+gyro 99.70% ± 0.42% 94.04% ± 0.15% 91.71% ± 1.46%

FDSVM acc 94.94% ± 2.42% 93.07% ± 0.88% 91.56% ± 0.28%

FDSVM gyro 92.26% ± 1.38% 85.66% ± 0.47% 84.52% ± 0.48%

FDSVM acc+gyro 96.38% ± 1.89% 95.39% ± 0.57% 92.38% ± 1.27%

LSTM acc 86.46% ± 5.83% 94.29% ± 1.07% 89.14% ± 2.03%

LSTM gyro 77.53% ± 5.26% 81.54% ± 1.79% 72.29% ± 1.30%

LSTM acc+gyro 88.10% ± 3.72% 95.18% ± 0.88% 92.47% ± 1.34%

BLSTM-RNN acc 84.15% ± 0.67% 94.86% ± 1.23% 89.42% ± 2.45%

BLSTM-RNN gyro 68.90% ± 4.85% 83.39% ± 0.65% 74.19% ± 1.55%

BLSTM-RNN acc+gyro 86.75% ± 0.75% 95.57% ± 0.50% 92.57% ± 2.85%

On the contrary, the DTW based method provides a good solution to classify
linear gestures except for throw gestures which are often recognized as east, north
flick and pick gestures, which can be explained by the similar nature of production
of these three gestures.

The FDSVM method achieves good performances in general. Nevertheless, some
misclassifications appear for instance between opposite gestures as pick and throw
or down and up gestures. Opposite gestures may be misclassified for instance when
some users anticipate a throw gesture by slightly moving back the device in the
beginning of the production as in a pick gesture.

Our BLSTM-RNN approach (see Table 2) have some issues distinguishing re-
spectively the letter N and the up gesture from the up and the pick gesture. This may
be due to the uniform learning target chosen (i.e. same class at each timestep), or
the majority voting scheme in the recognition phase.

4.4 Computing Times

Table 3 presents the computing times for all methods for the three configurations
in recognition phase executed on an Intel Core i5 CPU at 2.67GHz with 3.42Go
of RAM. These experimental results show that the computing time for the HMM,
FDSVM, LSTM-RNN and BLSTM-RNN based solutions is quite constant on the

406 G. Lefebvre et al.

Table 2 Best Confusion Matrix on DB3 for the BLSTM based method.
BLSTM alpha ccw cw flickE flickN flickS flickWheart N pick down throwup Z recognition

rate

alpha 25 1
ccw 25 1
cw 24 1 0.96
flickE 24 1 0.96
flickN 23 1 1 0.92
flickS 25 1
flickW 1 24 0.96
heart 1 24 0.96
N 21 1 3 0.84
pick 25 1
down 25 1
throw 1 1 23 0.92
up 2 1 21 0.88
Z 25 1

error rate 0 0 0.04 0.04 0 0.04 0.042 0 0 0.16 0.08 0.04 0.12 0.04 0.96

Table 3 Computing times (in ms) to classify one unknown gesture.

Databases DB1 DB2 DB3

Training examples 70 924 1190

Test examples 224 616 350

cHMM accgyro 42.53±1.97 23.89±2.74 30.19±1.65

DTW accgyro 11.93±0.02 34.57±0.47 44.58±0.38

FDSVM accgyro 23.81±2.10 28.14±0.77 30.82 ±0.47

LSTM accgyro 27.98±0.90 26.52±0.77 25.42±0.84

BLSTM-RNN accgyro 30.47±0.23 31.12±0.57 29.56±0.48

different datasets (i.e. for instance around 30 ms for BLSTM-RNN and 43ms for
cHMM to classify one input gesture on DB1). The learning process is indeed built
off-line and, consequently, the recognition process from a learnt model is quite fast.
On the contrary, the DTW based method requires to compare the test gesture with
all training reference samples. That is why the computing time increases in aver-
age from 11.93ms for 70 learning samples to 44.58ms for 1190 learning samples.
The DTW based method requires then a small number of reference gestures which
makes it hard to cover all user gesture variations. This trade-off may reduce the
performances.

Consequently, our proposed system based on BLSTM-RNN, achieving the best
performances in multi-user configuration with a recognition computing time inde-
pendent of training dataset size, is a very challenging solution.

4.5 Final Results

In order to assess more precisely our BLSTM-RNN based method, we investigate
seven performance criteria which we quantified from to 0 to 5 in Figure 9 (e.g. the
number 5 denotes a good performance regarding the specific criterion):

Inertial Gesture Recognition with BLSTM-RNN 407

1. Classification: the overall performance regarding the classification rates over the
three datasets (cf. Table 1);

2. Training time: the average time requested to learn all reference gestures (i.e.
lower the training time, higher the grade);

3. Test time: the average time to test all unknown gestures (cf. Table 3);
4. Parametrization: the number of parameters to be specified to get a valuable ges-

ture model (i.e. fewer parameters equals higher grade);
5. Fast recognition: the ability to classify an unknown gesture as soon as possible

(i.e. before the gesture ending);
6. Personalization: the ability to add new user gestures to rebuild gesture models;
7. Universality: the ability to generalize gesture models without adding new user

samples.

Fig. 9 Benchmark of the four main methods in regard to the seven criteria.

The BLSTM-RNN based method gives the best overall performance with the
biggest covered area in the radar chart (cf. Figure 9). Therefore, with the best classi-
fication rates on two datasets and a competitive computing time for testing unknown
gestures, this method offers good perspectives for universality issues, extracting ges-
ture features from the raw signal data and dealing with strong gesture variations.
The parametrization is also simplified by the choice of three criteria: the number of
LSTM neurons, the learning rate and the momentum. Nevertheless, some difficulties
remain when gestures should be classified as soon as possible (i.e. fast recognition).
The temporal gesture segmentation must be indeed properly provided to maximize
the classification results. The main drawbacks are when new gestures are added to
the model for personalization purposes, given that the neural network must be learnt
once again with a substantial computing time.

408 G. Lefebvre et al.

In opposition to the BLSTM based method, the three other methods perform
better in term of training speed, but with less success on classification results. As
previously exposed in section 4.4, the DTW based method requires also more time
during test. Concerning the parametrization criterion, these three methods are more
complex to tune with a need of a preprocessing step with specific parameters for
filtering, normalizing and vectorizing input signals. Additional parameters are also
inherent to each method. A fast recognition may be better realized with the DTW
based method, computing a similarity between training samples and an unknown
gesture even if the last one is incomplete. A fast recognition for the FDSVM based
method is difficult because the whole input gesture must be segmented into frames
in order to compute the final feature vector to be classified. For personalizing the
system with new user gestures, the DTW based method seems preferable because
only a selection of these instances is needed to be designed as new gesture ref-
erences. Finally, Table 1 presents the universality criterion on DB3 with an open
world paradigm. We show then that the best performance is obtained respectively in
order by the BLSTM, FDSVM, DTW, and cHMM based method.

5 Conclusion and Perspectives

In this chapter, we have presented a contribution based on BLSTM-RNN for iner-
tial MEM based gesture recognition. This study about symbolic gesture recognition
compares our contribution to three classical pattern recognition methods: the ge-
ometric approach using DTW and the statistical method based on cHMM and a
specific FDSVM classifier. We have shown that for a multi-user configuration our
approach achieves the best average classification rates, up to 95.57%, in a closed
world configuration, and up to 92.57%, in a open world configuration. Computing
times are also very challenging for an industrial solution, being independent to the
learning sample number. The main remaining confusions with the proposed solu-
tion are when two 3D trajectories are similar or share some initial movements. A
new approach, ,height=5cmusing a modified objective function, such as a Connec-
tionist Temporal Classification [9], that permits to jointly learn to localize and clas-
sify events in input sequences, might be used to overcome this issue or to classify
non segmented gestures. Another interesting extension of this work will be to study
how Deep Learning models like Convolutional Neural Networks can be used in our
scheme to enhance the feature extraction stage by automatically learning sparse dis-
criminant features from the raw data.

References

1. Akl, A., Valaee, S.: Accelerometer-based gesture recognition via dynamic-time warping,
affinity propagation, & compressive sensing. In: ICASSP (2010)

2. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Sequential Deep Learning
for Human Action Recognition. In: Salah, A.A., Lepri, B. (eds.) HBU 2011. LNCS,
vol. 7065, pp. 29–39. Springer, Heidelberg (2011)

Inertial Gesture Recognition with BLSTM-RNN 409

3. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Spatio-Temporal Convo-
lutional Sparse Auto-Encoder for Sequence Classification. In: BMVC (2012)

4. Cho, S.J., Choi, E., Bang, W.C., Yang, J., Sohn, J., Kim, D.Y., Lee, Y.B., Kim, S.: Two-
stage Recognition of Raw Acceleration Signals for 3-D Gesture-Understanding Cell
Phones. In: Lorette, G. (ed.) Tenth International Workshop on Frontiers in Handwrit-
ing Recognition. Université de Rennes 1, Suvisoft, La Baule, France (2006),
http://hal.inria.fr/inria-00103854, http://www.suvisoft.com

5. Elagouni, K., Garcia, C., Mamalet, F., Sébillot, P.: Text Recognition in Videos using
a Recurrent Connectionist Approach. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F.,
Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 172–179. Springer, Heidel-
berg (2012)

6. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with lstm re-
current networks. J. Mach. Learn. Res. 3, 115–143 (2003)

7. Graves, A.: Offline Arabic Handwriting Recognition with Multidimensional Neural Net-
works. Springer (2012)

8. Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber,
J.: A novel connectionist system for unconstrained handwriting recognition. IEEE
TPAMI 31(5), 855–868 (2009)

9. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Networks (18), 5–6 (2005)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation (9),
1735–1780 (1997)

11. Hoffman, M., Varcholik, P., La Viola, J.: Breaking the status quo: Improving 3d gesture
recognition with spatially convenient input devices. In: Virtual Reality Conference (VR),
pp. 59–66 (2010), doi:10.1109/VR.2010.5444813

12. Hofmann, F.G., Heyer, P., Hommel, G.: Velocity profile based recognition of dynamic
gestures with discrete hidden markov models. In: Wachsmuth, I., Fröhlich, M. (eds.) GW
1997. LNCS (LNAI), vol. 1371, pp. 81–95. Springer, Heidelberg (1998),
http://dx.doi.org/10.1007/BFb0052991

13. Kallio, S., Kela, J., Mantyjarvi, J.: Online gesture recognition system for mobile interac-
tion. In: Systems, Man and Cybernetics, vol. 3, pp. 2070–2076 (2003)

14. Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L., Marca, D.:
Accelerometer-based gesture control for a design environment. Personal Ubiquitous
Comput. 10(5), 285–299 (2006),
http://dx.doi.org/10.1007/s00779-005-0033-8, doi:10.1007/s00779-
005-0033-8

15. LaViola Jr., J.J., Zeleznik, R.C.: A practical approach for writer-dependent symbol recog-
nition using a writer-independent symbol recognizer. IEEE Trans. PAMI 29(11), 1917–
1926 (2007), http://dx.doi.org/10.1109/TPAMI.2007.1109

16. Lefebvre, G., Roux, S., Petit, E.: Automatic temporal segmentation method for instru-
mented gesture, devices and associated terminal. Patent FR2013/51320 (2013)

17. Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uwave: Accelerometer-
based personalized gesture recognition and its applications. In: IEEE PerCom, pp. 1–9
(2009)

18. Mantyla, V.M., Mantyjarvi, J., Seppanen, T., Tuulari, E.: Hand gesture recognition of a
mobile device user. In: IEEE ICME, vol. 1, pp. 281–284 (2000)

19. Mayer, H., Gomez, F., Wierstra, D., Nagy, I., Knoll, A., Schmidhuber, J.: A system for
robotic heart surgery that learns to tie knots using recurrent neural networks. In: 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)

http://hal.inria.fr/inria-00103854
http://www.suvisoft.com
http://dx.doi.org/10.1007/BFb0052991
http://dx.doi.org/10.1007/s00779-005-0033-8
http://dx.doi.org/10.1109/TPAMI.2007.1109

410 G. Lefebvre et al.

20. Petit, E.: Grasp: Moteur de reconnaissance de gestes. Inter Desposit Digital Number
IDDNFR.001.030023.000.S.P.2010.000.31500 (2010)

21. Pylvänäinen, T.: Accelerometer Based Gesture Recognition Using Continuous HMMs.
In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522,
pp. 639–646. Springer, Heidelberg (2005)

22. Wilson, D.H., Wilson, A.: Gesture recognition using the xwand. Tech. Rep. CMU-RI-
TR-04-57, Robotics Institute (2004)

23. Woodman, O.J.: An introduction to inertial navigation. Tech. rep., University of
Cambridge (2007),
http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.63.7402

24. Wu, J., Pan, G., Zhang, D., Qi, G., Li, S.: Gesture recognition with a 3-d acceleromete.
In: Zhang, D., Portmann, M., Tan, A.-H., Indulska, J. (eds.) UIC 2009. LNCS, vol. 5585,
pp. 25–38. Springer, Heidelberg (2009)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.63.7402
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.63.7402

Online Recognition of Fixations, Saccades, and
Smooth Pursuits for Automated Analysis of
Traffic Hazard Perception

Enkelejda Kasneci, Gjergji Kasneci, Thomas C. Kübler, and Wolfgang Rosenstiel

Abstract. Complex and hazardous driving situations often arise with the delayed
perception of traffic objects. To automatically detect whether such objects have
been perceived by the driver, there is a need for techniques that can reliably rec-
ognize whether the driver’s eyes have fixated or are pursuing the hazardous object.
A prerequisite for such techniques is the reliable recognition of fixations, saccades,
and smooth pursuits from raw eye tracking data. This chapter addresses the chal-
lenge of analyzing the driver’s visual behavior in an adaptive and online fashion to
automatically distinguish between fixation clusters, saccades, and smooth pursuits.

1 Introduction

Driving is a complex task requiring proper visual functioning. According to Na-
gayama [Nag78], more than 50% of collisions in road traffic occur due to missed
or delayed hazard perception [VRK+02]. Therefore, numerous studies over the
last two decades have investigated eye movements of drivers to identify deficits
in visual search patterns or types of hazardous situations that may cause accidents.
According to the scanpath theory by Noton and Stark [NS71], a top-down inter-
nal cognitive model of what we see drives our eyes efficiently over a scene [PS05]
involving six types of eye movements: fixations, saccades, smooth pursuits, optoki-
netic reflex, vestibulo-ocular reflex, and vergence [LZ06]. Among these, fixations,
saccades, and smooth pursuits are the most studied in driving scenarios. During a

Enkelejda Kasneci · Thomas C. Kübler · Wolfgang Rosenstiel
Department of Computer Engineering, University of Tübingen, Germany
e-mail: {enkelejda.kasneci,thomas.kuebler,

wolfgang.rosenstiel}@uni-tuebingen.de
Gjergji Kasneci
Hasso Plattner Institute, Germany
e-mail: gjergji.kasneci@hpi.uni-potsdam.de

c© Springer International Publishing Switzerland 2015 411
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_20

412 E. Kasneci et al.

fixation the eye is kept relatively stable on an area of interest (AOI), whereas sac-
cades correspond to rapid eye movements enabling the retinal part of sharpest vision
(fovea) to fixate different areas of the scene [PS05]. Smooth pursuits occur when-
ever the eye follows a moving target [Duc07]. Thus, eye movements during driving
result in a sequence of fixations, smooth pursuits, and saccades. Such a sequence is
also known as visual scanpath.

The visual search strategy of a driver seems to be crucial for driving safety. Sev-
eral studies have reported changes in the viewing patterns of drivers with increas-
ing driving experience [CU98, CUR02, MS99, PHD+05]. Chapman et al. [CUR02]
have reported that differences between viewing patterns of novices and experienced
drivers are particularly noticeable in demanding or hazardous situations. These
changes, however, do not seem to be related to the cognitive resources but rather
to the envisioned model of what is likely to happen during the task [UCBC02].
A further issue addressed by several studies concerns changes in viewing pat-
terns with age. While some studies could not find any age-related decline in the
subject’s visual search behavior in hazardous situations [UPW+05, HDBK+13],
others have reported a decline in search efficiency with age [MS99, HSCG01].
At least there is evidence of a significant increase of response times with age
[HMM+08].

Based on the above reports, several training techniques have been proposed to
improve the visual scanning of drivers – with limited success [KCC12]. The main
problem is that viewing patterns are highly individual and vary with the task and
scene. Therefore, we hypothesize that the most effective way of hazard avoidance
in driving scenarios would be to provide automated and adaptive means for con-
tinuously monitoring and analyzing the driver’s visual behavior in alignment with
entities on the scene; the driver should be warned well in time about upcoming haz-
ards and, in cases where the driver’s reaction time would not suffice to avoid an
accident, the system (e.g., the automated breaking system) should completely take
over to avoid the worst.

Indeed, today’s driving assistance systems build on numerous sensors to pro-
vide assistance for specific tasks, such as automatic parking, lane keeping, intelli-
gent speed control, emergency braking assistance, and many more. However, many
of these tasks are independent of the driver’s abilities, let alone her visual deficits.
Moreover, the corresponding systems are geared towards reliable, deterministic per-
formance; they do neither adapt to new traffic situations and nor to individual driving
capabilities. For example, emergency braking assistance systems are relatively crude
in nature, as they are typically applied as the only mean to avoid an accident. In con-
trast, we are interested in more fine-grained methods, which take the driver’s visual
search behavior into account to identify overlooked hazardous objects in real-time,
possibly without distracting or patronizing the driver.

Going beyond driving assistance systems, efforts toward autonomous driving
[Mar10, UAB+08] have come a long way since their beginnings [Pom89]. For a
safe navigation, modern self-driving cars use numerous sensors to analyze position,
speed, traffic situation, road conditions, etc. The goal of related projects is to take
away the burden of driving from human drivers and shift it to the inbuilt autonomous

Online Recognition of Fixations, Saccades, and Smooth Pursuits 413

car system. However, despite the reported driving safety of such systems [Mar10],
there are still many unanswered questions, especially concerning the legislation of
driving, e.g., who is responsible in case of accidents, which insurance company
covers the costs, etc. Our approach aims at improving the driving performance and
leaves the burden of driving, and thus the whole responsibility, to the human driver.
The overarching vision of our work is the synergistic combination of methods that
analyze the visual search behavior of the driver as a first step towards the develop-
ment of driving assistance systems that smoothly guide the driver’s visual attention
towards potential traffic hazards.

The most important cornerstone for the implementation of such systems is the
development of methods for the analysis of the driver’s visual behavior in an online
fashion. This problem can be reduced to the reliable detection of and distinction
between fixation clusters, saccades, and smooth pursuits from eye-tracking data.
Most prior research on the detection of fixations and saccades has primarily fo-
cused on the offline detection of these types of eye movements. Various approaches
such as position, velocity or acceleration based algorithms, methods based on min-
imum spanning trees, Hidden Markov Models or Kalman filters have been pro-
posed [BWLH12, CNTN08, Git02, KJKG10, MSP08, PS00, SG00, SD04, TGB03,
Woo02]. Yet, these approaches show two main drawbacks: (i) they either require
several clustering parameters as input, which makes them inadequate for online us-
age or (ii) they show poor performance in the detection of fixations and saccades
in dynamic scenes. A further challenge arises when smooth pursuits have to be dis-
tinguished from saccades and fixations. Although new methods have been proposed
[KK13, VBG12], their applicability to the detection of smooth pursuits in dynamic
scenes is unclear.

In order to identify whether a hazard was perceived by the driver, the driver’s
visual scanpath has to be analyzed in real time while considering all entities that ap-
pear on the visual scene. If a relatively stable target was perceived, we would expect
the driver’s eye movements to be focused on that target, thus yielding a cluster of
fixation points. Any algorithm for clustering such fixation points needs to work in
an online fashion and be unparameterized with respect to the number of clusters, as
new entities may appear on the scene. Note that the system has to know the driver’s
AOIs at any point in time. Furthermore, as the viewing behavior differs from person
to person, an adaptive algorithm is needed.

In the following, we present a work-flow for the online analysis of hazard percep-
tion based on an adaptive online algorithm for the identification of and distinction
between fixations, saccades and smooth pursuits.

2 Visual Perception and Eye Movements

The human eye is a foveated system. This means that optimal visual perception
(i.e., at highest spatial resolution) is only possible at a small, central area of the
retina, which is known as the fovea. The spatial resolution falls by an order of

414 E. Kasneci et al.

magnitude within a few degrees from the fovea. Thus, when we want to look at an
object, we will move our eyes until the image of the object falls on the fovea of each
eye [Cor12]. Visual perception would therefore not be possible without eye move-
ments. Although we are mostly unaware of them, when viewing a scene, our eyes
are constantly moving to enable the fovea to fixate different parts of the scene. These
foveal fixations are also known as Areas of Interest, AOIs for short. Although it is
possible to deploy attention without an accompanying fixation, under natural view-
ing conditions this is quite rare. Thus, eye movements are assumed to be preceded
by a shift in visual attention to a subsequent target. However, the whole process of
visual perception involves not only the sensory input mechanisms, but also memory,
attention, cognition, and decision making [HB05, Lan09, LT09].

The question, what drives our eyes over a scene, has been raised in early works
of Buswell [Bus35] and Yarbus [Yar67] and, since then, has been in the scope of
research in different areas. Especially in recent years, since eye-tracking devices
have improved and become broadly available, the number of investigations on eye
movements has increased. Several approaches modeling the process of visual atten-
tion have been proposed and follow mainly two basic paradigms: the top-down and
bottom-up mechanism. The scanpath theory by Noton and Stark [NS71] suggests
that an internal cognitive model of what we see not only controls our vision, but
also drives the sequences of rapid eye movements and fixations efficiently over a
scene [PS05], e.g., when we are asked to identify a specific object in a scene. This
is called the top-down mechanism.

The bottom-up mechanism is based on the idea that an object might attract our
attention due to particular features, e.g., a person wearing a red shirt among oth-
ers wearing white. In this example, the red color is the salient feature. Computer-
based models of visual attention have mainly focused on the modeling of bottom-
up visual attention by automatically identifying possible fixation targets based on
image properties [IK00, IKN98]. The detailed description of these models is be-
yond the scope of this work. A review of visual attention models can be found in
[LT09, SBG11, THLB11]. Although intuitively comprehensible, visual salience as
determined by such models can not predict saccade sequences any better than ran-
dom models [HBCM07].

Despite extensive research in this area, so far, it has not been possible to pre-
dict the sequence of fixations of an observer looking at an arbitrary scene [SBG11].
The difficulty lies in the complexity of visual processing, for which eye movements
are essential. Six types of eye movements are involved in visual processing of a
scene: fixations, saccades, smooth pursuits, optokinetic reflex, vestibulo-ocular re-
flex, and vergence [LZ06]. In this work we focus on fixations, saccades, and smooth
pursuits. Hence, these types of eye movements will be briefly described in the
following subsections. A detailed description of the physiology and characteristics
of eye movements can be found in [Duc07, LT09].

Online Recognition of Fixations, Saccades, and Smooth Pursuits 415

2.1 Fixation

During a fixation the eye is kept relatively stable on an AOI. It can be assumed
that during a fixation, the AOI imaged on the fovea is being visually attended to
by the viewer. Fixations usually have a duration of about 200− 300ms, although
much longer fixations are possible. The duration of fixations varies depending on
the visual search task. Furthermore, fixation durations show inter- and intra-subject
variability. Therefore, the duration of fixations is an important research topic in
itself, as it relates to the visual information to which the observer is attending as
well as to her cognitive state [LT09].

The general assumption while driving is that the visual perception of scene fea-
tures, such as signs, pedestrians, and obstacles, requires foveated vision (i.e., ex-
plicit fixation of the object of interest) [FZ09]. Although peripheral vision is con-
sidered as sufficient for some subtasks, such as keeping the vehicle centered in the
lane [SNP96], in [MS04] was reported that peripheral vision is insufficient for the
detection of traffic hazards. This means, that to have seen a traffic hazard, the driver
must have fixated it.

2.2 Saccade

A saccade represents a rapid eye movement to reposition the retinal part of sharpest
vision (fovea) to fixate different areas of a scene [PS05]. A saccade occurs at max-
imum frequency of about 4s−1 (e.g., during reading) and maximum velocity of ap-
proximately 500◦/s [LT09]. Saccades are performed by both eyes conjugately. As
introduced above, a saccade can be triggered in a bottom-up manner, e.g., by a sud-
denly moving target or a new stimulus, or in a top-down way. Saccade duration
varies between 10ms and 100ms [Duc07]. The reaction time for externally driven
saccades is usually 150− 200ms. Furthermore, saccade latency increases with in-
creasing eccentricity [LT09].

2.3 Smooth Pursuit

A smooth pursuit occurs whenever the eye follows a moving target [Duc07]. Simi-
larly to saccades, smooth pursuits are conjugate eye movements that are performed
at lower velocities of approximately 15◦/s [LT09]. They are elicited by mov-
ing targets and cannot be executed voluntarily without a target that is visually
pursued.

3 Online Recognition of Fixations, Saccades, and Smooth
Pursuits from Eye-Tracking Data

The reliable detection of and distinction between the above types of eye movements
in an online fashion is a crucial step towards the automated identification of objects

416 E. Kasneci et al.

that might be overlooked by the driver, i.e., potential traffic hazards. While per-
forming such a detection on eye-tracking data in alignment with information from
the visual scene is reliably feasible by us humans, reliable automated clustering of
eye movements is still challenging; even more so, when the visual scene changes
continuously, such as in driving scenarios.

In the scope of this section will be an online, adaptive algorithm for the reliable
detection of the above eye movement types. After discussing related work on the
classification of eye movement data, we present a two-step approach to the online
detection of the type of eye movements from eye-tracking data.

3.1 State of the Art Methods

Since the first works on classification of eye movements [McC81, Wid84], several
approaches have been proposed that fall into three main categories: (i) dispersion-
based methods, (ii) velocity- and acceleration-based methods, and (iii) probabilis-
tic methods based on statistical Markov models. All groups of algorithms will
be briefly discussed in the following subsections. A detailed review can be found
in [HNA+11].

3.1.1 Dispersion-Based Methods

Dispersion-based algorithms distinguish between different types of eye movements
(mostly between fixations and saccades) based on the distance between subsequent
eye position points. Usually, dispersion-based algorithms aim at detecting fixation
clusters by identifying data points that are close to each other within a predefined
time window, whereas all other data points are not considered [HNA+11]. A method
that is representative of this group, is the Dispersion Threshold Identification (I-DT)
algorithm [SG00], where the separation of fixation clusters from saccades is based
on the dispersion of consecutive data points within a temporal window. In I-DT,
the dispersion D is defined as the sum of the maximum and minimum differences
between the x and y coordinates of the points within the temporal window, i.e.,
D = [max(x)−min(x)] + [max(y)−min(y)]. If D is below a predefined threshold,
the data points within the window belong to a fixation. Otherwise, a saccade is
found. Similar approaches that use a temporal threshold as in I-DT, but differ in
the way the dispersion is calculated have also been presented in [Bli09, HNA+11,
SG00, SSC08].

Another prominent algorithm from this group is the Identification of eye move-
ments based on Minimum Spanning Trees (I-MST) [HNA+11, SG00]. As presented
in [SG00], this algorithm first builds a minimum spanning tree (MST) on a prede-
fined number of eye position points that fall within a temporal window. Then, from
each node v of the MST, all other MST nodes are visited in depth-first search up to
a predefined depth threshold. The mean and the variance of the length of the edges
that were visited during the depth-first search are assigned as meta information to v.
Based on the meta information of the end nodes of an edge, a decision can be taken
concerning the type of eye movement it represents, i.e., a saccade or fixation [SG00].

Online Recognition of Fixations, Saccades, and Smooth Pursuits 417

Other dispersion-based approaches are based on clustering algorithms. For exam-
ple, in [SD04] a mean shift clustering algorithm for the detection of fixation clusters
was used. In another approach [ULIS07], fixation clusters have been detected based
on projection clustering. Typical clustering algorithms, such as the well-known and
widely used k-means algorithm, are only applicable to the problem of identifying
fixations clusters, when the number of fixation clusters is known a priori. Hence,
such algorithms cannot be applied to the analysis of eye movements when viewing
dynamic scenes, e.g., such as those occurring while driving, where the number of
resulting clusters is not known.

Other approaches in this realm have divided the viewing area into a regular grid
and recorded the time spent inside each square [SG00]. While such approaches are
well-suited for static scenes, e.g., reading a page, they are not applicable to dynamic
scenarios, where no a priori information about the viewing area is given. The same
holds for techniques that provide visualizations of the areas of interest, i.e., fixation
clusters, by adapting the original image [Woo02].

Over the last years, dispersion-based approaches have been implemented in both
academic and commercial tools [HNA+11], e.g., faceLab [See], SMI BeGaze [Sen],
Gazetracker [Eye], etc. Although they offer several useful features, their main
drawback is that they come as black-box solutions and can hardly be integrated
in self-designed applications. Moreover, in most cases, commercial analysis soft-
ware provides only offline analysis of eye movements. Academic tools such as
the MATLAB-toolbox GazeAlyze [BWLH12] based on ILab [Git02], or Astef
[CNTN08] can be easily integrated in self-designed applications but, unfortunately,
only for the offline analysis. Another major drawback of dispersion-based methods
is that they often rely on thresholds (e.g., length of the temporal window, dispersion
threshold, etc.) that have to be empirically adjusted to the individual viewing be-
havior, the viewing area, and the specific task, thus being inadequate for the task of
adaptive, online scanpath analysis [HNA+11].

3.1.2 Velocity- and Acceleration-Based Methods

Velocity- and acceleration-based algorithms distinguish between different types of
eye movements based on velocities or accelerations between subsequent eye data
points [HNA+11]. An approach that is representative of this group is the Velocity-
Threshold Identification (I-VT) algorithm. In I-VT, a point is identified as a sac-
cade point, if the implicit velocity along the distance from the previous data point
to that point exceeds a predefined threshold (e.g., > 300 deg/sec). Otherwise the
data point is assigned to a fixation cluster [SG00]. Approaches based on acceler-
ation thresholds work similarly. Due to their simplicity, algorithms of this group
have been implemented in several commercial software packages, e.g., Tobii [Tob],
SMI [Sen], EyeLink [SR]. Several recommendations for task specific settings of
velocity thresholds have also been made [HNA+11].

In general, this group of algorithms is best suited for the analysis of eye data
tracked at high sampling frequency (> 200 Hz) [HNA+11]. However, as with the
dispersion-based methods, a major drawback of the I-VT algorithm and methods

418 E. Kasneci et al.

related to it is that the applied threshold values need to be empirically adjusted to
the eye data at hand. For this reason and because of the fact that velocity profiles are
strongly physically- and physiologically- dependent, such methods are not reliable,
especially when real-time analysis of eye-tracking data is needed. An additional is-
sue concerns the detection of smooth pursuits. Most velocity-based methods have
primarily focused on the separation of fixation clusters from saccades without con-
sidering smooth pursuits as an additional class. In [Itt05] a velocity-based approach,
which classifies fixation and smooth pursuit clusters into a general “intake” cate-
gory has been presented. Although saccades and fixations could be separated based
on threshold values, smooth pursuits could not be distinguished from fixation clus-
ters. Commercial implementations, such as the Tobii Fixation Algorithms [Tob] and
the EyeLink parser [SR], work similarly [HNA+11]. Two-step approaches that use
two velocity thresholds to first detect saccades and then separate smooth pursuits
from fixations, were presented in [Fer00] and [KK13]. Offline Eigenvector analy-
sis on data points and velocities within a temporal window has been proposed as
an approach to distinguish fixations from smooth pursuits in [BBM+09]. Although
reliable, the static nature of such offline methods makes them inadequate for the ap-
plication to dynamically changing scenes. In [KK13], a combination of velocity and
dispersion thresholds was used with the I-VT algorithm (coined I-VDT in [KK13])
to classify saccades, smooth pursuits, and fixations. As above, following a two-step
approach, first saccades are separated from the other two types of eye movements
based on a velocity threshold; then, a dispersion threshold is used to separate fixa-
tions from smooth pursuits [KK13]. As with all the presented threshold-based meth-
ods, the thresholds of I-VDT have to be chosen carefully, based on thorough data
analysis and the specific task.

In summary, most of the dispersion- and velocity-based approaches are based
on a considerable number of input parameters that can have significant influence on
the classification result. Although several recommendations regarding thresholds for
specific tasks have been made, they mostly consider eye-tracking data from viewing
behavior on static images.

3.1.3 Probabilistic Methods

The most prominent methods that are representative of this realm are Hidden
Markov Models (HMM). Such models are simple dynamic Bayesian networks with
variables representing values from a discrete state and observation space. Because
of their sequential nature, such models are a popular choice for the analysis of
successively arising data points (i.e., observations). For the detection of fixations
and saccades from eye data, HMMs have been used with velocity observations
between successive data points, thus allowing the adaptation of the model to the
physiological viewing behavior [SG00]. In the model of [SG00] (coined I-HMM),
the two states used represent velocity distributions over fixations and saccades. Tran-
sition probabilities between the states represent the probability of the next sam-
ple belonging to a fixation cluster or a saccade, given the current state [HNA+11].
Due to the probabilistic representation of velocities (i.e., no thresholds are needed),

Online Recognition of Fixations, Saccades, and Smooth Pursuits 419

the I-HMM is reported to perform better than fixed-threshold methods, such as
I-VT [SG00]. The dynamic and probabilistic nature of HMMs makes them an
adequate choice for sequential data arising in an online fashion and containing
variability in its features.

Another similar probabilistic approach was presented in [KJKG10, SMDRV91]
and was based on a Kalman-Filter that models and predicts the velocity of eye move-
ments based on previous eye data points. The proposed model could distinguish
saccades from fixations.

In summary, with respect to their application to the online analysis of eye data
generated in the context of driving, many of the related approaches reviewed in this
section suffer from one or more of the following problems: (i) they require several
static input parameters, which makes them inadequate for online usage, (ii) they do
not adapt to changing scene information or to the subject’s viewing behavior, or (iii)
they do not successfully generalize to the detection of smooth pursuits in addition
to fixations and saccades [KK13].

In contrast, our method, which can be assigned to the family of probabilistic
models, performs reliably on the task of online classification of fixations, saccades,
and smooth pursuits.

3.2 Method Overview

The method for classifying eye-tracking data consists of two steps: In the first step,
a Bayesian online mixture model is employed to distinguish saccades from data
points that might represent fixations and smooth pursuits. In a second step, a fine-
grained Principal Component Analysis (PCA) is conducted to distinguish fixations
from smooth pursuits. Both steps are presented in the following subsections.

3.2.1 Bayesian Mixture Model for the Online Recognition of Fixations and
Saccades

In [TKRB12], we presented an effective online clustering algorithm, that could
distinguish between fixations and saccades by considering only the Euclidean dis-
tance between subsequent data points recorded by the eye tracker. The underly-
ing model was based on the intuition that distances between subsequent fixation
points will in general be shorter than distances between subsequent saccade points;
that is, distances between subsequent fixation points would be generated from a
specific Gaussian distribution and those between subsequent saccade points from
another. Imagine a temporally ordered sequence of two-dimensional data points,
S = {si | 1 ≤ i ≤ T}, e.g., recorded by an eye tracker and representing the vi-
sual scanpath of an observer over time. In such a representation, a dense region of
successive points (i.e., successive points that are close to each-other in terms of
the Euclidean distance) might reflect an AOI (or, more specifically, an object that
attracts the observer’s attention). According to [NH10], a fixation location is man-
ifested in eye-tracking recordings as a cloud of points that are normally distributed
around the center of the object of interest. Assuming such a normal distribution of

420 E. Kasneci et al.

fixation points, one could leverage the covariances derived from the coordinates of
the data points to approximate the Gaussian distribution that governs them. How-
ever, when the number of observation points is rather moderate, such an approxima-
tion typically leads to a poor estimation of the underlying distribution. Hence, the
proposed algorithm makes use of the intuition that the distances between successive
fixation points in an AOI and the distances between successive saccade points come
from two distinct Gaussian distributions; thus, following the idea that the structure
of two-dimensional data points can be implicitly understood by looking at the dis-
tances between them. The resulting (reduced) dimensionality allows the algorithm
to effectively deal with a moderate number of observations. The parameters of the
two Gaussian distributions (i.e., means and variances) that govern the two different
types of distances are learned through a generative mixture model. The Bayesian
network in Figure 1 depicts the mixture model for the two Gaussian distributions.

Fig. 1 Bayesian mixture model for the online detection of fixation clusters and saccades

Let D = {di | 1 ≤ i ≤ T − 1} be the set of distance variables between points
si,si+1 ∈ S. ΘΘΘ = {μ1,β1,μ2,β2 π1,π2} denotes the complete parameter set of the
mixture model that is depicted in Figure 1. The mixture component is denoted by
the variable zi and the observed distances by the observed variables di. The simpli-
fying assumption here is that the distances are generated sequentially in an indepen-
dent and identically distributed fashion. More specifically, each distance between
two successive points is generated independently by the most likely Gaussian dis-
tribution.

The joint probability distribution of the model is given by:

p(D,z|ΘΘΘ) =
T−1

∏
i=1

p(zi|πππ)p(di|μzi ,βzi)

=
T−1

∏
i=1

πziN(di; μzi ,βzi)

where z = {z1, ...,zT−1}, with zi ∈ {1,2} being the index of the mixture component
chosen for distance di, and πππ = {π1,π2} denotes the set of mixture parameters.

We have used Infer.NET [MWGK12] to specify the model with the following
distributions.

Online Recognition of Fixations, Saccades, and Smooth Pursuits 421

(1) The factorized distribution over the probabilities of each mixture component:

p(z|πππ) =
T−1

∏
i−1

πzi

(2) The factorized prior distribution over the model parameters:

p(ΘΘΘ) = p(πππ)p(μμμ)p(βββ)

Furthermore, for the online version of the model, the following definitions are
needed.

(3) The prior distribution generating the π1 and π2 (i.e., the mixture parts) is
defined as a symmetric Dirichlet distribution:

p(πππ) = Dir(πππ ;λ) (1)

Note that the Dirichlet distribution is the so-called conjugate prior of the Multi-
nomial distribution governing π1 and π2. This means that the posterior distribution
on πππ has a similar mathematical form as the Dirichlet distribution, allowing the
Dirichlet prior to be updated by the posterior distribution as more observations are
made [Bis06]. Similar reasoning holds for the following definitions.

(4) The prior distribution over the means as a product of Gaussians:

p(μμμ) = N(μ1;m,τ)N(μ2;m,τ) (2)

(5) The prior distribution over the precisions as a product of Gammas:

p(βββ) = Gam(β1;n,γ)Gam(β2;n,γ) (3)

Figure 2 represents the Gaussian distributions for fixation clusters and sccades,
learned by the above model on a real-world data set.

The above Bayesian model comes with the great benefit that it can be easily
turned into an online learning model. In general, for given model parameters ΘΘΘ
and observations D, after applying Bayes’ rule follows that the probability of the
parameters ΘΘΘ in light of the data D is:

p(ΘΘΘ |D) =
p(D|ΘΘΘ)p(ΘΘΘ)

p(D)

More generally, we can write:

p(ΘΘΘ |D) ∝ p(D|ΘΘΘ)p(ΘΘΘ)

The above formula suggests that in an online setting the prior of the parameters
p(ΘΘΘ) can be iteratively substituted with the posterior p(ΘΘΘ |D), while the likelihood
on the parameters p(D|ΘΘΘ) helps readjust the model, as more and more observations
are made (see also [Bis06]).

422 E. Kasneci et al.

Fig. 2 Two Gaussian distributions learned by the Bayesian mixture model. The left dis-
tribution represents distances between successive eye-tracking points that belong to fixa-
tion clusters, and the right distribution reflects distances between successive saccadic data
points [Kas13].

The above formulation allows the model to readjust the learned parameters
μμμ ,βββ ,πππ as more and more eye movement data is available. To this end, we use
Gaussian distributions as conjugate priors for the means μ1,μ2 (see Equation 2),
Gamma distributions as conjugate priors for the precisions β1,β2 (see Equation 3),
and Dirichlet distributions as conjugate priors for π1,π2 (see Equation 1). All these
distributions belong to the so-called exponential family of distributions, meaning
that they have the same abstract mathematical form. This allows the above prior
distributions to be iteratively updated by the posterior distributions on the corre-
sponding variables of the model as new data points are observed.

The whole model was implemented in C# and Infer.NET. The latter not only al-
lows the declarative definition of models such as the above, it also provides various
methods for approximate inference; we have used Variational Message Passing as
implemented by Infer.NET. In the following we show the fragment of the C# code
that is responsible for the update of the priors of the parameters with their poste-
riors. Initially, we let the inference engine infer all parameters of the model and
their posteriors based on a small number (numTrainingPoints) of training points
(see lines 1-4). For every other subsequent data point, the priors of the parameters
are set to their inferred posterior values (see while loop). The subsequent data point
is clustered based on these updated parameters.

...
1. engine.InferAll(weights, means, precs);
2. var meanPost = engine.Infer<Gaussian[]>(means);
3. var precPost = engine.Infer<Gamma[]>(precs);
4. var weightPost = engine.Infer<Dirichlet>(weights);
5. int idxDataPoints = numTrainingPoints+1;
6. while (iterDataPoints.MoveNext()){
7. var newObsData = new double[]{iterDataPoints.Current};
8. numData.ObservedValue = newObsData.Length;
9. data.ObservedValue = newObsData;

10. meanPrior.ObservedValue = meanPost;

Online Recognition of Fixations, Saccades, and Smooth Pursuits 423

11. precPrior.ObservedValue = precPost;
12. weightPriors.ObservedValue = weightPost;
13. ...
14. idxDataPoints++;}

3.2.2 Principal Component Analysis for the Detection of Smooth Pursuits

Reliably distinguishing fixations from saccades is an important first step towards
automated driving support and the prediction of hazardous situations. However, in
driving scenarios, objects are typically in motion relative to the driver. Therefore it
is crucial to automatically recognize objects that are being pursued by the driver’s
gaze and others that are not. To address this issue, in [TKK+13] we have extended
the above method to also recognize smooth pursuits. We first describe the general
idea and then the details of the algorithm.

Let us assume that the last k gaze points were labeled by the above mixture model
as fixation points. The key question is whether these points are centered around a
relatively stable target or correspond to a moving object that is being pursued by
the driver’s gaze. In the former case, the vector that represents the highest variabil-
ity in the k data points and the one representing the second highest variability will
have approximately similar lengths. In the latter case though, there will be a notable
difference in the lengths of the two vectors. The direction of highest variability cor-
responds the direction of movement of the followed object relative to the observer.
Note that these vectors correspond to the first and the second eigenvectors of the co-
variance matrix of the data points. We rely on Principal Component Analysis [Jol86]
to efficiently retrieve these vectors.

More specifically, let M be the matrix holding the last k successive data points
that were all labeled as fixation points, such that each row of M contains the co-
ordinates of a point after subtracting the (empirical) mean of the distribution of all
points. Through singular value decomposition, M can be decomposed into UΣΣΣVT ,
where U contains the orthonormal eigenvectors of the covariance matrix MMT , ΣΣΣ
is a diagonal matrix containing the positive roots of the eigenvalues of MMT , and
V contains the orthonormal eigenvectors of MT M. This decomposition is unique up
to different orderings of the values in ΣΣΣ . This means that if the values are ordered
decreasingly (with the largest value in the upper-left corner of the matrix) in ΣΣΣ , then
the first and the second column of U correspond to the first and second eigenvector
of MMT , respectively.

In order to decide whether the last k data points describe a smooth pursuit, we
compute:

σ2
2 · ‖u2‖

σ2
1 · ‖u1‖

=
σ2

2

σ2
1

≤ t

where t is an empirically established threshold, σ1 and σ2 are the largest and
the second largest values in ΣΣΣ , respectively, and u1 and u2 are the corresponding
eigenvectors.

424 E. Kasneci et al.

An example scenario of an online smooth pursuit detection is depicted in Fig-
ure 3, where a hazardous situation arises from the white car cutting into the lane
from the right. The figure shows video frames from a driving scene that was gener-
ated in a driving simulator. The driver’s eye movements were tracked by means of a
mobile Dikablis eye tracker at a sampling rate of 25Hz.

Figure 3(a) shows the moment when the driver’s attention is caught for the first
time by the white car. The black arrow shows the shift of visual attention in the
most recent time frame of 1s. Figure 3(b) depicts the situation 400 ms later, when
the driver has come closer to the white car. During this time, the driver’s gaze has
pursued the relative movement of the white car. According to the spread of the
gaze points, which were labeled as a fixation cluster by the online Bayesian mixture
model, the PCA-based analysis has classified them as belonging to a smooth pursuit.

(a) (b)

Fig. 3 An example scenario of a smooth pursuit [TKK+13]

4 Experimental Evaluation

In this section, we first demonstrate the superior quality of the online Bayesian mix-
ture model over a state-of-the-art model for detecting fixations and saccades and
then showcase the quality of the PCA-based detection of fixations, saccades, and
smooth pursuits based on a real-world, hand-labeled data set.

4.1 Evaluation of the Bayesian Mixture Model in Comparison
with a Hidden Markov Model

For the quality evaluation of the Bayesian Mixture Model (BMM), in [KKKR14] we
compared its prediction performance to that of a Hidden Markov Model (HMM),
such as the one presented in [KJKG10, SG00]. These types of models come
with several advantages over threshold-based methods: (1) no fixed thresholds are
needed, instead the parameters of the model (i.e., state transition probabilities and

Online Recognition of Fixations, Saccades, and Smooth Pursuits 425

label emission probabilities) are learned from labeled data, (2) in consequence,
HMMs can adapt to the individual (i.e., physiological) viewing behavior of a sub-
ject and to the specific task, and (3) given their dynamic sequential structure, they
are naturally suited for sequentially arising data points, such as eye-tracking data.
Note also that both models, HMM and BMM, belong to the family of probabilistic
models.

We implemented a two-state HMM according to the description of the I-HMM
in [SG00]. However, the observed sequences for the I-HMM were velocities be-
tween the eye-tracking data points, whereas in the HMM version that we have
implemented, the sequences consist of distances between successive data points
[KKKR14]. Based on training data (i.e., manually labeled data points) such distance
observations can be mapped to a discrete set of observations, which in our context
correspond to the IDs of two estimated Gaussian distributions, i.e., one represent-
ing the distribution of distances between saccades and another one standing for the
distribution of distances between fixations. These distributions, the emission proba-
bilities of their IDs, as well as the transition probabilities between the HMM states
are learned from labeled data, by computing the corresponding maximum likelihood
estimations. A Viterbi-based, forward-backward algorithm [FJ73] was implemented
to compute the most probable state sequence of the HMM corresponding to an
observation sequence.

To evaluate the performance of the HMM and BMM, we employed nine real-
world, eye-tracking data sets from nine different subjects who took part in our driv-
ing experiments [KSA+14]. Each data set consisted of 750 data points recorded
while driving, at a sampling rate of 25Hz by a mobile Dikablis eye tracker. The
data was analyzed frame-wise by two PhD students. An eye-tracking data point
was thereby labeled as belonging to a saccade or fixation only if both of the judges
agreed. Blinks and disagreements were excluded from the data. Each of the data sets
corresponds to a driving sequence of 30 seconds, resulting in a total of 4.5 minutes.

Both models were applied post-experimentally, but in real-time on sequentially
arising raw eye-tracking data points from nine different data sets. Both the HMM
and the BMM were trained on the first 300 eye-tracking points of the each data sets.
From such training data, the HMM derives the distance distributions (i.e., for dis-
tances between consecutive saccades and consecutive fixations) as well as transition
and emission probabilities. In contrast, the BMM, updates the learned parameters in
an online fashion as new data points are observed. Once the parameters were learned
for both models, their prediction quality was tested on each data set.

Table 1 shows a summary of the evaluation of both algorithms with respect to
the detection of saccades and fixations from [KKKR14]. The quality results present
average values from the evaluation of the models on the above nine data sets in
terms of the following measures: Precision (T P

T P+FP), Recall (T P
T P+FN), F1-measure

(2·Precision·Recall
Precision+Recall), which represents the harmonic mean of precision and recall, and

Miss-Classification-Rate (MCR) (FP+FN
T P+FP+TN+FN).

426 E. Kasneci et al.

Table 1 Quality comparison of the Hidden Markov Model (HMM) and the Bayesian Mixture
Model (BMM) with respect to the detection of fixations and saccades from raw eye-tracking
data

Data points Model Precision Recall F1 MCR

Saccade 910
HMM 0.774 0.803 0.763 0.068

BMM 0.997 0.955 0.975 0.009

Fixation 5840
HMM 0.974 0.943 0.958 0.068

BMM 0.989 1.000 0.994 0.009

As shown in Table 1, the BMM clearly outperformed the HMM, especially in the
detection of saccades where an astounding average precision of 99.7% is achieved.
Note that the reliable recognition of saccade points is in the context of driving very
critical, since a correct detection of saccades implies a correct separation of fixation
clusters. In general, the proportion of saccade points is much smaller than that of
fixation points. For a model such as the HMM, which aims at maximizing the joint
probability of a sequence of states and corresponding observations, it is safer to
focus on the most probable states and observations; these are fixations and the cor-
responding distance distributions. These findings are also in line with the findings
presented in [KJKG10].

A much better performance of the HMM is shown in the detection of fixation
points, with an average precision of 97.5%. The precision achieved by the BMM
is even higher, i.e., 98.9%. The recall of the HMM with respect to the detection of
fixation points is remarkably lower than that of the BMM, because the HMM does
not manage to adapt well enough to varying distances between fixation points. This
is different for the BMM, which can adapt to varying distances in an online fashion.
Considering the MCR, which is very low for both models, we found a superior
performance of the BMM with values smaller than 1%. In summary, the HMM was
outperformed by the BMM with respect to all measures.

These results highlight the superior performance of the online Bayesian mixture
model in comparison to an HMM. Especially, on the difficult task of reliably de-
tecting saccades, which is crucial for the correct separation of fixation clusters, the
Bayesian model achieves highly satisfiable precision, and recall values.

Beyond the context of driving, the BMM can be integrated into vision research
tools (e.g., Vishnoo [TKP+11]) to analyze the viewing behavior during visual search
tasks presented on a screen. Furthermore, the BMM can be used in the context
of medical testing, e.g., for advanced visual field testing involving online anal-
ysis of fixations (e.g., EFOV [THH+13]). In summary, whenever fixations and
saccades have to be detected in an online fashion, the BMM is a highly reliable
choice.

Online Recognition of Fixations, Saccades, and Smooth Pursuits 427

4.2 Overall Evaluation of the Classification Technique

The PCA-based extension of the Bayesian mixture model was evaluated on data
from a driving simulator experiment with 27 subjects. The results were presented
in [TKK+13].

The driving experiment was conducted in the moving-base driving simulator
[Zee10] shown in Figure 4 at the Mercedes-Benz Technology Center in Sindelfin-
gen, Germany. The facility allows simulating acceleration forces in all directions,
with up to 1g into the direction of a twelve-meter long rail. The cabin, Figure 4(b),
contained a real car body (Mercedes S class with automatic transmission) amidst a
360◦ projected virtual reality, Figure 4(a). The car body was oriented perpendicular
to the rail. Thus curve and lane changing maneuvers appear most realistic, while
acceleration and braking result in a movement often described as “diving”. All in
all, acceleration, sound effects, and car environment contributed to a near-to-reality
driving experience.

(a) (b)

Fig. 4 Moving base driving simulator. (a) View from inside the cabin onto the environment
projection. (b) The entire cabin is mounted on a hexapod, moving along the 12m rail resulting
in up to 1g acceleration force. Figures were provided by Daimler AG.

Nine hazardous situations were placed along the 37.5 km long driving route.
These traffic hazards, e.g., pedestrians suddenly appearing behind parking cars and
trying to cross the road (Figure 5) and risky overtaking maneuvers, were the same
for each driver. In case of an overseen hazard, the participants did not experience a
crash. For example, it was not possible to run over pedestrians. Instead pedestrians
would leap backwards and overtakers would return to their original lane to avoid
crashes and subsequent psychological stress. The course contained rural as well as
urban areas with different speed limits up to 100 km/h. For the 27 study subjects this
would result in a total of 243 hazardous situations. However, some of the study par-
ticipants aborted the session due to motion sickness or technical problems, resulting
in a total of 184 hazardous situations.

428 E. Kasneci et al.

(a) (b)

Fig. 5 Scenes from the virtual reality [TKK+13]: (a) a pedestrian intending to cross the road,
(b) and a white car coming from the right side.

Driver’s eye movements were recorded at 25Hz using a Dikablis mobile eye
tracker, whereas head movements were recorded by a LaserBird head tracker. Prior
to the driving session each subject underwent a brief training session of 5 km length,
in order to adjust to the car and the driving environment. This session was also used
to learn an initial visual behavior model with parameters adjusted to the current
driver. The training session began with a straight road and became more complex as
oncoming traffic became successively denser and traffic signs more frequent.

We evaluated our method on 184 hazardous situations. The spatial extent of the
traffic hazards was manually annotated using bounding boxes, separately for each
video frame. The analysis of the driver’s viewing behavior and the detection of
fixations, smooth pursuits and saccades was performed online using the algorithms
presented in the previous section. A traffic hazard was considered as perceived, if
a fixation or a smooth pursuit cluster intersected with the bounding box around
it at any frame. An example of an intersection between the driver’s gaze and the
bounding box is shown in Figure 6. The results are presented in Table 2.

In 169 of the 171 situations where the hazard was considered as perceived (i.e., an
intersection between the fixation cluster and the bounding box occurred) the driver
reacted by performing a braking or obstacle avoidance maneuver. In 7 of the 13
hazardous situations where the bounding box was not intersected by a fixation or
smooth pursuit cluster no reaction to the situation happened (i.e., the target was
missed). Note that in a real-world scenario, these situations would have led to ac-
cidents. In 6 situations the bounding box was not intersected but the driver reacted
nevertheless. These hazards were perceived, even though the driver did not explicitly
look at them. In 2 situations, where the bounding box was intersected by a fixation
or smooth pursuit cluster, the driver did not react. Although the driver looked at
the targets, they were not perceived. Again, in reality, such situations would result
in accidents. In terms of predicting the recognition of traffic hazards by the driver
(using only raw eye-tracking data), the algorithm showed an overall accuracy of
95,7%, a specificity of 96,5%, and a sensitivity of 77,8%. These results highlight
the overwhelming reliability of the proposed method.

Online Recognition of Fixations, Saccades, and Smooth Pursuits 429

Fig. 6 A car appears on the left of the driving scene and is about to cut the driver’s way. The
red bounding box around the approaching hazard and the driver’s fixation cluster are shown.
Once the bounding box is intersected by the fixation cluster, the traffic hazard is marked as
“perceived”, highlighted by the green bounding box [TKK+13].

In order to look into the detailed per-class performance of our algorithm (i.e., the
detection of fixations, saccades, and smooth pursuits), we randomly picked the eye
tracking data of one of the subjects. For a six-minute-long driving sequence, two
PhD students manually annotated the data points as fixations, saccades, or smooth
pursuits. Note that this annotation task is very laborious, as the data has to be labeled
frame-wise. Overall, there were 46 eye movement events that were labeled; 27 as
fixations, 8 as smooth pursuits, and 11 as saccades. Table 2 shows the per-class
true-positive and false-positive counts.

Table 2 True and false positive counts for the detection of fixations, smooth pursuits, and
saccades

Eye movement type Annotation True Positives False Positives

Fixation clusters 27 26 1
Smooth pursuit clusters 8 7 2
Saccades (single points) 11 11 0

Seven out of eight smooth pursuits and 26 out of 27 fixations were identified
correctly. While our algorithm detected all saccades correctly, two fixations were
falsely classified as smooth pursuits and one smooth pursuit as fixation. Although
preliminary in nature, these results are very promising and we plan to further evalu-
ate the algorithm on larger labeled datasets.

5 Conclusion

We presented an online adaptive, classification algorithm for detecting fixations,
saccades, and smooth pursuits in driving scenarios. This algorithm was primarily

430 E. Kasneci et al.

evaluated with respect to its ability to detect hazardous traffic situations that might
have been overlooked by the driver. In a user study with a state-of-the-art driving
simulator, the method showed an impressive detection accuracy, which we think can
be mainly explained by the method’s ability to adjust the underlying model to the
driver’s visual behavior. An evaluation on the per-class detection of fixations, sac-
cades, and smooth pursuits hints at the method’s ability to recognize and distinguish
between different types of eye movements. Apart from experiments on larger, la-
beled datasets, we also plan to investigate the integration of physiological models,
which take heart rate and skin conductance into account to predict the driver’s stress
levels [KKR+14]. Such models could supplement models that are based on gaze
recordings to predict traffic hazard perception and the driver’s ability to react.

Acknowledgements. The authors would like to thank Daimler AG and the driving simulator
experts for the technical support during the whole experimental study.

References

[BBM+09] Berg, D.J., Boehnke, S.E., Marino, R.A., Munoz, D.P., Itti, L.: Free viewing of
dynamic stimuli by humans and monkeys. Journal of Vision 9(5), 1–15 (2009)

[Bis06] Bishop, C.M.: Machine Learning and Pattern Recognition. Springer-Verlag,
New York, Inc., Secaucus (2006)

[Bli09] Blignaut, P.: Fixation identification: The optimum threshold for a dispersion
algorithm. Attention, Perception, & Psychophysics 71(4), 881–895 (2009)

[Bus35] Buswell, G.T.: How people look at pictures. University of Chicago Press,
Chicago (1935)

[BWLH12] Berger, C., Winkels, M., Lischke, A., Höppner, J.: GazeAlyze: A MATLAB
toolbox for the analysis of eye movement data. Behavior Research Meth-
ods 44(2), 404–419 (2012)

[CNTN08] Camilli, M., Nacchia, R., Terenzi, M., Di Nocera, F.: Astef: A simple tool for
examining fixations. Behavior Research Methods 40, 373–382 (2008)

[Cor12] Cornsweet, T.: Visual perception. Academic Press (2012)
[CU98] Chapman, P.R., Underwood, G.: Visual search of driving situations: Danger

and experience. Perception London 27, 951–964 (1998)
[CUR02] Chapman, P., Underwood, G., Roberts, K.: Visual search patterns in trained and

untrained novice drivers. Transportation Research Part F: Traffic Psychology
and Behaviour 5(2), 157–167 (2002)

[Duc07] Duchowski, A.: Eye tracking methodology: Theory and practice. Springer,
London (2007)

[Eye] Eyetellect. GazeTracker, http://www.eyetellect.com/gazetracker/
[Fer00] Ferrera, V.P.: Task-dependent modulation of the sensorimotor transformation

for smooth pursuit eye movements. Journal of Neurophysiology 84(6), 2725–
2738 (2000)

[FJ73] Forney Jr., G.D.: The viterbi algorithm. Proceedings of the IEEE 61(3), 268–
278 (1973)

[FZ09] Fletcher, L., Zelinsky, A.: Driver inattention detection based on eye gaze-road
event correlation. The International Journal of Robotics Research 28(6), 774–
801 (2009)

http://www.eyetellect.com/gazetracker/

Online Recognition of Fixations, Saccades, and Smooth Pursuits 431

[Git02] Gitelman, D.R.: ILAB: A program for postexperimental eye movement analy-
sis. Behavioral Research Methods, Instruments and Computers 34(4), 605–612
(2002)

[HB05] Hayhoe, M., Ballard, D.: Eye movements in natural behavior. Trends in Cog-
nitive Science 9(4), 188–194 (2005)

[HBCM07] Henderson, J.M., Brockmole, J.R., Castelhano, M.S., Mack, M.: Visual
saliency does not account for eye movements during visual search in real-world
scenes. In: Eye movements: A Window on Mind and Brain, pp. 537–562 (2007)

[HDBK+13] Hamel, J., De Beukelear, S., Kraft, A., Ohl, S., Audebert, H.J., Brandt, S.A.:
Age-related changes in visual exploratory behavior in a natural scene setting.
Frontiers in Psychology 4(339) (2013)

[HMM+08] Horswill, M.S., Marrington, S.A., McCullough, C.M., Wood, J., Pachana,
N.A., McWilliam, J., Raikos, M.K.: The hazard perception ability of older
drivers. The Journals of Gerontology Series B: Psychological Sciences and
Social Sciences 63(4), P212–P218 (2008)

[HNA+11] Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van
de Weijer, J.: Eye tracking: A comprehensive guide to methods and measures.
Oxford University Press (2011)

[HSCG01] Ho, G., Scialfa, C.T., Caird, J.K., Graw, T.: Visual search for traffic signs: The
effects of clutter, luminance, and aging. Human Factors: The Journal of the
Human Factors and Ergonomics Society 43(2), 194–207 (2001)

[IK00] Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert
shifts of visual attention. Vision Research 40(10-12), 1489–1506 (2000)

[IKN98] Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for
rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine In-
telligence 20(11), 1254–1259 (1998)

[Itt05] Itti, L.: Quantifying the contribution of low-level saliency to human eye move-
ments in dynamic scenes. Visual Cognition 12(6), 1093–1123 (2005)

[Jol86] Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)
[Kas13] Kasneci, E.: Towards the Automated Recognition of Assistance Need for

Drivers with Impaired Visual Field. PhD thesis, University of Tübingen, Wil-
helmstr. 32, 72074 Tübingen (2013)

[KCC12] Konstantopoulos, P., Chapman, P., Crundall, D.: Exploring the ability to iden-
tify visual search differences when observing drivers’ eye movements. Trans-
portation Research Part F: Traffic Psychology and Behaviour 15(3), 378–386
(2012)

[KJKG10] Komogortsev, O.V., Jayarathna, S., Koh, D.H., Gowda, S.M.: Qualitative and
quantitative scoring and evaluation of the eye movement classification algo-
rithms. In: Proceedings of the 2010 Symposium on Eye-Tracking Research &
Applications, ETRA 2010, pp. 65–68. ACM, New York (2010)

[KK13] Komogortsev, O.V., Karpov, A.: Automated classification and scoring of
smooth pursuit eye movements in the presence of fixations and saccades. Be-
havior Research Methods 45, 203–215 (2013)

[KKKR14] Kasneci, E., Kasneci, G., Kübler, T.C., Rosenstiel, W.: The applicability of
probabilistic methods to the online recognition of fixations and saccades in
dynamic scenes. In: Proceedings of the Symposium on Eye Tracking Research
and Applications, ETRA 2014, pp. 323–326. ACM, New York (2014)

432 E. Kasneci et al.

[KKR+14] Kübler, T.C., Kasneci, E., Rosenstiel, W., Schiefer, U., Nagel, K., Papageor-
giou, E.: Stress-indicators and exploratory gaze for the analysis of hazard per-
ception in patients with visual field loss. Transportation Research Part F: Traf-
fic Psychology and Behaviour 24, 231–243 (2014)

[KSA+14] Kasneci, E., Sippel, K., Aehling, K., Heister, M., Rosenstiel, W., Schiefer, U.,
Papageorgiou, E.: Driving with Binocular Visual Field Loss? A Study on a Su-
pervised On-Road Parcours with Simultaneous Eye and Head Tracking. PLoS
ONE 9(2), e87470 (2014)

[Lan09] Land, M.F.: Vision, eye movements, and natural behavior. Visual Neuro-
science 26(1), 51–62 (2009)

[LT09] Land, M.F., Tatler, B.W.: Looking and acting: vision and eye movements in
natural behaviour. Oxford University Press (2009)

[LZ06] Leigh, R.J., Zee, D.S.: The neurology of eye movements. Oxford University
Press (2006)

[Mar10] Markoff, J.: Google cars drive themselves, in traffic. The New York Times 10,
A1 (2010)

[McC81] McConkie, G.W.: Evaluating and reporting data quality in eye movement re-
search. Behavior Research Methods & Instrumentation 13(2), 97–106 (1981)

[MS99] Maltz, M., Shinar, D.: Eye movements of younger and older drivers. Human
Factors: The Journal of the Human Factors and Ergonomics Society 41(1), 15–
25 (1999)

[MS04] Maltz, M., Shinar, D.: Imperfect in-vehicle collision avoidance warning sys-
tems can aid drivers. Human Factors: The Journal of the Human Factors and
Ergonomics Society 46(2), 357–366 (2004)

[MSP08] Munn, S.M., Stefano, L., Pelz, J.B.: Fixation-identification in dynamic scenes:
comparing an automated algorithm to manual coding. In: Proceedings of the
5th Symposium on Applied Perception in Graphics and Visualization, APGV
2008, pp. 33–42. ACM, New York (2008)

[MWGK12] Minka, T., Winn, J.M., Guiver, J.P., Knowles, D.A.: Infer.NET 2.5. Microsoft
Research Cambridge (2012),
http://research.microsoft.com/infernet

[Nag78] Nagayama, Y.: Role of visual perception in driving. IATSS Research 2, 64–73
(1978)

[NH10] Nuthmann, A., Henderson, J.M.: Object-based attentional selection in scene
viewing. Journal of Vision 10(8), 20 (2010)

[NS71] Noton, D., Stark, L.W.: Eye movements and visual perception. Scientific
American 224(6), 34–43 (1971)

[PHD+05] Pradhan, A.K., Hammel, K.R., DeRamus, R., Pollatsek, A., Noyce, D.A.,
Fisher, D.L.: Using Eye Movements To Evaluate Effects of Driver Age on Risk
Perception in a Driving Simulator. Human Factors: The Journal of the Human
Factors and Ergonomics Society 47(4), 840–852 (2005)

[Pom89] Pomerleau, D.A.: ALVINN: An autonomous land vehicle in a neural network.
In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems
1, pp. 305–313. Morgan Kaufmann, San Francisco (1989)

[PS00] Privitera, C.M., Stark, L.W.: Algorithms for defining visual regions-of-interest:
Comparison with eye fixations. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22(9), 970–982 (2000)

http://research.microsoft.com/infernet

Online Recognition of Fixations, Saccades, and Smooth Pursuits 433

[PS05] Privitera, C.M., Stark, L.W.: Scanpath theory, attention, and image processing
algorithms for predicting human eye fixations. In: Itti, L., Rees, G., Tsotsos, J.
(eds.) Neurobiology of Attention, pp. 269–299 (2005)

[SBG11] Schütz, A.C., Braun, D.I., Gegenfurtner, K.R.: Eye movements and perception:
a selective review. Journal of Vision 11(9), 1–30 (2011)

[SD04] Santella, A., De Carlo, D.: Robust clustering of eye movement recordings for
quantification of visual interest. In: Proceedings of the 2004 Symposium on
Eye Tracking Research & Applications, ETRA 2004, pp. 27–34. ACM, New
York (2004)

[See] Seeing Machines Inc. faceLab 5,
http://www.seeingmachines.com/product/facelab/

[Sen] SensoMotoric Instruments GmbH. SMI BeGaze Eye Tracking Analysis
Software,
http://www.smivision.com/en/gaze-and-eye-tracking-
systems/products/begaze-analysis-software.html

[SG00] Salvucci, D., Goldberg, J.: Identifying fixations and saccades in eye-tracking
protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Tesearch
& Applications, ETRA 2000, pp. 71–78. ACM, New York (2000)

[SMDRV91] Sauter, D., Martin, B.J., Di Renzo, N., Vomscheid, C.: Analysis of eye track-
ing movements using innovations generated by a Kalman filter. Medical and
biological Engineering and Computing 29(1), 63–69 (1991)

[SNP96] Summala, H., Nieminen, T., Punto, M.: Maintaining lane position with periph-
eral vision during in-vehicle tasks. Human Factors: The Journal of the Human
Factors and Ergonomics Society 38(3), 442–451 (1996)

[SR] SR Research Ltd. EyeLink 1000 and EyeLink II,
http://www.sr-research.com/index.html.

[SSC08] Shic, F., Scassellati, B., Chawarska, K.: The incomplete fixation measure. In:
Proceedings of the 2008 Symposium on Eye Tracking Research & Applica-
tions, ETRA 2008, pp. 111–114. ACM, New York (2008)

[TGB03] Turano, K.A., Geruschat, D.R., Baker, F.H.: Oculomotor strategies for the di-
rection of gaze tested with a real-world activity. Vision Research 43, 333–346
(2003)

[THH+13] Tafaj, E., Hempel, S., Heister, M., Aehling, K., Schaeffel, F., Dietzsch, J.,
Rosenstiel, W., Schiefer, U.: A New Method for Assessing the Exploratory
Field of View (EFOV). In: Stacey, D., SoléCasals, J., Fred, A.L.N., Gamboa,
H. (eds.) HEALTHINF 2013, pp. 5–11. SciTePress (2013)

[THLB11] Tatler, B.W., Hayhoe, M.M., Land, M.F., Ballard, D.H.: Eye guidance in natu-
ral vision: reinterpreting salience. Journal of Vision 11(5), 5 (2011)

[TKK+13] Tafaj, E., Kübler, T.C., Kasneci, G., Rosenstiel, W., Bogdan, M.: Online classi-
fication of eye tracking data for automated analysis of traffic hazard perception.
In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini,
B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 442–450. Springer,
Heidelberg (2013)

[TKP+11] Tafaj, E., Kübler, T., Peter, J., Schiefer, U., Bogdan, M., Rosenstiel, W.: Vish-
noo - an open-source software for vision research. In: Proceedings of the 24th
IEEE International Symposium on Computer-Based Medical Systems, CBMS
2011, pp. 1–6. IEEE (2011)

http://www.seeingmachines.com/product/facelab/
http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/begaze-analysis-software.html
http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/begaze-analysis-software.html
http://www.sr-research.com/index.html

434 E. Kasneci et al.

[TKRB12] Tafaj, E., Kasneci, G., Rosenstiel, W., Bogdan, M.: Bayesian online clustering
of eye movement data. In: Proceedings of the Symposium on Eye Tracking
Research & Applications, ETRA 2012, pp. 285–288. ACM, New York (2012)

[Tob] Tobii Technology AB. Eye Tracking for Research and Analysis,
http://www.tobii.com/en/eye-tracking-research/global/.

[UAB+08] Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., et al.: Autonomous
driving in urban environments: Boss and the urban challenge. Journal of Field
Robotics 25(8), 425–466 (2008)

[UCBC02] Underwood, G., Chapman, P., Bowden, K., Crundall, D.: Visual search while
driving: skill and awareness during inspection of the scene. Transportation Re-
search Part F: Traffic Psychology and Behaviour 5(2), 87–97 (2002)

[ULIS07] Urruty, T., Lew, S., Ihadaddene, N., Simovici, D.A.: Detecting eye fixations
by projection clustering. In: ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMCCAP), vol. 3(4), pp. 1–20 (2007)

[UPW+05] Underwood, G., Phelps, N., Wright, C., Van Loon, E., Galpin, A.: Eye fixation
scanpaths of younger and older drivers in a hazard perception task. Ophthalmic
and Physiological Optics 25(4), 346–356 (2005)

[VBG12] Vidal, M., Bulling, A., Gellersen, H.: Detection of smooth pursuits using eye
movement shape features. In: Proceedings of the Symposium on Eye Tracking
Research and Applications, ETRA 2012, pp. 177–180. ACM, New York (2012)

[VRK+02] Velichkovsky, B.M., Rothert, A., Kopf, M., Dornhöfer, S.M., Joos, M.: To-
wards an express-diagnostics for level of processing and hazard perception.
Transportation Research Part F: Traffic Psychology and Behaviour 5(2), 145–
156 (2002)

[Wid84] Widdel, H.: Operational problems in analysing eye movements. In: Gale, A.G.,
Johnson, F. (eds.) Theoretical and Applied Aspects of Eye Movement Re-
search Selected/Edited Proceedings of The Second European Conference on
Eye Movements. Advances in Psychology, vol. 22, pp. 21–29. North-Holland
(1984)

[Woo02] Wooding, D.S.: Fixation maps: quantifying eye-movement traces. In: Proceed-
ings of the Eye Tracking Research and Applications, pp. 31–36 (2002)

[Yar67] Yarbus, A.L.: Eye movements and vision. Plenum Press, New York (1967)
[Zee10] Zeeb, E.: Daimler’s New Full-Scale, High-dynamic Driving Simulator–A

Technical Overview. In: Proceedings of the Driving Simulator Conference
Europe, pp. 157–165. Institut national de recherche sur les transports et leur
sécurité (2010)

http://www.tobii.com/en/eye-tracking-research/global/

© Springer International Publishing Switzerland 2015
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,

435

Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_21

Input Transformation and Output Combination
for Improved Handwritten Digit Recognition

Juan M. Alonso-Weber, M. Paz Sesmero, German Gutierrez,
Agapito Ledezma, and Araceli Sanchis

Abstract. Recent Neural Network Architectures with a deep and complex
structure and that rely on ensemble averaging have led to an improvement in iso-
lated handwritten digit recognition. Here a specific set of input pattern transforma-
tions is presented that achieves good results with modestly sized Neural Networks.
Using some heuristics for the construction of an ensemble allows reaching low
error rates.

Keywords: Artificial Neural Networks, Back Propagation, Ensembles, MNIST,
Handwritten Digit Recognition.

1 Introduction

Handwritten character recognition has been spurred in recent years due to the use
of new Neural Network Models such as Convolutional Neural Networks and Deep
Neural Networks. Both are rather complex and deep structures, which allow
reaching a highly respectable performance measured on the popular MNIST
Dataset [1][2]: 0.4% [3] and 0.35% [4]. Combining these architectures with
committees or integrating them with ensemble-like structures allows to further
improve down to 0.27% [5] or even 0.23% [6]. Using committees with a
traditional MLP displays an error rate of 0.39% [7]. Other interesting works which
are based on different approaches reach an error rate of 0.40% [8] and 0.32% [9]
respectively.

Juan M. Alonso-Weber · M. Paz Sesmero · German Gutierrez ·
Agapito Ledezma · Araceli Sanchis
Computer Science and Engineering Department, Universidad Carlos III de Madrid
Avenida de la Universidad 30 Leganés 28911, Madrid, Spain
e-mail: jmaw@ia.uc3m.es,
 {msesmero,ggutierr,ledezma,masm}@inf.uc3m.es

436 J.M. Alonso-Weber et al.

The present work, derived from [10][11], shows an alternative based on a
relatively modest sized Multilayer Perceptron (MLP) trained with the standard
Back Propagation algorithm. In order to avoid local minima and stalling during
the learning phase, several processing measures are added. The effective potential
of the training set can be increased applying on the original MNIST digits some
pattern distortion in combination with other transformations such as displacements
and rotations [3]. Here an alternative deformation process is applied. An
additional improvement is achieved using an input size reduction.

Noise injection has been extensively related with other techniques such as
weight decay and regularization, and is known to provide a better generalization
under certain circumstances [12][13][14]. A specific variant of input noise
addition that uses annealing proves to be a robust tool for reaching low error rates
in the MNIST domain.

The unstable nature of the MLPs promotes the use of an ensemble averaging
procedure as a simple and effective method to achieve an improvement in the
classification results [15]. For a better performance, the networks should be at
most precise and diverse [16][17], i.e. it is desirable that the MLP’s have a low
error rate and that their errors have a low correlation. Inducing diversity through
some random process, for example, training networks with different weight
initialization is a correct procedure [15] but has a limited effectiveness [18]. A
higher diversity can be accomplished through a guided design of the ensemble
[19][20] or inducing additional differentiation in the training process [18], for
example modifying the input space. Here both approximations are tried out: a)
with a ranked selection methodology, and b) with a set of displacement schemas.

2 Data Processing

The MNIST Database contains 70000 digitized handwritten numerals distributed
in ten different classes. The whole dataset is divided into 60000 images for
training purposes, and the remaining 10000 are reserved for the test set. The
graylevel values of each pixel are coded in this work in the [0, 1] interval, using a
0 value for white pixels and 1 for black ones.

An important point for managing a high performance in the learning process is
the construction of a useful training set. The 60000 different patterns contained in
the MNIST database can be seen as a rather generous set, but evidence shows that
the learning curve of the usual methods based on Back Propagation converges in a
few hundred cycles towards a local minimum, failing on one hundred or more of
the test set samples [10]. Changing the usual learning parameters provides little
improvement. A different strategy relies on increasing the training set cardinality
and variability, which has a more profound impact on the learning capability of
the MLP. Usual actions comprise geometric transformations such as
displacements, rotation, scaling and other distortions. In this work an alternative
deformation is combined with displacements, rotations and an additive input noise
schedule that yields rather good results.

Input Transformation and Output Combination 437

Another problem with which the Back Propagation algorithm tackles is the
relative high input dimensionality for the original 28x28 sized digits. Using
downsized images helps to reduce the error rate in a small amount, with the
additional benefit of a lower computational cost. Therefore, a second version of
both the training and test sets are generated where each pattern is downsized
through interpolation to 20x20 pixels.

Displacement

Each digit is displaced combining two independent zero, one or two pixel shifts in
the horizontal and vertical axis. The size of each shift is selected randomly.
Experimental evidence indicates that longer and diagonal displacements induce a
lower improvement in the final performance, whereas shorter shifts show to be
more useful. Finding an optimal probability distribution of the different
displacements is a cumbersome task. An interesting possibility is to train different
MLPs using different displacement schemas. This might induce some
differentiation between the MLPs, improving the accuracy of the ensemble. This
is shown further on in the Experimental Results Section.

For most of the training cases a standard displacement schema is used. Table 1
shows the probability distribution for the displacement combinations. 0v, 1v and
2v stand for 0, 1 and 2 pixel displacements in the vertical axis, and 0h, 1h, 2h for
the horizontal axis. Some of the combinations represent a similar, symmetric dis-
placement (e.g. 0v+1h and 1v+0h).

Table 1 Probability distribution of the displacements for the standard schema

 Standard Displacement Schema

Displacements 0v+0h 0v+1h 0v+2h 1v+1h 1v+2h 2v+2h

 1v+0h 2v+0h 2v+1h

Probability 0.12 0.30 0.15 0.20 0.18 0.05

Deformation and Rotation

The most important transformation relies on the so called deformation, which
involves pulling or pushing each of the four image corner pixels in a random
amount along the vertical and horizontal axis. The rest of the pixels are
proportionally displaced simulating an elastic behaviour. This leads to a
combination of partial stretching and/or compression of the image. Fig. 1
illustrates this process. For the full sized images the displacement interval of the
corner pixels is [-5, +5] (distance measured as pixels). For the 20x20 sized images,
the best results are achieved with displacements in the order of [-4, +4] pixels. In
parallel with the deformation, a rotation is applied around the image center
selecting a random angle between -0.15 and +0.15 radians. For technical reasons,
the deformation and the rotation need to be computed in an inverse way.

438 J.M. Alonso-Weber et al.

Noise Addition

The last process applied to each pattern before the training phase is the noise
addition. A particular variant is used based on the annealing concept: starting with
high noise rates that are lowered at a small amount after each learning cycle, and
ending with a zero noise rate.

Including the descending input noise schedule improves the MLP precision, on
behalf of a longer learning process. A noiseless training requires about 500 cycles,
whereas adding the input noise extends the learning up to 1000 cycles. In this
circumstance, convergence is tempered down towards the end of the noise
schedule. Usually few improvements are achieved during the 100-200 last cycles,
and virtually none after the noise scheme is extinguished. The noise parameters
and their relation are R=N0/Tmax, where Tmax stands for the number of training
cycles, R is the noise reduction value and N0 is the initial noise value. Using an
initial noise value of N0=1.0 adds to each pixel a uniform random value from the
interval [-1, +1]. For a 1000 cycle training, the value for R should be 0.001.

The noise addition and the geometrical transformations are applied to each
pattern for each Back Propagation training cycle. Hence, the MLP sees each
pattern just once.

Fig. 1 The deformation is shown as an inverse mapping, at the left the original digit, at the
right the deformed one

Output Averaging

Due to the inherent randomness of the training with the Back Propagation algo-
rithm and the input transformations, the results of the Neural Networks will have a
high variability. The construction of an ensemble with a set of trained Neural
Networks can take advantage of this variability improving the accuracy in relation
to their individual performance. The ensemble is constructed with the averaging of
the outputs of the networks. A higher accuracy will be induced applying two heu-
ristics: a) with a ranked selection methodology, and b) with a set of displacement
schemas. Further details are shown in the Experimental Results Section.

Input Transformation and Output Combination 439

3 Experimental Setup

All the experimentation is built up around training a collection of Multilayer
Perceptrons, which are afterwards used to apply the proposed ensemble averaging.

The MLPs have a fixed size by default: 784×300×200×10, for the full sized
image database. Each output unit activates only for a specific class following the
one-out-of-n schema. The only variation in size is for the downsized 20×20
images where 400 input units are required. The training process is performed
using online Back Propagation, where all patterns are presented to the input in a
random order. All the patterns are processed in each cycle applying the above
mentioned geometrical transformations (deformation, rotation and displacement)
combined with the noise addition. The weight initialization is restricted to the [-
0.3, +0.3] interval, and the Learning Rate is set to 0.03. The activation function is
the usual logistic sigmoid.

A unique subset of the training patterns (10000 out of 60000) is randomly
removed for validation purposes. This validation set can be used in several ways
during the neural network training facing the posterior ensemble averaging: at
first, for determining the stopping point of the learning process, and secondly as a
criterion for establishing a ranking inside a set of trained neural networks.

As already stated, including the descending input noise schedule improves the
final MLP precision, at the cost of a longer lasting learning process. As a rule, the
annealing scheme lasts Tmax=1000 cycles, and 100 noiseless cycles are added at
the final stage in order to ensure a stable convergence. The initial noise value is
N0=1.0, and the descending noise rate R=0.001.

The training process of the MLPs was performed on Intel Core i7 and
equivalent Xeon processors. Each processor allows to train up to 8 MLPs in
parallel without a noticeable loss of performance. Given the size of the training set
and the needed cycles, the whole learning process lasts about 20 hours for the
20x20 images, and 24 hours for the full sized images.

4 Experimental Results

This section presents the experiments performed at first with the full sized images,
and then with the downsized images that achieve a slightly better performance.

Experiment 1, Ranked Selection with 28x28 Sized Images.

At first, a set of 90 MLPs are trained with 50000 images from the MNIST
database, leaving 10000 randomly chosen digits for validation. Applying
ensemble averaging on the whole MLP set gives an error rate of 0.39%.

Following the idea behind the statement that “many could be better than all”
[19][20], a methodology for selecting the MLPs for the averaging procedure is
proposed: validation errors are used in order to establish a ranking for the trained
MLPs. The 20 best ranked MLPs are distributed into four subsets named p, q, r

440 J.M. Alonso-Weber et al.

and s, where p contains the five neural networks that perform best on the
validation set, and s the worst. Several ensembles are then built starting with the
best subset (p), and progressively adding the subsets q, r and s. Table 2 shows the
Test Errors committed for these ensembles. Also shown are the evolution of the
worst, the best and the mean Test Errors for the selected MLPs. The mean Test
Error is lower for the better ranked ones. Experiments performed on various MLP
sets with different cardinalities suggest that using different seeds for weight
initialization derives in a limited differentiation, i.e. the individual MLPs have
highly correlated errors. The ensemble averaging tends to acquire the best
performance with nine to fifteen members.

Table 2 Test Errors (in %) for the ensembles built with the progressive addition of the
MLPs with the best validation values

 Ranked MLPs All

90 (sub) set p p, q p, q, r p, q, r, s

MLPs

Mean 0.488 0.485 0.495 0.492 0.51

Min 0.46 0.45 0.45 0.45 0.43

Max 0.52 0.53 0.61 0.61 0.61

Ensemble 0.38 0.36 0.36 0.40 0.39

In order to establish a reference for evaluating the heuristic, another procedure

for building ensembles is included: four K-sized ensembles (K=5, 10, 15, 20)
whose members are randomly selected on 1000 trials from the whole MLP set (i.e.
90 members). This allows establishing a mean value for reference. The results in
Table 3 show that this value converges steadily to 0.39%. The ranked selection
methodology gives a slightly better performance at 0.36%.

Table 3 Test Errors (in %) for 1000 ensembles built with K randomly selected MLPs

 Randomly selected MLPs All

 K= 5 10 15 20 90

Ensembles Mean 0.406 0.397 0.394 0.393 0.39

Min 0.33 0.33 0.33 0.33

Max 0.49 0.47 0.45 0.45

Experiment 2, Differentiation with Displacement Schemas, 20x20 Sized
Images.

Whereas the MLPs trained on the original MNIST database achieve a mean error
rate of 0.51% (see Table 2), using the 20x20 downsized images allows for a
slightly lower 0.46% using the standard displacement schema D6 (see Table 5).
For these MLPs, the averaging procedure provides an error rate of 0.365%. The
following experiment shows that building these MLPs with a specific
differentiation indeed improves the results.

Input Transformation and Output Combination 441

Although the use of the continuous random deformations generates a training
set with a virtually unlimited number of patterns, in practice, leaving out a fraction
of the original pattern set for validation purposes leads to a descent in
performance, especially with the 20x20 sized image set. Therefore, in the
following experiments the whole original training set without any geometrical
transformations is used for validation purposes. The drawback is that this
particular validation set does not allow using the ranked selection method on the
trained MLPs: the number of validation errors seems to have low relation with the
behaviour of the MLPs on the test set, which leads to no benefit in the averaging
procedure.

In order to increase the diversity between the trained MLPs, instead of using a
unique displacement method, different displacement schemas are established.
Each schema relies on a different probability distribution of the possible
displacements (shown in Table 4), and is combined with the usual geometric
transformation and noise addition.

For this experiment 10 Neural Networks for each displacement schema were
trained (on 20x20 images). The Mean Test Errors for the six groups varies
between 0.465% (D6) and 0.496% (D4), as shown in Table 5. Averaging each
MLP group provides a decrease in the error rates that varies between 0.36% and
0.41%. The full ensemble contains 60 members and displays an error rate of
0.34%.

Table 4 Probability distribution of the displacements inside each schema. D6 is the
standard displacement schema used for training MLPs in the previous experiment.

 Displacement Schema

Displacements D1 D2 D3 D4 D5 D6

0v+0h 0.43 0.27 0.22 0.20 0.15 0.12

0v+1h,1v+0v 0.57 0.49 0.45 0.32 0.41 0.30

0v+2h,2v+0v - 0.16 0.22 0.32 0.05 0.15

1v+1h - 0.08 0.11 0.16 0.31 0.20

1v+2h,2v+1v - - - - 0.08 0.18

2v+2h - - - - - 0.05

Table 5 Ensembles built with six MLP sets trained each with a different displacement
schema

 Displacement Schema

D1 D2 D3 D4 D5 D6

MLP 0.487% 0.468% 0.469% 0.496% 0.485% 0.465%

Ensembles 0.39% 0.36% 0.36% 0.36% 0.41% 0.36%

Full Ensemble 0.34%

442 J.M. Alonso-Weber et al.

Averaging all the MLPs trained with the six different displacement schemas
shows a lower error rate than those committed by the best ensemble based on an
individual displacement schema.

5 Conclusions

This work shows that improving the recognition rate of Handwritten Digits with
modestly sized Neural Networks trained with the standard Back Propagation
algorithm can be accomplished applying a set of specific input transformations.
These transformations increase the cardinality of the training set, which helps the
learning process to avoid stalling and local minima. Combining the outputs of a
set of trained Neural Networks takes advantage of the variable nature of these,
allowing to improve the accuracy of the ensemble in relation to the individual
members. Using some specific heuristics such as a ranked selection or different
displacement schemas can push the accuracy one step further.

Acknowledgments. This work has been supported by the Spanish Government under pro-
jects TRA2010-20225-C03-01, TRA2011-29454-C03-02 and TRA2011-29454-C03-03.

References

[1] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

[2] LeCun, Y., Cortes, C.: THE MNIST DATABASE of handwritten digits,
http://yann.lecun.com/exdb/mnist/

[3] Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural net-
works applied to visual document analysis. In: Proceedings of the 2003 Seventh In-
ternational Conference on Document Analysis and Recognition, vol. 1, pp. 958–963
(2003)

[4] Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, Big, Simple
Neural Nets for Handwritten. Neural Comput. 22(12), 3207–3220 (2010)

[5] Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Convolutional Neural
Network Committees for Handwritten Character Classification. In: 2011 Internation-
al Conference on Document Analysis and Recognition, vol. 10, pp. 1135–1139
(2011)

[6] Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column Deep Neural Networks for
Image Classification. In: IEEE Conf. on Computer Vision and Pattern Recognition
CVPR 2012, pp. 3642–3649 (2012)

[7] Meier, U., Ciresan, D.C., Gambardella, L.M., Schmidhuber, J.: Better Digit Recogni-
tion with a Committee of Simple Neural Nets. In: 2011 Int. Conf. Doc. Anal.
Recognit., vol. 1, pp. 1250–1254 (September 2011)

[8] Ranzato, A.M., Poultney, C., Chopra, S., LeCun, Y.: Efficient Learning of Sparse
Representations with an Energy-Based Model. In: Advances in Neural Information
Processing Systems 19, NIPS 2006 (2006)

Input Transformation and Output Combination 443

[9] Cruz, R., Cavalcanti, G., Ren, T.: Handwritten digit recognition using multiple fea-
ture extraction techniques and classifier ensemble. In: Int. Conf. Syst. Signals Image
Process, pp. 215–218 (2010)

[10] Sesmero, M.P., Alonso-Weber, J.M., Gutiérrez, G., Ledezma, A., Sanchis, A.: A new
artificial neural network ensemble based on feature selection and class recoding.
Neural Comput. Appl. 21(4), 771–783 (2012)

[11] Alonso-Weber, J.M., Sanchis, A.: A Skeletonizing Reconfigurable Self-Organizing
Model: Validation Through Text Recognition. Neural Process. Lett. 34(1), 39–58
(2011)

[12] Matsuoka, K.: Noise Injection into Inputs in Back-Propagation Learning. IEEE
Trans. Syst. MAN, Cybern. 22(3), 436–440 (1992)

[13] An, G.: The Effects of Adding Noise During Backpropagation Training on a General-
ization Performance. Neural Comput. 8, 643–674 (1996)

[14] Bishop, C.M., Avenue, J.J.T.: Training with Noise is Equivalent to Tikhonov Regu-
larization. Neural Comput. 7(1), 108–116 (1995)

[15] Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. J. Artif. Intell.
Res. 11(1), 169–198 (1999)

[16] Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.)
MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

[17] Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms, vol. 47(4).
Wiley-Interscience (2005)

[18] Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: A survey and
categorisation. Inf. Fusion 6(1), 5–20 (2005)

[19] Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for hybrid
neural networks. In: Mammone, R.J. (ed.) Neural Networks for Speech and Image
Processing, ch. 10. Chapman-Hall (1993)

[20] Sharkey, A.J.C., Sharkey, N.E., Gerecke, U., Chandroth, G.O.: The ‘Test and Select’
Approach to Ensemble Combination. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS,
vol. 1857, pp. 30–44. Springer, Heidelberg (2000)

© Springer International Publishing Switzerland 2015
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,

445

Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_22

Feature Selection for Interval Forecasting
of Electricity Demand Time Series Data

Mashud Rana, Irena Koprinska, and Abbas Khosravi

Abstract. We consider feature selection for interval forecasting of time series
data. In particular, we study feature selection for LUBEX, a neural network based
approach for computing prediction intervals and its application for predicting fu-
ture electricity demands from a time series of previous demands. We conduct an
evaluation using half-hourly electricity demand data for Australia and the United
Kingdom. Our results show that the mutual information and correlation-based
feature selection methods are able to select a small set of lag variables that when
used with LUBEX construct valid prediction intervals in most cases (coverage
probability of 97.44% and 96.68% for the Australian data, and 88.32% and
91.89% for the British data, for confidence level of 90%). However, the widely
used partial autocorrelation feature selection method failed to do this (coverage
probability of 69.69% for the Australian data and 47.07% for the British data).

Keywords: Electricity demand forecasting, prediction intervals, uncertainty quan-
tification, neural networks, feature selection, mutual information, correlation.

1 Introduction

We consider that the task of forecasting the future electricity demand (load) from
a time series of previous electricity demands. In particular, we study a time series
of electricity demands measured every half an hour and our goal is to make pre-
dictions for the next value. This task is classified as very short-term electricity
demand forecasting and is important for the operation of electricity markets and

Mashud Rana · Irena Koprinska
School of Information Technologies, University of Sydney, Sydney, Australia
e-mail: {mashud.rana,irena.koprinska}@sydney.edu.au

Abbas Khosravi
Centre of Intelligent Systems Research, Deakin University, Geelong, Australia
e-mail: abbas.khosravi@deakin.edu.au

446 M. Rana, I. Koprinska, and A. Khosravi

the smart grid. We focus on interval forecasting as opposed to point forecasting.
In interval forecasting, at time t the task is to predict an interval of electricity de-
mand values for time t+h with a certain probability. In point forecasting, the task
is to predict a single demand value for time t+h.

More formally, our task can be defined as follows: given a time series of n pre-
vious half-hourly electricity demands X1, X2,…, Xn, the goal is to forecast a Predic-
tion Interval (PI) for the next value of the series Xn+1. A PI consists of a lower
bound L and an upper bound U, between which the future value is expected to lie
with a minimum pre-specified probability ߤ. Thus, a PI for 1+nX is a valid PI if the

probability of 1+nX to be between the PI’s lower and upper bound is equal or

greater than the pre-specified confidence level, i.e. the following condition is satis-
fied: P()(1+nXL ≤ 1+nX ≤)(1+nXU .ߤ ≤ (

Interval forecasts give more information about the variability of the target vari-
able and the associated uncertainty. They are more suitable than point forecasts for
risk management, especially in applications requiring balancing of demand and
supply, e.g. electricity and financial markets, stock manufacturing and inventory
management [1].

Most of the existing approaches for very short-term electricity demand fore-
casting are concerned with point forecasting. These approaches fall into two main
categories: using statistical methods such as exponential smoothing, autoregres-
sive moving average and regression-based models [2-7], and using Neural Net-
works (NNs) [5, 7-12]. Although interval forecasting is very useful for electricity
markets, it still hasn’t received enough attention. Recently, a method for predict-
ing PIs using NNs, called LUBE, was proposed in [13]. To predict PIs for new
data, it uses the point forecasts for the training data and a novel cost function that
is minimized during the NN training. LUBE was compared with other NN-based
methods for PI construction such as the delta [14], Baysian [15] and bootstrap [16]
methods, and was shown to generate valid PIs, typically outperforming the other
methods. In our previous work [17] we proposed an extension of LUBE, called
LUBEX, which utilizes an ensemble of NNs instead of a single NN to reduce
the sensitivity of LUBE’s performance to the NN architecture, random weight
initialization and random weight perturbation during training.

In this paper we further extend [13, 17] by studying feature selection for
interval forecasting. The few existing methods for interval forecasting haven’t
investigated the effect of feature selection on the quality of PIs. In this paper we
investigate the performance of three feature selection methods – Partial Autocorre-
lation (PA), Mutual Information (MI) and Correlation-based Feature Selection
(CFS). PA is widely used in time series analysis; MI and CFS are less popular for
time series analysis but are state-of-the-art machine learning methods successfully
used in many applications. We utilized these feature selection methods in conjunc-
tion with the interval forecasting approach LUBEX, and evaluate their perfor-
mance for electricity demand forecasting. This paper is an extended version of
[18] – it provides a more comprehensive evaluation by using electricity demand
data for two countries: Australia and the United Kingdom.

Feature Selection for Interval Forecasting of Electricity Demand Time Series Data 447

The rest of the part of this paper is organized as follows. The next section dis-
cusses the data and data characteristics. Section 3 presents the measures used to
evaluate the quality of the constructed PIs. Section 4 briefly reviews the LUBEX
method. Section 5 summarizes the feature selection methods and describes how
they were applied to our task. Section 6 presents the results and discusses them,
and finally Section 7 concludes the paper.

2 Data and Data Characteristics

2.1 Data

We use half-hourly electricity demand data for two countries: Australia and the
United Kingdom, for one year: 2010. The Australian data is for the state of New
South Wales and is publicly available from the website of the Australian Energy
Market Operator [19]. The British data is also publicly available from the website
of the National Grid [20].

The data is recorded for each month of the year. We study each month separate-
ly in 12 case studies, one for each month. The total number of samples in each
dataset is 8,760. The number of samples for each case study is between 1,344 (for
February) and 1,488 (for the 31 days months).

The data for each case study is divided into three non-overlapped subsets -
training set (Dtrain), validation set (Dvalid) and testing set (Dtest). The training set
contains 50% of the data and is used for feature selection and building of the pre-
diction models. The validation set contains 30% of the data and is used for select-
ing the best ensemble of NNs for the LUBEX method. The testing set contains the
remaining 20% of the data and is used for performance evaluation.

2.2 Data Characteristics

The electricity demand time series data is complex and non-linear, and includes
both cyclic and random components. There are three main cycles - daily, weekly
and annual. The random components are caused by fluctuations in the electricity
usage of individual users, large industrial loads with irregular hours of operation,
special events, holidays, extreme weather and sudden weather changes.

Fig. 1 plots the electricity demand data for the Australian and British data for
the same fortnight period - from 2nd Aug (Monday) to 15th Aug (Sunday), 2010.
The two graphs are similar and we can clearly see the daily and weekly cycles of
the electricity demand data. The daily cycle is evident from the similarity of the
electricity demand profiles of the individual days, e.g. the demand profile for
Wednesday is similar to the profile for Thursday in the same week. The daily
demand profile is consistent with the human activity – the electricity demand is
higher during the day, with a peak in the morning and evening, and lower during
the night. The weekly cycle is evident from the similarity of demand profiles of
the two weeks – e.g. the electricity demand on the two Wednesdays is very

448 M. Rana, I. Koprinska, and A. Khosravi

similar, as is the demand for the other days of the week. In addition, and as ex-
pected, the electricity demand during the business days (Monday to Friday) is
higher than during the weekend (Saturday and Sunday). This difference is greater
for the British data than for the Australian data.

Fig. 1 Half-hourly electricity demand for two consecutive weeks: 2 August (Monday) – 15
August (Sunday), 2010

Although the two graphs in Fig. 1 are similar due to the similar cyclic nature of
the electricity demand for the two countries, the range of values is different– the
British electricity demand is much higher than the Australian. For example, for the
2 weeks period in Fig. 1, the Australian demand varies between 6,779 and 12,119
MW and the British demand varies between 21,519 and 41,307 MW.

2.3 Irregular Days and Weather Variables

Irregular days are days with extreme weather or sudden weather change, public
and school holidays and other special events. Since the electricity demand on such
days is different than the demand on normal days, these days are usually identified
and treated separately as outliers. When building a prediction model, the demand

5000

7000

9000

11000

13000

1 49 97 145 193 241 289 337 385 433 481 529 577 625 673

El
ec

tr
ic

ity
 lo

ad
 [M

W
]

Time Lag (1 lag = 30 min)

Australian data

15000

20000

25000

30000

35000

40000

45000

1 49 97 145 193 241 289 337 385 433 481 529 577 625 673

El
ec

tr
ic

ity
 lo

ad
 [M

W
]

Time Lag (1 lag = 30 min)

Bristish data

Feature Selection for Interval Forecasting of Electricity Demand Time Series Data 449

for these days is typically replaced by the mean demand of the previous day or
weeks [3]. When making online predictions, the regular prediction model is re-
placed by a pre-computed forecast for special days. In this study, we didn’t detect
outlier days. We treated all days equally and didn’t apply any smoothing which
might have resulted in lower accuracy. We plan to investigate irregular days in
future work.

Another factor that influences the forecasting accuracy is the weather, e.g. air
temperature and humidity, wind direction and speed. However, for small forecast-
ing horizons such as half an hour ahead prediction, it is considered that the weath-
er changes are already reflected in the electricity demand series. Taylor et al. [3,
21] found that the use of weather variables was beneficial only for forecasting
horizons greater than several hours. Hence, in this study we only use previous
electricity demand data and don’t use weather data.

3 Measures for Evaluating the Quality of PIs

A PI has two important properties: coverage probability and width. A good quality
PI will have high coverage probability (higher than the predefined confidence
level ߤ) and a small width. The coverage probability has been widely used to as-
sess the quality of PIs, while the interval width has only recently been considered.
In this paper we use measures that consider both properties of PIs; in particular,
we use the following three measures introduced in [13]: Prediction Interval Cov-
erage Probability (PICP), Prediction Interval Normalized Average Width
(PINAW), and their combination, Coverage Width Based Criterion (CWC).

PICP. Given a data set of ܰ examples, PICP is the probability that the target value ܺ of the i-th example will fall between the upper bound ܷ and lower bound ܮ of
the prediction interval ܲܫ , averaged over all examples ݅. It is calculated empirical-
ly by counting the target values that fall within the bounds:

ܲܥܫܲ = 1ܰ ܿே
ୀଵ . 100%, where

 ܿ = ൜ 1, ݂݅ ܺ ∈ ሾܮ, ܷሿ 0, ݐℎ݁݁ݏ݅ݓݎ

PIs that do not satisfy the condition ܲܲܥܫ ≥ -is a predefined confi ߤ where ,ߤ

dence level are not reliable. In this paper we use 90%= ߤ.

PINAW. PINAW measures the average width of the PIs for all examples in the
data set, normalized by the range of the actual target R:

ܹܫܲܯܰ = 1ܰ ܴ (ܷ −)ேܮ
ୀଵ

450 M. Rana, I. Koprinska, and A. Khosravi

CWC. CWC combines PICP and PINAW using the parameters ߟ and ߛ, which
determine the weighting of the two components: ܥܹܥ = ൫1ܹܣܰܫܲ + ఎ(ூିఓ)൯, whereି݁ߛ

ߛ = ൜ 0, ܲܥܫܲ ݂݅ ≥ ,1ߤ ݁ݏ݅ݓݎℎ݁ݐ

CWC has two main principles:

1) If the coverage probability is above the confidence threshold, CWC should
depend only on the PI’s width. This is achieved by setting ߛ to 0; CWC becomes
equal to the width PINAW and has a low value;

2) If the coverage probability is below the confidence threshold, i.e. the PIs are
not valid, CWC should have a high value, regardless of the width. This is achieved
by using a high value for ߟ in the exponential term and by setting ߛ to 1 to con-
sider this term. Due to the high value of the exponential term, the influence of
PINAW is lost and CWC becomes high.

Thus, CWC balances the PI’s usefulness (narrow width) and correctness (ac-
ceptable coverage probability). An analysis of CWC is presented in [13].

4 The LUBEX Method

LUBEX [17] is a recently proposed method for computing PIs using an ensemble
of NNs. It is an extension of the LUBE method [13]. A single LUBE NN is a mul-
tilayer perceptron with p input neurons, corresponding to the input variables of
each example, two output neurons corresponding to the lower and upper PI
bounds for this example and one or more hidden layers. A LUBE NN is trained to
minimize CWC using the simulated annealing algorithm which combines hill-
climbing and random walk. Note that the backpropagation algorithm cannot be
applied as CWC is not differentiable. During training, the two targets ܷାଵ and ܮାଵ of ܲܫାଵ are both set to the target point forecast ܺ௧ାଵ. The trained NN is then
used to predict the PIs for the testing data.

A single LUBE NN is sensitive to the network architecture, random initializa-
tion of weights and random perturbation of weights during training. To reduce this
sensitivity, LUBEX uses an ensemble method that combines LUBE NNs.
It considers NNs with one hidden layer and constructs n NN architectures A1,..,An
with 1 to n hidden neurons, respectively (we used n=30 in our experiments).
For each NN architecture Ai, it builds an ensemble Ei of m NNs (m=100 in
our experiments). The ensemble members of Ei have the same architecture Ai but
are initialized to different random weights. Each of them is trained on the training
set.

Feature Selection for Interval Forecasting of Electricity Demand Time Series Data 451

The prediction process for a new example is illustrated in Fig. 2. To predict the
PI for the new example i, Ei combines the predictions of its members by taking the
median of their lower and upper bounds: PIi =[median(Li1,..Lim), median
(Ui1,…,Uim)].

Fig. 2 Predicting a new example by ensemble Ej

The n ensembles are evaluated on the validation set, the best one is selected
(the one with smallest CWC) and then used to predict the test data. Rana et al. [17]
found that the use of ensemble in LUBEX is very important. They compared the
performance of LUBEX using an ensemble of NNs and using a single NN, and
found that LUBEX with a single NN was not able to generate PIs with satisfactory
coverage probability in many cases and that its performance varied considerably
for multiple runs of the algorithm.

5 Feature Selection for Constructing PIs

5.1 CFS

CFS [22] is a state-of-the-art filtering algorithm for feature subset selection. Given
a set of candidate features, it uses a search algorithm to find the best possible fea-
ture subset S, the one that maximizes the following heuristic measure: ݐ݅ݎ݁ܯ௦ = ටା(ିଵ),

where k is the number of features, features ݎ is the average feature to class vari-
able correlation and ݎ is the average feature to feature correlation.

This heuristic favors feature subsets where the features are good individual pre-
dictors of the class variable (ݎ is high) but are not correlated with each other (ݎ
is low). It is suitable for our task as the candidate features (previous lag variables)
are highly correlated with each other.

NNj1

NNj2

NNjm

…

Median

,

,
New
example i Final prediction for i

, m

Ensemble Ej

452 M. Rana, I. Koprinska, and A. Khosravi

To conduct feature selection using CFS, we first form a set of candidate fea-
tures that includes all lag variables from a 1-week sliding window from the train-
ing data. We found that one week is a sufficient length as it captures both the daily
and weekly patterns of the electricity demand data. As we are using half-hourly
data, the candidate set consists of 336 features. To select the best feature subset for
these 336 features we applied a best-first search algorithm; applying an exhaustive
search algorithm is not possible due to the big number of possible subsets. The
feature selection is done separately for each case study (month) and dataset. Table
1 lists the features selected by CFS for all case studies; the total number of select-
ed features is shown in brackets.

Table 1 Selected features (lag variables) using CFS

Case study Australian data British data
1 (Jan) 1, 46, 120, 336 (4) 1, 48, 65, 120, 216, 335 (6)
2 (Feb) 1-3, 48, 120, 217, 288, 333-335 (10) 1-2, 47, 192, 216, 335-336 (7)
3 (Mar) 1, 48, 115, 336 (4) 1-2, 48, 167, 335 (5)
4 (Apr) 1-2, 47, 121, 287, 336 (6) 1-2, 144, 287, 334 (5)
5 (May) 1, 48, 223, 335-336 (5) 1, 168, 288, 336 (4)
6 (Jun) 1-2, 47, 158, 225, 335 (6) 1, 48, 168, 335 (4)
7 (Jul) 1, 48, 225, 255, 288, 335 (6) 1, 48, 120, 144, 288, 335 (6)
8 (Aug) 1, 24, 48, 288, 335 (5) 1, 48, 335-336 (4)
9 (Sep) 1, 48, 208, 220, 288, 335 (6) 1, 48, 288, 335-336 (5)
10 (Oct) 1-2, 119, 144, 210, 286, 335 (7) 1, 48, 218, 335 (4)
11 (Nov) 1-3, 20, 95, 192, 216, 334-336 (10) 1, 48, 168, 288, 335 (5)
12 (Dec) 1-2, 48, 120, 216, 335 (6) 1, 167, 288, 335-336 (5)

The CFS variable selection is consistent with the daily and weekly cycles of the

electricity demand data. For all case studies CFS selects variables corresponding
to the electricity demand from the previous few lags (e.g. 1-3), the previous
day around the prediction time (e.g. 46-48) and the previous week around the
prediction time (e.g. 335-336).

5.2 MI

MI measures the dependence between two variables. If the two variables are inde-
pendent, MI is zero; if they are dependent, MI has a positive value corresponding
to the strength of the dependency. Unlike CFS, MI can identify both linear and
non-linear dependencies. Therefore, it is an appropriate feature selector for elec-
tricity demand forecasting as it can capture both linear and non-linear relation-
ships between the lag variables and the target variable.

Computing MI for continuous variables is more difficult than for nominal vari-
ables as it requires assumption about the data distribution. In this paper we apply a
method for MI estimation based on k-nearest neighbor distances [23]. This method
has a minimal bias and was shown to be efficient and reliable.

Feature Selection for Interval Forecasting of Electricity Demand Time Series Data 453

To conduct feature selection using MI, we again form a set of candidate fea-
tures that includes all lag variables from a 1-week sliding window from the train-
ing data. Then we compute the MI score between each candidate feature and the
target variable and rank the candidate features in decreasing order based on their
MI score. Fig. 3 shows the normalized MI score for all 336 features from the 1-
week window in ranked order, for all case studies.

Fig. 3 MI score and ranking of features

We can make the following observations: 1) The graphs for all case studies for
both datasets are very similar; 2) The MI score decreases abruptly at the beginning
till about ranked feature 10 and then continues to decrease gradually before almost
flattening. Based on these results, we select the top 10 highly ranked features for
each case study and disregard the remaining features. This means that only 3% of
the candidate features are selected, which is a substantial feature reduction.

The selected features are listed in Table 2. Similarly to CFS, MI also selects
variables that reflect the daily and weekly cycles of the electricity demand data –
lag variables from the same day, the previous day and the previous week, just
before or after the prediction time.

0

0.2

0.4

0.6

0.8

1

1.2

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

M
I s

co
re

Rank

Austraian data

Jan Feb Mar Apr
May Jun Jul Aug
Sep Oct Nov Dec

0

0.2

0.4

0.6

0.8

1

1.2

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

M
I s

co
re

Rank

British data

Jan Feb Mar Apr

May Jun Jul Aug

Sep Oct Nov Dec

454 M. Rana, I. Koprinska, and A. Khosravi

Table 2 Selected lag variables using MI

 Case study Australian data British data
1 (Jan) 1-4, 47-50, 335-336 (10) 1-5, 47-48, 288, 335-336 (10)
2 (Feb) 1-3, 47-49, 289, 334-336 (10) 1-4, 47-49, 334-336 (10)
3 (Mar) 1-4, 48, 144, 287-288, 335-336 (10) 1-4, 47-49, 288, 335-336 (10)
4 (Apr) 1-3, 48-49, 287-289, 335-336 (10) 1-2, 48, 286-289, 334-336 (10)
5 (May) 1-3, 48-49, 287-288, 334-336 (10) 1-3, 48, 286-289, 335-336 (10)
6 (Jun) 1-4, 47-49, 288, 335-33 (10) 1-3, 47-49, 288, 334-336 (10)
7 (Jul) 1-3, 48-49, 144, 288, 334-336 (10) 1-3, 48-49, 144, 288, 334-336 (10)
8 (Aug) 1-3, 47-49, 287-288, 335-336 (10) 1-3, 48-49, 288, 333-336 (10)
9 (Sep) 1-3, 47-49, 288, 334-336 (10) 1-3, 47-49, 288, 334-336 (10)
10 (Oct) 1-3, 48, 286-288, 334-336 (10) 1-3, 47-50, 334-336 (10)
11 (Nov) 1-5, 48, 49,288, 335-336 (10) 1-3,48-49, 287-289, 335-336 (10)
12 (Dec) 1-4, 48, 287-288, 334-336 (10) 1-3, 48, 287-289, 334-336 (10)

Fig. 4 PA function for case study 1 for the Australian and British data

5.3 PA

PA is a widely used feature selection method for time series data. The PA value
between two observations Xt and Xt-h in a time series is the linear correlation be-
tween them, conditional on Xt-h+1, …, Xt-1, the set of observations between them. PA
only measures linear dependencies; a value close to 1 or -1 shows a strong positive
or negative dependency, while a value close to 0 shows no dependency.

Australian data

British data

Feature Selection for Interval Forecasting of Electricity Demand Time Series Data 455

To form a feature set, we compute the PA till lag 336 (i.e. a 1-week sliding
window) using the training data, for each case study separately. As an example,
Fig. 4 shows the PA function for the first 50 lags of case study 1 for the Australian
and British data. We then select the lags with PA higher than the confidence
threshold (shown with the two parallel horizontal lines in Fig. 4). The selected
features are not shown due to space limitation. For the Australian data, their num-
ber varied between 39 for case study 3 and 68 for case study 6. For the British
data, their number was between 33 for case study 3 and 56 for case study 12.
Compared to CFS and MI, PA selects a higher number of features.

6 Results and Discussion

To evaluate the quality of the constructed PIs we compute the three performance
measures: PICP, PINAW and CWC. The results are presented in Tables 3 and 4
and discussed in the next three subsections. Each value in the tables is the average

Table 3 PIs constructed by LUBEX with CFS, MI and PA for the Australian data

Case CFS MI PA

Study PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC

1 (Jan) 98.35 19.27 19.27 99.91 12.55 12.55 71.60 7.31 1.3x1016
2 (Feb) 100.0 19.64 19.64 100.0 17.04 17.04 68.61 9.03 6.4x1014
3 (Mar) 98.17 18.46 18.46 99.91 12.40 12.40 73.16 6.07 1.4x1012
4 (Apr) 91.81 13.76 13.76 91.40 10.33 10.33 70.23 6.54 2.1x1016
5 (May) 95.22 13.19 13.19 97.22 9.69 9.69 55.74 5.08 2.8x1014
6 (Jun) 92.49 11.13 11.13 91.95 8.84 8.84 57.39 4.55 1.5x1016
7 (Jul) 98.18 16.85 16.85 99.04 10.83 10.83 63.03 4.76 1.9x1014
8 (Aug) 98.27 20.55 20.55 99.65 14.06 14.06 84.42 6.82 6.4x1015
9 (Sep) 96.38 18.64 18.64 97.83 12.13 12.13 80.36 7.61 8.1x1015
10 (Oct) 99.22 15.82 15.82 99.30 13.25 13.25 79.57 6.51 5.9x1017
11 (Nov) 99.73 11.65 11.65 99.82 10.23 10.23 78.29 4.96 2.6x1011
12 (Dec) 92.29 12.71 12.71 93.30 11.01 11.01 53.85 4.70 8.3x1017
mean 96.68 15.97 15.97 97.44 11.86 11.86 69.69 6.16 1.2x1017
st.dev. 2.76 3.10 3.10 3.29 2.24 2.24 9.45 1.29 2.6x1017

Table 4 PIs constructed by LUBEX with CFS, MI and PA for the British data

Case CFS MI PA

Study PICP PINAW CWC PICP PINAW CWC PICP PINA
W

CWC

1 (Jan) 96.71 22.81 22.81 98.26 16.80 16.80 48.02 7.12 1.6x1011

2 (Feb) 86.93 13.21 182.44 96.83 10.63 10.63 3.66 5.88 3.5x1019

3 (Mar) 95.58 15.72 15.72 93.83 11.69 11.69 59.74 6.73 6.8x108

4 (Apr) 97.65 16.35 16.35 98.19 12.88 12.88 54.93 7.29 3.2x1011

5 (May) 90.52 20.23 20.23 96.09 10.58 10.58 62.94 6.31 1.0x108
6 (Jun) 99.10 14.07 14.07 99.10 8.65 8.65 81.35 4.33 3.4x103
7 (Jul) 93.51 16.88 16.88 99.57 11.75 11.75 69.09 4.76 5.0x105
8 (Aug) 72.17 11.00 1.3x105 83.13 8.86 5.2x102 33.83 3.52 8.2x1012
9 (Sep) 88.42 10.95 43.95 73.57 8.08 1.5x105 25.97 5.40 4.5x1014
10 (Oct) 91.86 16.82 21.87 98.00 9.58 9.58 67.19 5.21 2.4x106
11 (Nov) 81.90 14.68 2.4x103 92.40 9.28 9.28 31.22 3.69 4.4x1013
12 (Dec) 65.48 19.25 1.3x108 73.74 14.72 1.6x105 26.93 6.42 7.4x1015
mean 88.32 16.00 1.1x107 91.89 11.13 2.6x104 47.07 5.55 2.9x1018

st.dev. 9.98 3.42 3.6x107 9.20 2.51 5.9x104 21.80 1.23 9.7x1018

456 M. Rana, I. Koprinska, and A. Khosravi

value of five runs of LUBEX, i.e. we created and evaluated an NN ensemble five
times for each case study to further reduce the variability of the NN performance
due to the random initialization of weights and random perturbation of weights
during training, that are part of the simulated annealing algorithm. We discuss the
variability of the PICP results over the five runs in the last subsection. All reported
results in this section are results on the testing data.

6.1 Coverage Probability

We first examine the coverage probability PICP. Fig. 5 shows the PICP results
from Tables 3 and 4 for both datasets and all case studies.

Fig. 5 Comparison of coverage probability (PICP) using CFS and MI. (PICP results using
PA are not shown as they are disproportionally lower).

For the Australian data (see Table 3 and Fig. 5), we can see that PICP for CFS
and MI is higher than the prescribed confidence level (μ=90%) for all case studies,
i.e. the constructed PIs are valid. The average PICP over all case studies and the
standard deviation are: 96.68±2.76% for CFS and 97.44±3.29% for MI; hence, the
constructed PIs considerably outperformed μ. For both CFS and MI, nine out of
twelve cases achieve PICP greater than 95% and the remaining three case studies
(4, 6 and 12) have PICP between 91.40% and 93.30%. Overall, the PICP is higher
when using MI than CFS. In contrast to CFS and MI, the PICP for PA is lower
than the prescribed confidence level for all case studies. The average PICP for PA

60

65

70

75

80

85

90

95

100

105

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PI
CP

Case study

PICP results

CFS, Australian data
CFS, British data
MI, Australian data
MI, British data
required confidence level

Feature Selection for Interval Forecasting of Electricity Demand Time Series Data 457

is 69.69±9.45%, which is considerably lower than 90%. In summary, for the Aus-
tralian data, LUBEX with CFS and MI as feature selection methods was able to
construct PIs with high coverage probability while LUBEX with PA failed to do
this.

The results for the British data, as shown in Table 4 and Fig. 5, are less accu-
rate. PICP for CFS satisfies the prescribed 90% confidence level for 7 out of 12
cases and PICP for MI satisfies this level for 9 out of the 12 cases. The average
PICP over all case studies and the standard deviation are: PICP=88.32±9.98% for
CFS and PICP=91.89±9.20% for MI; i.e. slightly below or above the 90% level,
with relatively high standard deviation. For both CFS and MI, the results for Au-
gust, September and December are not satisfactory. These months include several
holidays - summer, school and Christmas, and might also include sudden weather
changes. It is possible that the electricity demand was more irregular and difficult
to predict due to these special days; we plan to investigate this in future work.
Similarly to the Australian data, PA is the worst performing feature selector. It is
underperforming for all cases, achieving average PICP of 47.07±21.80%, which is
substantially lower than 90%. This indicates that the constructed PIs are unreliable
and invalid. In summary, for the British data, LUBEX with CFS and MI as feature
selectors was able to construct PIs with the required coverage probability in about
70% of the cases, while LUBEX with PA was unsuccessful in all cases.

6.2 Interval Width

We now examine the interval width PINAW. Fig. 6 presents the PINAW results
from Tables 3 and 4 for visual comparison of the three feature selectors.

For the Australian data, we can see than LUBEX generates narrow PIs with all
feature selection methods. The average widths are: 15.97±3.10 for CFS,
11.86±2.24 for MI and 6.16±1.29 for PA. Although the PI width for PA is the
narrowest, the coverage probability of these intervals is unacceptable. We can also
directly compare the performance of CFS and MI for case studies 2, 10 and 11as
the corresponding coverage probabilities are very similar. We can see that the
interval widths for MI are smaller than those for CFS. This indicates lower uncer-
tainty for LUBEX with MI than LUBEX with MI for these case studies.

We can draw similar conclusions for the British data - LUBEX generates nar-
row PIs with all feature selection methods. The average widths are: 16.00±3.42 for
CFS, 11.13±2.51 for MI and 5.55±1.23 for PA. Again, the PI width for PA is the
narrowest but the coverage probability of these intervals is below the 90% confi-
dence level, therefore these intervals are invalid, regardless of their width. We can
compare the performance of CFS and MI for case study 6; the coverage probabil-
ity is the same (99.10%, the highest for both feature selectors) and MI generates a
narrower interval than CFS. Thus, for this case study, LUBEX with MI has lower
uncertainly than LUBEX with CFS.

458 M. Rana, I. Koprinska, and A. Khosravi

Fig. 6 Comparison of interval widths (PINAW)

6.3 Coverage Width Criterion

We finally examine the CWC values. In all cases where the coverage probability
is higher than the prescribed confidence value, CWC=PINAW. This is true for
CFS and MI for all 12 months for the Australian data and for the majority of
months for the British data. In contrast, the CWC values for PA are very high for
both datasets. This is also as expected and follows from the definition of CWC –
when the PIs fail to satisfy the required minimum coverage probability, they are
invalid regardless of their width; this results in high CWC values as CWC
includes a heavy penalty for invalid PIs.

0

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PI
N

A
W

Case study

Australian data

CFS

MI

PA

0

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PI
N

A
W

Case study

British data

CFS

MI

PA

Feature Selection for Interval Forecasting of Electricity Demand Time Series Data 459

Fig. 7 Variability of PICP over the five runs for LUBEX with CFS, MI and PA

460 M. Rana, I. Koprinska, and A. Khosravi

6.4 Variability of PICP

We also investigate the variability of the coverage probability of the generated PIs
over the five runs of LUBEX for each case study. Fig. 7 shows box plots of PICP
for LUBEX with CFS, MI and PA, respectively, for the five runs of each case
study, for the two datasets. The mark in the middle of a box is the median value,
the edges of the box are the 25th and 75th percentiles and the whiskers are the min-
imum and maximum values that are not considered outliers. Values that are con-
sidered outliers are indicated with a cross. When comparing the results in Fig. 7, it
is important to note the different scales on the y axes.

We can see that the PICP variation over the five runs is high for LUBEX with
PA, for both datasets; the PICP standard deviations for the 12 months is in the
range of 4.76-16.07 for the Australian data and 0.69-10.33 for the British data. On
the other hand, the PICP variation is very small for LUBEX with CFS and MI for
the Australian data – the PICP standard deviation is in the range of 0-1.39 for CFS
and 0-1.36 for MI, for the 12 case studies. For the British data, this variation is
moderate: 0.45-7.36 for CFS and 0.32-4.22 for MI, and is lower for the months
satisfying the prescribed confidence level and higher for the underperforming
months. By comparing CFS and MI, we can also see that overall MI is less varia-
ble than CFS.

We conclude that LUBEX with CFS and MI generated PIs that were relatively
stable over multiple runs while LUBEX with PA generated highly unstable PIs.

7 Conclusion

In this paper we considered the task of constructing NN-based PIs for electricity
demand forecasting. We extended the interval forecasting method LUBEX by
studying the effect of three feature selection methods on the quality of the gener-
ated PIs: the traditional PA and the less popular in time series analysis CFS and
MI methods. We conducted an evaluation using half-hourly electricity demand
data for one year, for two countries: Australia and the United Kingdom.

Our results showed that CFS and MI were able to identify a small set of in-
formative lag variables, that when used with LUBEX resulted in good quality PIs
for forecasting of new data. For the Australian data, all PIs were valid as they
satisfied the minimum coverage probability of 90% (MI: PICP=97.44±3.29%,
CFS: PICP=96.68±2.76%) and they also showed little variation for multiple runs
of LUBEX. For the British data, 70% of the constructed PIs were valid (MI:
PICP=88.32±9.98%, CFS: PICP=91.89±9.20%) and these PIs were moderately
stable for multiple runs of LUBEX. In contrast, LUBEX with PA produced PIs
that were invalid and highly variable (PICP=69.69±9.45% for the Australian data
and PICP=47.07±21.805% for the British data). In addition, CFS and MI selected
a considerably smaller set of features in comparison to PA, 4-10 versus 39-68,
which means faster training of the NN component and faster prediction for new
instances. Overall, the best performance was achieved by LUBEX with MI for
both datasets.

Feature Selection for Interval Forecasting of Electricity Demand Time Series Data 461

In future work, we plan to investigate the use of weather variables in addition to
previous demand data in order to improve the quality of the generated prediction
intervals. We will also study the effect of outlier days, e.g. days with extreme
weather, days with sudden weather changes and holidays, and develop a method to
deal with them.

Acknowledgement. Mashud Rana is supported by an Endeavour Postgraduate Award funded
by the Australian government.

References

1. Chatfield, C.: Time-Series Forecasting. Chapman &Hall/CRC (2000)
2. Taylor, J.W.: Short-term Electricity Demand Forecasting Using Double Seasonal Ex-

ponential Smoothing. Journal of Operational Research Society 54, 799–805 (2003)
3. Taylor, J.W.: An Evaluation of Methods for Very Short-Term Load Forecasting Using

Minite-by-Minute British Data. International Journal of Forecasting 24, 645–658
(2008)

4. Taylor, J.W.: Triple Seasonal Methods for Short-term Electricity Semand Forecasting.
European Journal of Operational Research 204, 139–152 (2010)

5. Liu, K., Subbarayan, S., Shoults, R.R., Manry, M.T., Kwan, C., Lewis, F.L.,
Naccarino, J.: Comparison of Very Short-term Load Forecasting Techniques. IEEE
Transactions on Power Systems 11, 877–882 (1996)

6. Fan, S., Hyndman, R.J.: Short-term Load Forecasting Based on a Semi-parametric Ad-
ditive Model. IEEE Transactions on Power Systems 27, 134–141 (2012)

7. Sood, R., Koprinska, I., Agelidis, V.G.: Electricity Load Forecasting Based on Auto-
correlation Analysis. In: International Joint Conference on Neural Networks (IJCNN).
IEEE Press, Barcelona (2010)

8. Koprinska, I., Rana, M., Agelidis, V.G.: Yearly and Seasonal Models for Electricity
Load Forecasting. In: International Joint Conference on Neural Networks (IJCNN), pp.
1474–1481. IEEE Press, San Jose (2011)

9. Shamsollahi, P., Cheung, K.W., Chen, Q., Germain, E.H.: A Neural Network Based
Very Short Term Load Forecaster for the Interim ISO New England Electricity Market
System. In: 22nd IEEE PES International Conference on Power Industry Computer
Applications (PICA), pp. 217–222 (2001)

10. Charytoniuk, W., Chen, M.-S.: Very Short-term Load Forecasting Using Artificial
Neutal Networks. IEEE Transactions on Power Systems 15, 263–268 (2000)

11. Rana, M., Koprinska, I., Troncoso, A.: Forecasting Hourly Electricity Load Profile Us-
ing Neural Networks. In: International Joint Conference on Neural Networks (IJCNN).
IEEE Press, Beijing (2014)

12. Chen, Y., Luh, P.B., Guan, C., Zhao, Y., Michel, L.D., Coolbeth, M.A.: Short-Term
Load Forecasting: Similar Day-based Wavelet Neural Network. IEEE Transactions on
Power Systems 25, 322–330 (2010)

13. Khosravi, A., Nahavandi, S., Creigton, D., Atiya, F.: Lower Upper Bound Estimation
Method for Construction of Neural Network-Based Prediction Intervals. IEEE Trans-
actions on Neural Networks 22(3), 337–346 (2011)

14. Hwang, J.T.G., Ding, A.A.: Prediction Intervals for Artificial Neural Networks. Jour-
nal of the American Statistical Association 92(438), 2377–2387 (1997)

462 M. Rana, I. Koprinska, and A. Khosravi

15. MacKay, D.J.C.: The Evidence Framework Applied to Classification Networks. Neu-
ral Computation 4(5), 720–736 (1992)

16. Heskes, T.: Practical Confidence and Prediction Intervals. In: Mozer, T.P.M., Jordan,
M. (eds.) Neural Information Processing Systems. MIT Press (1997)

17. Rana, M., Koprinska, I., Khosravi, A., Agelidis, V.G.: Prediction Intervals for Electric-
ity Load Forecasting Using Neural Networks. In: International Joint Conference on
Neural Networks (IJCNN). IEEE Press, Dallas (2013)

18. Rana, M., Koprinska, I., Khosravi, A.: Feature Selection for Neural Network-Based In-
terval Forecasting of Electricity Demand Data. In: Mladenov, V., Koprinkova-
Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013.
LNCS, vol. 8131, pp. 389–396. Springer, Heidelberg (2013)

19. AEMO (2013), http://www.aemo.com.au
20. National Grid UK (2013), http://www2.nationalgrid.com/uk/
21. Taylor, J.W.: Short-term load forecasting with exponentially weighted methods. IEEE

Transactions on Power Systems 27, 458–464 (2012)
22. Hall, M.A.: Correlation-based Feature Selection for Discrete and Numeric Class Ma-

chine Learning. In: Int. Conference on Machine Learning (ICML), pp. 359–366 (2000)
23. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating Mutual Information. Physical

Review E 69 (2004)

Stacked Denoising Auto-Encoders
for Short-Term Time Series Forecasting

Pablo Romeu, Francisco Zamora-Martı́nez,
Paloma Botella-Rocamora, and Juan Pardo

Abstract. In this chapter, a study of deep learning of time-series forecasting tech-
niques is presented. Using Stacked Denoising Auto-Encoders, it is possible to dis-
entangle complex characteristics in time series data. The effects of complete and
partial fine-tuning are shown. SDAE prove to be able to train deeper models, and
consequently to learn more complex characteristics in the data. Hence, these models
are able to generalize better. Pre-trained models show a better generalization when
used without covariates. The learned weights show to be sparse, suggesting future
exploration and research lines.

1 Introduction

Time series forecasting is the task of predicting some future values of a given se-
quence, using historical data from the same signal (univariate forecasting), or us-
ing historical data from several correlated signals (multivariate forecasting). In the
literature, different models has been described, each one with its particular charac-
teristics. Exponential smoothing [14], Autoregressive Integrated Moving Average
(ARIMA) models [6], or Artificial Neural Networks (ANNs) [12] are examples of
the most important models used for time series forecasting. Usually, statistical meth-
ods are used to estimate the weight parameters of these models. ANNs have been
widely applied to this task [35, 2, 34], normally trained by one of the different vari-
ants of Gradient Descent (GD) algorithm.

Pablo Romeu
Embedded Systems and Artificial Intelligence Group,
Escuela Superior de Enseñanzas Técnicas, Universidad CEU Cardenal Herrera,
C/ San Bartolomé 46115 Alfara del Patriarca, Valencia, Spain
e-mail: pablo.romeu@uch.ceu.es

Francisco Zamora-Martı́nez · Paloma Botella-Rocamora · Juan Pardo
Universidad CEU Cardenal Herrera
e-mail: {francisco.zamora,paloma.botella,juan.pardo}@uch.ceu.es
c© Springer International Publishing Switzerland 2015 463

P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_23

464 P. Romeu et al.

Recently, deep learning has been defined as a new area in machine learning field,
for the study of new learning techniques and paradigms which allow to train models
with many number of layers, usually deep ANNs, but also deep Restricted Boltz-
mann Machines (RBMs) among others. Deep architectures, with many levels of
non-linearity, theoretically can represent complex features of its inputs [31] with
more flexibility than shallow architectures. However, training of deep models is
difficult because of the highly non-convex surface of the training criterion used in
GD algorithm [31, 15, 10]. Depending on the initialization of the model parame-
ters, the algorithm converges to different local minima. In the case of deep models
this problem has been shown as an even more important [11]. Different ideas have
been developed to allow the training of deep models, being the unsupervised greedy
layer-wise pre-training [18] one of the most successful in computer vision problems.
Simpler non-linearities, as the rectified linear units [16] or maxout networks [17],
are shown to be useful to reduce the impact of gradient vanishing in deep models.
Stacking many convolutional layers, instead of a fully connected layers, as it is done
in convolutional ANNs [22], is another example of successful ideas in deep learning.
In fact, convolutional ANNs are being used traditionally with many layers showing
good training convergence [22].

Deep learning is being depth studied in computer vision and natural language
processing tasks [28, 36, 9], allowing to train complex classifiers which learn to ex-
tract interesting features from the input data [32]. In time series forecasting literature
is difficult to find works following such ideas. As far as we know, only few works are
available [7, 20], principally using RBMs as proposed by [18]. Stacked denoising
auto-encoders (SDAEs) [32] have been found useful and simpler, because they are
based on standard GD algorithms and almost any ANN toolkit can deal with them.
This paper is an extension of a previous work [27] where minor differences has been
observed comparing standard ANNs with deep ANNs pre-trained with SDAEs for
time series forecasting. A new set of experiments, with different and larger data, be-
sides an analysis and discussion of the learned models, comparing deep and shallow
architectures, has been done for this extension.

Two tasks, indoor temperature forecasting, and electric power consumption fore-
casting, were selected for this study, because of its interest for future study of energy
efficiency in domotic environments [13].

2 Time Series Forecasting

A time series is a collection of numerical data recorded over a period of time, usu-
ally occurring in uniform intervals. Time series can be formalized as a sequence of
scalars from a variable x observed as output of a process of interest:

s̄(x) = s0(x),s1(x), . . . ,si−1(x),si(x),si+1(x), . . . (1)

A fragment in the time series from the time point at position i until time point at
position j is denoted by s j

i (x). Without loss of generality, si(x0) is denoted as si

when no confusion is possible and only when it refers to the interesting variable x0.

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 465

Time series forecasting methods predict the interest variable x0 using past val-
ues of x0 (univariate forecasting). Some of these methods allow to incorporate also
additional information of other related covariates in the process (multivariate fore-
casting).

Univariate forecasting methods predict the interest variable x0 using only past
values of x0. This kind of methods are focused in understanding the underlying
structure composed, mainly, for trend and pattern repetition through time. This past
behavior learned is extrapolated into the future.

Multivariate forecasting methods use to predict the interest variable x0 not only
past values of x0, but also additional values of a number C of variables (x1,x2, ...,xC)
related with the predicted variable x0. Multivariate approaches performs better than
univariate when additional variables (x1,x2, ...,xC) are related with the predicted
variable x0.

2.1 Forecast Models

A forecast model could be formalized as a function F which receive as inputs the
interest variable (x0) with its past values until current time t, and a number C of
covariates (x1,x2, . . . ,xC) with also its past values until current time t, and produces
a future window of size H for the given x0 variable:

〈ŝt+1(x0), ŝt+2(x0), . . . , ŝt+H(x0)〉= F(Ω t (x0),Ω t(x1), . . . ,Ω t(xC)) , (2)

being Ω t(x) = st
t−I(x)+1(x) the I(x) past values of variable/covariate x. The sum of

all the input sizes will be m = ∑x I(x).
Different parameters are important in the process of estimation of forecasting

models: the number of past values (I(x0), I(x1), ..., I(xC)), the size of the future win-
dow (H), and the position in the future of the prediction (future horizon).

There are several possibilities to classify forecasting methods based on the size of
future window and how it is produced [2]. Depending on the size of future window,
forecasting methods could be grouped as single-step-ahead forecasting methods, if
the model forecasts only the next time step (H = 1), and multi-step-ahead forecast-
ing methods, if the method forecasts a future window of size H, where H > 1.

At the same time multi-step-ahead forecasting methods can be grouped into
multi-step-ahead iterative forecasting and multi-step-ahead direct forecasting [8].
On multi-step-ahead iterative forecasting methods the model forecasts only the next
time step, and the future window is forecasted by an iterative process. At first iter-
ation model uses past data (Ω t (x0),Ω t (x1), . . . ,Ω t(xC)) to forecast x0 at time t + 1
(ŝt+1(x0)). At second iteration, same model forecasts ŝt+2(x0) using past data for
covariates (Ω t+1(x1), . . . ,Ω t+1(xC)) besides the ŝt+1(x0) predicted at previous step:

Ω t+1(x0) = 〈st−I(x0)+2(x0),st−I(x0)+3(x0), ...,st (x0), ŝt+1(x0)〉 (3)

466 P. Romeu et al.

And thus for the rest of future time steps. On the other hand, on multi-step-ahead
direct forecasting the model forecasts directly in one step, a large future window
of size H. Following this forecasting approach, the most used type of modelling
are Pure direct strategy and Multiple Input Multiple Output (MIMO). Pure direct
strategy approach uses H different forecasting models with same inputs, one for
each future time step, to forecasting the complete future window.

ŝt+1(x0) = F1(Ω t (x0),Ω t(x1), . . . ,Ω t(xC))

ŝt+2(x0) = F2(Ω t (x0),Ω t(x1), . . . ,Ω t(xC))

. . .

ŝt+H(x0) = FH(Ω t (x0),Ω t(x1), . . . ,Ω t(xC))

However MIMO approach uses one unique model to compute the full H future
window given its inputs, following Equation 2. There are several advantages in this
approach due to the join learning of inputs and outputs because the model learns the
stochastic dependency between predicted values. Discriminative models, as Artifi-
cial Neural Networks (ANNs), gain a big profit of this input/output mapping.

2.2 Evaluation Measures

Performance of forecasting methods over one time series could be assessed by sev-
eral different evaluation functions that measure the empirical error of the model. In
this work, for a deeper analysis of the results, three different error functions were
used: Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean
Square Error (RMSE). In every time step t the error is computed comparing tar-
get values for the time series st+1,st+2, . . . ,st+H and its corresponding time series
prediction ŝt+1, ŝt+2, . . . , ŝt+H using the model θ:

MAE(θ, t) =
1
H

H

∑
h=1

|ŝt+h − st+h| (4)

MSE(θ, t) =
1
2

H

∑
h=1

(ŝt+h − st+h)
2 (5)

RMSE(θ, t) =

√
1
H

H

∑
h=1

(ŝt+h − st+h)2 (6)

The results could be measured over all time series (one of each time step t) in a
given dataset D as:

L�(θ,D) =
1
|D |

|D |
∑
t=1

L(θ, t) , (7)

being |D | the size of the data set, and L = {MAE,MSE,RMSE} the loss-function,
defining MAE�, MSE�, RMSE�.

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 467

3 Unsupervised Greedy Layer-Wise Pre-training

Deep learning research has shown the importance of weight initialization when
training deep ANNs [21]. Greedy layer-wise pre-training [18] is the first approach
which has been found useful to reduce initial weights sensitivity. The greedy algo-
rithm follows an iterative procedure that trains one layer at a time. Thus, during the
training of one layer, the gradient computation is focused only in one hidden layer,
avoiding deep non-linear compositions. Every layer is trained in order to model
the value representations (distribution) produced by the previous layer. With every
stacked layer, a new distribution is obtained, which could be used as input for a new
layer. In this way, it is easy to build a deep ANN, with many non-linearities.

3.1 Stacked Denoising Auto-Encoders

An Auto-Encoder (AE) is a kind of ANN which is trained to reproduce as output the
data given in its input. The hidden layer of AEs is able to learn anonymous latent
variables [3], which are a representation of the observed data x in a different co-
ordinates space. Principal Component Analysis (PCA) or Independent Component
Analysis (ICA) are also procedures that allow to extract latent variables, following
a similar approach. An AE (r(·) function) computes a reconstructed version of its
input x following:

r(x) = g(f (x)) (8)

f (x) = φ f (b f +Wx) (9)

g(x) = φg(bg +WT f (x)) (10)

being φ f (·) a non-linear activation function, φg(·) a linear or non-linear activation
function, x a column vector of size m, W a weights matrix with h rows and m
columns, b f is a bias column vector with h rows, and bg a bias column vector with
m rows. Each row of the matrix W is a different transformation of the input data
(or neuron) and correspond to the hidden latent variables. Functions f (·) and g(·)
are known as encoding and decoding functions. Using a number of latent variables
h < m (bottleneck AEs), the model is regularized in the same way as PCA does.
However, when h > m the model could learn the identity function, learning useless
latent variables. The model is trained in order to reduce the reconstruction error,
e.g., it minimizes ||r(x)− x||2.

In recent approaches to this issue, Stacked Denoising Auto-Encoders (SDAEs)
[11, 32] have been proposed, where previous formalization is slightly modified, in-
troducing small perturbations (noise) at the input of every layer during pre-training
phase. Therefore, the DAE is trained to recover a clean (denoised) version of its
noisy input. Stacking multiple layers of DAEs it is possible to obtain useful high-
level features, and lower error reconstruction, therefore better generalization is ex-
pected. Denoising goal is another way of regularization, that allows to train models
where h>m, preventing the model to learn identity function. The DAE takes a noisy

468 P. Romeu et al.

version N(x) of the original input x, and it is trained to reduce the reconstruction er-
ror, e.g., as before, it minimizes ||r(N(x))−x||2. Another ways to AE regularization
are presented in the literature [26, 23], showing successful results in computer vision
problems.

Models with h >m has an overcomplete representation of the data. That situation
is useful when the representation is also sparse [32]. Interest in sparse representa-
tions comes from the apparently evidence of overcomplete but sparse neural activity
in the brain [25]. Other motivations for sparse representations include its easier in-
terpretation by the subsequent classifier.

Different noise strategies are possible. This paper follows the use of additive
Gaussian noise and masking noise. In this way, the noise function is as follows:

N(x) =
(

x+N (0,σ2)
)
.∗B(m,1− p) (11)

where the Gaussian noise is sampled from a normal distribution with mean μ = 0
and σ2 variance (independent and equal for every input component), and the mask-
ing noise is sampled from a Binomial distribution with probability 1− p of being 1
and probability p of being 0 (masked). The operator .∗ indicates a component-wise
multiplication.

In the literature, diverse activation functions are being used. This paper uses the
linear activation function in the visible layer of first AE, because the indoor temper-
ature and the electric power consumptions are not bounded. In the following layers
(hidden and visible), softsign [5] or logistic functions are used:

so f tsign(x) =
x

1+ |x| (12)

logistic(x) =
1

1+ e−x (13)

3.2 Greedy Layer-Wise Pre-training Algorithm and Greedy
Layer-Wise Hyper-Parameter Optimization

The SDAE training consists in two phases. At the first phase (pre-training phase)
several auto-encoders (AEs) are trained, forcing each AE to reconstruct the encoding
computed at the hidden layer of previous AE, except the first AE which is trained to
reconstruct the input features of the task. SDAE [11, 32] introduces noise to the input
data of the pre-training task as shown in Figure 1. Therefore, the pre-trained layers
extract robust features from data while trying to reconstruct its inputs. Once all
layers have been pre-trained, there is a second supervised phase (fine-tuning phase)
where the output layer is added and the whole ANN is trained to solve a concrete
task.

The hyper-parameter optimization is also done in a greedy way, that is, the learn-
ing rate, momentum, weight decay, . . . hyper-parameters are optimized for one layer
at a time. Once a layer hyper-parameter optimization ends, the best values are fixed

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 469

f (N(x))

x N(x)

W

g(f (N(x)))

WT

Fig. 1 Denoising Auto-Encoder with Gaussian (GN) and masking noisy (MN) inputs

for the training of the next layer, and so on. This optimization phase allows to reduce
the computational effort, because ANNs with many hidden layers share the compu-
tation of layers until the last one. For instance, the ANN with one hidden layer uses
the same first layer as the ANN with two hidden layers.

3.3 SDAEs for Time-Series: Expectations

The interest of deep ANNs for time-series comes from the widely use of shal-
low models (shallow ANNs and/or ARIMA models) in this field for complex and
strongly non-linear series. This paper is an attempt to model this non-linearities
with up to three hidden layers, expecting to find interesting dependencies between
input/output data. In order to reduce the computational effort needed for the exper-
imentation, input layer is constrained to the short-term past values of the observed
value x. However, a deeper analysis could be interesting, in order to study if large
input layers could lead to better learned features in the deep ANN. This extension
of the input could be overcome by using convolutional ANNs in the first layers of
the ANN.

From a machine learning perspective, it will be interesting to observe if deeper
ANNs could learn temporal abstractions by using larger inputs. A trade-off between
the input size and the addition of temporal and other covariates was expected to
be found. The ability of a machine to learn this temporal dependencies without
any other information but the observed time-series could be very interesting for the
development of intelligent agents in partially observed environments.

4 Experimentation

Several experiments have been performed in order to study the effect of hyper-
parameters, pre-training technique and different fine-tuning schemes. Two different
data sets of time series were employed to make the experiments. The first one is re-
lated to temperature forecasting and second one about electric power consumption.
Next they are described with the corresponding experimental setup and results.

In the first task, the study is focused in different training schemes, in order to
state which one is better for training deep ANNs. Regularization effect of SDAEs

470 P. Romeu et al.

pre-training was also studied. In the second task, a deeper study of the differences
between pre-trained and not pre-trained models was performed.

4.1 Temperature Forcasting

This first task studies the effect of pre-training with SDAEs in a smooth indoor
temperature forecasting problem.

4.1.1 Data Description

This is the first data set that was employed for the experimentation. It was obtained
from the Small Medium Large House (SMLhouse) research facility at the University
CEU Cardenal Herrera. This data set is available at the UCI (Unviersity of Califor-
nia) Machine Learning Repository (http://archive.ics.uci.edu/ml) [1]
under the name SML2010.

SMLhouse is a solar-powered house constructed to participate in the 2012 Solar
Decathlon Europe competition [30]. The house has a monitoring system able to ob-
tain a huge quantity of variables to study energy consumption, but for our study only
some have been used in order to obtain the indoor temperature forecasting model.

The variables are [34]:

1. Indoor temperature in degrees Celsius. This is the interest forecasted variable.
2. Hour feature in Universal Time Coordinated (UTC), extracted from the time-

stamp of each pattern. The hour of the day is important to estimate the Sun posi-
tion.

3. Sun irradiance in W = m2. It is correlated with temperature because more irradi-
ance will mean more heat.

4. Indoor relative humidity percentage. The humidity modifies the inertia of the
temperature.

5. Indoor air quality in CO2 ppm (parts per million). The air quality is related to
the number of persons in the house, and a higher number of persons mean an
increase in temperature.

6. Raining Boolean status. The result of sub-sampling this variable is the propor-
tion of minutes in sub-sampling period (15 minutes) where raining sensor was
activated with True.

Input signal sequence is sampled at one minute period (indoor temperature time
series task presented at [34]), and pre-processed by a low-pass filter to get the mean
value of the current plus last 14 samples, introducing a delay of 7 minutes in the
predicted values. Hence, s′1s′2 . . . s

′
N are computed, where

s′i = (si + si−1 + si−2 + si−3 + . . .+ si−14)/15 . (14)

In a second step, differences are calculated between each two adjacent elements,
to estimate the variation of temperature within 15 minutes. Then s′′1 ,s

′′
2 . . . s

′′
N−1 are

calculated, being

http://archive.ics.uci.edu/ml

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 471

s′′i = s′i − s′i+1 . (15)

Data is divided in three partitions: training (2016 training patterns, 21 days),
validation (672 validation patterns, 7 days) used during training to avoid over-fitting,
and the last one for testing (672 test patterns, 7 days). The validation partition is
sequential with the training partition, but the test partition is one week ahead from
them.

4.1.2 Experimentation Setup

Experiments using three type of training for each ANN have been performed. First
mode, named Train Mode 0 and denoted (TM-0) consists in training the ANN model
to forecast directly, without pre-training. Second mode, named Train Mode 1 (TM-
1) pre-trains the ANN using SDAE and fine-tuning all the layers. Finally, third mode
named Train Mode 2 (TM-2) pre-trains the ANN using SDAE and fine-tuning but
not in all layers, only the last one (forecasting layer).

A combination of grid and random search for hyper-parameter optimization was
used, instead of using a grid search simply. Some works [4] have demonstrated
that random search is more efficient in finding good hyper-parameter configurations
within less trials than grid search. Moreover, random search is also easier to paral-
lelize. For all experiments, the Gaussian Noise variance is set to 0.01 and the length
of future window forecasted is H = 12, whilst mini-batch size is set to 32 in all
cases. To carry out the experiments, a grid with the following hyper-parameters was
created:

• the train mode (TM-0, TM-1, TM-2)
• number of hidden layers (1, 2, 3)
• Mask noise percentage (0.02, 0.04, 0.10, 0.20)

For each grid node 100 random trials were performed sampling different values
for the following hyper-parameters:

• Input size (I): uniform distribution (12, 24, 36, 48, 60, 72, 84, 96).
• Learning rate: two hyper-parameters, one for pre-train and other the fine-tuning,

sampled uniformly and independently in the range [10−3,10−2].
• Momentum: one hyper-parameter for each phase, independently sampled ∼

N (10−3,5× 10−3), avoiding negative values.
• Weight decay: in TM-0, weight decay was used at the ANN training. In TM-1 and

TM-2, weight decay was used at the pre-training phase, but not at fine-tuning.
Uniformly sampled in the range [0,10−5].

• Hidden layer sizes: uniformly distributed at range [4,1024], but only multipliers
of 4 were took (to avoid memory alignment issues).

Let ȳ = 〈y1,y2, . . . ,yH〉 = 〈ŝ j+1, ŝ j+2, . . . , ŝ j+H〉 be the forecasted values at time
j, t̄ = 〈t1, t2, . . . , tH〉 = 〈s j+1,s j+2, . . . ,s j+H〉 the ground truth values at time j and
w̄ = 〈w1,w2, . . . ,wn〉 the ANN weights excluding biases. For this train experiments,

472 P. Romeu et al.

a L2 regularization term ε has been used, and hence, the loss function is computed
as:

L = ∑
i
(yi − ti)

2 +
ε
2 ∑

i
(w2

i) (16)

The number of iterations used over the training have been a minimum of 50 and
maximum of 4000 iterations. Training stops if ever, at iteration k, the best validation
performance was observed before iteration k/2. In total 3600 experiments were
performed, all of them using the April-ANN1 toolkit [33], that implements SDAE
and efficient ANN training algorithms.

4.1.3 Results

First, as expected, it should be noted that in deeper networks the training mode TM-
0 were difficult to train. For three layered ANNs about 58% of experiments achieve
MAE� greater than 0.5, and the 33% for two layered ANNs. This behavior has not
been found for TM-1 and TM-2 experiments.

Results of validation MAE� have been analized and are shown in the Figure 2 for
different hyper-parameters: input size, encoding layer size, mask noise percentage
and learning rate at fine-tuning phase. Regarding the input size behavior for each
training mode, as can be observed in Figure 2-a, shows worst results for TM-2 and
better (and similar) for TM-0 and TM-1 training modes. For TM-0 and TM-1 modes,
best results are between 48 and 60 input sizes (12–15 hours). This result is coherent
with the input signal observed frequency, where 12 hours past info seems to be
enough to forecast the slope of the function, and therefore, to restrict next forecasted
values to a short range.

The lack of full fine-tuning harms the performance of TM-2 as hidden layers are
added. Encoding layer (the number of neurons at the last hidden layer) results at Fig-
ure 2-b show consistently that rising the number of hidden layers introduces insta-
bility to the prediction results on TM-2. TM-0 and TM-1 remain more stable while
increasing the number of hidden layers. Figure 2-c shows that masking noise harms
the performance of TM-0. Comparing learning rates at fine-tuning phase, shown at
Figure 2-d, it is observed that TM-0 needed a higher learning rate to achieve good
results, while for pre-trained TM-1 it was not an important parameter. All four fig-
ures show that as more hidden layers were added, the more unstable TM-2 was.

Test results in MAE� and RMSE� for the systems which perform better in val-
idation are shown at Figure 3. The systems were optimized separately following a
random search algorithm of [4]. The best system topologies, regarding to validation
set performance, were: for TM-0 60 inputs and two hidden layers of 756 and 60; for
TM-1 48 inputs and three hidden layers of 648, 920 and 16; and for TM-2 96 inputs
and one hidden layer of 712. Non pre-trained ANNs TM-0 achieved similar errors
as pre-trained ANNs TM-1.

1 Developed by members of our research group in collaboration with members of Universitat
Politècnica de València.

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 473

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

12 36 60 84

TM-0

12 36 60 84

TM-1

1 layer
2 layers
3 layers

12 36 60 84

TM-2

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0 300 600 900

TM-0

0 300 600 900

TM-1

0 300 600 900

TM-2

(a) input size (b) encoding layer size

0.12

0.13

0.14

0.15

0.16

0.17

0.02 0.10 0.18

TM-0

0.02 0.10 0.18

TM-1

0.02 0.10 0.18

TM-2

0.12

0.13

0.14

0.15

0.16

0.17

0 0.003 0.006 0.009

TM-0

0 0.003 0.006 0.009

TM-1

0 0.003 0.006 0.009

TM-2

(c) mask noise percentage (d) learning rate at fine-tuning phase

Fig. 2 Result plots of different hyper-parameters (x-axis) vs MAE� (y-axis). Only the best
model for each x value is represented. Second order polynomial fits are also shown.

0.115

0.120

0.125

0.130

0.135

0.140

TM-0 TM-1 TM-2

M
A

E
*

Validation
Test

0.135

0.140

0.145

0.150

0.155

0.160

0.165

0.170

TM-0 TM-1 TM-2

R
M

S
E

*

Fig. 3 Box whiskers plot computed over 20 different random initializations for each training
mode (TM) and for the validation and test sets

474 P. Romeu et al.

Table 1 Mean and standard deviation for MAE� & RMSE� computed over the same 20
random initializations. Bolded numbers are best results. ETS is an exponential smoothing
model.

MAE�

Validation (μ ±σ) Test (μ ±σ)

ETS 0.3004 0.3254
TM-0 0.1289±0.0011 0.12482±0.0010
TM-1 0.1287±0.0033 0.1223±0.0033
TM-2 0.1374±0.0007 0.1279±0.0011

RMSE�

Validation (μ ±σ) Test (μ ±σ)

ETS 0.3648 0.3930
TM-0 0.1563±0.0011 0.1511±0.0012
TM-1 0.1565±0.0040 0.1473±0.0039
TM-2 0.1663±0.0009 0.1538±0.0013

However, performance measured at test error is better at full pre-trained ANNs
TM-1. Pre-trained ANNs TM-2 achieve worse error measures than TM-0 and TM-
1. In order to compare, an exponential smoothing model [29] was trained, denoted
as ETS at Table 1.

Finally, learning curve and test set generalization of the best configurations are
shown at Figure 4. Left plot shows that as training epochs increase, TM-2 stops
learning at a certain epoch, while TM-0 and TM-1 keep improving. Right plot shows
that TM-0 ANN over-fits if it is trained during too much epochs, while pre-trained
networks remain close to its minimum error, showing the benefits of pre-training as
a regularization method.

0.010

0.014

0.019

0.025

0.034

0.046

0.063

0.086

0.117

0.159

0 200 400 600 800 1000 1200 1400

T
ra

in
in

g
M

S
E

 (
lo

g-
sc

al
ed

)

Epochs

TM-0
TM-1
TM-2

0.117

0.159

0.216

0.293

0.398

0 200 400 600 800 1000 1200 1400

T
es

t M
A

E
*

(lo
g-

sc
al

ed
)

Epochs

best val TM-0

best val TM-1
best val TM-2

TM-0
TM-1
TM-2

Fig. 4 Training detail for the best initialization (from the 20 random initializations tested for
Figure 3). (Left) Plot of MSE at each training epoch for best ANN of each training mode.
(Right) Plot of MAE� at each training epoch for best ANN of each training mode. Arrows
indicates stopping point due to validation stopping criteria.

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 475

4.1.4 Conclusions

In this section, three training models have been studied: a non pre-trained model
TM-0 and two pre-trained models TM-1 and TM-2. Results show that pre-trained
models with a fine-tuning phase –TM-1– are able to train deep models and gen-
eralize better than non pre-trained models. However, TM-1 obtained result is not
overwhelming compared to deep learning improvements in other tasks [32], but it
is a promising preliminary result. The low dimensionality of the task (univariate
time-series forecasting using at most 96 inputs), and the smoothness of the indoor
temperature time-series, reduce the benefit of using SDAE models, as was stated
in [32].

4.2 Electric Power Consumption Forecasting

In this section, other household power consumption dataset is presented. It will be
studied how pre-trained and non pre-trained networks behave when learning sparse
data, and the effects of covariates in these models.

4.2.1 Data Description

This second data set was also obtained from the UCI (University of California)
Machine Learning Repository (http://archive.ics.uci.edu/ml) [1]. It
is an individual household electric power consumption data set. It contains mea-
surements of electric power consumption in one household with a one-minute sam-
pling rate over a period of almost 4 years. Different electrical quantities and some
sub-metering values are also available. The data comes from EDF R&D centre in
Clamart, France.

The archive contains 2075259 measurements gathered between December 2006
and November 2010 (47 months). There are nine attributes that recollect the next
information:

1. date: Date in format dd/mm/yyyy
2. time: time in format hh:mm:ss
3. global-active-power: household global minute-averaged active power (in kilo-

watt)
4. global-reactive-power: household global minute-averaged reactive power (in

kilowatt)
5. voltage: minute-averaged voltage (in volt)
6. global-intensity: household global minute-averaged current intensity (in ampere)
7. sub-metering-1: energy sub-metering No. 1 (in watt-hour of active energy). It

corresponds to the kitchen, containing mainly a dishwasher, an oven and a mi-
crowave (hot plates are not electric but gas powered).

8. sub-metering-2: energy sub-metering No. 2 (in watt-hour of active energy). It
corresponds to the laundry room, containing a washing-machine, a tumble-drier,
a refrigerator and a light.

http://archive.ics.uci.edu/ml

476 P. Romeu et al.

9. sub-metering-3: energy sub-metering No. 3 (in watt-hour of active energy). It
corresponds to an electric water-heater and an air-conditioner.

To take into account the data set contains some missing values in the measure-
ments (nearly 1,25% of the rows). All calendar timestamps are present in the data
set but for some timestamps, the measurement values are missing: a missing value
is represented by the absence of value between two consecutive semi-colon attribute
separators. For instance, the data set shows missing values on April 28, 2007.

Anyway, for the present work, after doing a correlation study of the different
attributes, it was considered to work with the month, hour, global-active-power at-
tributes and a the day of week (where Sunday is codified as 1). Global-reactive-
power, global-intensity and voltage would be possible to be introduced as covariates,
because they are not really correlated between themselves. However, for simplicity,
and to focus the study in one forecasting variable and its stationality, it was decided
to ignore this data. Figure 5 shows the distribution of global-active-power depending
within temporal variables (month, hour and day of week).

Month

January ... December

Hour

January ... December 00:00 ... 23:00
 0

 1

 2

 3

 4

 5

 6

Gl
ob
al
 a
ct
iv
e
po
we
r
(k
w)

Day of Week

January ... December 00:00 ... 23:00 Sunday ... Saturday

Fig. 5 Box-plot with the distribution of global-active-power within the temporal covariates

In this case, the electric active power time-series was sampled with one minute
period. In order to reduce high frequency noise, it was smoothed with a low-pass
filters of 5 samples. In a second step, the data was normalized to zero-mean and
one-variance.

The null values in the original data were ignored. In order to simplify the prob-
lem, original data were splitted into 71 files, containing each one a bunch of sequen-
tial data.

The last six files in chronological order were reserved. The remaining files have
been divided in three random partitions2: training (1350935 minutes, approximately

2 Every file is taken as a whole, and pertains only to one of the three partitions.

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 477

2 years plus 208 days), validation (258402 minutes, approximately 179 days) used
during training to avoid over-fitting, a test set 1 with (181641 minutes, approxi-
mately 126 days). The test set 2 contains 218465 minutes, approximately 151 days,
which corresponds to the last six files (from 2010/06/12 at 17:36 to 2010/11/26 at
21:02).

4.2.2 Experimentation Setup

In order to pre-train each layer of the ANN, a greedy algorithm was used. For each
layer, as in section 4.2, over 140 experiments using random search hyper-parameter
optimization were performed. Once the pre-training of a layer is over, the best hyper-
parameters combination is used to generate a filter for the next layer’s pre-training
task. These steps are followed for each pre-trained layer. Finally, a forecasting layer
is trained using as input the full stack of pre-trained layers and injecting other co-
variates to the final forecasting layers using a shortcut as shown in Figure 6. These
shortcuts are used in order to add the covariates without the need of adding them at
the pre-training. Also, time covariates in this task are highly correlated to the power
load as shown in Figure 5. Formally the forward computation of an ANN with three
layers and shortcuts follows:

ȳ = b(3) +W(3)φ(b(2) +W(2)φ(b(1) +W(1)Ω j(x0)))+

+ W(M)[:,month]+W(H)[:,hour]+W(D)[:,day of week]

being b the biases of the ANN, W the weights of the ANN, φ the activation function,
[:,month], [:,hour], [:,day of week] the column value of the weights of the covariates,
ȳ = 〈y1,y2, . . . ,yH〉 = 〈ŝ j+1, ŝ j+2, . . . , ŝ j+H〉 being the forecasted values at time j,
t̄ = 〈t1, t2, . . . , tH〉= 〈s j+1,s j+2, . . . ,s j+H〉 the true future global-active-power values
at time j.

These experiments additionally use the L1 regularization term. The L1 regular-
ization (λ) is used within the loss function together with the L2 regularization (ε),
also known as weight decay. The L1 regularization forces sparsity in the model,
forcing some weights to be zero. The L2 regularization avoids overfitting by forcing
weights to be close to zero. Let w̄ = 〈w1,w2, . . . ,wn〉 be the ANN weights excluding
biases. Then, the loss function is computed as:

L = ∑
i
(yi − ti)

2 +λ ∑
i
|wi|+ ε

2 ∑
i
(w2

i) (17)

Another L2 weight penalty has been added, in this case the L2 max-norm penalty
used in [19], which ensures that the L2 norm of the incoming weights for each
neuron at the end of a back-propagation iteration are below a preset value, otherwise,
the weights are reduced proportionally to fit the limit.

A minimum of 100 and maximum of 400 iterations over the training data are
used. Training stops if ever, at iteration k, the best validation performance was ob-
served before iteration k/2.

478 P. Romeu et al.

x cov

Fig. 6 Figure of covariates shortcut injected at the final forecasting layer

In this experiments, random search hyperparameter optimization [4] has been
performed. 925 initial random experiments have been performed to choose an ap-
propriate input size. These experiments are shown in figure 7. The best input size
has been chosen from these experiments, which was 1440 inputs, which performed
slightly better than the 2160 input size experiments.

 52

 54

 56

 58

 60

 62

 64

 66

360 720 1440 2160

M
S
E

Fig. 7 MSE results box plot of 925 random initial tests to establish the best input size. The
x-axis represents the values for the input size.

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 479

For the first layer pre-training task, the mini-batch size was set to 128. An input
size of 1440 minutes of global-active-power was used. The activation function for
the visible layer neurons was set to linear and logistic function was chosen for the
hidden layer. Then, 177 random trials have been performed using following values
for the randomized hyper-parameters:

• Learning rate: independently sampled using a log-uniform distribution within
the range [10−5,10−3].

• Momentum: independently sampled using a log-uniform distribution within the
range [10−5,10−4].

• Weight decay: Uniformly sampled within the range [10−5,10−6] in 10−6 steps.
• Hidden layer sizes: uniformly distributed within the range [128,2048], but only

multipliers of 4 were taken (to avoid memory alignment issues).
• L1 regularization: Uniformly sampled within the values {0.0,10−5,10−6}.
• Max norm penalty: Uniformly sampled within the values {3,4,5,6}.
• Gaussian noise: with zero mean and variance uniformly sampled within the val-

ues {0.0,0.05,0.1,0.2}.
• Mask noise: uniformly sampled within the values {0.0,0.05,0.1,0.2}.

The next layers’ pre-training task fixed settings are both activation functions,
visible and hidden, set to logistic. 148 second layer experiments and 334 third layer
experiments were performed. The random values for the experiments of the next
layers differences were because the first layer learning rate is set to a lower value
due to the input linear function which does not converge if learning rate is set to a
high value. Therefore, next layers learning rate and momentum are set to:

• Learning rate: independently sampled using a log-uniform distribution within
the range [10−3,10−2].

• Momentum: independently sampled using a log-uniform distribution within the
range [10−4,10−3].

All experiments were performed using the April-ANN toolkit [33], that imple-
ments SDAE and efficient ANN training algorithms.

4.2.3 Results

First layer pre-training results are shown in Figure 8. Learning rate and layer size are
rounded to the closest decimal because the intrinsic randomness of the experiments
makes difficult to find equal values to create boxplots. Layer size analysis suggests a
first layer size close to 1500 and a learning rate of 0.0003. Gaussian noise and mask
noise were selected close to 0.1 and 0.1 respectively and weight decay was chosen
close to 1e−06. momentum, L1 regularization and weight decay were chosen close
to 10−3, 10−6 and 10−5 respectively.

Using the first layer filter for encoding, second layer pre-training experiments
have been performed. Results for this experiments are shown in Figure 9. These
graphs suggest a learning rate of 0.004 and a layer size close to 1600. Also, Gaussian

480 P. Romeu et al.

 50

 100

 150

 200

 250

 300

100
200

300
400

500
600

700
800

900
1000

1100
1200

1300
1400

1500
1600

1700
1800

1900
2000

M
S
E

 50

 100

 150

 200

 250

 300

0 0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

M
S
E

(a) Layer size (b) Learning rate

 50

 100

 150

 200

 250

 300

0 0.05 0.1 0.2

M
S
E

 50

 100

 150

 200

 250

 300

0 0.1 0.2 0.3

M
S
E

(c) Gaussian noise (d) Masking noise

Fig. 8 Results for several hyper-parameters for first layer –h1– hyperparameter random
search pre-training experiments

noise of 0.2 and masking noise of 0.1 will be selected. Momentum, L1 regularization
and weight decay were chosen close to 10−4, 10−6 and 10−6 respectively.

A third layer was also pre-trained, using the second layer filter for encoding its
inputs. The experiments’ results are shown at Figure 10 indicates a layer size close
to 1700 and a learning rate between 0.004 and 0.006. Gaussian noise variance of
0.05 and mask noise of 0.1 was chosen. Momentum, L1 regularization and weight
decay were chosen close to 10−4, 10−6 and 10−6 respectively.

Once all layers have been pre-trained, the best autoencoder stack has been cho-
sen. For the first layer, a size of 1792 neurons was chosen. For the second layer,
a layer with 1596 was chosen. The last layer size was 1764. For this three layer
filter, hyperparameter optimization experiments where performed with and with-
out covariates. Non-pretrained ANNs were trained to compare their results with the
pre-trained models. Experiments where performed with and without covariates. In
all experiments where covariates are present, shortcuts have been used as explained
at the previous section.

Analyzing the results, differences at first layer filters were detected. As shown in
Figure 11, non-pretrained networks show consistently more noise than pre-trained
weights. That is, weights in a pre-trained layer achieve some specialization in rec-
ognizing some few patterns while remaining nearly inactive in other patterns. Also,
as this is a time series, closest point in time which is the value that the lasts neurons
receive (rightmost part of the figure) usually has a high positive or negative value.
The non pre-trained model results that uses covariates shown at Figure 11.b, show

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 481

 501

 521

 531

 4111

 4161

 4101

411
611

711
011

811
211

911
311

511
4111

4411
4611

4711
4011

4811
4211

4911
4311

4511
6111

M
S
E

 501

 521

 531

 . 111

 . 141

 . 101

1611.
16114

16117
16110

16118
16112

16119
16113

16115
161.

M
S
E

(a) Layer size (b) Learning rate

 940

 960

 980

 1000

 1020

 1040

0 0.05 0.1 0.2

M
S
E

 940

 960

 980

 1000

 1020

 1040

0 0.1 0.2 0.3

M
S
E

(c) Gaussian noise (d) Masking noise

Fig. 9 Results for several hyper-parameters for second layer –h2– hyperparameter random
search pre-training experiments

 501

 211

 231

 241

 221

 201

 611

 631

711
311

811
411

511
211

611
011

911
7111

7711
7311

7811
7411

7511
7211

7611
7011

7911
3111

M
S
E

 501

 211

 231

 2. 1

 221

 201

 411

 431

16117
16113

16118
1611.

16115
16112

16114
16110

16119
1617

M
S
E

(a) Layer size (b) Learning rate

 580

 600

 620

 640

 660

 680

 700

 720

0 0.05 0.1 0.2

M
S
E

 580

 600

 620

 640

 660

 680

 700

 720

0 0.1 0.2 0.3

M
S
E

(c) Gaussian noise (d) Masking noise

Fig. 10 Results for several hyper-parameters for second layer –h3– hyperparameter random
search pre-training experiments

482 P. Romeu et al.

(a) Non pre-trained weights (b) Non pre-trained weights using covariates

(c) Pre-trained weights (d) Pre-trained weights using covariates

Fig. 11 First layer weights plot for single neurons in training experiments not using covari-
ates and not pre-trained (a), using covariates and not pre-trained (b) vs pre-trained (c) and
pre-trained using covariates (d)

an almost zero value in all its weights but the closest in time –rightmost part of the
figure–. This effect is produced by the time covariates shortcut in the model, which
gives more weight to the time covariates than the previous load values.

MSE error on the validation set was used to evaluate the best candidate to be
used for the test sets. Validation results shown at Table 2 show similar performance
for both approaches. Improvement differences for the pre-trained models versus the
non pre-trained are shown.

Test results for each test set are shown at Table 3. Results have been divided
into two main groups depending whether the test experiment was performed using
covariates or not. For each test result, MAE�, MSE� and RMSE� for pre-trained and

Table 2 MAE�, MSE� and RMSE� for Validation Set using pre trained and non pre-trained
networks with and without shortcuts. Percentage differences show the improvement of the
pre-trained over the non pre-trained.

Pretraining No Covariates With Covariates
MAE� MSE� RMSE� MAE� MSE� RMSE�

No 0.5558 59.24 0.6928 0.5291 55.84 0.6713
Yes 0.5436 58.70 0.6866 0.5219 55.85 0.6706

Difference 2.23% 0.92% 0.91% 1.37% −0.02% 0.21%

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 483

non pre-trained network are shown and the best for each one is remarked in bold.
Pre-trained and non pre-trained experiments perform better in the test set 2 which
was built with sequential data than in test set 1 which was built using random ordered
data. Also, pre-trained experiments consistently improve the MAE� of the non pre-
trained ones and more significantly when no other information (no covariates) but
the global-active-power is present.

Table 3 MAE�, MSE� and RMSE� for test set 1 and test set 2 using pre trained and non pre-
trained networks with and without shortcuts. Percentage differences show the improvement
of the pre-trained over the non pre-trained.

test set Pretraining No Covariates With Covariates
MAE� MSE� RMSE� MAE� MSE� RMSE�

test set 1
No 0.5808 65.88 0.7189 0.5638 62.32 0.7031
Yes 0.5660 65.39 0.7097 0.5555 62.73 0.7012

Difference 2.58% 0.75% 1.28% 1.49% −0.66% 0.27%

test set 2
No 0.4769 41.72 0.5856 0.4596 40.49 0.5770
Yes 0.4584 41.13 0.5750 0.4570 41.24 0.5819

Difference 3.95% 1.43% 1.82% 0.56% −1.83% −0.84%

Sparsity of the last layer was analyzed implementing the same analysis used
in [24]. This analysis computes the probability for each neuron to be active as
its mean activation value, and then shows it in decreasing order. Figure 12 pro-
vides some insight of how sparse are the pre-trained, and non pre-trained networks.
In this figure, activation probabilities for each hidden unit in the last hidden layer
are plotted. The units are sorted in decreasing order of activation probability. The
effect of pre-training yields the network to have sparse activations. The effect of
adding injected covariates issues the same effect on non-pretrained networks, but
Figure 12-(a) and (c) show that the pre-trained network non-activations (leftmost
part of the figure) has more probability than the no pre-trained neurons ones. Hence,
pre-trained ANNs show more sparsity for both test sets.

4.2.4 Conclusion

In this section a comparison with models that use covariates has been done. Al-
though results using covariates in non pre-trained models are similar pre-trained
models without covariates. The weights visualization and the activations probability
analysis show that pre-trained models behave sparse in all cases, but non pre-trained
models are very noisy when no covariates are present and sparse with covariates.
However, the addition of covariates to non pre-trained models induces a first layer
with zero weights in all positions except the last one. This behavior suggests that
non pre-trained models are working in linearly with covariates, ignoring the rest of
input data.

484 P. Romeu et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

A

ct
iv

a
ti

o
n
 P

ro
b
a
b
ili

ty

No Pretrain
Pretrain

 0

 0.2

 0.4

 0.6

 0.8

 1

A
ct

iv
a
ti

o
n
 P

ro
b
a
b
ili

ty

No Pretrain
Pretrain

(a) Test set 1, no covariates (b) Test set 1, covariates

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

A
ct

iv
a
ti

o
n
 P

ro
b
a
b
ili

ty

No Pretrain
Pretrain

 0

 0.2

 0.4

 0.6

 0.8

 1

A
ct

iv
a
ti

o
n
 P

ro
b
a
b
ili

ty

No Pretrain
Pretrain

(c) Test set 2, no covariates (d) Test set 2, with covariates

Fig. 12 Last layer neuron output activation probabilities computation. Figures (a) and (b)
represent test set 1. Figures (c) and (d) represent test set 2.

5 Discussion and Further Work

In this chapter, a study of deep learning of time-series forecasting techniques has
been studied. Using Stacked Denoising Auto-Encoders, it is possible to disentangle
complex characteristics in time series data. The effects of complete and partial fine-
tuning have been studied. SDAE have proved to be able to train deeper models, and
consequently to learn more complex characteristics in the data. Hence, these models
are able to generalize better, as shown in the test sets. Furthermore, they are useful
to learn sparse overcomplete representations of data and achieving similar results
than non pre-trained models with covariates.

Further work should be done improving the pre-training process and the final
fine-tuning. Also, other approaches mixing and comparing posterior injection us-
ing shortcuts presented in this chapter and adding the covariates at the input of the
model should be studied. Differences between non pre-trained and pre-trained mod-
els are clear in the proposed tasks. It will be possible to study the way to exploit this
differences in order to improve the deep ANN results.

Acknowledgements. This work has been supported by Banco Santander and CEU Cardenal
Herrera University through the project Santander-PRCEU-UCH07/12.

Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting 485

References

1. Bache, K., Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

2. Ben Taieb, S., Bontempi, G., Atiya, A., Sorjamaa, A.: A review and comparison of strate-
gies for multi-step ahead time series forecasting based on the NN5 forecasting competi-
tion. Expert Systems with Applications (2012) (preprint)

3. Bengio, Y.: Deep learning of representations: looking forward. In: Dediu, A.-H., Martı́n-
Vide, C., Mitkov, R., Truthe, B. (eds.) SLSP 2013. LNCS (LNAI), vol. 7978, pp. 1–37.
Springer, Heidelberg (2013)

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach.
Learn. Res. 13, 281–305 (2012)

5. Bergstra, J., Desjardins, G., Lamblin, P., Bengio, Y.: Quadratic polynomials learn bet-
ter image features. Tech. Rep. 1337, Département d’Informatique et de Recherche
Opérationnelle, Université de Montréal (2009)

6. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn.
Springer (2002)

7. Chao, J., Shen, F., Zhao, J.: Forecasting exchange rate with deep belief networks. In:
The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1259–1266
(2011)

8. Cheng, H., Tan, P.-N., Gao, J., Scripps, J.: Multistep-ahead time series prediction. In: Ng,
W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918,
pp. 765–774. Springer, Heidelberg (2006)

9. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th In-
ternational Conference on Machine Learning, ICML 2008, pp. 160–167 (2008),
doi:10.1145/1390156.1390177

10. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does
unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

11. Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of train-
ing deep architectures and the effect of unsupervised pre-training. Journal of Machine
Learning Research 5, 153–160 (2009)

12. Escrivá-Escrivá, G., Álvarez-Bel, C., Roldán-Blay, C., Alcázar-Ortega, M.: New artifi-
cial neural network prediction method for electrical consumption forecasting based on
building end-uses. Energy and Buildings 43(11), 3112–3119 (2011)

13. Ferreira, P., Ruano, A., Silva, S., Conceição, E.: Neural networks based predictive control
for thermal comfort and energy savings in public buildings. Energy and Buildings 55,
238–251 (2012)

14. Gardner, J.: Exponential smoothing: The state of the art. Journal of Forecasting 4(1)
(1985)

15. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural
networks. Journal of Machine Learning Research 9, 249–256 (2010)

16. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: JMLR
W&CP: Proceedings of the Fourteenth International Conference on Artificial Intelli-
gence and Statistics, AISTATS 2011 (2011)

17. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout Net-
works. ArXiv e-prints (2013)

18. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006)

http://archive.ics.uci.edu/ml

486 P. Romeu et al.

19. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Im-
proving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580 (2012)

20. Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M.: Time Series Forecasting Using
Restricted Boltzmann Machine. In: ICIC, pp. 17–22 (2012)

21. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evaluation
of deep architectures on problems with many factors of variation. In: Proceedings of the
24th International Conference on Machine learning, ICML 2007, pp. 473–480. ACM,
New York (2007), http://doi.acm.org/10.1145/1273496.1273556,
doi:10.1145/1273496.1273556

22. Le Cun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Com-
put. 1(4), 541–551 (1989)

23. Lee, H., Ekanadham, C., Ng, A.Y.: Sparse deep belief net model for visual area v2. In:
NIPS (2007)

24. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network
acoustic models. In: Proceedings of the ICML (2013)

25. Olshausen, B.A., Fieldt, D.J.: Sparse coding with an overcomplete basis set: a strategy
employed by v1. Vision Research 37, 3311–3325 (1997)

26. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Ex-
plicit invariance during feature extraction. In: ICML, pp. 833–840 (2011)

27. Romeu, P., Zamora-Martı́nez, F., Botella-Rocamora, P., Pardo, J.: Time-Series Forecast-
ing of Indoor Temperature Using Pre-trained Deep Neural Networks. In: Mladenov,
V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.)
ICANN 2013. LNCS, vol. 8131, pp. 451–458. Springer, Heidelberg (2013)

28. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recur-
sive deep models for semantic compositionality over a sentiment treebank. In: Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631–1642 (2013)

29. Taylor, J.: Exponential smoothing with a damped multiplicative trend. International Jour-
nal of Forecasting 19, 715–725 (2003)

30. United States Department of Energy: Solar Decathlon Europe Competition (2012),
http://www.solardecathlon.gov

31. Utgoff, P.E., Stracuzzi, D.J.: Many-layered learning. Neural Comput. 14(10),
2497–2529 (2002), http://dx.doi.org/10.1162/08997660260293319,
doi:10.1162/08997660260293319

32. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

33. Zamora-Martı́nez, F., et al.: April-ANN toolkit, A Pattern Recognizer In Lua, Artificial
Neural Networks module (2013), https://github.com/pakozm/april-ann

34. Zamora-Martnez, F., Romeu, P., Botella-Rocamora, P., Pardo, J.: Towards En-
ergy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis. Ener-
gies 6(9), 4639–4659 (2013), http://www.mdpi.com/1996-1073/6/9/4639,
doi:10.3390/en6094639

35. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: The state
of the art. International Journal of Forecasting 14(1), 35–62 (1998)

36. Zou, W.Y., Socher, R., Cer, D.M., Manning, C.D.: Bilingual word embeddings for
phrase-based machine translation. In: EMNLP, pp. 1393–1398 (2013)

http://doi.acm.org/10.1145/1273496.1273556
http://www.solardecathlon.gov
http://dx.doi.org/10.1162/08997660260293319
https://github.com/pakozm/april-ann
http://www.mdpi.com/1996-1073/6/9/4639

Author Index

Alaíz, Carlos M. 349
Alonso-Weber, Juan M. 435
Angelov, Plamen 373

Barbero, Álvaro 349
Berlemont, Samuel 393
Botella-Rocamora, Paloma 463

Cabessa, Jérémie 1
Chernodub, Artem 221
Cho, Kyunghyun 201
Cichocki, Andrzej 31
Csató, Lehel 295

Dervos, Dimitris A. 333
Dorronsoro, José R. 349

Evangelidis, Georgios 333

Garcia, Christophe 393
Gnecco, Giorgio 245
Gori, Marco 245
Gutierrez, German 435

Haschke, Robert 127
Heinrich, Stefan 149

Ilin, Alexander 201

Jakab, Hunor S. 295

Karamitopoulos, Leonidas 333
Karhunen, Juha 201
Kasneci, Enkelejda 411
Kasneci, Gjergji 411

Khosravi, Abbas 445
Kmet, Tibor 315
Kmetova, Maria 315
Kolev, Denis 373
Koprinska, Irena 445
Kryzhanovskiy, Vladimir 91
Kübler, Thomas C. 411

Ledezma, Agapito 435
Lefebvre, Grégoire 393

Magg, Sven 149
Mamalet, Franck 393
Markarian, Garegin 373
Meier, Martin 127
Melacci, Stefano 245
Morozov, Evgeniy 373

Okamoto, Hiroshi 115
Ougiaroglou, Stefanos 333

Pardo, Juan 463
Phan, Anh Huy 31
Pipa, Gordon 63

Raiko, Tapani 201
Rana, Mashud 445
Ritter, Helge J. 127
Romeu, Pablo 463
Rosenstiel, Wolfgang 411

Sanchis, Araceli 435
Sandamirskaya, Yulia 175
Sanguineti, Marcello 245
Schumacher, Johannes 63

488 Author Index

Sehnke, Frank 271
Sesmero, M. Paz 435
Šíma, Jiří 51
Storck, Tobias 175
Suvorov, Mikhail 373

Tatoglou, Christos 333
Toutounji, Hazem 63

Villa, Alessandro E.P. 1

Wermter, Stefan 149

Zamora-Martínez, Francisco 463
Zdunek, Rafał 31
Zhao, Tingting 271
Zhelavskaya, Irina 91

	Preface
	Contents
	Neural Networks Theory and Models
	Recurrent Neural Networks and Super-Turing Interactive Computation
	1 Introduction
	2 Preliminaries
	3 Interactive Computation
	3.1 Historical Background
	3.2 The Interactive Paradigm
	3.3 Interactive Computable Functions
	3.4 Interactive Turing Machines

	4 Interactive Recurrent Neural Networks
	4.1 Recurrent Neural Networks
	4.2 Recurrent Neural Networks and Interactive Computation

	5 Computational Power of Classical Neural Networks
	6 Computational Power of Interactive Static Neural Networks
	7 Computational Power of Interactive Evolving Neural Networks
	8 Universality
	9 Discussion
	References

	Image Classification with Nonnegative Matrix Factorization Based on Spectral Projected Gradient
	1 Introduction
	2 Penalty Terms
	2.1 Sparse NMF
	2.2 DNMF
	2.3 GNMF

	3 Algorithm
	4 Experiments
	5 Conclusions
	References

	Energy-Time Tradeoff in Recurrent Neural Nets
	1 Energy Complexity—Motivations and Survey
	2 Energy Complexity of Recurrent Networks—Chapter Outline
	3 Neural Finite Automata
	4 A Low-Energy Implementation of Finite Automata by Optimal-Size Neural Nets
	5 The Energy Lower Bound
	6 Conclusions
	References

	An Introduction to Delay-Coupled Reservoir Computing
	1 Introduction to Reservoir Computation
	2 Single Node Delay-Coupled Reservoirs
	2.1 Computation via Delayed Feedback
	2.2 Retarded Functional Differential Equations
	2.3 Approximate Virtual Node Equations

	3 Implementation and Performance of the DCR
	3.1 Trajectory Comparison
	3.2 NARMA-10
	3.3 5-Bit Parity
	3.4 Large Setups
	3.5 Application to Experimental Data

	4 Discussion
	Appendix
	References

	Double-Layer Vector Perceptron for Binary Patterns Recognition
	1 Introduction
	2 Setting Up the Problem
	3 Formal Description of the Model
	3.1 Model Description
	3.2 Learning Procedure
	3.3 Identification Process

	4 Qualitative Description of the Model
	4.1 The General Idea
	4.2 Example

	5 Details of the Algorithm
	6 Storage Capacity
	7 Experimental Results
	7.1 Comparison with a Single-Layer Perceptron
	7.2 Model Properties Analysis
	7.3 Storage Capacity
	7.4 K-Nearest Neighbors Search Task

	8 Conclusion
	References
	Appendix 1

	Local Detection of Communities by Attractor Neural-Network Dynamics
	1 Introduction
	2 Methods
	2.1 Neural-Network Dynamics
	2.2 Local Detection of Communities
	2.3 Parameters

	3 Results
	3.1 Local Detection of Communities from Synthesized Networks
	3.2 Local Detection of Communities from Real Social Networks

	4 Discussion
	References
	Appendix: Synthetic Benchmark Network

	Learning Gestalt Formations for Oscillator Networks
	1 Introduction
	2 Artificial Networks for Perceptual Grouping
	2.1 Competitive Layer Model
	2.2 Coupled Kuramoto Oscillators
	2.3 Grouping with Artificial Data

	3 Learning Lateral Interactions
	3.1 Original Learning Algorithm with AEV
	3.2 Learning Algorithm with ITVQ

	4 Applications of Learned Gestalt Formations
	4.1 Proximity
	4.2 Learning Good Continuations
	4.3 Similarity of Textures

	5 Conclusion
	References

	Analysing the Multiple Timescale Recurrent Neural Network for Embodied Language Understanding
	1 Introduction
	1.1 Binding and Grounding in Computational Models
	1.2 Language Acquisition in a Recurrent Neural Model
	1.3 Chapter Organisation

	2 Extended MTRNN Model
	2.1 RNN Schematics
	2.2 Information Processing
	2.3 Learning
	2.4 Adaptive Learning Rates
	2.5 Production

	3 Scenario
	3.1 Utterance Encoding
	3.2 Visual Perception Encoding

	4 Evaluation and Analysis
	4.1 Generalisation
	4.2 The Role of Connectivity and Pathways
	4.3 The Role of the Timescale Parameter
	4.4 Network Behaviour

	5 Discussion
	5.1 Conclusion

	References

	Learning to Look and Looking to Remember: A Neural-Dynamic Embodied Model for Generation of Saccadic Gaze Shifts and Memory Formation
	1 Introduction
	2 Methods
	2.1 Dynamic Neural Fields
	2.2 Autonomous Control in DNF Architectures
	2.3 Learning with DNFs
	2.4 DFT in Modelling Saccade Generation

	3 The Model
	3.1 The Overall Architecture for Looking
	3.2 Perception
	3.3 Motor Control
	3.4 Saccade Generator
	3.5 Saccade Amplitude and Gain Maps
	3.6 Memory Formation and Exploration
	3.7 Prediction and Memory-Driven Saccades

	4 Results of Simulated Experiments
	4.1 Gaze Shifts Generation
	4.2 Scene Exploration and Memory Formation
	4.3 Gain Maps Learning
	4.4 Modelling Adaptation Experiments

	5 Discussion
	5.1 Strengths and Limitations of the Architecture
	5.2 Discussion of the Architecture in Relation to the Neural Mechanisms of Saccades Generation

	6 Conclusions and Outlook
	References

	New Machine Learning Algorithms for Neural Networks
	How to Pretrain Deep Boltzmann Machines in Two Stages
	1 Introduction
	2 Deep Boltzmann Machines
	3 Training Deep Boltzmann Machines
	3.1 Layer-Wise Pretraining

	4 Restricted Boltzmann Machines and Denoising Autoencoders
	5 A Two-Stage Pretraining Algorithm
	5.1 Stage 1
	5.2 Stage 2
	5.3 Discussion

	6 Experiments
	6.1 Result and Analysis

	7 Conclusions
	7.1 Future Work

	References

	Training Dynamic Neural Networks Using the Extended Kalman Filter for Multi-Step-Ahead Predictions
	1 Introduction
	2 Modeling the Dynamic Systems
	3 Dynamic Neural Networks
	3.1 Dynamic Linear Neural Network
	3.2 Dynamic Multilayer Perceptron
	3.3 Recurrent Multilayer Perceptron
	3.4 NARX Neural Network
	3.5 Experiment on SS Predictions with Different Network Types

	4 The Vanishing Gradient Effect
	5 Optimization Methods for Dynamic Neural Network Training
	5.1 Gradient Descent
	5.2 Extended Kalman Filter Training
	5.3 Experiment: Gradient Descent vs Extended Kalman Filter
	5.4 Mini-Batch Extended Kalman Filter Training

	6 Training FFNNs for MS Predictions Using FPTT and Mini-Batch EKF
	6.1 Multi-Step-Ahead on the Mackey-Glass Chaotic Process
	6.2 Multi-Step-Ahead on Santa-Fe Laser Dataset

	7 Conclusions
	References

	Learning as Constraint Reactions
	1 Introduction
	2 Learning from Constraints and Its Representer Theorems
	2.1 Soft Constraints
	2.2 Hard Constraints

	3 Support Constraint Machines
	4 Case Studies
	4.1 Supervised Learning from Examples
	4.2 Linear Constraints with Supervised Examples Available
	4.3 Box Constraints

	5 Discussion
	Appendix 1
	Appendix 2
	Appendix 3
	References

	Baseline-Free Sampling in Parameter Exploring Policy Gradients: Super Symmetric PGPE
	1 Introduction
	1.1 State of the Art and Problem Definition
	1.2 Motivation
	1.3 Outline

	2 Method
	2.1 Parameter-Based Exploration
	2.2 Sampling with a Baseline
	2.3 Sampling with an Optimal Baseline
	2.4 Symmetric Sampling
	2.5 Super-Symmetric Sampling
	2.6 Multimodal Super-Symmetric Sampling
	2.7 Reward Normalisation for SupSymPGPE

	3 Experiments and Results
	3.1 Square Function
	3.2 Rastrigin Function
	3.3 Renewable Energy Problem

	4 Conclusions and Future Work
	References

	Sparse Approximations to Value Functions in Reinforcement Learning
	1 Introduction
	2 Notation and Background
	3 Related Work in Value Approximation
	4 Kernel Least Squares Value Approximation
	4.1 Recursive Computation

	5 Sparsification of the Representation
	5.1 Laplacian Sparsification Criteria
	5.2 Illustrative Example

	6 On-Line Proximity Graph Construction
	6.1 Extended Sphere of Influence Graphs
	6.2 KNN Edge Construction
	6.3 Updating the Graph Structure

	7 The KSLTD Algorithm with On-Line Laplacian Sparsification
	8 Performance Evaluation
	8.1 Experimental Setup
	8.2 Car on Hill Control Problem
	8.3 Swinging Atwood’s Machine

	9 Conclusion
	References

	Neural Networks Solution of Optimal Control Problems with Discrete Time Delays and Time-Dependent Learning of Infinitesimal Dynamic System
	1 Introduction
	2 The Optimal Control Problem
	3 Discretization of the Optimal Control Problem
	4 Adaptive Critic Neural Network for an Optimal Control Problem with Control and State Constraints
	5 Discrete Time Delay Continuous Hopfield Neural Network Learning
	6 Nitrogen Transformation Cycle
	6.1 Numerical Simulation

	7 Conclusion
	References

	Pattern Recognition, Classification and Other NeuralNetwork Applications
	Applying Prototype Selection and Abstraction Algorithms for Efficient Time-Series Classification
	1 Introduction
	2 Data Reduction Techniques
	2.1 Prototype Selection Algorithms
	2.2 Prototype Abstraction Algorithms

	3 Experimental Study
	3.1 Experimental Setup
	3.2 Comparisons

	4 Conclusions
	References

	Enforcing Group Structure through the Group Fused Lasso
	1 Introduction
	2 Group Fused Lasso and Group Total Variation
	3 Solving Group Fused Lasso with Proximal Methods
	3.1 Proximal Methods
	3.2 Proximal Operators for GFL

	4 Experiments
	4.1 Synthetic Example: Structured Weights
	4.2 Synthetic Example: Structured Features
	4.3 Image Denoising

	5 Conclusions
	References

	Incremental Anomaly Identification in Flight Data Analysis by Adapted One-Class SVM Method
	1 Introduction
	2 Problem Specifics
	3 Support Vector Machines
	4 The Proposed Method
	5 Tests on Benchmark Data Sets
	6 Tests on Real Flight Data
	7 Conclusion
	References

	Inertial Gesture Recognition with BLSTM-RNN
	1 Introduction
	2 Accelerometer Based 3D Gesture Recognition
	3 The Proposed Gesture Recognition Method
	3.1 Bidirectional Long Short-Term Memory Recurrent Neural Networks
	3.2 BLSTM-RNN Architecture, Training and Decision Rule

	4 Experimental Results
	4.1 Inertial Gesture Dataset
	4.2 Preliminary Classification Results
	4.3 Classification Results
	4.4 Computing Times
	4.5 Final Results

	5 Conclusion and Perspectives
	References

	Online Recognition of Fixations, Saccades, and Smooth Pursuits for Automated Analysis of Traffic Hazard Perception
	1 Introduction
	2 Visual Perception and Eye Movements
	2.1 Fixation
	2.2 Saccade
	2.3 Smooth Pursuit

	3 Online Recognition of Fixations, Saccades, and Smooth Pursuits from Eye-Tracking Data
	3.1 State of the Art Methods
	3.2 Method Overview

	4 Experimental Evaluation
	4.1 Evaluation of the Bayesian Mixture Model in Comparison with a Hidden Markov Model
	4.2 Overall Evaluation of the Classification Technique

	5 Conclusion
	References

	Input Transformation and Output Combination for Improved Handwritten Digit Recognition
	1 Introduction
	2 Data Processing
	3 Experimental Setup
	4 Experimental Results
	5 Conclusions
	References

	Feature Selection for Interval Forecasting of Electricity Demand Time Series Data
	1 Introduction
	2 Data and Data Characteristics
	2.1 Data
	2.3 Irregular Days and Weather Variables

	2.2 Data Characteristics
	3 Measures for Evaluating the Quality of PIs
	4 The LUBEX Method
	5 Feature Selection for Constructing PIs
	5.1 CFS
	5.2 MI
	5.3 PA

	6 Results and Discussion
	6.1 Coverage Probability
	6.2 Interval Width
	6.3 Coverage Width Criterion
	6.4 Variability of PICP

	7 Conclusion
	References

	Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting
	1 Introduction
	2 Time Series Forecasting
	2.1 Forecast Models
	2.2 Evaluation Measures

	3 Unsupervised Greedy Layer-Wise Pre-training
	3.1 Stacked Denoising Auto-Encoders
	3.2 Greedy Layer-Wise Pre-training Algorithm and Greedy Layer-Wise Hyper-Parameter Optimization
	3.3 SDAEs for Time-Series: Expectations

	4 Experimentation
	4.1 Temperature Forcasting
	4.2 Electric Power Consumption Forecasting

	5 Discussion and Further Work
	References

	Author Index

