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Abstract. Scalp electroencephalograms (EEGs) are the primary means by which 
physicians diagnose brain-related illnesses such as epilepsy and seizures. Auto-
mated seizure detection using clinical EEGs is a very difficult machine learning 
problem due to the low fidelity of a scalp EEG signal. Nevertheless, despite the 
poor signal quality, clinicians can reliably diagnose illnesses from visual inspec-
tion of the signal waveform. Commercially available automated seizure detection 
systems, however, suffer from unacceptably high false alarm rates. Deep learning 
algorithms that require large amounts of training data have not previously been 
effective on this task due to the lack of big data resources necessary for building 
such models and the complexity of the signals involved. The evolution of big data 
science, most notably the release of the Temple University EEG (TUEG) Corpus, 
has motivated renewed interest in this problem. 

In this chapter, we discuss the application of a variety of deep learning architec-
tures to automated seizure detection. Architectures explored include multilayer 
perceptrons, convolutional neural networks (CNNs), long short-term memory 
networks (LSTMs), gated recurrent units and residual neural networks. We use 
the TUEG Corpus, supplemented with data from Duke University, to evaluate the 
performance of these hybrid deep structures. Since TUEG contains a significant 
amount of unlabeled data, we also discuss unsupervised pre-training methods 
used prior to training these complex recurrent networks. 

Exploiting spatial and temporal context is critical for accurate disambiguation of 
seizures from artifacts. We explore how effectively several conventional archi-
tectures are able to model context and introduce a hybrid system that integrates 
CNNs and LSTMs. The primary error modalities observed by this state-of-the-
art system were false alarms generated during brief delta range slowing patterns 
such as intermittent rhythmic delta activity. A variety of these types of events 
have been observed during inter-ictal and post-ictal stages. Training models on 
such events with diverse morphologies has the potential to significantly reduce 
the remaining false alarms. This is one reason we are continuing our efforts to 
annotate a larger portion of TUEG. Increasing the data set size significantly al-
lows us to leverage more advanced machine learning methodologies. 
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1 Introduction 

An EEG records the electrical activity along the scalp and measures spontaneous 
electrical activity of the brain. The signals measured along the scalp can be correlated 
with brain activity, which makes it a primary tool for diagnosis of brain-related illnesses 
[1, 2]. Electroencephalograms (EEGs) are used in a broad range of health care institu-
tions to monitor and record electrical activity in the brain. EEGs are essential in the 
diagnosis of clinical conditions such as epilepsy, depth of anesthesia, coma, encepha-
lopathy, brain death and even in the progression of Alzheimer’s disease [3, 4].  

Manual interpretation of EEGs is time-consuming since these recordings may last 
hours or days. It is also an expensive process as it requires highly trained experts. There-
fore, high performance automated analysis of EEGs can reduce time of diagnosis and 
enhance real-time applications by flagging sections of the signal that need further re-
view. Many methods have been developed over the years [5], including time-frequency 
digital signal processing techniques [6, 7], autoregressive spectral analysis [8], wavelet 
analysis [9], nonlinear dynamical analysis [10], multivariate techniques based on sim-
ulated leaky integrate-and-fire neurons [11–13] and expert systems that attempt to 
mimic a human observer [14]. In spite of recent research progress in this field, the tran-
sition of automated EEG analysis technology to commercial products in operational use 
in clinical settings has been limited, mainly because of unacceptably high false alarm 
rates [15–17]. 

In recent years, progress in machine learning and big data resources has enabled a 
new generation of technology that is approaching acceptable levels of performance for 
clinical applications. The main challenge in this task is to operate with an extremely 
low false alarm rate. A typical critical care unit contains 12 to 24 beds. Even a relatively 
low false alarm rate of 5 false alarms (FAs) per 24 hours per patient, which translates 
to between 60 and 120 false alarms per day, would overwhelm healthcare staff servicing 
these events. This is especially true when one considers the amount of other equipment 
that frequently trigger alerts [18]. In this chapter, we discuss the application of deep 
learning technology to the automated EEG interpretation problem and introduce several 
promising architectures that deliver performance close to the requirements for opera-
tional use in clinical settings. 

1.1 Leveraging Recent Advances in Deep Learning 

Machine learning has made tremendous progress over the past three decades due to 
rapid advances in low-cost highly-parallel computational infrastructure, powerful ma-
chine learning algorithms, and, most importantly, big data. Although contemporary ap-
proaches for automatic interpretation of EEGs have employed more modern machine 
learning approaches such as neural networks [19, 20] and support vector machines [21], 
state-of-the-art machine learning algorithms have not previously been utilized in EEG 
analysis because of a lack of big data resources. A significant big data resource, known 
as the TUH EEG Corpus (TUEG) is now available creating a unique opportunity to 
evaluate high performance deep learning approaches [22]. This database includes 



detailed physician reports and patient medical histories, which are critical to the appli-
cation of deep learning. However, transforming physicians’ reports into meaningful in-
formation that can be exploited by deep learning paradigms is proving to be challenging 
because the mapping of reports to underlying EEG events is nontrivial. 

Though modern deep learning algorithms have generated significant improvements 
in performance in fields such as speech and image recognition, it is far from trivial to 
apply these approaches to new domains, especially applications such as EEG analysis 
that rely on waveform interpretation. Deep learning approaches can be viewed as a 
broad family of neural network algorithms that use a large number of layers of nonlinear 
processing units to learn a mapping between inputs and outputs. These algorithms are 
usually trained using a combination of supervised and unsupervised learning. The best 
overall approach is often determined empirically and requires extensive experimenta-
tion for optimization. There is no universal theory on how to arrive at the best architec-
ture, and the results are almost always heavily data dependent. Therefore, in this chapter 
we will present a variety of approaches and establish some well-calibrated benchmarks 
of performance. We explore two general classes of deep neural networks in detail. 

The first class is a Convolutional Neural Network (CNN), which is a class of deep 
neural networks that have revolutionized fields like image and video recognition, rec-
ommender systems, image classification, medical image analysis, and natural language 
processing through end to end learning from raw data [23]. An interesting characteristic 
of CNNs that was leveraged in these applications is their ability to learn local patterns 
in data by using convolutions, more precisely cross-correlation, as their key component. 
This property makes them a powerful candidate for modeling EEGs which are inher-
ently multichannel signals. Each channel in an EEG possesses some spatial significance 
with respect to the type and locality of a seizure event [24]. EEGs also have an ex-
tremely low signal to noise ratio and events of interest such as seizures are easily con-
fused with signal artifacts (e.g., eye movements) or benign variants (e.g., slowing) [25]. 
The spatial property of the signal is an important cue for disambiguating these types of 
artifacts from seizures. These properties make modeling EEGs more challenging com-
pared to more conventional applications like image recognition of static images or 
speech recognition using a single microphone. In this study, we adapt well-known CNN 
architectures to be more suitable for automatic seizure detection. Leveraging a high-
performance time-synchronous system that provides accurate segmentation of the sig-
nal is also crucial to the development of these kinds of systems. Hence, we use a hidden 
Markov model (HMM) based approach as a non-deep learning baseline system [26]. 

Optimizing the depth of a CNN is crucial to achieving state-of-the-art performance. 
Best results are achieved on most tasks by exploiting very deep structures (e.g., thirteen 
layers are common) [27, 28]. However, training deeper CNN structures is more difficult 
since they are prone to degradation in performance with respect to generalization and 
suffer from convergence problems. Increasing the depth of a CNN incrementally often 
saturates sensitivity and also results in a rapid decrease in sensitivity. Often increasing 
the number of layers also increases the error on the training data due to convergence 
issues, indicating that the degradation in performance is not created by overfitting. We 



address such degradations in performance by designing deeper CNNs using a deep re-
sidual learning framework (ResNet) [29]. 

We also extend the CNN approach by introducing an alternate structure, a deep con-
volutional generative adversarial network (DCGAN) [30] to allow unsupervised train-
ing. Generative adversarial networks (GANs) [31] have emerged as powerful tech-
niques for learning generative models based on game theory. Generative models use an 
analysis by synthesis approach to learn the essential features of data required for high 
performance classification using an unsupervised approach. We introduce techniques 
to stabilize the training of DCGAN for spatio-temporal modeling of EEGs. 

The second class of network that we discuss is a Long Short-Term Memory (LSTM) 
network. LSTMs are a special kind of recurrent neural network (RNN) architecture that 
can learn long-term dependencies. This is achieved by introducing a new structure 
called a memory cell and by adding multiplicative gate units that learn to open and 
close access to the constant error flow [32]. It has been shown that LSTMs are capable 
of learning to bridge minimal time lags in excess of 1,000 discrete time steps. To over-
come the problem of learning long-term dependencies in modeling of EEGs, we de-
scribe a few hybrid systems composed of LSTMs that model both spatial relationships 
(e.g., cross-channel dependencies) and temporal dynamics (e.g., spikes). In an alterna-
tive approach for sequence learning of EEGs, we propose a structure based on gated 
recurrent units (GRUs) [33]. A GRU is a gating mechanism for RNNs that is similar in 
concept to what LSTMs attempt to accomplish. It has been shown that GRUs can out-
perform many other RNNs, including LSTM, in several datasets [33]. 

1.2 Big Data Enables Deep Learning Research 

Recognizing that deep learning algorithms require large amounts of data to train 
complex models, especially when one attempts to process clinical data with a signifi-
cant number of artifacts using specialized models, we have developed a large corpus of 
EEG data to support this kind of technology development. The TUEG Corpus is the 
largest publicly available corpus of clinical EEG recordings in the world. The most 
recent release, v1.1.0, includes data from 2002 – 2015 and contains over 23,000 ses-
sions from over 13,500 patients – over 1.8 years of multichannel signal data in to-
tal [22]. This dataset was collected at the Department of Neurology at Temple Univer-
sity Hospital. The data includes sessions taken from outpatient treatments, Intensive 
Care Units (ICU) and Epilepsy Monitoring Units (EMU), Emergency Rooms (ER) as 
well as several other locations within the hospital. Since TUEG consists entirely of 
clinical data, it contains many real-world artifacts (e.g., eye blinking, muscle artifacts, 
head movements). This makes it an extremely challenging task for machine learning 
systems and differentiates it from most research corpora currently available in this area. 
Each of the sessions contains at least one EDF file and one physician report. These 
reports are generated by a board-certified neurologist and are the official hospital rec-
ord. These reports are comprised of unstructured text that describes the patient, relevant 
history, medications, and clinical impression. The corpus is publicly available from the 
Neural Engineering Data Consortium (www.nedcdata.org). 



EEG signals in TUEG were recorded using several generations of Natus Medical 
Incorporated’s NicoletTM EEG recording technology [34]. The raw signals consist of 
multichannel recordings in which the number of channels varies between 20 and 128 
channels [24, 35]. A 16-bit A/D converter was used to digitize the data. The sample 
frequency varies from 250 Hz to 1024 Hz. In our work, we resample all EEGs to a 
sample frequency of 250 Hz. The Natus system stores the data in a proprietary format 
that has been exported to EDF with the use of NicVue v5.71.4.2530. The original EEG 
records are split into multiple EDF files depending on how the session was annotated 
by the attending technician. For our studies, we use the 19 channels associated with a 
standard 10/20 EEG configuration and apply a Transverse Central Parasagittal (TCP) 
montage [36, 37]. 

A portion of TUEG was annotated manually for seizures. This corpus is known as 
the TUH EEG Seizure Detection Corpus (TUSZ) [38]. TUSZ is also the world’s largest 
publicly available corpus of annotated data for seizure detection that is unencumbered. 
No data sharing or IRB agreements are needed to access the data. TUSZ contains a rich 
variety of seizure morphologies. Variation in onset and termination, frequency and am-
plitude, and locality and focality protect the corpus from a bias towards one type of 
seizure morphology. TUSZ, which reflects a seizure detection task, is the focus of the 
experiments presented in this chapter. For related work on six-way classification of 
EEG events, see [26, 39, 40]. 

We have also included an evaluation on a held-out data set based on the Duke Uni-
versity Seizure Corpus (DUSZ) [41]. The DUSZ database is collected solely from the 
adult ICU patients exhibiting non-convulsive seizures. These are continuous EEG 
(cEEG) records [42] where most seizures are focal and slower in frequency. TUSZ in 
contrast contains records from a much broader range of patients and morphologies. A 
comparison of these two corpora is shown in Table 1. The evaluation sets are compa-
rable in terms of the number of patients and total amount of data, but TUSZ contains 
many more sessions collected from each patient.  

It is important to note that TUSZ was collected using several generations of Natus 
Incorporated EEG equipment [34], while DUSZ was collected at a different hospital, 
Duke University, using a Nihon Kohden system [43]. Hence, using DUSZ as a held-
out evaluation set is an important benchmark because it tests the robustness of the 

Table 1. An overview of the corpora used to develop the technology described in this chapter 

Description 
TUSZ DUSZ 

Train Eval Eval 
Patients 64 50 45 
Sessions 281 229 45 
Files 1,028 985 45 
Seizure (secs) 17,686 45,649 48,567 
Non-Seizure (secs) 596,696 556,033 599,381 
Total (secs) 614,382 601,682 647,948 

 



models to variations in the recording conditions. Deep learning systems are notoriously 
prone to overtraining, so this second data set represents important evidence that the 
results presented here are generalizable and reproducible on other tasks.  

2 Temporal Modeling of Sequential Signals 

The classic approach to machine learning, shown in Fig. 1, involves an iterative pro-
cess that begins with the collection and annotation of data and ends with an open set, 
or blind, evaluation. Data is usually sorted into training (train), development test set 
(dev_test) and evaluation (eval). Evaluations on the dev_test data is used to guide sys-
tem development. One cannot adjust system parameters based on the outcome of eval-
uations on the eval set but can use these results to assess overall system performance. 
We typically iterate on all aspects of this approach, including expansion and reparti-
tioning of the training and dev_test data, until overall system performance is optimized. 

We often leverage previous stages of technology development to seed, or initialize, 
models used in a new round of development. Further, there is often a need to temporally 
segment the data, for example automatically labeling events of interest, to support fur-
ther explorations of the problem space. Therefore, it is common when exploring new 
applications to begin with a familiar technology. As previously mentioned, EEG signals 
have a strong temporal component. Hence, a likely candidate for establishing good 
baseline results is an HMM approach, since this algorithm is particularly strong at au-
tomatically segmenting the data and localizing events of interest.  

 
Fig. 1. An overview of a typical design cycle for machine learning 

 



HMM systems typically operate on a sequence of vectors referred to as features. In 
this section, we briefly introduce the feature extraction process we have used, and we 
describe a baseline system that integrates hidden Markov models for sequential decod-
ing of EEG events with deep learning for decision-making based on temporal and spa-
tial context.  

2.1 A Linear Frequency Cepstral Coefficient Approach to Feature Extraction 

The first step in our machine learning systems consists of converting the signal to a 
sequence of feature vectors [44]. Common EEG feature extraction methods include 
temporal, spatial and spectral analysis [45, 46]. A variety of methodologies have been 
broadly applied for extracting features from EEG signals including a wavelet transform, 
independent component analysis and autoregressive modeling [47, 48]. In this study, 
we use a methodology based on mel-frequency cepstral coefficients (MFCC) which 
have been successfully applied to many signal processing applications including speech 
recognition [44]. In our systems, we use linear frequency cepstral coefficients (LFCCs) 
since a linear frequency scale provides some slight advantages over the mel scale for 
EEG signals [40]. A block diagram summarizing the feature extraction process used in 
this work is presented in Fig. 2. Though it is increasingly popular to operate directly 
from sampled data in a deep learning system, and let the system learn the best set of 
features automatically, for applications in which there is limited annotated data, it is 
often more beneficial to begin with a specific feature extraction algorithm. Experiments 
with different types of features [49] or with using sampled data directly [50] have not 
shown a significant improvement in performance.  

Harati et. al. [40] did an extensive exploration of many of the common parameters 
associated with feature extraction and optimized the process for six-way event classifi-
cation. We have found this approach, which leverages a popular technique in speech 
recognition, is remarkably robust across many types of machine learning applications. 

 
Fig. 2. Base features are calculated using linear frequency cepstral coefficients 

 



The LFCCs are computed by dividing raw EEG signals into shorter frames using a 
standard overlapping window approach. A high resolution Fast Fourier Transform 
(FFT) is computed next. The spectrum is downsampled with a filter bank composed of 
an array of overlapping bandpass filters. Finally, the cepstral coefficients are derived 
by computing a discrete cosine transform of the filter bank’s output [44]. In our exper-
iments, we discarded the zeroth-order cepstral coefficient, and replaced it with a fre-
quency domain energy term which is calculated by adding the output of the over-
sampled filter bank after they are downsampled:  

E" = log(∑ |X(k)|-./0
123 )	.	 (1)	

We also introduce a new feature, called differential energy, that is based on the long-
term differentiation of energy. Differential energy can significantly improve the results 
of spike detection, which is a critical part of seizure detection, because it amplifies the 
differences between transient pulse shape patterns and stationary background noise. To 
compute the differential energy term, we compute the energy of a set of consecutive 
frames, which we refer to as a window, for each channel of an EEG: 

𝐸8 = 𝑚𝑎𝑥
<

=𝐸>(𝑚)? −𝑚𝑖𝑛< =𝐸>(𝑚)? . 		 (2)	

We have used a window of 9 frames which is 0.1 secs in duration, corresponding to 
a total duration of 0.9 secs, to calculate differential energy term. Even though this term 
is a relatively simple feature, it resulted in a statistically significant improvement in 
spike detection performance [40]. 

Our experiments have also shown that using regression-based derivatives of features, 
which is a popular method in speech recognition [44], is effective in the classification 
of EEG events. We use the following definition for the derivative:  

𝑑E =
∑ F(GHIJ/GHKJ)L
JMN

-∑ FOL
JMN

	.	 (3)	

Eq. (3) is applied to the cepstral coefficients, 𝑐E, to compute the first derivatives, 
which are referred to as delta coefficients. Eq. (3) is then reapplied to the first deriva-
tives to compute the second derivatives, which are referred to as delta-delta coefficients. 
Again, we use a window length of 9 frames (0.9 secs) for the first derivative and a 
window length of 3 (0.3 secs) for the second derivative. The introduction of derivatives 
helps the system discriminate between steady-state behavior, such as that found in a 
periodic lateralized epileptiform discharges (PLED) event, and impulsive or nonsta-
tionary signals, such as that found in spikes (SPSW) and eye movements (EYEM). 

Through experiments designed to optimize feature extraction, we found best perfor-
mance can be achieved using a feature vector length of 26. This vector includes nine 
absolute features consisting of seven cepstral coefficients, one frequency-domain en-
ergy term, and one differential energy term. Nine deltas are added for these nine abso-
lute features. Eight delta-deltas are added because we exclude the delta-delta term for 
differential energy [40]. 



2.2 Temporal and Spatial Context Modeling 

HMMs are among the most powerful statistical modeling tools available today for 
signals that have both a time and frequency domain component [51]. HMMs have been 
used quite successfully in sequential decoding tasks like speech recognition [52], cough 
detection [53] and gesture recognition [54] to model signals that have sequential prop-
erties such as temporal or spatial evolution. Automated interpretation of EEGs is a 
problem like speech recognition since both time domain (e.g., spikes) and frequency 
domain information (e.g., alpha waves) are used to identify critical events [55]. EEGs 
have a spatial component as well. 

A left-to-right channel-independent GMM-HMM, as illustrated in Fig. 3, was used 
as a baseline system for sequential decoding [26]. HMMs are attractive because training 
is much faster than comparable deep learning systems, and HMMs tend to work well 
when moderate amounts of annotated data are available. We divide each channel of an 
EEG into 1 sec epochs, and further subdivide these epochs into a sequence of 0.1 sec 
frames. Each epoch is classified using an HMM trained on the subdivided epoch. These 
epoch-based decisions are postprocessed by additional statistical models in a process 
that parallels the language modeling component of a speech recognizer. Standard three 
state left-to-right HMMs [51] with 8 Gaussian mixture components per state were used. 
The covariance matrix for each mixture component was assumed to be a diagonal ma-
trix – a common assumption for cepstral-based features. Though we evaluated both 
channel-dependent and channel-independent models, channel-independent models 
were ultimately used because channel-dependent models did not provide any improve-
ment in performance.  

Supervised training based on the Baum-Welch reestimation algorithm was used to 
train two models – seizure and background. Models were trained on segments of data 
containing seizures based on manual annotations. Since seizures comprise a small per-
centage of the overall data (3% in the training set; 8% in the evaluation set), the amount 
of non-seizure data was limited to be comparable to the amount of seizure data, and 

 
Fig. 3. A hybrid architecture based on HMMs 



non-seizure data was selected to include a rich variety of artifacts such as muscle and 
eye movements. Twenty iterations of Baum-Welch were used though performance is 
not very sensitive to this value. Standard Viterbi decoding (no beam search) was used 
in recognition to estimate the model likelihoods for every epoch of data. The entire file 
was not decoded as one stream because of the imbalance between the seizure and back-
ground classes – decoding was restarted for each epoch. 

The output of the epoch-based decisions was postprocessed by a deep learning sys-
tem. Our baseline system used a Stacked denoising Autoencoder (SdA) [56, 57] as 
shown in Fig. 3. SdAs are an extension of stacked autoencoders and are a class of deep 
learning algorithms well-suited to learning knowledge representations that are orga-
nized hierarchically [58]. They also lend themselves to problems involving training data 
that is sparse, ambiguous or incomplete. Since inter-rater agreement is relatively low 
for seizure detection [16], it made sense to evaluate this type of algorithm as part of a 
baseline approach. 

An N-channel EEG was transformed into N independent feature streams. The hy-
potheses generated by the HMMs were postprocessed using a second stage of pro-
cessing that examines temporal and spatial context. We apply a third pass of postpro-
cessing that uses a stochastic language model to smooth hypotheses involving se-
quences of events so that we can suppress spurious outputs. This third stage of postpro-
cessing provides a moderate reduction in false alarms. 

Training of SdA networks are done in two steps: (1) pre-training in a greedy layer-
wise approach [58] and (2) fine-tuning by adding a logistic regression layer on top of 
the network [59]. The output of the first stage of processing is a vector of two likeli-
hoods for each channel at each epoch. Therefore, if we have 22 channels and 2 classes 
(seizure and background), we will have a vector of dimension 2 x 22 = 44 for each 
epoch. 

Each of these scores is independent of the spatial context (other EEG channels) or 
temporal context (past or future epochs). To incorporate context, we form a supervector 
consisting of N epochs in time using a sliding window approach. We find it beneficial 
to make N large – typically 41. This results in a vector of dimension 41 x 44 = 1,804 
that needs to be processed each epoch. The input dimensionality is too high considering 
the amount of manually labeled data available for training and the computational re-
quirements. To deal with this problem we used Principal Components Analysis (PCA) 
[60, 61] to reduce the dimensionality to 20 before applying the SdA postprocessing. 

The parameters of the SdA model are optimized to minimize the average reconstruc-
tion error using a cross-entropy loss function. In the optimization process, a variant of 
stochastic gradient descent is used called “Minibatch stochastic gradient descent” 
(MSGD) [62]. MSGD works identically to stochastic gradient descent, except that we 
use more than one training example to make each estimate of the gradient. This tech-
nique reduces variance in the estimate of the gradient, and often makes better use of the 
hierarchical memory organization in modern computers. 



The SdA network has three hidden layers with corruption levels of 0.3 for each layer. 
The number of nodes per layer are: 1st layer (connected to the input layer) = 800, 2nd 
layer = 500, 3rd layer (connected to the output layer) = 300. The parameters for pre-
training are: learning rate = 0.5, number of epochs = 150, batch size = 300. The param-
eters for fine-tuning are: learning rate = 0.1, number of epochs = 300, batch size = 100. 
The overall result of the second stage is a probability vector of dimension two contain-
ing a likelihood that each label could have occurred in the epoch. A soft decision para-
digm is used rather than a hard decision paradigm because this output is smoothed in 
the third stage of processing. A more detailed explanation about the third pass of pro-
cessing is presented in [63]. 

3 Improved Spatial Modeling Using CNNs 

Convolutional Neural Networks (CNNs) have delivered state of the art performance 
on highly challenging tasks such as speech [64] and image recognition [28]. These early 
successes played a vital role in stimulating interest in deep learning approaches. In this 
section we explore modeling of spatial information in the multichannel EEG signal to 
exploit our knowledge that seizures occur on a subset of channels [2]. The identity of 
these channels also plays an important role localizing the seizure and identifying the 
type of seizure [65]. 

3.1 Deep Two-Dimensional Convolutional Neural Networks 

CNN networks are usually composed of convolutional layers and subsampling layers 
followed by one or more fully connected layers. Consider an image of dimension 
W × H × N, where W and H are the width and height of the image in pixels, and N is 
the number of channels (e.g. in an RGB image, N = 3 since there are three colors). Two-
dimensional (2D) CNNs commonly used in sequential decoding problems such as 
speech or image recognition typically consist of a convolutional layer that will have K 
filters (or kernels) of size M × N × Q where M and N are smaller than the dimension of 
the data and Q is smaller than the number of channels. The image can be subsampled 
by skipping samples as you convolve the kernel over the image. This is known as the 
stride, which is essentially a decimation factor. CNNs have a large learning capacity 
that can be controlled by varying their depth and breadth to produce K feature maps of 
size (W – M + 1) × (H – N + 1) for a stride of 1, and proportionally smaller for larger 
strides. Each map is then subsampled using a technique known as max pooling [66], in 
which a filter is applied to reduce the dimensionality of the map. An activation function, 
such as a rectified linear unit (ReLU), is applied to each feature map either before or 
after the subsampling layer to introduce nonlinear properties to the network. Nonlinear 
activation functions are necessary for learning complex functional mappings. 

In Fig. 4, a system that combines CNN and a multi-layer perceptron (MLP) [28] is 
shown. Drawing on our image classification analogy, each image is a signal where the 
width of the image (W) is the window length multiplied by the number of samples per 
second, the height of the image (H) is the number of EEG channels and the number of 



image channels (N) is the length of the feature vector. This architecture includes six 
convolutional layers, three max pooling layers and two fully-connected layers. A recti-
fied linear unit (ReLU) nonlinearity is applied to the output of every convolutional and 
fully-connected layer [67].  

In our optimized version of this architecture, a window duration of 7 secs is used. 
The first convolutional layer filters the input of size of 70 × 22 × 26 using 16 kernels 
of size 3 × 3 with a stride of 1. The input feature vectors have a dimension of 26, while 
there are 22 EEG channels. The window length is 70 because the features are computed 
every 0.1 secs, or 10 times per second, and the window duration is 7 sec. These kernel 
sizes and strides were experimentally optimized [26]. 

The second convolutional layer filters its input using 16 kernels of size 3 × 3 with a 
stride of 1. The first max pooling layer takes as input the output of the second convo-
lutional layer and applies a pooling size of 2 × 2. This process is repeated two times 
with kernels of size 32 and 64. Next, a fully-connected layer with 512 neurons is applied 
and the output is fed to a 2-way sigmoid function which produces a two-class decision. 
This two-class decision is the final label for the given epoch, which is 1 sec in duration. 
Neurologists usually review EEGs using 10 sec windows, so we attempt to use a similar 
amount of context in this system. Pattern recognition systems often subdivide the signal 
into small segments during which the signal can be considered quasi-stationary. A sim-
ple set of preliminary experiments determined that a reasonable tradeoff between com-
putational complexity and performance was to split a 10 sec window, which is what 
neurologists use to view the data, into 1 sec epochs [40]. 

In our experiments, we found structures that are composed of two consecutive con-
volutional layers before a pooling layer perform better than structures with one convo-
lutional layer before a pooling layer. Pooling layers decrease the dimensions of the data 
and thereby can result in a loss of information. Using two convolutional layers before 
pooling mitigates the loss of information. We find that using very small fields 

 
Fig. 4. A two-dimensional decoding of EEG signals using a CNN/MLP hybrid architecture 



throughout the architecture (e.g., 3 x 3) performs better than larger fields (e.g. 5 × 5 or 
7 × 7) in the first convolutional layer. 

3.2 Augmenting CNNs with Deep Residual Learning 

The depth of a CNN plays an instrumental role in its ability to achieve high perfor-
mance [27, 28]. As many as thirteen layers are used for challenging problems such as 
speech and image recognition. However, training deeper CNN structures is more diffi-
cult since convergence and generalization become issues. Increasing the depth of 
CNNs, in our experience, tends to increase the error on evaluation dataset. As we add 
more convolutional layers, sensitivity first saturates and then degrades quickly. We also 
see an increase in the error on the training data when increasing the depth of a CNN, 
indicating that overfitting is actually not occurring. Such degradations in performance 
can be addressed by using a deep residual learning framework known as a ResNet [29]. 
ResNets introduce an “identity shortcut connection” that skips layers. Denoting the de-
sired underlying mapping as 𝐻(𝑥) , we map the stacked nonlinear layers using 
𝐹(𝑥) 	= 	𝐻(𝑥)	– 	𝑥, where x is the input. The original mapping is recast into 𝐹(𝑥) 	+ 	𝑥. 
It can be shown that it is easier to optimize the residual mapping than to optimize the 
original, unreferenced mapping [29].  

The deep residual learning structure mitigates two important problems: vanish-
ing/exploding gradients and saturation of accuracy when the number of layers is in-
creased. As the gradient is backpropagated to earlier layers, repeated multiplication of 
numbers less than one often makes the gradient infinitively small. Performance satu-
rates and can rapidly degrade due to numerical precision issues. Our structure addresses 
these problems by reformulating the layers as learning residual functions with reference 
to the layer inputs instead of learning unreferenced functions.  

An architecture for our ResNet approach is illustrated in Fig. 5. The shortcut con-
nections between the convolutional layers make training of the model tractable by al-
lowing information to propagate effectively through this very deep structure. The net-
work consists of 6 residual blocks with two 2D convolutional layers per block. These 
convolutional layers are followed by a fully connected layer and a single dense neuron 
as the last layer. This brings the total number of layers in this modified CNN structure 
to 14. The 2D convolutional layers all have a filter length of (3, 3). The first 7 layers of 
this architecture have 32 filters while the last layers have 64 filters. We increment the 
number of filters from 32 to 64, since the initial layers represent generic features, while 
the deeper layers represent more detailed features. In other words, the richness of the 
data representations increases because each additional layer forms new kernels using 
combinations of the features from the previous layer. 

Except for the first and last layers of the network, before each convolutional layer 
we apply a Rectified Linear Unit (ReLU) as an activation function [68]. ReLU is the 
most commonly used activation function in deep learning models. The function returns 
0 if it receives any negative input, but for any positive value it returns that value (e.g., 
𝑓(𝑥) = max(0, 𝑥)). To overcome the problem of overfitting in deep learning structures 



with a large number of parameters, we use dropout [69] as our regularization method 
between the convolutional layers and after ReLU. Dropout is a regularization technique 
for addressing overfitting by randomly dropping units along with their connections 
from the deep learning structures during training. We use the Adam optimizer [70] 
which is an algorithm for first-order gradient-based optimization of stochastic objective 
functions, based on adaptive estimates of lower-order moments. After parameter tun-
ing, we apply Adam optimization using the following parameters (according to the no-
tation in their original paper): 𝛼	 = 	0.00005, 𝛽0 = 	0.9, 𝛽-	 = 0.999, 𝜀	 = 	10/a, and 
𝑑𝑒𝑐𝑎𝑦	 = 	0.0001. 

The deep learning systems described thus far have incorporated fully supervised 
training and discriminative models. Next, we introduce a generative deep learning 
structure based on convolutional neural networks that leverages unsupervised learning 
techniques. These are important for biomedical applications where large amounts of 
fully annotated data are difficult to find. 

3.3 Unsupervised Learning 

Machine learning algorithms can generally be split into two categories: generative 
and discriminative. A generative model learns the joint probability distribution of 
𝑃(𝑋, 𝑌) where 𝑋	is an observable variable and 𝑌	is the target variable. These models 
learn the statistical distributions of the input data rather than simply classifying the data 

 
Fig. 5. A deep residual learning framework, ResNet, is shown. 



as one of 𝐶 output classes. Hence the name, generative, since these methods learn to 
replicate the underlying statistics of the data. GMMs trained using a greedy clustering 
algorithm or HMMs trained using the Expectation Maximization (EM) algorithm [71] 
are well-known examples of generative models. A discriminative model, on the other 
hand, learns the conditional probability of the target 𝑌, given an observation 𝑋, which 
we denote 𝑃(𝑌|𝑋) [72]. Support Vector Machines [73] and Maximum Mutual Infor-
mation Estimation (MMIE) [74] are two well-known discriminative models. 

Generative adversarial networks (GANs) [31] have emerged as a powerful learning 
paradigm technique for learning generative models for high-dimensional unstructured 
data. GANs use a game theory approach to find the Nash equilibrium between a gener-
ator and discriminator network [75]. A basic GAN structure consists of two neural net-
works: a generative model 𝐺 that captures the data distribution, and a discriminative 
model 𝐷 that estimates the probability that a sample came from the training data rather 
than 𝐺. These two networks are trained simultaneously via an adversarial process. In 
this process, the generative network, 𝐺, transforms the input noise vector 𝑧 to generate 
synthetic data 𝐺(𝑧). The training objective for 𝐺 is to maximize the probability of 𝐷 
making a mistake about the source of the data. 

The output of the generator is a synthetic EEG – data that is statistically consistent 
with an actual EEG but is fabricated entirely by the network. The second network, 
which is the discriminator, 𝐷,	takes as input either the output of 𝐺 or samples from real 
world data. The output of 𝐷 is a probability distribution over possible input sources. 
The output of the discriminator in GAN determines if the signal is a sample from real 
world data or synthetic data from the generator. 

The generative model, 𝐺,	and the discriminative model, 𝐷,	compete in a two-player 
minimax game with a value function, 𝑉(𝐺;𝐷),	in a way that 𝐷 is trained to maximize 
the probability of assigning the correct label to both the synthetic and real data from 𝐺 
[31]. The generative model 𝐺  is trained to fool the discriminator by minimizing 
𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))):  

𝑚𝑖𝑛
p
𝑚𝑎𝑥
q

𝑉(𝐷, 𝐺) = 𝔼s~uvwHw(s)[𝑙𝑜𝑔𝐷(𝑥)] +𝔼z~u{(z)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))] . (4) 

During the training process, our goal is to find a Nash equilibrium of a non-convex two-
player game that minimizes both the generator and discriminator’s cost functions [75].  

A deep convolutional generative adversarial network (DCGAN) is shown in Fig. 6. 
The generative model takes 100 random inputs and maps them to a matrix with size of 
[21, 22, 250], where 21 is the window length (corresponding to a 21 sec duration), 22 
is number of EEG channels and 250 is number of samples per sec. Recall, in our study, 
we resample all EEGs to a sample frequency of 250 Hz [40]. The generator is composed 



of transposed CNNs with upsamplers. Transposed convolution, also known as fraction-
ally-strided convolution, can be implemented by swapping the forward and backward 
passes of a regular convolution [31]. We need transposed convolutions in the generators 
since we want to go in the opposite direction of a normal convolution. For example, in 
this case we want to compose the vector of [21, 22, 250] from 100 random inputs. Using 
transposed convolutional layers, we can transform feature maps to a higher-dimen-
sional space. Leaky ReLUs [68] are used for the activation function and dropout layers 
are used for regularization. Adam is used as the optimizer and binary cross-entropy [76] 
is used as the loss function.  

In this architecture, the discriminative model accepts vectors from two sources: syn-
thetic data generators and real data (raw EEGs in this case). It is composed of strided 
convolutional neural networks [77]. Strided convolutional neural networks are like reg-
ular CNNs but with a stride greater than one. In the discriminator we replace the usual 
approach of convolutional layers with max pooling layers with strided convolutional 
neural networks. This is based on our observations that using convolutional layers with 
max pooling makes the training of DCGAN unstable. This is due to the fact that using 
strided convolutional layers, the network learns its own spatial downsampling, and con-
volutional layers with max pooling tend to conflict with striding. 

Finding the Nash equilibrium, which is a key part of the GAN approach, is a chal-
lenging problem that impacts convergence during training. Several recent studies ad-
dress the instability of GANs and suggest techniques to increase the training stability 
of GANs [77]. We conducted a number of preliminary experiments and determined that 
these techniques were appropriate: 

In the discriminator: 

 
Fig. 6. An unsupervised learning architecture is shown that uses DCGANs 



• pretraining of the discriminator; 
• one-sided label smoothing; 
• eliminating fully connected layers on top of convolutional features; 
• replacing deterministic spatial pooling functions (such as max pooling) 

with strided convolutions. 

In the generator: 

• using an ReLU activation for all layers except for the output;  
• normalizing the input to [-1, 1] for the discriminator;  
• using a 𝑡𝑎𝑛ℎ()	activation in the last layer except for the output;  
• using leaky ReLU activations in the discriminator for all layers except for 

the output;  
• freezing the weights of discriminator during adversarial training process;  
• unfreezing weights during discriminative training; 
• eliminating batch normalization in all the layers of both the generator and 

discriminator. 

The GAN approach is attractive for a number of reasons including creating an oppor-
tunity for data augmentation. Data augmentation is common in many state-of-the-art 
deep learning systems today [78], allowing the size of the training set to be increased 
as well as exposing the system to previously unseen patterns during training.  

4 LEARNING TEMPORAL DEPENDENCIES 

The duration of events such as seizures can vary dramatically from a few seconds to 
minutes. Further, neurologists use significant amounts of temporal context and adapta-
tion in manually interpreting EEGs. They are very familiar with their patients and often 
can identify the patient by examining the EEG signal, especially when there are certain 
types of anomalous behaviors. In fact, they routinely use the first minute or so of an 
EEG to establish baseline signal conditions [65], or normalize their expectations, so 
that they can more accurately determine anomalous behavior. Recurrent neural net-
works (RNN), which date back to the late 1980’s [79], have been proposed as a way to 
learn such dependencies. Prior to this, successful systems were often based on ap-
proaches such as hidden Markov models, or used heuristics to convert frame-level out-
put into longer-term hypotheses. In this section, we introduce several architectures that 
model long-term dependencies. 

4.1 Integration of Incremental Principal Component Analysis with LSTMs 

In the HMM/SdA structure proposed in Section 2.2, PCA was used prior to SdA for 
dimensionality reduction. Unlike HMM/SdA, applying LSTM networks directly to fea-
tures requires more memory efficient approaches than PCA, or the memory require-
ments of the network can easily exceed the available computational resources (e.g., 
low-cost graphics processing units such as the Nvidia 1080ti have limited amount of 



memory – typically 8 Gbytes). Incremental principal components analysis (IPCA) is an 
effective technique for dimensionality reduction [61, 80]. This algorithm is often more 
memory efficient than PCA. IPCA has constant memory complexity proportional to the 
batch size, and it enables use of large datasets without a need to load the entire file or 
dataset into memory. IPCA builds a low-rank approximation for the input data using an 
amount of memory which is independent of the number of input data samples. It is still 
dependent on the dimensionality of the input data features but allows more direct con-
trol of memory usage by changing the batch size. 

In PCA, the first 𝑘  dominant principal components, 𝑦0(𝑛), 𝑦-(𝑛), . . . , 𝑦�(𝑛),	are 
computed directly from the input, 𝑥(𝑛) as follows:  

𝐹𝑜𝑟	𝑛	 = 	1, 2, . . . , 𝑑𝑜	𝑡ℎ𝑒	𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔: 

1)	𝑥0(𝑛) 	= 	𝑥(𝑛).	

2)	𝐹𝑜𝑟	𝑖	 = 	1, 2, . . . , min	(𝑘, 𝑛), 𝑑𝑜: 

𝑎)	𝑖𝑓	𝑖	 = 	𝑛, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒	𝑡ℎ𝑒	𝑖	𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑎𝑠	𝑦�(𝑛) = 	𝑥�(𝑛); 

	𝑏)	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	𝑐𝑜𝑚𝑝𝑢𝑡𝑒: 
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where the positive parameter 𝑝 is called the amnesic parameter. Typically, 𝑝 ranges 
from 2 to 4. Then the eigenvector and eigenvalues are given by: 

𝑒� =
��(F)
||��(F)||

	𝑎𝑛𝑑	𝜆� = ||𝑦�(𝑛)||	.	 (7)	

In Fig. 7, we present an architecture that integrates IPCA and LSTM [26]. In this 
system, samples are converted to features and the features are delivered to an IPCA 
layer that performs spatial context analysis and dimensionality reduction. The output 
of the IPCA layer is delivered to a one-layer LSTM for seizure classification task. The 
input to the IPCA layer is a vector whose dimension is the product of the number of 
channels, the number of features per frame and the number of frames of context. Pre-
liminary experiments have shown that 7 seconds of temporal context performs well. 

 
Fig. 7. An architecture that integrates IPCA and LSTM 

 



The corresponding dimension of the vector input to IPCA is 22 channels × 26 features 
× 7 seconds × 10 frames/second, or a total of 4004 elements. A batch size of 50 is used 
and the dimension of its output is 25 elements per frame at 10 frames/second. In order 
to learn long-term dependencies, one LSTM with a hidden layer size of 128 and batch 
size of 128 is used along with Adam optimization and a cross-entropy loss function. 

4.2 End-to-End Sequence Labeling Using Deep Architectures 

In machine learning, sequence labeling is defined as assigning a categorial label to 
each member of a sequence of observed values. In automatic seizure detection, we as-
sign one of two labels: seizure or non-seizure. This decision is made every epoch, which 
is typically a 1 sec interval. The proposed structures are trained in an end-to-end fash-
ion, requiring no pre-training and no pre-processing, beyond the feature extraction pro-
cess that was explained in Section 2.1. For example, for an architecture composed of a 
combination of CNN and LSTM, we do not train CNN independently from LSTM, but 
we train both jointly. This is challenging because there are typically convergence issues 
when attempting this. 

In Fig. 8, we integrate 2D CNNs, 1-D CNNs and LSTM networks, which we refer 
to as CNN/LSTM, to better exploit long-term dependencies [26]. Note that the way that 
we handle data in CNN/LSTM is different from the CNN/MLP system presented in 
Fig. 4. The input EEG features vector sequence can be thought of as being composed 
of frames distributed in time where each frame is an image of width (W) equal to the 
length of a feature vector. The height (H) equals the number of EEG channels and the 
number of image channels (N) equals one. The input to the network consists of T frames 
where T is equal to the window length multiplied by the number of frames per second. 
In our optimized system, where features are available 10 times per second, a window 
duration of 21 seconds is used. The first 2D convolutional layer filters 210 frames 
(T = 21 × 10) of EEGs distributed in time with a size of 26 × 22 × 1 (W = 26, H = 22, 

 
Fig. 8. A deep recurrent convolutional architecture 



N = 1) using 16 kernels of size 3 × 3 with a stride of 1. The first 2D max pooling layer 
takes as input a vector which is 260 frames distributed in time with a size of 26 × 22 × 
16 and applies a pooling size of 2 × 2. This process is repeated two times with two 2D 
convolutional layers with 32 and 64 kernels of size 3 × 3 respectively and two 2D max 
pooling layers with a pooling size 2 × 2. 

The output of the third max pooling layer is flattened to 210 frames with a size of 
384 × 1. Then a 1D convolutional layer filters the output of the flattening layer using 
16 kernels of size 3 which decreases the dimensionality in space to 210 × 16. Next, we 
apply a 1D max pooling layer with a size of 8 to decrease the dimensionality to 26 × 
16. This is the input to a deep bidirectional LSTM network where the dimensionality 
of the output space is 128 and 256. The output of the last bidirectional LSTM layer is 
fed to a 2-way sigmoid function which produces a final classification of an epoch. To 
overcome the problem of overfitting and force the system to learn more robust features, 
dropout and Gaussian noise layers are used between layers [69]. To increase nonline-
arity, Exponential Linear Units (ELU) are used [81]. Adam is used in the optimization 
process along with a mean squared error loss function. 

More recently, Chung et al. [33] proposed another type of recurrent neural network, 
known as a gated recurrent unit (GRU). A GRU architecture is similar to an LSTM but 
without a separate memory cell. Unlike LSTM, a GRU does not include output activa-
tion functions and peep hole connections. It also integrates the input and forget gates 
into an update gate to balance between the previous activation and the candidate acti-
vation. The reset gate allows it to forget the previous state. It has been shown that the 
performance of a GRU is on par with an LSTM, but a GRU can be trained faster [26]. 
The architecture is similar to that Fig. 8, but we simply replace LSTM with GRU, in a 
way that the output of 1D max pooling is the input to a GRU where the dimensionality 
of the output space is 128 and 256. The output of the last GRU is fed to a 2-way sigmoid 
function which produces a final classification of an epoch. These two approaches, 
LSTM and GRU, are evaluated as part of a hybrid architecture that integrates CNNs 
with RNNs [82]. 

4.3 Temporal Event Modeling Using LSTMs 

A final architecture we wish to consider is a relatively straightforward variation of 
an LSTM network. LSTMs are a special type of recurrent neural network which con-
tains forget and output gates to control the information flow during its recurrent passes. 
LSTM networks have proven to be outperform conventional RNNs, HMMs and other 
sequence learning methods in numerous applications such as speech recognition and 
handwriting recognition [83, 84]. Our first implementation of LSTM was a hybrid net-
work of both HMM and LSTM networks. A block diagram of HMM/LSTM system is 
shown in Fig. 9. Similar to the HMM/SdA model discussed before, the input to the 
second layer of the system, which is the first layer of LSTMs, is a vector of dimension 
2 × 22 × window length. We use PCA to reduce the dimensionality of the input vector 
to 20 and pass it to the LSTM model. A window size of 41 secs (41 epochs at 1 sec per 
epoch) is used for a 32-node single hidden layer LSTM network. The final layer uses a 



dense neuron with a sigmoid activation function. The parameters of the models are op-
timized to minimize the error using a cross-entropy loss function and Adam [70]. 

Next, we use a 3-layer LSTM network model. Identification of a seizure event is 
done based on an observation of a specific type of epileptiform activity called “spike 
and wave discharges” [85]. The evolution of these activities across time helps identify 
a seizure event. These events can be observed on individual channels. Once observed, 
the seizures can be confirmed based on their focality, signal energy and its polarity 
across spatially close channels. The architecture is shown in Fig. 10. 

In the preprocessing step, we extract a 26-dimensional feature vector for an 11-frame 
context centered around the current frame. The output dimensionality for each frame is 
10 x 26 (left) + 26 (center) + 10 x 26 (right) = 546. The static LSTM cells are used with 
a fixed batch size of 64 and a window size of 7 seconds. The data is randomly split into 
subsets where 80% is used for training and 20% is used for cross-validation during 
optimization. The features are normalized and scaled down to a range of [0, 1] on a file 

 
Fig. 9. A hybrid architecture that integrates HMM and LSTM. 

 

 
Fig. 10. A channel-based long short-term memory (LSTM) architecture 



basis, which helps the gradient descent algorithm (and its variants) to converge much 
faster [86]. Shuffling was performed on batches to avoid training biases. 

The network includes 3 LSTM layers with (256, 64, 16) hidden layers followed by 
a 2-cell dense layer. The activation function used for all LSTM layers is a hyperbolic 
tangent function, tanh(), except for the final layer, which uses a softmax function to 
compress the range of output values to [0,1] so they resemble posterior probabilities. A 
cross-entropy function is used for calculating loss. Stochastic gradient descent with 
Nesterov momentum is used for optimization. Nesterov momentum attempts to in-
crease the speed of training by introducing a momentum term based on accumulated 
gradients of its previous steps and a correction term in the direction of the current gra-
dient [87]. This tends to reduce the amount of overshoot during optimization.  

The optimization is performed on the training data at a very high learning rate of 1.0 
for the first five epochs. Cross-validation is performed after each epoch. After five 
epochs, if the cross-validation loss stagnates for three consecutive epochs (referred to 
as “patience = 3”), learning rates are halved after each iteration until it anneals to zero. 
If the model fails to show consistent performance on a cross-validation set, then it re-
verts to the previous epoch’s weights and restarts training until convergence. This 
method helps models avoid overfitting on the training data as long as the training and 
cross-validation sets are equally diverse. 

The outputs of the models are fed to a postprocessor which is described in more 
detail in Section 5. This postprocessor is designed based on domain knowledge and 
observed system behavior to remove spurious and misleading detections. This is imple-
mented to incorporate spatial context. The postprocessor sets a threshold for hypothesis 
confidence, the minimum number of channels for target event detection and a duration 
constraint which must be satisfied for detection. For example, if multiple channels con-
sistently detected spike and wave discharges in the same 9-second interval, this event 
would be permitted as a valid output. Outputs from a fewer number of channels or over 
a smaller duration of time would be suppressed. 

We have now presented a considerable variety of deep learning architectures. It is 
difficult to predict which architecture performs best on a given task without extensive 
experimentation. Hence, in the following section, we review a wide-ranging study of 
how these architectures perform on the TUSZ seizure detection task. 

5 EXPERIMENTATION 

Machine learning is at its core an experimental science when addressing real-world 
problems of scale. Real world data is complex and poses many challenges that require 
a wide variety of technologies to solve and can mask the benefits of one specific algo-
rithm. Therefore, it is important that a rigorous evaluation paradigm be used to guide 
architecture decisions. In this chapter, we are focusing on the TUSZ Corpus because it 
is a very comprehensive dataset and it offers a very challenging task. 



The evaluation of machine learning algorithms in biomedical fields for applications 
involving sequential data lacks standardization. Common quantitative scalar evaluation 
metrics such as sensitivity and specificity can often be misleading depending on the 
requirements of the application. Evaluation metrics must ultimately reflect the needs of 
users yet be sufficiently sensitive to guide algorithm development. Feedback from crit-
ical care clinicians who use automated event detection software in clinical applications 
has been overwhelmingly emphatic that a low false alarm rate, typically measured in 
units of the number of errors per 24 hours, is the single most important criterion for 
user acceptance. Though using a single metric is not often as insightful as examining 
performance over a range of operating conditions, there is a need for a single scalar 
figure of merit. Shah et al. [88] discuss the deficiencies of existing metrics for a seizure 
detection task and propose several new metrics that offer a more balanced view of per-
formance. In this section, we compare the architectures previously described using one 
of these measures, the Any-Overlap Method (OVLP). We also provide detection error 
tradeoff (DET) curves [89]. 

5.1 Evaluation Metrics 

Researchers in biomedical fields typically report performance in terms of sensitivity 
and specificity [90]. In a two-class classification problem such as seizure detection, we 
can define four types of errors: 

• True Positives (TP): the number of ‘positives’ detected correctly 
• True Negatives (TN): the number of ‘negatives’ detected correctly 
• False Positives (FP): the number of ‘negatives’ detected as ‘positives’ 
• False Negatives (FN): the number of ‘positives’ detected as ‘negatives’  

Sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)) are derived from these quan-
tities. There are a large number of auxiliary measures that can be calculated from these 
four basic quantities that are used extensively in the literature. For example, in infor-
mation retrieval applications, systems are often evaluated using accuracy 
((TP+TN)/(TP+FN+TN+FP)), precision (TP/(TP+FP)), recall (another term for sensi-
tivity) and F1 score ((2•Precision•Recall)/(Precision + Recall)). However, none of these 
measures address the time scale on which the scoring must occur or how you score 
situations where the mapping of hypothesized events to reference events is ambiguous. 
These kinds of decisions are critical in the interpretation of scoring metrics such as 
sensitivity for many sequential decoding tasks such as automatic seizure detection [89, 
91, 92]. 

In some applications, it is preferable to score every unit of time. With multichannel 
signals, such as EEGs, scoring for each channel for each unit of time might be appro-
priate since significant events such as seizures occur on a subset of the channels present 
in the signal. However, it is more common in the literature to simply score a summary 
decision per unit of time, such as every 1 sec, that is based on an aggregation of the per-
channel inputs (e.g., a majority vote). We refer to this type of scoring as epoch-based 
[93, 94]. An alternative, that is more common in speech and image recognition 



applications, is term-based [50, 95], in which we consider the start and stop time of the 
event, and each event identified in the reference annotation is counted once. There are 
fundamental differences between the two conventions. For example, one event contain-
ing many epochs will count more heavily in an epoch-based scoring scenario. Epoch-
based scoring generally weights the duration of an event more heavily since each unit 
of time is assessed independently. 

Term-based metrics score on an event basis and do not count individual frames. A 
typical approach for calculating errors in term-based scoring is the Any-Overlap 
Method (OVLP) [92]. This approach is illustrated in Fig. 11. TPs are counted when the 
hypothesis overlaps with the reference annotation. FPs correspond to situations in 
which a hypothesis does not overlap with the reference. 

OVLP is a more permissive metric that tends to produce much higher sensitivities. 
If an event is detected in close proximity to a reference event, the reference event is 
considered correctly detected. If a long event in the reference annotation is detected as 
multiple shorter events in the hypothesis, the reference event is also considered cor-
rectly detected. Multiple events in the hypothesis annotation corresponding to the same 
event in the reference annotation are not typically counted as FAs. Since the FA rate is 
a very important measure of performance in critical care applications, this is another 
cause for concern. However, since OVLP metric is the most popular choice in the neu-
roengineering community, we present our results in terms of OVLP. 

Note that results are still reported in terms of sensitivity, specificity and false alarm 
rate. But, as previously mentioned, how one measures the errors that contribute to these 
measures is open for interpretation. Shah et al. [92] studied this problem extensively 
and showed that many of these measures correlate and are not significantly different in 
terms of the rank ordering and statistical significance of scoring differences for the 

 
Fig. 11. OVLP scoring is very permissive about the degree of overlap between the reference and 
hypothesis. For example, in Example 1, the TP score is 1 with no false alarms. In Example 2, 
the system detects 2 out of 3 seizure events, so the TP and FN scores are 2 and 1 respectively. 



TUSZ task. We provide a software package that allows researchers to replicate our 
metrics and reports on many of the most popular metrics [91].  

5.2 Postprocessing with Heuristics Improves Performance 

Because epoch-based scoring produces a hypothesis every epoch (1 sec in this case), 
and these are scored against annotations that are essentially asynchronous, there is an 
opportunity to improve performance by examining sequences of epochs and collapsing 
multiple events into a single hypothesis. We have experimented with heuristic ap-
proaches to this as well as deep learning-based approaches and have found no signifi-
cant advantage for the deep learning approaches. As is well known in machine learning 
research, a good heuristic can be very powerful. We apply a series of heuristics, sum-
marized in Fig. 12, to improve performance. These heuristics are very important in re-
ducing the false alarm rate to an acceptable level. 

The first heuristic we apply is a popular method that focuses on a model’s confidence 
in its output. Probabilistic filters [96] are implemented to only consider target events 
which are detected above a specified probability threshold. This method tends to sup-
press spurious long duration events (e.g., slowing) and extremely short duration events 
(e.g., muscle artifacts). This decision function is applied on the seizure (target) labels 
only. We compare each seizure label’s posterior with the threshold value. If the poste-
rior is above the threshold, the label is kept as is; otherwise, it is changed to the non-
seizure label, which we denote “background.” 

Our second heuristic was developed after performing extensive error analysis. The 
most common types of errors we observed were false detections of background events 
as seizures (FPs) which tend to occur in bursts. Usually these erroneous bursts occur 

 

Fig. 12. An illustration of the postprocessing algorithms used to reduce the FA rate 

 



for a very small duration of time (e.g., 3 to 7 seconds). To suppress these, any seizure 
event whose duration is below a specified threshold is automatically considered as a 
non-seizure, or background, event. 

Finally, we also implement a smoothing method that collapses sequences of two sei-
zure events separated by a background event into one long seizure event. This is typi-
cally used to eliminate spurious background events. If seizures are observed in clusters 
separated by small intervals of time classified as background events, these isolated 
events are most likely part of one longer seizure event. In this method, we apply a non-
linear function that computes a pad time to extend the duration of an isolated event. If 
the modified endpoint of that event overlaps with another seizure event, the intervening 
background event is eliminated. We used a simple regression approach to derive a quad-
ratic function that produces a padding factor: 𝑤(𝑥) = −0.0083𝑑- + 0.45𝑑 − 0.66, 
were 𝑑 is the duration of the event. This method tends to reduce isolated background 
events when they are surrounding by seizure events, thereby increasing the specificity. 

The combination of these three postprocessing methods tends to decrease sensitivity 
slightly and reduce false alarms by two orders of magnitude, so their impact is signifi-
cant. The ordering in which these methods is applied is important. We apply them in 
the order described above to achieve optimal performance. 

5.3 A Comprehensive Evaluation of Hybrid Approaches 

A series of experiments was conducted to optimize the feature extraction process. 
These are described in detail in [40]. Subsequent attempts to replace feature extraction 
with deep learning-based approaches have resulted in a slight degradation in perfor-
mance. A reasonable tradeoff between computational complexity and performance was 
to split the 10 sec window, popular with neurologists who manually interpret these 
waveforms, into 1 sec epochs, and to further subdivide these into 0.1 sec frames. Hence, 
features were computed every 0.1 sec using a 0.2 sec overlapping analysis window. The 
output of the feature extraction system is 22 channels of data, where in each channel, a 
feature vector of dimension 26 corresponds to every 0.1 secs. This type of analysis is 
very compatible with the way HMM systems operate, so it was a reasonable starting 
point for this work. 

We next evaluated several architectures using these features as inputs on TUSZ. 
These results are presented in Table 2. The related DET curve is illustrated Fig. 13. An 
expanded version of the DET curve in Fig. 13 that compares the performance of these 
architectures in a region of the DET curve where the false positive rate, also known as 
the false alarm (FA) rate, is low is presented in Fig. 14. Since our focus is achieving a 
low false alarm rate, behavior in this region of the DET curve is very important. As 
previously mentioned, these systems were evaluated using the OVLP method, though 
results are similar for a variety of these metrics. 

It is important to note that the accuracy reported here is much lower than what is 
often published in the literature on other seizure detection tasks. This is due to a 



combination of factors including (1) the neuroscience community has favored a more 
permissive method of scoring that tends to produce much higher sensitivities and lower 
false alarm rates; and (2) TUSZ is a much more difficult task than any corpus previously 
released as open source. The evaluation set was designed to be representative of com-
mon clinical issues and includes many challenging examples of seizures. We have 
achieved much higher performance on other publicly available tasks, such as the Chil-
dren’s Hospital of Boston MIT (CHB-MIT) Corpus, and demonstrated that the perfor-
mance of these techniques exceeds that of published or commercially-available tech-
nology. TUSZ is simply a much more difficult task and one that better represents the 
clinical challenges this technology faces. 

 Also, note that the HMM baseline system, which is shown in the first row of Table 
2, and channel-based LSTM, which is shown in the last row of Table 2, operate on each 
channel independently. The other methods consider all channels simultaneously by 

Table 2. Performance of the proposed architectures on TUSZ 

System Sensitivity Specificity FA/24 Hrs. 

HMM 30.32% 80.07% 244 
HMM/SdA 35.35% 73.35% 77 

HMM/LSTM 30.05% 80.53% 60 

IPCA/LSTM 32.97% 77.57% 73 

CNN/MLP 39.09% 76.84% 77 

CNN/GRU 30.83% 91.49% 21 

ResNet 30.50% 94.24% 13 

CNN/LSTM 30.83% 97.10% 6 
Channel-Based LSTM 39.46% 95.20% 11 

 
 

 
Fig. 13. A DET curve comparison of the proposed architectures on TUSZ. 

 



using a supervector that is a concatenation of the feature vectors for all channels. The 
baseline HMM system only classifies epochs (1 sec in duration) using data from within 
that epoch. It does not look across channels or across multiple epochs when performing 
epoch-level classification. 

 From Table 2 we can see that adding a deep learning structure for temporal and 
spatial analysis of EEGs can decrease the false alarm rate dramatically. Further, by 
comparing the results of HMM/SdA with HMM/LSTM, we find that a simple one-layer 
LSTM performs better than 3 layers of SdA due to LSTM’s ability to explicitly model 
long-term dependencies. Note that in this case the complexity and training time of these 
two systems is comparable. 

The best overall systems shown in Table 2 are CNN/LSTM and channel-based 
LSTM. CNN/LSTM is a doubly deep recurrent convolutional structure that models both 
spatial relationships (e.g., cross-channel dependencies) and temporal dynamics (e.g., 
spikes). For example, CNN/LSTM does a much better job rejecting artifacts that are 
easily confused with spikes because these appear on only a few channels, and hence 
can be filtered based on correlations between channels. The depth of the convolutional 
network is important since the top convolutional layers tend to learn generic features 
while the deeper layers learn dataset specific features. Performance degrades if a single 
convolutional layer is removed. For example, removing any of the middle convolu-
tional layers results in a loss of about 4% in the sensitivity. However, it is important to 
note that the computational complexity of the channel-based systems is significantly 
higher than the systems that aggregate channel-based features into a single vector, since 
the channel-based systems are decoding each channel independently. 

As shown in Fig. 13 and Fig. 14, we find that CNN/LSTM has a significantly lower 
FA rate than CNN/GRU. We speculate that this is due to the fact that while a GRU unit 
controls the flow of information like the LSTM unit, it does not have a memory unit. 
LSTMs can remember longer sequences better than GRUs. Since seizure detection 

 
Fig. 14. An expanded comparison of performance in a region where the FP rate is low. 

 



requires modeling long distance relationships, we believe this explains why there is a 
difference in performance between the two systems. 

 The time required for training for CNN/GRU was 10% less than CNN/LSTM. The 
training time of these two systems is comparable since most of the cycles are spent 
training the convolutional layers. We also observe that the ResNet structure improves 
the performance of CNN/MLP, but the best overall system is still CNN/LSTM. 

We have also conducted an open-set evaluation of the best systems, CNN/LSTM 
and channel-based LSTM, on a completely different corpus – DUSZ. These results are 
shown in Table 3. A DET curve is shown in Fig. 15. This is an important evaluation 
because none of these systems were exposed to DUSZ data during training or develop-
ment testing. Parameter optimizations were performed only on TUSZ data. As can be 
seen, at high FA rates, performance between the two systems is comparable. At low FA 
rates, however, CNN/LSTM performance on TUSZ is lower than on DUSZ. For chan-
nel-based LSTM, in the region of low FA rate, performance on TUSZ and DUSZ is 
very similar. This is reflected by the two middle curves in Fig. 15. The differences in 
performance for channel-based LSTM when the data changes are small. However, for 
CNN/LSTM, which gives the best overall performance on TUSZ, performance de-
creases rapidly on DUSZ. Recall that we did not train these systems on DUSZ – this is 
true open set testing. Hence, we can conclude in this limited study that channel-based 
LSTM generalized better than the CNN/LSTM system. 

 
Fig. 15. Performance of CNN/LSTM and channel-based LSTM on TUSZ and DUSZ. 

 

Table 3. A comparison of several CNN and LSTM architectures on DUSZ 

System Data Sensitivity Specificity FA/24 Hrs. 

CNN/LSTM TUSZ 30.83% 97.10% 6 
CNN/LSTM DUSZ 33.71% 70.72% 40 
Channel-Based LSTM TUSZ 39.46% 95.20% 11 
Channel-Based LSTM DUSZ 42.32% 86.93% 14 

 



5.4 Optimization of Core Components 

Throughout these experiments, we observed that the choice of optimization method 
had a considerable impact on performance. The CNN/LSTM system was evaluated us-
ing a variety of optimization methods, including Stochastic gradient descent (SGD) 
[70], RMSprop [97], Adagrad [98], Adadelta [99], Adam [70], Adamax [70] and 
Nadam [100]. These results are shown in Table 4. The best performance is achieved 
with Adam, a learning rate of α = 0.0005, a learning rate decay of 0.0001, exponential 
decay rates of β0 = 0.9	and	β- = 0.999	for the moment estimates and a fuzz factor of 
ϵ = 10/a. The parameters follow the notation described in [70].  Table 4 also illustrates 
that Nadam delivers comparable performance to Adam. Adam combines the advantages 
of AdaGrad which works well with sparse gradients, and RMSProp which works well 
in non-stationary settings. 

Similarly, we evaluated our CNN/LSTM using different activation functions, as 
shown in Table 5. ELU delivers a small but measurable increase in sensitivity, and more 
importantly, a reduction in false alarms. The ELU activation function is defined as: 

f(x) = �𝑥																												𝑥	 > 0
𝛼. (𝑒s − 1)									𝑥	 ≤ 0	,	 (8)	

where 𝛼 is slope of negative section. The derivative of the ELU activation function is: 

f�(x) =  1																												𝑥	 > 0
𝛼. 𝑒s																					𝑥	 ≤ 0	.	 (9)	

The ReLU activation function is defined as:  

f(x) =  𝑥																												𝑥	 > 0
0																												𝑥	 ≤ 0	.	 (10)	

The corresponding derivative is:  

f�(x) =  1																												𝑥	 > 0
0																												𝑥	 ≤ 0	.	 (11)	

Table 4. Comparison of optimization algorithms 

System Sensitivity Specificity FA/24 Hrs. 

SGD 23.12% 72.24% 44 
RMSprop 25.17% 83.39% 23 
Adagrad 26.42% 80.42% 31 
Adadelta 26.11% 79.14% 33 
Adam 30.83% 97.10% 6 
Adamax 29.25% 89.64% 18 
Nadam 30.27% 92.17% 14 

 



ELU is very similar to ReLU except for negative inputs. ReLUs and ELUs accelerate 
learning by decreasing the gap between the normal gradient and the unit natural gradi-
ent [81]. ELUs push the mean towards zero but with a significantly smaller computa-
tional footprint. In the region where the input is negative (𝑥 < 0), since an ReLU’s 
gradient is zero, the weights will not get adjusted. Those neurons which connect into 
that state will stop responding to variations in error or input. This is referred to as the 
dying ReLU problem. But unlike ReLUs, ELUs have a clear saturation plateau in their 
negative region, allowing them to learn a more robust and stable representation. 

Determining the proper initialization strategy for the parameters in the model is part 
of the difficulty in training. Hence, we investigated a variety of initialization methods 
using the CNN/LSTM structure introduced in Fig. 8. These results are presented in 
Table 6. The related DET curve is illustrated in Fig. 16. In our experiments, we ob-
served that proper initialization of weights in a convolutional recurrent neural network 
is critical to convergence. For example, initialization of tensor values to zero or one 
completely stalled the convergence process. Also, as we can see in Table 6, the FA rate 
of the system in the range of 30% sensitivity can change from 7 to 40, for different 
initialization methods. This decrease in performance and deceleration of convergence 
arises because some initializations can result in the deeper layers receiving inputs with 
small variances, which in turn slows down back propagation, and retards the overall 
convergence process. 

Table 6. A comparison of initialization methods 

System Sensitivity Specificity FA/24 Hrs. 

Orthogonal 30.8% 96.9% 7 
Lecun Uniform 30.3% 96.5% 8 
Glorot Uniform 31.0% 94.2% 13 
Glorot Normal 29.5% 92.4% 18 
Variance Scaling 31.8% 92.1% 19 
Lecun Normal 31.8% 92.1% 19 
He Normal 31.3% 91.1% 22 
Random Uniform 30.2% 90.0% 25 
Truncated Normal 31.6% 87.8% 31 
He Uniform 29.2% 85.1% 40 

 

Table 5. A comparison of activation functions 

System Sensitivity Specificity FA/24 Hrs. 

Linear 26.46% 88.48% 25 
Tanh 26.53% 89.17% 21 
Sigmoid 28.63% 90.08% 19 
Softsign 30.05% 90.51% 18 
ReLU 30.51% 94.74% 11 
ELU 30.83% 97.10% 6 

 



Best performance is achieved using orthogonal initialization [101]. This method is a 
simple yet effective way of combatting exploding and vanishing gradients. In orthogo-
nal initialization, the weight matrix is chosen as a random orthogonal matrix, i.e., a 
square matrix 𝑊 for which 𝑊�𝑊 = 𝐼. Typically, the orthogonal matrix is obtained 
from the QR decomposition of a matrix of random numbers drawn from a normal dis-
tribution. Orthogonal matrices preserve the norm of a vector and their eigenvalues have 
an absolute value of one. This means that no matter how many times we perform re-
peated matrix multiplication, the resulting matrix doesn't explode or vanish. Also, in 
orthogonal matrices, columns and rows are all orthonormal to one another, which helps 
the weights to learn different input features. For example, if we apply orthogonal ini-
tialization on a CNN architecture, in each layer, each channel has a weight vector that 
is orthogonal to the weight vectors of the other channels. 

Overfitting is a serious problem in deep neural nets with many parameters. We have 
explored five popular regularization methods to address this problem. The techniques 
collectively known as L1, L2 and L1/L2 [102] prevent overfitting by adding a regular-
ization term to the loss function. The L1 regularization technique, also known as Lasso 
regression, is defined as adding the sum of weights to the loss function:  

𝐶𝑜𝑠𝑡	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑠𝑠	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 	𝜆∑ |𝑤�|�
�20 	,	 (12)	

where 𝑤 is the weight vector and 𝜆 is a regularization parameter. The L2 technique, 
also known as ridge regression, is defined as adding the sum of the square of the weights 
to the loss function:  

𝐶𝑜𝑠𝑡	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑠𝑠	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 	𝜆∑ 𝑤�-�
�20 	.	 (13)	

The L1/L2 technique is a combination of both techniques:  

𝐶𝑜𝑠𝑡	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑠𝑠	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝜆∑ |𝑤�|�
�20 + 𝜆∑ 𝑤�-�

�20 	.	 (14)	

 
Fig. 16. A comparison of different initialization methods for CNN/LSTM 



In an alternative approach, we used dropout to prevents units from excessively co-
adapting by randomly dropping units and their connections from the neural network 
during training. 

We also studied the impact of introducing zero-centered Gaussian noise to the net-
work. In this regularization method, which is considered a random data augmentation 
method [103], we add zero-centered Gaussian noise with a standard deviation of 0.2 to 
all hidden layers in the network as well as the visible or input layer. The results of these 
experiments are presented in Table 7 along with a DET curve in Fig. 17. While L1/L2 
regularization has the best overall performance, in the region where FA rates are low, 
the dropout method delivers a lower FA rate. The primary error modalities observed 
were false alarms generated during brief delta range slowing patterns such as intermit-
tent rhythmic delta activity [25]. Our closed-loop experiments demonstrated that all 
regularization methods presented in Table 7, unfortunately, tend to increase the false 
alarm rate for slowing patterns. 

Finally, in Fig. 18, an example of an EEG that is generated by the DCGAN structure 
of  Fig. 6 is shown. Note that to generate these EEGs, we use a generator block in 
DCGAN in which each EEG signal has a 7 sec duration. We apply a 25 Hz low pass 
filter on the output of DCGAN, since most of the cerebral signals observed in scalp 

 
Fig. 17. A comparison of different regularization methods for CNN/LSTM 

Table 7. A comparison of performance for different regularizations 

System Sensitivity Specificity FA/24 Hrs. 

L1/L2 30.8% 97.1% 6 
Dropout 30.8% 96.9% 7 
Gaussian 30.8% 95.8% 9 
L2 30.2% 95.6% 10 
L1 30.0% 43.7% 276 

 
 



EEGs fall in the range of 1–20 Hz (in standard clinical recordings, activity below or 
above this range is likely to be an artifact). Unfortunately, in a simple pilot experiment 
in which we randomly mixed actual EEGs with synthetic EEGs, expert annotators could 
easily detect the synthetic EEGs, which was a bit discouraging. Seizures in the synthetic 
EEGs were sharper and more closely resembled a slowing event. Clearly, more work is 
needed with this architecture. 

However, our expert annotators also noted that the synthetic EEGs did exhibit focal-
ity. An example of focality is when activity is observed on the CZ-C4 channel, we 
would expect to observe the inverse of this pattern on the C4-T4 channel. As can be 
seen in Fig. 18, in last two seconds of the generated EEG, we observe slowing activity 
on the CZ-C4 channel and the inverse pattern of the same slowing activity on the C4-
T4 channel. Hence, it is possible to generate synthetic multi-channel EEG signals with 
DCGAN that resemble clinical EEGs. However, DCGAN is not yet at the point where 
it is generating data that is resulting in an improvement in the performance of our best 
systems. 

6 CONCLUSIONS 

EEGs remain one of the main clinical tools that physicians use to understand brain 
function. New applications of EEGs are emerging including diagnosis of head trauma-
related injuries which offer the potential to vastly expand the market for EEGs. A board-
certified EEG specialist is required by law to interpret an EEG and produce a diagnosis. 
Since it takes several years of additional training post-medical school for a physician 

 
Fig. 18. Synthetic EEG waveforms generated using DCGAN. 



to qualify as a clinical specialist, the ability to generate data far exceeds the available 
expertise to interpret these data, creating a critical bottleneck. Despite rapid advances 
in deep learning in recent years, automatic interpretation of EEGs is still a very chal-
lenging problem. 

We have introduced a variety of deep learning architectures for automatic classifi-
cation of EEGs including a hybrid architecture that integrates CNN and LSTM tech-
nology. Two systems are particularly promising: CNN/LSTM and channel-based 
LSTM. While these architectures deliver better performance than other deep structures, 
their performance still does not meet the needs of clinicians. Human performance on 
similar tasks is in the range of 75% sensitivity with a false alarm rate of 1 per 24 
hours [16]. The false alarm rate is particularly important to critical care applications 
since it impacts the workload experienced by healthcare providers. 

The primary error modalities for our deep learning-based approaches were false 
alarms generated during brief delta range slowing patterns such as intermittent rhythmic 
delta activity. A variety of these types of artifacts have been observed during inter-ictal 
and post-ictal stages. Training models on such events with diverse morphologies is po-
tentially one way to reduce the remaining false alarms. This is one reason we are con-
tinuing our efforts to annotate a larger portion of TUSZ. 

We are also exploring the potential of supervised GAN frameworks for spatio-tem-
poral modeling of EEGs. Most of the research on GANs is focused on either unsuper-
vised learning or supervised learning using conditional GANs. Given that the annota-
tion process to produce accurate labels is expensive and time-consuming, we are ex-
ploring semi-supervised learning in which only a small fraction of the data has labels. 
GANs can be used to perform semi-supervised classification by using a generator-dis-
criminator pair to learn an unconditional model of data and then tune the discriminator 
using the small amount of labeled data for prediction. 

We are also continuing to manually label EEG data. We invite you to register at our 
project web site, www.isip.piconepress.com/projects/tuh_eeg, to be kept aware of the 
latest developments. 
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