A34

By 11



DEEP LEARNING APPROACHES FOR AUTOMATIC ANALYSIS OF EEGS

Meysam Golmohammadi®, Vinit Shah®, Iyad Obeid®, and Joseph Picone®
*Internet Brands, El Segundo, California, USA

b The Neural Engineering Data Consortium, Temple University, Philadelphia, Pennsylvania, USA

Abstract

Scalp electroencephalograms (EEGs) 4B the primary means by which physicians diagnose brain-related
illnesses such as epilepsy and seizures. Automated seizure detection using clinical EEGs 1s a very difficult
machine learning problem due to the low fidelity of a scalp EEG signal. Nevertheless, despite the poor
signal quality, clinicians can reliably diagnose illnesses from visual iflpection of the signal waveform.
Commercially available automated seizure detection systems, however. suffer frofflmacceptably high false
alarm rates. Deep learning algorithms that require large amounts of training data have not previously been
effective on this task due to the lack of big data resources necessary for building such models and the
complexity of the signals involved. The evolution of big data science, most notably the release of the
%ple University EEG (TUEG) Corpus, has motivated renewed interest in this problem.
132
In this chapter. we discuss the application of a variety of deep leafi@hg architectures to automated seizure
detection. Architectures explored include multilayer perceptrons, convolutional neural networks (CNNs),
long short-term memory networks (L.STMs), gated recurrent units and residual neural networks. We use
the TUEG Corpus, supplemented with data from Duke University, to evaluate the performance of these
hybrid deep structures. Since TUEG contains a significant amount of unlabeled data, we also discuss
unsupervise& pre-training methods used prior to training these complex recurrent networks.

1
Exploiting spatial and temporal context is critical for accurate disambiguation of seizures from artifacts.
We explore how effectively several conventional architectures are able to model context and introduce a
hybrid system [t integrates CNNs and LSTMs. The primary error modalities observed by this state-of-
the-art system were false alarms generated during brief delta range slowing patterns such as intermittent
rhythmic delta activity. A variety of these types of events have been observed during inter-icfll and post-
ictal stages. Training models on such events with diverse morphologies has the potential to significantly
reduce the remaining false alarms. This 1s one reason we are continuing our efforts to annotate a larger
portion of TUEG. Increasing the data set size significantly allows us to leverage more advanced machine
learning methodologies. @
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1. INTRODUCTION
An EEG records the electrical activity along the scalp and measures spontaneous electrical activity of the
brain. The signals measured along the scalp can be correlated with brain activity, which makes it a primary

1 for diagnosis of brain-related illnesses (Ilmoniemi, & Sarvas, J.. 2019; Ebersole etal., 2014).
Electroencephalograms (EEGsBre used in a broad range of health care institutions to monitor and record
electrical activity in the brain. EEGs are essential in the diagnosis of clinical conditions such as epilepsy,
depth of anesthesia, coma, encephalopathy, brain death and even in the progression of Alzheimer’s disease
(Yamad;et al., 2017; Ercegovac & Berisavac, 2015).

2

Manual interpretation of EEGs is time-consuming since these recordings may last hours or days. It is also
an expensive process as it requires highly trained experts. Therefore, high performance automated analysis
of EEGs can reduce time of diagnosis and enhance real-time applications by flagging sections of the signal
that need further review. Many methods have been developed over the years (Ney et al., 2016) including
time-frequency didBhl signal processing techniques (Boashas, 2015. Gotman, 1999), autoregressive
spectral analysis (Li etal., 2015), wavelet analy$d (Lietal. 2016), nonlinear dynamical analysis
(Rodriguez-Bermudez & Garcia-Laencina, 2015), multivariate techniques based on simulated Baky
integrate-and-fire neurons (Eichler etal. 2017; Schad etal.. 2088. Schindler etal., 2001) and expert
systems that attempt to mimie a human observer (Deburchgraeve et al., 2008). In spite of recent research
progress in this field, the transiti@ of automated EEG analysis technology to commercial products in
operational use in clinical settings has been limited, mainly because of unacceptably high false alarm rates
(Baumgartner & Koren, 2018; Haider et al., 2016; Varsavsky & Mareels, 2006).

In recent years, progress in machine learning and big data resources has enabled a new generation of
technology that is approaching acceptable levels of performance for clinical applications. The main
challenge in this task is to operate with an extremely low false alarm rate because even 5 false alarms per
24 hours per patient means healthcare staff will be overwhelmed servicing these events in a typical critical
care unit with 12 to(@i@beds, especially when one considers the amount of other equipment that frequently
trigger alerts (Bridi et al., 2014). In this chapter, we discuss the application of deep learning technology to
the automated EEG interpretation problem and introduce several promising architectures that deliver
performance close to the requirements for operational use in clinical settings.

a 1. Leveraging Recent Advances in Deep Learning

2

Machine learning has made tremendous progress over the past three decades due to rapid advances in low-
cost highly-parallel computational infrastructure, powerful machine learning algorithms, and., most
importantly, big data. Although contemporary approaches for automatic interpretation of EEGs have
employed more rfB)dern machine learning approaches such as neural networks (Ahmedt et al., 2019;
Ramgopal et al., 20fl) and support vector machines (Alotaiby etal., 2014), state-of-the-art machine
learning algorithms have not previously been utilized in EEG analysis because of a lack of big data
Bsources. A significant big data resource, known as the TUH EEG Corpus (TUEG) is now available
creatinfh unique opportunity to evaluate high performance deep learning approaches (Obeid & Picone,
2016). This database includes detailed physician reports and patient medical histories, which are critical to
the application of deep ldning. However, transforming physicians’ reports into meaningful information
that can be exploited by deep learning paradigms is proving to be challenging because the mapping of
reports to underlying EEG events is nontrivial.

Though modern deep learning algorithms have generated significant improvements in performance in fields
such as speech and image recognition, it is far from trivial to apply these approaches to new domains,
especially @plications such as EEG analysis that rely offffaveform interpretation. Deep learning
approaches can be viewed as a broad family of neural network algorithms that use a large number of layers
of nonlinear processing units to learn a mapping between inputs and outputs. These algorithms are usually
trained using a combination of supervised and unsupervised learning. The best overall approach is often
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determined empirically and requires extensive experimentation for optimization. There is no universal
theory on how to arrive at the best architecture, and the results are almost always heavily data dependent.
Therefore, m this chapter we will present a variety of approaches and establish some well-calibrated
benchmarks of performance. We explore two general classes of deep neural networks in detail.

The first class is a ConvolutioffNeural Network (CNN), which is a class of deep neural networks that
have revolutionized fields like image and video recognililed) recommender systems. image classification,
medical image analysis, and natural language processing through end to end learning from raw data (LeCun
etal., 2015). An interesting characteristic of CNNs that was leveraged in these applications is their ability
in learning local patterns in data by using convolutions, more precisely cross-correlation, as their key
component. This property makes them a powerful candidate for modeling EEGs which are inherently
multichannel signals. Each channel in an EEG possesses some spatiffllsignificance with respect to the type
and locality of a seizure event (Shah et al., 2017). EEGs also have an extremely low signal to noise ratio
and events of interest such as seizures are easily confused with signal artifacts (e.g., eye movements) or
benign variants (e.g., slowing) (von Weltin et al., 2017). The spatial property of the signal is an important
cue for disambiguating these types of artifacts from seizures. These properties make modeling EEGs more
challenging compared to more conventional applications like image recognition of static images or speech
recognition using a single microphone. In this study, we adapt well-known CNN architectures to be more
suitable futomatic seizure detection. Leveraging a high-performance time-synchronous system that
provides accurate segmentation of the signal 1s also crucial to the development of these kinds of systems.
Hence, we use a hidden Markov model (HMM) based approach (Picone, 1990) as a non-deep learning
baseline system (Golmohammadi et al., 2018).
19

Optimizing the depth of a CNN is crucial to achieving state-of-the-art performance. Best results are
achieved on most tasks by exploiting very deep structures (e.g., thirteen layers are common) (Szegedy et al.,
2015; Simonyan et al., 2014). However, training deeper CNN structures is more difficult since they are
prone to degradation in performance with respect to generalization and suffer from convergence problems.
Increasing the depth of a CNN incrementally often saturates sensitivity and also results in a rapid decrease
in sensitivity. Often increasing the number of layers also increases the error on the training data due to
convergence issues, indicating that the degradation in performan{& is not created by overfitting. We address
such degradations in performance by designing deeper CNNs using a deep residual learning framework

(ResNet) (He et al., 2016).

We also extend the CNN approach by introducing an alternate structure, a deep cofliBlutional generative
adversarial network (DCGAN) (Radford et al., 2015) to allow unsupervised training. Generative adversarial
networks (GANs) (Goodfellow et al., 2014) have errm:d as powerful techniques for learning generative
models based on game theory. Generative models use an analysis by synthesis approach to learn the
essential features of data required for high performance classification using an unsupervised approach. We
introduce techniques to stabilize the training of D%AN for spatio-temporal modeling of EEGs.
103

The second class of network that we discuss is a Long Short-Term Memory (LSTM) network. LSTMs are
a special kind of recurrent neural network (RNN) architecture that can learn 1§€Eterm dependencies. This
is achieved by introducing a new structure called a memory cell and by adding multiplicative gate units that
learn to open and close access toffek constant error flow (Hochreiter et al., 1997). It has been shown that
LSTMs are capable of learning to bridge minimal time lags in excess of 1,000 discrete time steps. To
overcome the problem of learning long-tefflh dependencies in modeling of EEGs, we describe a few hybrid
systems composed of LSTMs that model both spatial relationships (e.g., cross-channel dependencies) and
temporal dynamicsEEZ.. spikes). In an alternative approach for sequence learning of EEGs, we propose a
structure based on gated recurrent units (GRUs) (Chung et al., 2014). A GRU 1s a gating mechanism for
RNNSs that is similar in concept to what LSTMs attempt to accomplish. Chung et al. (2014) demonstrated
that GRUs can outperform many other RNNs, including LSTM, in several datasets.
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1.2. Big Data Enables Deep Learning Research

Recognizing that deep learning algorithms require large amounts of data to train complex models, especially
when one attempts to process clinical data with a significant number of artifacts using specialized models,
we havdeveloped a large corpus of EEG data to support this kind of technology development. The TUEG
Corpus is the largest publicly available corpus of clinif@ EEG recordings in the world. The most recent
release, v1.1.0, includes data from 2002 — 2015 and contains over 23,000 sessions from over 13,500
patients — over 1.8 years of multichannel signal data in total (Obeid & Picone, 2016). This dataset was
collected at the Department of Neurology at Temple University Hospital. The data includes sessions taken
from outpatient treatments, Intensive Care Units (ICU) and Epilepsy Monitoring Units (EMU), Emergency
Rooms (ER) as well as several other locations within the hospital. Since TUEG consists entirely of clinical
data, it contains many real-world artifacts (e.g., eye blinking, muscle artifacts, head movements). This
makes it an extremely challenging task for machine learning systems and differentiates it from most
research corpora currently available in this area. Each of the sessions contains at least one EDF file and one
physician report. These reports are generated by a board-certified neurologist and are the official hospital
record. These reports are comprised of unstructured text that describes the patient, relevant history,
medications, and clinical impression. The corpus is publicly available from the Neural Engineering Data
Consortium (www.nedcdata.org).

EEG signals in TUEG were recorded using several generations of Natus Medical Incorporated’s Nicolet™
EEG recording technology (Natus, 2019). The raw signals consist of multichf3nel recordings in which the
number of channels varies between 20 and 128 channels (Shah et al., 2017; Harati et al., 2014:). A 16-bit
AJD converter was used to digitize the data. The sample frequency varies from 250 Hz to 1024 Hz. In our
work, we resample all EEGs to a sample frequency of 250 Hz. The Natus system stores the data m a
proprietary format that has been exported to EDF with the use of NicVue v5.71.4.2530. The original EEG
records arefplit into multiple EDF files depending on how the session was annotated by the attending
technician. For our studies, we use the 19 ch ls associated with a standard 10/20 EEG configuration and
apply a Transverse Central Parasagittal (TCP) montage (Lopez et al.. 2016; American Clinical
Neurophysiology Society. 2012).

A portion of TUE(@vas annotated manually known as the TUH EEG Seizure Detection Corpus (TUSZ)
(Shah et al., 2018). TUSZ is also the world’s largest publicly available corpus of annotated data for $3zure
detection that is unencumbered. No data sharing or IRB agreements are needed to access the data. TUSZ
contains a rich variety of seizure morphologies. Variation in onset and termination, frequency and
amplitude, and locality and focality protect the corpus from a bias towards one type of seizure morphology.
TUSZ, which reflects a seizure detection task, will be the focus of the experiments [{isented in this chapter.
For related work on six-way classification of EEG events, see Golmohammadi et al. (2018). Shah et al.
(2018) and Harati et al. (2015). 0

1
We have also included an evaluation on a held-out data set based on the Duke University Seizure Corpus
(DUSZ) (Swisher etal., 2015). The DUSZ database is collected solely from the adult ICU patients
exhibiting non-convulsive seizures. These are continuous EEG (cEEG) records (Kubota et al., 2018) where
most seizures are very focal and slower in frequency. TUSZ in contrast contains records from a much
broader range of patients and morpliligigies. A comparison of these two corpora is shown in Table 1. The
evaluation sets are comparable in terms of the number of patients and total amount of data, but TUSZ
i}ntains many more sessions collected from each patient.
y
It 1s important to note that TUSZ was collected using several generations of Natus Incorporated EEG
equipment (Natus, 2019), while DUSZ was collected at a diffef@t hospital, Duke University, using a Nihon
Kohden system (Nihon Kohden, 2019). Hence, using DUSZ a5 a held-out evaluation set is an important
benchmark because it tests the robustness of the models to variations in the recording conditions. Deep
learning systems are notoriously prone to overtraining, so this second data set represents important evidence
that the results presented here are generalizable and reproducible on other tasks.
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2. TEMPORAL MODELING OF SEQUENTIAL SIGNALS

The classic approach to machine learning, shown in Figure 1, involves an iterative process that begins with
the collection and annotation of data and ends with an open set, or blind, evaluation. Data is usually sorted
into training, development test set and evaluation. Evaluations on the development set, or dev_test data as
it 1s often referred to, 1s used to guide system development. One cannot adjust system parameters based on
the outcome of the open set evaluations but can use these results to assess overall system performance. We
typically iterate on all aspects of this approach, including expansion and repartitioning of the training and
dev_test data, until overall system performance is optimized.

We often leverage previous stages of technology development to seed, or initialize, models used in a new
round of development. Further, there is often a need to temporally segment the data, for example
automatically labeling events of interest, to support further explorations of the problem space. Therefore, it
is common when exploring new applications to begin with a familiar technology. As previously mentioned,
EEG signals have a strong temporal component. Hence, a likely candidate for establishing good baseline
results is an HMM approach, since this algorithm is particularly strong at automatically segmenting the data
and localizing events of interest. @
148

HMM systems typically operate on a sequence of vectors referred to as features. In this sectfh, we briefly
introduce the feature extraction process we have used, and we describe a baseline system that integrates
hidden Markov models for sequential decoding of EEG events with deep learning for decision-making
based on temporal and spatial context. e

18

2.1. A Linear Frequency Cepstral Coefﬁcielg Approach to Feature Extraction
2

The first step in our machine learning systems consists of converting the signal to a sequence of feature
vectors (Picone, 1993). Common EEG feature extraction methods include temporal, spatial and spectral
analysis (Thodoroff etal., 2016; Mirowski et al., 2009). A variety of methodologies have been broadly
applied for extracting features from EEG signals includinh wavelet transform, independent component
analysis and autoregressive modeling (Subasi et al., 2007 Jahankhani et al., 2006). In this study, we use a
methodology based on mel-frequency cepstral coefficients (MFCC) which have been successfully applied
to many signal processing applications including speech recognition (Picone, 1993). In our systems, we use
linear frequency cepstral coefficients (LFCCs) since a linear frequency scale provides some slight
advantages over the mel scale for EEG signals (Harati et al., 2015). A block diagram summarizing the
feature extraction process used in this work is presented in Figure 2. Though it is increasingly popular to
operate directly from sampled data in a deep learning system, and let the system learn the best set of features
automatically. for applications in which therf}s limited annotated data, it is often more beneficial to begin
with a specific feature extraction algorithm. Experiments with different types of features (Da Rocha Garrit
etal., 2015) or with using sampled data directly (Xiong etal., 2017) have not shown a significant
improvement in performance.

Harati et al. (2015) did an extensive expl@f}ion of many of the common parameters associfildhl with feature
extraction and optimized the process for six-way event classification. We have found this approach, which
leverages a popular technique in speech recognition, is remamsly robust across many types of machine
learning applications. The LFCCs are corfuted by dividing raw EEG signals into shorter frames using a
standard overlapping window approach. A high resolution discrete fast Fourier Transform is computed
next. The spectrum is downsampled with a filter bank composed of an array of overlapping bandpass filters.
Finally, the cepstral coefficients are derived by computing a discrete cosine transform of the filter bank’s
output (tne, 1993). In our experiments, we discarded the zeroth-order cepstral coefficient, and replaced
it with a %equency domain energy term which is calculated by adding the output of the oversampled filter
bank after they are downsampled:

Ef = log(XR= XK ) . (1)
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We also introduce a new feature, called differential energy, that is based on the long-term differentiation of
energy. Differential energy can significantly improve the res@ls of spike detection, which is a critical part
of seizure detection, because it amplifies the differences between transient pulse shape patterns and
stationary background noise. To compute the differential energy term, we compute the energy of a set of
consecutive frames, which we refer to as a window, for each channel of an EEG:

E; = max (Ef (m)) - mnin (Ef (m)). (2)

Wlave used a window of 9 frames which are each 0.1 secs in duration, corresponding to a total duration
of 0.9 secs, B calculate differential energy term. Even though this term is a relatively simple feature, it
resulted in a statistically significant improvement in spike detection performance (Harati.et al., 2015).

2
Our experiments have also shown that using regression-based derivatives of features, which is a popular
method in speech recognition (Picone, 1993), is effective in the classification of EEG events. We use the
following definition for the derivative:

N
_ Zn=1n(Cten—Ct-n)

dé - 2 Eg:-l n? ’ (3)

Eq. (3) is applied to the cepstral coefficients, ¢, to compute the first derivatives, which are referred to as
delta coefficients. Eq. (3) is then reapplied to the first derivatives to compute the second derivatfks, which
are referred to as delta-delta coefficients. AgainBe use a window length of 9 frames (0.9 secs) for the first
derivative and a window length of 3 (0.3 secs) for the second derivative. The introduction of derivatives
helps the system discriminate between steady-state behavior, such as that found in a PLED event, and
impulsive or nonstationary signals, such as that found in spikes (SPSW) and eye movements (EYEM).

Through experiments designed to optimize feature extraction, we found best performance can be achieved
using a feature vector length of 26. This vector includes nine absolute features consisting of seven cepstral
coefficients, one frequency-domain energy term, and one differential energy term. Nine deltas are added
for these nine absolute features. Eight delta-deltas are added because we exclude the delta-delta term for
differential energy (Harati et al., 2015).

2.2. Temporal and Spaﬁa‘Context Modeling Using Hybrid HMMs and Deep Learning
1

HMMs are among the most powerful statistical modeling tools available today for signals that have both a
time and frequency domain component (Picone, 1990). HMMSs have been used quite successfully in
sequential decoding tasks like speech recognition (Huang et al., 2002), cough detection (Parker et al., 2013)
and gesture recognition (Lu et al., 2012) to model signals that have sequential properties such as temporal
or spatial evolution. Automated interpretation of EEGs is a problem like speech recognition since both time
domain (e.g.. spikes) and frequency domain information (e.g., alpha waves) are used to identify critical
c\f'e.nts (Obeid and Picone, 2018). EEGs also have a spatial component as well.
1

A left-to-right channel-independent GMM-HMM, as illustrated in Figure 3, was used as a baseline system
for sequential decoding (Golmohammadi et al., 2018). HMMs are attractive because tfflining is much faster
than comparable d§lp learning systems. and HMMs tend to work well when moderate amounts of annotated
data are available. We divide each channel of an EEG into 1 sec epochs, and further subdivide these epochs
into a sequence of 0.1 sec frames. Each epoch is classified using an HMM trained on the subdivided epoch,
and then these epoch-based decisions are postprocessed by additional statistical models in a process that
parallels the language modeling component of a speech recognizer. Standard three state left-to-right HMMs
(Picone, 1990) with 8 Gaussian mixture components per state were used. The covariance matrix for each
mixture component was assumed to be a diagonal matrix — a common assumption for cepstn—based
features. Though we evaluated both channel-dependent and channel-independent models, channel-
independent models were ultimately used because channel-dependent models did not provide any
improvement in performance.
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Supervised training based on the Baum-Welch reestimation algorithm was used to train two models -
seizure and @ckground. Models were trained on segments of data containing seizures based on manual
annotations. Since seizures comprise a small percentage of the overall data (3% 1n the training set; 8% in
the evaluation set), the amount of non-seizure data was limited to be comparable to the amount of seizure
data, and non-seizure data was selected to include a rich variety of artifacts such as muscle and eye
movements. Twenty iterations of Baum-Welch were used though performance is not very sensitive to this
value. Standard Viterbi decoding (no beam search) was used in recognition to estimate the model
likelihoods for every epoch of data. The entire file was not decoded as one stream because of the imbalance
between the seizure and background classes — decoding was restarted for each epoch.

The output of the epoch-based decisions was postfif@cessed by a deep learning system. Our baseline system
used a Stacked denoising AutoendZ§& (SdA) (Vincent et al., 2010; Vincent et al., 2008) as shown in
Figure 3. SdAs are an extension of stacked autoencoders and are a class of deep learning algorithms well-
suited to learning knowledge representations that are organized hierarchically (Bengio et al., 2007). They
also lend themselves to problems involving training data that is sparse, ambiguous or incomplete. Since
inter-rater agreement 1s relatively low for seizure detection (Haider et al., 2016), it made sense to evaluate
this type of algorithm as part of a baseline approach.

An N-channel EEG was transformed into N independent feature streams. The hypotheses generated by the
HMMs were postprocessed using a second stage of processing that examines temporal and spatial context.
We apply a third pass of postprocessing that uses a stochastic language model to smooth hypotheses
involving sequences of events so that we can suppress spurious outputs. This third stage of postprocessing
provides a ngderate reduction in false alarms.

2

Training of SdA networks are d€ in two steps: (1) pre-training in a greedy layer-wise approach (Bengio
etal., 2007 ff8nd (2) fine-tuning by adding a logistic regression layer on top of the network (Hinton et al.,
2006). The output of the first stage of prhssing 1s a vector of two likelihoods for each channel at each
epoch. Therefore, if we have 22 channels and 2 classes (seizure and background), we will have a vector of

dimension 2 x 22 = 44 for each epoch.

Each of these scores is independent of the spatial context (other EEG channels) or temporal context (past
or future epochs). To incorporate context, we form a supervector consisting of N epochs in time using a
sliding window approach. We il benefit to making N large — typically 41. This results in a vector of
dimension 41 x 44 = 1,804 that needs to be processed each epoch. The mput dimensionality is too high
considering the amount of manually labeled data available for training and thefZbmputational requirements.
To deal with this flloblem we used Principal Components Analysis (PCA) (van der Maaten et al., 2009;
Ross et al., 2008) to reduce the dimensionality to 20 before applying the SAA postprocessing.

The parameters of the SdA model are optimized to minimize the average reconstruction error using a cross-
entropy loss function. In the optimization process, a variant of stochastic grfknt descent is used called
“Minibatch stochastic gradient descent” (MSGD) (Zinkevich et al., 2010). MSGD works identically to
stochastic gradient descent, except that we use more than one fraining example to make each estimate of
the gradient. This technique reduces variance in the estimate of the gradient, and often makes better use of
the hi.erarchical memory organization in modern computers.
1

The SAA network has three hidden layers with corruption levels of 0.3 for each layer. The number of nodes
nr layer are: 1* layer (connected to the input layer) =800, 2" layer = 500, 3" layer (connected to the output
layer) = 300. The parameters for pre-training are: learning rate = (.5, number of epochs = 150, batch
size = 300. The parameters for fine-tuning are: learning rate = 0.1, number of epochs = 300, batch size =
100. The overall result of the second stage is a probability vector of dimension two containing a likelihood
that each label could have occurred in the epoch. A soft decision paradigm is used rather than a hard decision
paradigm because this output is smoothed in the third stage of processing. A more detailed explanation
about the third pass of processing is presented in (Harati et al., 2016).
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a IMPROVED SPATIAL MODELING USING CONVOLUTIONAL NEURAL NETWORKS

y

Convolutional Neural Networks (CNNs) have delivered state of the art performance on highly challenging
tasks such as speech (Saon et al., 2016) and imagflikcognition (Simonyan et al., 2014), and these early
successes pl a vital role in stimulating interest in deep learming approaches. In this section we explore
modeling of spatial information in the multichannel EEG signal to exploit our kEEdge that seizures
occur on a subset of channels (Ebersole, 2014). The identity of these channels also plays an important role
localizing the seizure and identifying the tvpe of seizure (Lopez et al., 2017).

3.1. Deep Two-Dimensi.onal Convolutional Neural Networks
2

CNN networks are usually composed of convolutional layers subsampling layers followed by one or
more fully connected layers. Consider an image of dimension W x H x N, where W and H are the width
and height of the image in pixels, and N 1s the number of channels (e.g. in an RGB image, N =3 since there
are three colors). Two-dimensional (2D) CNNs cc%ly used in sequential decoding problems such as
speech or image recognition typically consist of a cofgélutional layer that will have K filters (or kernels)
of size M x N x Q where M and N are smaller than the dimension of the data and QQ is smaller than the
number of channels. The image can be subsampled by skipping samples as you convolve the kernel over
the image. This is known as the stride, which is essentially a decimation factor. [fEENs have a large learning
capacity that can be controlled by varying their depth and breadth to produce K feature maps of size (W-
M+1) x (H-N+1) for a stride of 1, and proportionall ller for larger strides. Each map is then subsampled
using a technique known as max poolinJLeCun etal., 2015), in which a filter is applied to reduce the
dimensionality of the map. An activation function, such as a rectified linear unit (Rel.U), is applied to each
feature map either before or after the subsampling layer to introduce nonlinear properties to the network.
Nonlinear activation functions are necessary for learning complex functional mappings.

In Figuff4. a system that combines CNN and a multi-layer perceptron (MLP) (Simonyan et al., 2014) is
shown. Drawing on our image classification analogy, each image is a signal where the width of the image
(W) 1s the window length multiplied by the number of samples per second, the height of the image (H) is
the number of EEG cénels and the number of 1image channels (N) 1s the length of the feature vector. This
architecture includes six convolutional layers, three max pooling layers and two fully-connected layers. A
rectified linear unit (Re.U) nonlinearity is applied to the output of every convolutional and fully-connected
layer (Nair et al., 2010).

In our optimized version of this architecture, a window duration of 7 secs is used. The first convolutional
layer filters the input of size of 70 x 22 x 26 using 16 kernels of size 3 x 3 with a stride of 1. The input
feature vectors have a dimension of 26, while there are 22 EEG channels. The window length is 70 because
the features are computed every 0.1 secs, or 10 times per second, and the window duration is 7 sec. These
kernel sizes and strides were experimentally optimized (Golmohammadi et. al., 2018).

The second convolutional layer filters its input using 16 kernels of size 3 x 3 with a stride of 1. The first
max pooling layer takes as input the output of the second corfilutional layer and applies a pooling size of
2 x 2. This process is repeated two times with kernels of size 32 and 64. Next, a fully-connected layer with
512 neurons isn)plied and the output is fed to a 2-way sigmoid function which produces a two-class
decision. This two-class decision is the final label for the given epoch, which is 1 sec in duration.
Neurologists ufally review EEGs using 10 sec windows. so we attempt to use a similar amount of context
in this system. Pattern recognition systems oftefBubdivide the si gnal into small segments during which the
signal can be considered quasi-stationary. A simple set of preliminary experiments determined that a
reasonable tradeoff between computational complexity and perfc@ance was to split a 10 sec window,
which is what neurologists use to view the data, into 1 sec epoc.hs rati et al., 2015).
39

In our experiments, we found structures that are compdEE} of two consecutive convolutional layers before
a pooling layer perform better than structures with one convolutional layer before a pooling layer. Pooling
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layers decrease the dimensions of the data and thereby can result in a loss of information. Using two
convolutional lavers before pooling mitigates the loss of information. We find that using a verv small fields
throughout the architecture (e.g., 3 x 3) performs better than larger fields (e.g. 5 x 5 or 7 x 7) in the first
convolutional layer.

3.2. Augmenting CNNs with Deep Residual Learning

The depth of a CNN plays an instrumental role in its ability to achieve high performance (Simonyan et al.,
2014; Szegedy et al., 2015). As many as thirteen layers are used for challenging problems such as speech
and 1mage recognition. However, training deeper CNN structures i1s more difficult since convergence and
generalization become 1ssues. Increasing the depth of CNNSs, in our experience, tends to increase the error
on evaluation dataset. As we add more @fblutional layers, sensitivity first saturates and then degrades
quickly. We also see an increase in the error on the training data when increasing the depth of a CNN,
indicating that overfitting is actually not occurring. Such degradations in performance can be addressed by
using a deep residual learning framework kn as a ResNet (He etal.,, 2016). ResNets introduce an
“identity shortcut connection” thatfi@ips layers. Denoting the desired underlying mapping as H(x). we map
the stacked nonlinear layers using nx) = H(x) - x, where x is the input. The original mapping is recast
into F(x) + x. It can be shown that it is easier to optimize the residual mapping than to optimize the
original, unreferenced mapping (He et al., 2016).

The deep residual learning structure mitigates two important problems: vanishing/exploding gradients and
saturation of accuracy when the number of layers is increased. As the gradient is backpropagated to earlier
layers, repeated multiplication of numbers less than one often makes the gradient infinitively small.
Performance saturates and can rdfally degrade due to numerical precision issues. Our structure addresses
these problems by reformulating the layers as learning residual functions with reference to the layer inputs
instead of learning unreferenced functions.

An architecture for our ResNet approach is illustrated in Figure 5. The shortcut connections between the
convolutional layers make training of the model tractable by allowing information to propagate effectively
through this very structure. The network consists of 6 residual blocks with two 2D convolutional layers
per block. These convolutional layers are followed by a fully connected layer and a single dense neuron as
the last layer. This brings the total number of layers in this modified CNN structure (EER}. The 2D
convolutional layers all have a filter length of (3, 3). The first 7 layers of this architecture have 32 filters
while the last 1 have 64 filters. We increment the number of filters from 32 to 64, since the mitial
layers represent generic features, while the deeper layers represent more detailed features. In other words,
the richness of the data representations increases because each additional layer forms new kernels using
combinations of the features from the previous layer.

Except for the first and last layers of the network, before each convolulionﬁr we apply a Rectified
Linear Unit (ReLLU) as an activation function (Maas et al., 2013). ReLU is the most commonly used
activation function in deep learning models. "B function returns 0 if it receives any negative input, but for
any positive value it returns that value (e.g., f(x) = max(0, x)). To overcome the problem of overfitting
in deep learning structures with a large number of parameters, we use dropout (Srivastava et al., 2010) as
our regularization method betweenée convolutional layers and after ReLU. Dropout is a regularization
technique for addressing overfitting by randomly dropping units along with their conrffhons from the deep
learning structures during training. We use the Adam optimizer (Kingma et al., 2015) which is an algorithm
for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of
lower-order moments. After parameter tuning, we apply Adam optimization (Kingma et al., 2015) using
the following parameters (according to the notation in their original paper): « = 0.00005,8, = 09,8, =
0.999, ¢ = 1072 and decay = 0.0001.
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The deep learnfk systems described thus far have incorporated fully supervised training and discriminative
models. Next, we introduce a generative deep learning structure based on convolutional neural networks
leverages unsupervised learning techniques. These are important for biomedical applications where
large amounts of fully annotated data are difficult to find.

3.3. Unsugervised Learning Using Deep Convolutional Generative Adversarial Networks

Machine 1 g algorithms can generally be split into two categoflXd generative and discriminative. A
generative model learns the joint probability distribution of P(X,Y) where X is an observable variable and
Y is the target variable. These models learn the statistical distributions of the input data rather than simply
classifying the data as one of € output classes. Hence the name, generative, since these methods learn to
replicate the underlying statistics of the data. GMMs trained using a greedy clustering algorithm or HMMs
trained using the Expectation Maximization (EM) algorithm (Jelinek, 19972 well-known examples of
generative models. A discriminative model, on the other hand, learns the conditional probability of the
target Y. given an observatioffZwhich we denote P(Y|X) (Bishop., 2011). Support Vector Machines
(Cortes & Vapnik, 1995) and Maximum Mutual Information Estimation (MMIE) (Bahl et al., 1986) are
two well-known discriminative models.

Generative adversarial networks (GANSs) (Goodfellow et al., 2014) have emerged as a powerful learning
paradigm technique for learning generative models for high-dimensional unstructured data. GANs use a
game theory approach to find the N4 equilibrium between a generator and discriminator network
(Pandey, 2018). A basic GAN structure consists of two neural networks: a generative model G that captures
the data distribution, and a discriminative model D (fE&Rstimates the probability that a sample came from
the training data rather than G. These two networks are trained simultaneously via an adversarial process.
In thiffrocess. the generative network, G. transforms the input noise vector z to generate synthetic data
G (z). The training objective for G is to maximize the probability of D making a mistake about the source
of the data.

The output of the generator is a synthetic EEG — data that is statistically consistent with an althial EEG but
is fabricated entirely by the network. The second network, f&lich is the discriminator, D, takes as input
either the output of G or samples from real world data. The output of D is a probability distribution over
possible input sources. The output of the discriminator in GAN determines if the signal is a sample from
real world data or synthetic data from the generator.

The generative model, G, and the disdinative model, D, compete in a two-player minimax game with a
value function, V(G; D), in a way that D is tEEERd to maximize the probability of assigning the &Ikt label
to both the synthetic and real data from G (Goodfellow et al., 2014). The generative model G is trained to
fool the discriminator by minimizing Io,ﬂ —D(G(2))):

méin max V(D,G) = Exupyoa[l0gD(x)] +E,.pp [log(l — D(G(2))]. (€))

During the training process, our goal 1s to find a Nash equilibrium of a non-convex two-player game that
animizcs both the generator and discriminator’s cost functions (Pandey, 2018).

166

A deep convolutional generative adversarial network (DCGAN) 1s shown in Figure 6. The generative model
takes 100 random inputs and maps them to a maliE&Rvith size of [21. 22, 250]. where 21 is the window
length (correspdZHing to a 21 sec duration), 22 is number of EEG channels and 250 is number of samples
per sec. Recall, in our study, we resample all EEGs to a sample frequency of 250 Hz (Harati et al., 2015).
The generator is composed of transpose s with upsamplers. Transposed convolution, also known as
fractionally-strided convolution, can be implemented by swapping the forward and backward passes of a
regular convolution (Goodfellow et al., 2014). We need transposed convolutions in the generators since we
want to go in the opposite direction of a normal convolution. For example, in this case we want to compose
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the vector of [21, 22, 250] from 100 random inputs. Using transposed convolutional layers, we can
transform feature maps to a higher-dimensional space. Leaky Rel.Us (Maas et al., 2013) are used for the
activation function and dl‘oﬁayers are used for regularization. Adam 1s used as the optimizer and binary
cross-entropy (Goodfellow et al., 20106) is used as the loss function.

In this architecture, the discriminative model accepts vectors from two sources: synthetic data generators
and real data (raw EEGs in this case). It is composed of strided convolutional neural networks (Goodfellow
etal., 2016). Strided convolutional neural networks are lik@Bgular CNNs but with a stride greater than
one. In the discriminator we replace the usual approach of convolutional layers with max pooling layers
with strided convolutional neural networks. This is based on our observations in pilot experiments that
using convolutional layers with max pooling makes the training of DCGAN unstable. This 1s due to the fact
that using strided convolutional layers, the network learns its own spatial downsampling, and convolutional
layers with max pooling tend to conflict with striding.

Finding the Nash equilibrium, which is a key part of the GAN approach, is a challenging problem that
impacts convergence during training. Several recent stullf&@address the instability of GANs and suggest
techniques to increase the training stability of GANs (Salimans et al., 2016; Radford et al., 2015). We
conducted a number of preliminary experiments and determined that these techniques were appropriate:

In the discriminator:
e pretraining of the discriminator;
one-sided label smoothing;
c]iminatily connected layers on top of convolutional features;
replacing deterministic spatial pooling functions (such as max pooling) with strided convolutions.

In the generator:
e using an ReL.U activation for all layers except for the output;
normalizing the input to [-1, 1] for the discriminator;
using a tanh() activation in the last layer except for the output;
using leaky ReLU activations in the discriminator for all layers except for the output;
freezing the weights of discriminator during adversarial training process;
unfreezing weights during discriminative training;
eliminating batch normalization in all the layers of both the generator and discriminator.

The GAN approach is attractive for a number of rdfons including creating an opportunity for data
augmentation. Data augnfBhtation is common in many state-of-the-art deep learning systems today (Yang
etal., 2016), allowing the size of the training set to be increased as well as exposing the system to previously
unseen patterns during training.

4.  LEARNING TEMPORAL DEPENDENCIES USING RECURRENT NETWORKS

The duration of events such as seizures can vary dramatically from a few seconds to minutes. Further,
neurologists use significant amounts of temporal context and adaptation in manually interpreting EEGs.
They are very familiar with their patients and often can identity the patient by examining the EEG signal,
especially when there are certain types of anomalous behaviors. In fact, they routinely use the first minute
or so of an EEG to establish baseline signal conditions (Lopez, 2017), or normalize their expectations, so
that they can more accurately determine anomalous behavior. Recurrent neural networks (RNN), which
date back to the late 1980°s (Lang et al., 1989), have been proposed as a way to learn such dependencies.
Prior to this, successful systems were often based on approaches such as hidden Markov models, or used
heuristics to convert frame-level output into longer-term hypotheses. In this section, we introduce several
architectures that model long-term dependencies.
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4.1. Integration of Incremental Principal Component Analysis with LSTMs

In the HMM/SdA structure proposed in Section 2.2, PCA was used prior to SdA for dimensionality
reduction. Unlike HMM/SdA, applying LSTM networks directly to features requires more memory
efficient approaches than PCA, or the memory requirements of the network can easily exceed the available
computational resources (e.g., low-cost graphics processing units such as the Nvidia 1080ti have limited
amount of memory — typically 8Gbytes). Incremental principal components analysis (IPCA) is an effdEi#e
technique for dimensionality reduction (Ross et al., 2008; Levy et al., 2000). This algorithm is often more
memory efficient than PCA. IPCA has constant memory complexity proportionalgiiithe batch size, and it
enables use of large datasets without a need to load the entire file or dataset into memory. IPCA builds a
low-rank approximation for the input data using an amount of memory which is independent of the number
of input data samples. It is still dependent on the dimensionality of the input data features but allows more
direct conlrol-of memory usage by changing the batch size.
27

In PCA, the fif# dominant principal components, y; (), v2(1), ..., i (n), are computed directly from
the input, x(n) as follows:

Forn = 1,2,...,do the following:
1) x,(n) = x(n).
2)Fori = 1,2,...,min (k,n),do:
a)if i = n,initialize the i principal component as y;(n) = x;(n);
b) otherwise compute:

v ="y = 1) + 5l ) 2O )
Xi41 () = x;(n) — 7 (n) LLL 2 o

@Iyl
where the positive parameter p is called the amnesic parameter. Typically, p ranges from 2 to 4. Then
eigenvector and eigenvalues are given by:

ikm
e = 25 and A = ||y @)
In Figure 7, we present an architecture that integrates IPCA and LSTM (Golmohammadi et al., 2018). In
this system, samples are converted to features and the featuf} are delivered to an IPCA layer that performs
spatial context analysis flHimensionality reduction. The output of the IPCA layer is delivered to a one-
layer LSTM fdkeizure classification task. The input to the [PCA layer is a vector whose dimension is the
product of the number of channels, the number of features per frame and the number of frames of context.
Preliminary experiments have shown that 7 seconds of temporal context performs well. The corresponding
dimension of the vector input to IPCA 1s 22 channels x 26 features x 7 seconds x 10 frames/second, or a
total of 4004 elements. A batch size of 50 is used in [PCA and the dimension of its output is 25 elements
per frame at 10 frames/second. In order to learn long-term dependencies, one LSTM with a hidden layer
size of 128 and batch size of 128 is used along with Adam optimization and a cross-entropy loss function.

4.2. End-to-End Sequence Labeling Using Deep Architectures

In machine learning, sequence labeling 1s defined as assigning a categorial label to each member of a
sequence of observed values. In automatic seizure detection, we assign one of two labels: seizure or nf&-
seizure. This decision is made every epoch, which is typically a 1 sec interval. The proposed structures are
trained in an end-to-end fashion. requiring no pre-training and no pre-processing, beyond the feature
extraction process that was explained in Section 2.1. For example, for an architecture composed of a
combination of CNN and LSTM, we do not train CNN independently from LSTM, but we train both jointly.

This 1s challenging because there are typically convergence issues when attempting this.
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In Figure 8, we integrate 2D CNNs, 1-D CNNs and LSTM networks, w]nh we refer to as a CNN/LSTM,
to better exploit long-term dependencies (Golmohammadi et al., 2018). Note that the way that we handle
data in CNN/LSTM is different from the CN/MLP system presented in Figure 4. The input EEG features
vector sequence can be thought of as being composed of frames distributed in time where each frame is an
image of width (W) equal to the length of a feature vector. The height (H) equals the number of EEG
channels and the number of image channels (N) equals one. The input to the network consists of T frames
where T is equal to the window length multiplied by the fInber of frames per second. In our optimized
system, where features are available 10 times per second, a window duration of 21 seconds is used. The
first 2D convolutional layer filters 210 frames (T =21 x 10) of EEGs distributed in time with a size of 26
%22 % 1 (W=26,H=22, N=1)using 16 kernels of size 3 = 3 with a stride of 1. The first 2D max pooling
layer takes as input a vector which 1s 260 frames distributed in time with a size of 26 x 22 % 16 and applies
a pooling size of 2 x 2. This process is repeated two times with two 2D convolutional layers with 32 and
64 kernels of size 3 x 3 respectively and two 2D max pooling layers with a pooling size 2 x 2.

The output of the third max pooling layer is flattened to 210 frames with a size of 384 x 1. Then a 1D
convolutional layer filters the output of the flattening layer using 16 kernels of size 3 which decreases the
dimensionality in space to 210 = 16. Next, we apply a 1D max pooling layer with a size of 8 to decrease
the dimensionality to 26 = 16. This is the input to a deep bidirectional LSTM network where the
dimensionality of the output space is 128 and 256. The output of the last bidirBtional LSTM layer is fed to
a 2-way sigmoid function which produces a final classification of an epoch. To overcome the problem of
overfitting and force the system to learn more robust features, drout and Gaussian noise layers are used
between layers (Srivasf}a et al., 2010). To increase nonlinearity, Exponential Linear Units (ELU) are used
(Clevert etal., 2017). Adam is used in the optimization process along with a mean squared error loss

function.

More recently, Cho etf§). (2014) proposed another type of recurrent neural network, known as a gated
recurrent unit (GRU). A GRU architecture is similar to an LSTM but without a separate memory cell.
Unlike LSTM, a GRU does not include output activation functions and peep hole connections. It also
integrates the input and forget gates into an update gate to balance between the previous activation and the
candidate activation. The reset gate allows it to forget the previous state (Wu et al., 2016). It has been shown
that the performance of a GRU is on par with an LSTM, but a GRU can be trained faster (Golmohammadi
et alée 7). The architecture is similar to that in Figure 8, Hll we simply replace LSTM with GRU. in a
way that the output of 1D max pooling is the input to a GRU where the dimensionality of the output space
is 128 and 256. The output of the last GRU is fed to a 2-way sigmoid function which produces d?i?lal
classification of an epoch. These two approaches, LSTM and GRU, are evaluated as part of a hybnd
architecture that integrates CNNs with RNNs (Golmohammadi et al., 2017).

4.3. Temporal Event Modeling Using LSTMs

¥inal architecture we wish to consider is a relatively straightforwfEE) variation of an LSTM network.
LSTMs are a special of recurrent neural network which contains forget and output gates to control the
information flow d its recurrent passes. LSTM networks have proven to be outperform conventional
EEENs. HMMs and other sequence learning methods in numerous applications such as speech recognition
and handwriting recognition (Hermans et al., 2013; Graves et al. 3). Our first implementation of LSTM
was a hybrid network of both HMM and LSTM networks. A block @lgram of HMM/LSTM system is
shown in Figure 9. Similar to the HMM/SAA model discussed before, the input to the second layer di#he
system, which 1s the first layer of LSTMs, is a vector of dimension 2 x 22 x window length. We use PCA
to reduce the dimensionality of the input vector to 20 and pass it to the LSTM model. dow size of 41
secs (41 epochs at 1 sec per epoch) is used for a 32-node single lidden layer LSTM network. The final
layer uses a dense neuron with a sigmoid activation function. The Plrameters of the models are optimized
to minimize the error using a cross-entropy loss function and Adam (Kingma et al., 2015).
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Next, we use a 3-layer LSTM network model. Identification of a seizure event is done based on an
observation of a specific type of epileptiform activity called “spike and wave discharges™ (Krauss et al.,
2011). The evolution of these activities across time helps identify a seizure event. These events can be
observed on individual channels. Once observed, [fEi@eizures can be confirmed based on their focality,
signal energy and its polarity across spatially close channels. The architecture is shown in Figure 10.
35

In the preprocessing step, we extract a 26-dimensional feature vector for an 11-frame context centered
around the current frame. The output dimensif&elity for each frame is 10 x 26 (left) + 26 (center) + 10 x 26
(right) = EI8. The static LSTM cells are used with a fixed batch size of 64 and a window size of 7 seconds.
The data is randomly split into subsets where 80% is used for training and 20% 1s used for cross-validation
during optimization. The features are normalized and scaled down to a range of [0, 1] on a file basis, which
helps the gradient descent algorithm (and its variants) to converge much faster (Ioffe & Szegedy, 2015).
Shuffling was performed on batches to avoid training biases.

The network includes 3 LSTM layers with (256, 64, 16) hidden layers followed by a 2-cell dense layer. The
activation furffi@n used for all LSTM layers is a hyperbolic tangent funetion, tanh (), except for the final
layer, which uses a soffhx function to compress the range of output valuefEP [0,1] so they resemble
posterior probabilities. A cross-entropy function is used for calculating loss. Stochastic gradient descent
with Nesterov momentum 1s used for optimization. Nesterov momentum attempts to increase the speed of
training by introducing a momentum term based on accumulated gradients of its previous steps and a
correction term in the direction of the current gradient (Sutskever et al., 2013). This tends to reduce the
amount of overshoot during optimization.

The optimization is performed on the training data at a very high learning rate of 1.0 for the first five epochs.
Cross-validation is performed after each epoch. After five epochs, if the cross-validation loss stagnates for
three consecutive epochs (referred to as “patience = 37), learning rates are halved after each iteration until
it anneals to zero. If the model fails to show consistent performance on a cross-validation set, then it reverts
to the previous epoch’s weights and restarts training until convergence. This method helps models avoid
overfitting on the training data as long as the training and cross-validation sets are equally diverse.

The outputs of the models are fed to a postprocessor which is described in more detail in Section 5.2, This
postprocessor is designed based on domain knowledge and observed system behavior to remove spurious
and misleading detections. This is implemented to incorporate spatial context. The postprocessor sets a
threshold for hypothesis confidence, the minimum number of channels for target event detection and a
duration constraint which must be satisfied for detection. For example, if multiple channels consistently
detected spike and wave discharges in the same 9-second interval, this event would be permitted as a valid
output. Outputs from a fewer number of channels or over a smaller duration of time would be suppressed.

We have now presented a considerable variety of deep learning architectures. It 1s difficult to predict which
architecture performs best on a given task without extensive experimentation. Hence, in the following
section, we review a wide-ranging study of how these architectures perform on the TUSZ seizure detection
task.

5. EXPERIMENTATION

Machine learning is at its core an experimental science when addressing real-world problems of scale. Real
world data 1s complex and poses many challenges that require a wide variety of technologies to solve and
can mask the benefits of one specific algorithm. Therefore, it is important that a rigorous evaluation
paradigm be used to guide architecture decisions. In this chapter, we are focusing on the TUSZ Corpus
because it is a very comprehensive dataset and it offers a very challenging task.

The evaluation of machine learning algorithms in biomedical fields for applications involving sequential
data lacks standardization. Common quantitative scalar evaluation metrics such as sensitivity and
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specificity can often be misleading depending on the requirements of the application. Evaluation metrics
must ultimately reflect the needs of users vet be sufficiently sensitive to guide algorithm development.
Feedback from critical care clinicians who use automated event detection software 1n clinical applications
has been overwhelmingly emphatic that a low false alarm rate, typically measured in units of the number
of errors per 24 hours, is the single most important criterion for user acceptance. Though using a single
metric 1s not often as insightful as examining performance over a range of operating conditions, there is a
need for a single scalar figure of merit. Shah et al. (2019) discuss t@g€8leficiencies of existing metrics for a
seizure detection task and proposes several new metrics that offer a more balanced view of performance.
In this section, we compare the architectures previously described using one of these measures, the Any-

Overlap Method (OVLP). We also provide detection error tradeoff (DET) curves (Fiscus et al., 2007).

3.1 Evaluation Metrics
Researchers 1n biomedical fields typically report performance in terms of sensitivity and specificity
(Japkowicz et al., 2014). In a two-class classification problem such as seizure detection, we can define four

types ors:
o QLS Positives (TP): the number of “positives’ detected correctly
e True matives (TN): the number of *negatives’ detected correctly
e False Positives (FP): the number of ‘negatives’ detected as “positives’
False Negatives (FN): the number of ‘positives’ detected as ‘negatives’

Sensitivity (TP/(TPHEN)) and specificity (TN/(TN+EP)) are derived from these quantities. There are a large
number of auxiliary measures that can be calculated from these four basic quantities that are used
exten§fREl in the literature. For example. in information retrieval applications, systems are often evaluated
using accuracy ((TP+TN)/(TP+FN+TN+EP)). precision (TP/(TP+EP)), recall (another term for sensitivity)
and F 1 score ((2+Precision*Recall)/(Precision + Recall)). However, none of these measures address the time
scale on which the scoring must occur or how you score situations where the mapping of hypothesized
events to reference events is ambiguous. These kinds of decisions are critical in the interpretation of scoring
metrics such as sensitivity for many sequential decoding tasks such as automatic seizure detection (Shah
etal., 2019; Fiscus et al., 2007).

In some applications, it is preferable to score every unit of time. With multichannel signals, such as EEGs,
scoring for each channel for each unit of time might be appropriate since significant events such as seizures
occur on a subset of the channels present in the signal. However, it 1s more common in the literature to
simply score a summary decision per unit of time, such as every 1 sec, that is based on an aggr@l#on of
the per-channel inputs (e.g.. a majority vote). We refer to this type of scoring as epoch-based (Liu et al.,
1992; Navakatikyan et al., 2006). An alternative, that is more common in speech and image recognition
applications, is term-based (Fiscus et al., 1992; Xiong et al., 2006), in which we consider the start and stop
time of the event, and each event identified in the reference annotation i1s counted once. There are
fundamental differences between the two conventions. For example, one event containing many epochs
will count more heavily in an epoch-based scoring scenario. Epoch-based scoring generally weights the
duration of an event more heavily since each unit of time is assessed independently.

Term-based metrics score on an event basis and do not count individual frames. A typical approach for
calculating errors in term-based scoring #ihe Any-Overlap Method (OVLP) (Shah et al., 2019). This
approach 1s illustrated in Figure 11. TPs are counted when the hypothesis overlaps with the reference
annotation. FPs correspond to situations in which a hypothesis does not overlap with the reference.

OVLP 1s a more permissive metric that tends to produce much higher sensitivities. If an event 1s detected
in close proximity to a reference event, the reference event is considered correctly detected. If a long event
in the reference annotation is detected as multiple shorter events in the hypothesis, the reference event is
also considered correctly detected. Multiple events in the hypothesis annotation corresponding to the same
event in the reference annotation are not typically counted as FAs. Since the FA rate is a very important
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measure of performance in critical care applications, this is another cause for [filbern. However, since
OVLP metric is the most popular choice in the neuroengineering community, we present our results in
terms of OVLP.

Note that results are still reported in terms of sensitivity, specificity and false alarm rate. But, as previously
mentioned, how one measures the errors that contribute to these measures is open for interpretation. Shah
etal. (2019) studied this problem extensively and showed that many of these measures correlate and are
not significantly different in terms of the rank ordering and statistical significance of scoring differences
for the TUSZ task. We provide a software package that allows researchers to replicate our metrics and
reports on many of the most popular metrics (Shah & Picone, 2019).

5.2. Postprocessing with Heuristics Improves Performance

Because epoch-based scoring produces a hypothesis every epoch (1 sec in this case), and these are scored
against annotations that are essentially asynchronous, there is an opportunity to improve performance by
examining sequences of epochs and collapsing multiple events into a single hypothesis. We have
experimented with heuristic approaches to this and deep learning-based approaches and have found no
significant advantage for the deep learning approaches. As is well known in machine learning research, a
good heuristic can be very powerful. We apply a series of heuristics, summarized in Figure 12, to improve
performance. These heuristics are very important in reducing the false alarm rate to an acceptable level.

The first heuristic we apply 1s a popular method that focuses on a model’s confidence in its output.
Probabilistic filters (Sundermeyer et al., 2015) are implemented to only consider target events which are
detected above a specified probability threshold. This method tends to suppress spurious long duration
events (e.g., slowing) and extremely short duration events (e.g., muscle artifacts). This decision function is
applied on the seizure (target) labels only. We compare each seizure label’s posterior with the threshold
value. If the posterior is above the threshold, the label is kept as 1s; otherwise, it 1s changed to the non-
seizure label, which we denote “background.”

Our second heuristic was developed after performing extensive error analysis. The most common types of
errors we observed were false detections of background events as seizures (FPs) which tend to occur in
bursts. Usually these erroneous bursts occur for a very small duration of time (e.g., 3 to 7 seconds). To
suppress these, any seizure event whose duration is below a specified threshold 1s automatically considered
as a non-seizure, or background, event.

Finally, we also implement a smoothing method that collapses sequences of two seizure events separated
by a background event into one long seizure event. This is typically used to eliminate spurious background
events. If seizures are observed in clusters separated by small intervals of time classified as background
events, these isolated events are most likely part of one longer seizure event. In this method, we apply a
nonlinear function that computes a pad time to extend the duration of an isolated event. If the modified
endpoint of that event overlaps with another seizure event, the intervening background event 1s eliminated.
We used a simple regression approach to derive a quadratic function that produces a padding factor: w(x) =
—0.0083d? + 0.45d — 0.66, were d is the duration of the event. This method tends to reduce isolated
background events when they are surrounding by seizure events, thereby increasing the specificity.

The combination of these three postprocessing methods tends to decrease sensitivity slightly and reduce
false alarms by two orders of magnitude, so their impact 1s significant. The ordering in which these methods
1s applied 1s important. We apply them in the order described above to achieve optimal performance.

5.3. A Comprehensive Evaluation of Hybrid Approaches
A series of experiments was conducted to optimize the feature extraction process. These are described in
detail in Harati et al. (2015). Subsequent attempts to replace feature extraction with deep learning-based
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approaches have resulted in a slight degradation in performance. A reasonable tradeoff between
computational complexity and pcrforance was to split the 10 sec window, popular with neurologists who
manually interpret these waveforms, into 1 sec epochs, and to further subdivide these into 0.1 sec frames.
Hence, features were computed every 0.1 sec using a 0.2 sec overlapping analysis window. The output of
the feature extraction system is 22 channels of data, where in each channel, a feature vector of dimension
26 corresponds to every 0.1 secs. This type of analysis is very compatible with the way HMM systems
operate, so it was a reasonable starting point for this work. 8
3

We next evaluated several architectures using these features as inputs on TUSZ. These results are presented
in Table 2. The related DET curve is illustrated in Figure 13. An expanded version of the DET curf{EEh
Figure 13 that compares the performance of these architectures in a region of the DET curve where the false
positive rate, also known as the false alarm (FA) rate, is low is presented in Figure 14. Since our focus is
achieving a[fw false alarm rate. behavior in this region of the DET curve is very important. As previously
mentioned, these systems were evaluated using the OVLP method, though results are similar for a variety
of these metrics.
It 1s important to note that the accuracy reported here is much lower than what is often published in the
literature on other seizure detection tasks. This 1s due to a combination of factors including (1) the
neuroscience community has favored a more permissive method of scoring that tends to produce much
higher sensitivities and lower false alarm rates; and (2) TUSZ is a much more difficult task than any corpus
previously released as open source. The evaluation set was designed to be representative of common clinical
issues and includes many challengifil#xamples of seizures. We have achieved much higher performance
on other publicly available tasks, such as the Children’s Hospital of Boston MIT (CHB-MIT) Corpus
(Obeid et al.. 2014), and demonstrated tfgt the performance of these techniques exceeds that of published
or commercially-available technology. TUSZ 1s simply a much more difficult task and one that better
iprcsenls the clinical challenges this technology faces.
1
Also, ndfB that the HMM baseline system, which is shown in the first row of Table 2. and channel-based
LSTM, which is shown in the last row of Table 2, operate on each channel independently. The other
methods consider all channels simultaneously by using a supervector that is a concatenation of the feature
vectors for all channels. The baseline HMM system only classifies epochs (1 sec in duration) using data
from within that epoch. It does not look across channels or across multiple epochs when performing epoch-
level classification.

(1]

From Table 2 we can see that adding a deep learning structure for temporal and spatial analysis of EEGs
can decrease the false alarm rate dramatically. Further, by comparing the results of HMM/SdA with
HMM/LSTM, we find that a simple one-layer LSTM performs better than 3 layers of SdA due to LSTM’s
ability to explicitly model long-term dependencies. Note that in this case the complexity and training time
of these two systems is comparable.

e best overall systems shown in Table 2 are CNN/LSTM and channel-based LSTM. CNN/LSTM is a
doubly deep recurrent convolutional structure that model@oth spatial relationships (e.g.. cross-channel
dependencies) and temporal dynamics (e.g., spikes). For example, CNN/LSTM does a much better job
rejecting artifacts that are easily confused with spikes because these appear on only a few channels, and
hence can be filtered based on correlations between channels. The depth of the convolutional network is
important since the top convolutional layers tend to learn generic features while the deeper layers learn
dataset specific features. Performance degrades if a single convolutional layer is removed. For example,
EEI8>ving any of the middle convolutional layers results in a loss of about 4% in the sensitivity. However,
it is important to note that the computational complexity of the channel-based systems is significantly higher
than the systems that aggregate channel-based features into a single vector, since the channel-based systems
are decoding each channel independently.
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As shown in Figure 13 and Figure €] we find that CNN/LSTM has a significantly lower FA rate than
CNN/GRU. We speculate that this is due to the fact that while E3RU unit controls the flow of information
like thdEJSTM unit, it does not have a memory unit. LSTMs can remember longer sequences better than
GRUs. Since seizure detection requires modeling long distance relationships, we believe this explains why
there is a difference in performance. between the two systems.

3
The time required for training for CNN/GRU was 10% less than CNN/LSTM. The training time of these
two systems is comparable since most of the cycles are spent training the convoluffinal layers. We also
observe that the ResNet structure improves the performance of CNN/MLP, but the best overall system is
still CNN/LSTM.
We have also conducted an open-set evaluation ofn best systems, CNN/LSTM and channel-based LSTM,
on a completely different corpus — DUSZ. These results are shown in Table 3. A DET curve is shown in
Figure 15. This is an mmportant evaluation because none of these systems were exposed to DUSZ data
during training or develojffient testing. Parameter optimizations were performed only on TUSZ data. As
can be seen, at high FA rates, perf@inance between the two systems is comparable. At low FA rates,
however, CNN/LSTM performance on TUSZ is lower than on DUSZ. For channel-based LSTM, in the
region of low FA rate, performance on TUSZ and DUSZ is very similar. This is reflected by the two middle
curves in Figure 15. The differences in performance for channel-based LSTM when the data changes are
small. However, for CNN/LSTM, which gives the best overall performance on TUSZ, performance
decreases rapidly on DUSZ. Recall that we did not train these systems on DUSZ - this is true open set
testing. Hence, we can conclude in this limited study that channel-based LSTM generalized better than the
CNN/LSTM system.

5.4. Optimization of Core Components

Throughout these experimenfl] we observed that the choice of optimization method had a considerable
impact on performance. The CNN/LSTM system wasihluated using a variety of optimization methods,
including Stochastic gradient descent (S(ﬂéKingma et al. 2015), RMSprop (Bottou et al. 2004), Adagrad
(Tieleman et al. 2012), Adadelta (Duchi et al. 2011), Adam (Kingma et al. 2(F). Adamax (Kingma et al.
2015) and Nadam (Zeiler et al. 2013). These results are shown in Table 4. The best performance is achieved
with Adam, a leamirnate of a = 0.0005, a learning rate decay of 0.0001, exponential decay rates of B, =
0.9 and B, = 0.999 for the moment estimates and a fuzz factor of € = 1078, The parameters follow the
notation described in (King etal. 2015). Table 4 also illustrates that Nadam delivers comparable
performance to Adam. Adam combines the advantages of AdaGrad which works well with sparse gradients,
gml RMSProp which works well in non-stationary settings.

1

Similarly, we evaluated our CNN/LSTM using different activation functions, as shown in Table 5. ELU
delivers a88all but measurable increase in sensitivity, and more importantly, a reduction in false alarms.
The ELU activation function 1s defined as:

x x >0
fGo) = {a. (e*—1) x <0’ ®)

where a 1s slope of negative section. The derivative of ELU is:

2y _ 1 x>0
fGx) = {a.ex x <07 ©)
andm ReL.U activation function is defined as:
_(x x>0
f(x) = {0 B - (10)

The derivative of ReLLU is:
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; 1 x >0
oo = { . 11

ELU is very similar to ReL.U except for negative inputs. ReLUs and EL Us accelerate learninfli#l decreasing
the gap between the normal gradient and the unit natural gradient (Clevert et al., 2017). ELUs push the
mean towards zero but with a significantly smaller computational footprint. In the region where the input
1s negative (x < 0), since an RelLU’s gradient 1s zero, the weights will not get adjusted. Those neurons
which connect into that state will stop responding to variations in error or input. This is referred to as the
dying ReL.U problem. But unlike ReL.Us, ELUs have a clear saturation plateau in their negative region,
a.llowing them to learn a more robust and stable representation.
3
Determining the proper initialization strategy for the parameters in the model is part of the difficulty in
training. Hence, we investigated a variety of initialization methods using the CNN/LSTM structure
introduced in Figure 8. These results are presented in Table 6. The related DET curve is illustrated in
Figure 16. In our experiments, we observed that proper imitialization of weights in a convolutional recurrent
ural network is critical to convergence. For example, initialization of tensor values to zero or one
completely stalled the convergence process. Also, as we can see in Table 6. the FA rate of the system in the
range of 30% sensitivity can change from 7 to 40, for different mitialization methods. This decrease in
performance and deceleration of convergence arises because some initializations can result in the deeper
layers receiving inputs with small variances, which in turn slows down back propagation, and retards the
overall convergence process. 8

&
Best performance 1s achieved using orthogonal initialization (Saxe et al., 2014). This method simple
yet effective way of combatting exploding and vanishing gradients. In orthogonal initialization, the weight
matrix is chosen as a random orthogonal matrix, i.e., a square m@ZIx W for which W™W = I. Typically,
the orthogonal matrix fJbbtained from the QR decomposition of a matrix of random numbers drawn from
a normal distribution. Orthogonal matrices preserve the norm of a vector and their eigenvalues have an
absolute value of one. This means that no matter how many times we perform repeated matrix
multiplication, the resulting matrix doesn't explode or vanish. Also, in orthogonal matrices, columns and
rows are all orthonormal to one another, which helps the weights to learn different mput features. For
EElmple. if we apply orthogonal initialization on a CNN architecture, in each layer, each channel has a
ﬁeight vector that is orthogonal to the weight vectors of the other channels.
&
Overfitting is a serious problem in deep neural nets with many parameters. We have explored five popular
regularization methods to address this problem. techniques collectively known as L1, L2 and L1/1.2
(Goodfellow et al., 2016) prevent overfitting by adding a larization term to the loss function. The L1
regularization technique, also known as Lasso regression., is defined as adding the sum of weights to the
loss function:

ost Function = Loss Function + 1Y%, |w;], (12)

where w is the weight vE3@r and 1 is a regularization parameter. The 1.2 technique, also known as ridge
regression, is defined as adding the sum of the square of the weights to the loss function:

Cost Function = Loss Function + AYX w7 . (13)
The L.1/1.2 technique is a combination of both techniques:
Cost Function = Loss Function + AX¥_,|lw;| + AT, w? . (14)
In an alternative approach, we used dropout to prevents units from co-adapting too much by randomly
dropping units and their connections from the neural network during training,

Also, we studied the impact of introducing zero-centered Gaussian noise to the network. In this
regularization methodf?Z8ich is considered a random data augmentation method (Perez & Wang, 2017),
we add zero-centered Gaussian noise with a standard deviation of 0.2 to all hidden layers in the network as
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well as the visible or input layer. The results of these experiments are presented in Table 7 along with a

DET curve in Figure 17.

While L1/L2 reflarization has the best overall performance, in the region where FA rates are low, the
dropout method delivers a lower FA rate. Additionally, we found that the primary error modalities observed
were false alarms generated duria brief delta range slowing patterns such as intermittent rhythmic delta
activity (von Weltin et al., 2017). Our closed-loop experiments demonstrated that all regularization methods
presented in Table 7, unfortunately, tend to increase the false alarm rate for slowing patterns.

Finally, in Figure 18, an example of an EEG that 1s generated by the DCGAN structure of Figure 6 1s shown.
Note that to generate these EEGs, we use a generator block in DCGAN in which each EEG signal has a
7 sec duration. We apply a 25 Hz low pass filter on the output of DCGAN, since most of the cerebral signals
observed in scalp EEGs fall in the range of 1-20 Hz (in standard clinical recordings, activity below or above
this range 1s likely to be an artifact). Unfortunately, in a simple pilot experiment in which we randomly
mixed actual EEGs with synthetic EEGs, expert annotators could easily detect the synthetic EEGs, which
was a bit discouraging. Seizures in the synthetic EEGs were sharper and more closely resembled a slowing
event. Clearly, more work is needed with this architecture.

However, our expert annotators also noted that the synthetic EEGs did exhibit focality. An example of
focality is when activity is observed on the CZ-C4 channel, we would expect to observe the inverse of this
pattern on the C4-T4 channel. As can be seen in Figure 18, in last two seconds of the generated EEG, we
observe slowing activity on the CZ-C4 channel and the inverse pattern of the same slowing activity on the
C4-T4 channel. Hence, it is possible to generate synthetic multi-channel EEG signals with DCGAN that
resemble clinical EEGs. However, DCGAN is not vet at the point where it is generating data that is resulting
in an improvement in the performance of our best systems.

6. CONCLUSIONS

EEGs remain one of the main clinical tools that physicians use to understand brain function. New
applications of EEGs are emerging including diagnosis of head trauma-related injuries which offer the
potential to vastly expand the market for EEGs.[il board-certified EEG specialist is required by law to
interpret an EEG and produce a diagnosis. Since it takes several years of additional training post-medical
school for a physician to qualify as a clinical specialist, the ability to generate data far exceeds the available
expertise to interpret these data, creating a critical bottleneck. Despite rapid advances in deep learning in
recent yea.rs:, auotmatic interpretation of EEGs 1s still a very challenging problem.

1
We have introduced a variety of deep learning architectures for automatic classification of EEGs including
a hybrid architecture that integrates CNN and LSTM technology. Two systdills are particularly promising:
CNN/LSTM and channel-based LSTM. While these architectures deliver better performance than other
deep structures, their performance still does not meet the needs of clinicians. Human performance on sinfillar
tasks 1s in the range of 75% sensitivity with a false alarm rate of 1 per 24 hours (Haider et al., 2016). The
false alarm rate is particularly important to critical care applications since it impacts the workload
experienced by healthcare providers. 0

1

The primary error modalities for our deep learning-based approaches were false alarms generated during
brief delta range slowing patterns such as intermittent rhythmic delta activity. A variety of these types of
artifacts have been observed during inter-ictal aff} post-ictal stages. Training models on such events with
diverse morphologies is potentially one way to reduce the remaining false alarms. This is one reason we
are continuing our efforts to annotate a larger portion of TUSZ.

We are also exploring the potential of supervised GAN frameworks for spatio-temporal modeling of EEGs.

Most of the research on GANSs is focused on either unsupervised learning or supervised learning using
conditional GANs. Given that the annotation process to produce accurate labels is expensive and time-
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consuming, we are exploring semi-supervised learning in which only a small fraction of the data has labels.
GANs can be used to perform semi-supervised classification by using a generator-discriminator pair to
learn an unconditional model of data and then tune the discriminator using the small amount of labeled data
for prediction. 2

2

We are also continuing to manually label EEG data. We invite you to register at our project web site,
www.isip.piconepress.com/projects/tuh_eeg/, to be kept aware of the latest developments.
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Table 1. An overview of the corpora used to develop the technology described in this chapter: The
Temple University Seizure Detection Corpus (TUSZ) and the Duke University Seizure Detection

Corpus (DUSZ).

Springer: Deep Learning

Description
Patients
Sessions
Files
Seizure (secs)
Non-Seizure (secs)
Total (secs)

TUSZ

Train Eval
64 50
281 229
1,028 985
17,686 45,649
596,696 556,033
614,382 601,682

DUSZ

Eval
45
45
45
48,567
599,381
647,948
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Table 2. Performance of the proposed architectures on TUSZ

System

HMM

HMM/SdA
HMM/LSTM
[PCA/LSTM
CNN/MLP
CNN/GRU

ResNet

CNN/LSTM
Channel-Based LSTM

Springer: Deep Learning

Sensitivity Specificity FA/24 Hrs.

30.32%
35.35%
30.05%
32.97%
39.09%
30.83%
30.50%
30.83%
39.46%

80.07%
73.35%
80.53%
77.57%
76.84%
91.49%
94.24%
97.10%
95.20%

244
77
60
73
77
21
13
6
1
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Table 3. A comparison of several CNN and LSTM architectures on DUSZ

System
CNN/LSTM
CNN/LSTM
Channel-Based LSTM
Channel-Based LSTM

Springer: Deep Learning

Data
TUSZ
DUSZ
TUSZ
DUSZ

Sensitivity Specificity FA/24 Hrs.
30.83% 97.10% 6
33.71% 70.72% 40
39.46% 95.20% 11
42.32% 86.93% 14
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Table 4. Comparison of optimization algorithms for a CNN/LSTM system on TUSZ

System

SGD
RMSprop
Adagrad
Adadelta
Adam
Adamax
Nadam
SGD
RMSprop

Springer: Deep Learning

23.12%
25.17%
26.42%
26.11%
30.83%
29.25%
30.27%
23.12%
25.17%

72.24%
83.39%
80.42%
79.14%
97.10%
89.64%
92.17%
72.24%
83.39%

Sensitivity Specificity FA/24 Hrs.

44
23
31
33

6
18
14
44
23
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Table 5. A comparison of activation functions for CNN/LSTM on TUSZ

System  Sensitivity Specificity FA/24 Hrs.

Linear 26.46% 88.48%
Tanh 26.53% 89.17%
Sigmoid 28.63% 90.08%
Softsign 30.05% 90.51%
RelLU 30.51% 94.74%
ELU 30.83% 97.10%
Linear 26.46% 88.48%
Tanh 26.53% 89.17%
Sigmoid 28.63% 90.08%
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25
21
19
18
11

6
25
21
19
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Table 6. A comparison of FA rates on a CNN/LSTM system for sensitivity in the range of 30%

for different initialization methods

System
Orthogonal
Lecun Uniform
Glorot Uniform
Glorot Normal
Variance Scaling
Lecun Normal
He Normal
Random Uniform
Truncated Normal
He Uniform

Springer: Deep Learning

Sensitivity Specificity FA/24 Hrs.

30.8%
30.3%
31.0%
29.5%
31.8%
31.8%
31.3%
30.2%
31.6%
29.2%

96.9%
96.5%
94.2%
92.4%
92.1%
92.1%
91.1%
90.0%
87.8%
85.1%
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Table 7. A comparison of performance for a CNN/LSTM system for different regularizations

Springer: Deep Learning

System Sensitivity Specificity FA/24 Hrs.

EI/2 30.8%
Dropout 30.8%
Gaussian 30.8%
2 30.2%
5| 30.0%

97.1%
96.9%
95.8%
95.6%
43.7%

(=R =8

10
276
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Figure 1. The design cycle for machine learning tf}cally involves an iterative process where everything
from data to the evaluation paradigm are tweaked to improve the overall performance and generalization

of the system.
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Figure 2. Base features are calculated using linear frequency cepstral coefficients basedfl&) frame and

window durations of 0.1 and 0.2 seconds respectively. A novel differential energy term 1s added to the
feature vector, and then first and second derivatives are computed.
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Figure 3. A hybrid architecture based on HMMs that integrates temporal and spatial context for
sequential decoding of EEG events 1s shown. Two levels of postprocessing are used.
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Figure 4. A two-dimensional decoding of EEG signals using a CNN/MLP hybrid architecture that consists
of six convolutional layers, three max pooling layers and two fully-connected layers is shown,
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ZBure 5. A deep residual learning framework, ResNet, is shown that consists of 14 layers of convolution
followed by a fully connected layer and a sigmoid as the last layer. The deep residual learning structure
mitigates two important problems: vanishing/exploding gradients and saturation of accuracy when the

number of layers is increased.
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Figure 6. An unsupervised learning archfZfifture is shown that uses deep convolutional generative
adversanial networks (DCGANs). GANs have emerged as a powerful learning paradigm technique
for learning generative models for high-dimensional unstructured data.
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Figure 7. An architecture that integrates [PCA for spatial context analysis and LSTM for learning long-
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Figure 8. A deep recurrent convolutional architecture for two-dimensional decoding of EEG signals that

mtegrates 2D CNNs, 1-D CNNs and L.STM networks
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Figure 10. A channel-based long short-term memory (LLSTM) architecture
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Figure 11. OVLP scoring is very permissive about the degree of overlap between the reference and
hypothesis. For example, in example 1, the TP score is 1 with no false alarms. In example 2, the system

detects 2 out of 3 seizure events, so the TP and FN scores are 2 and 1 respectively.
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Figure 12. An illustration of the postprocessing algorithms used to reduce the FA rate
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Figure 13. A DET curve comparison of the proposed architectures on TUSZ
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Figure 14. An expanded comparison of performance in a region where the FP rate is low
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Figure 15. A comparison of the performance of CNN/LSTM and channel-based LSTM on TUSZ and
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Figure 16. A comparison of different initialization methods for CNN/LSTM
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Figure 17. A comparison of different regularization methods for CNN/L STM
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Figure 18. Synthetic EEG waveforms generated using DCGAN

Springer: Deep Learning v1.0: Febrary 28, 2019




A34

ORIGINALITY REPORT

47

SIMILARITY INDEX

PRIMARY SOURCES

B D

B B

B B

Meysam Golmohammadi, Saeedeh Ziyabari, 0
Vinit Shah, lyad Obeid, Joseph Picone. "Deep 2428 words 1 2 A)
Architectures for Spatio-Temporal Modeling: Automated Seizure
Detection in Scalp EEGs", 2018 17th IEEE International

Conference on Machine Learning and Applications (ICMLA), 2018

Crossref

www.frontiersin.org 1630 words — 8%

Internet

M. Golmohammadi, S. Ziyabari, V. Shah, E. Von L %
Weltin, C. Campbell, I. Obeid, J. Picone. "Gated 828 words — 4
recurrent networks for seizure detection”, 2017 IEEE Signal

Processing in Medicine and Biology Symposium (SPMB), 2017

Crossref

I\rfw\t/(\a/:z\(/a\t/.isip.piconepress.com 512 words — 3%
IIritr;!;tspringer.com 174 words — g %
ﬁéreec?rt.arxiv.org 162 words — g %
docplayer.net 100 words — < 170
file.scirp.org 96 words — < %
www.aclweb.org 81 words — < ] %

Internet



—_ —_
N (@)

RN RN RN RN
(@)} BN w N

RN RN
~ (@)

—_
(00)

N —_—
(@) O

N o)
tel.archives-ouvertes.fr 80 words — < 1 /0

Internet

: " : : o
Matthias Duempelmann. "Early seizure detection sg . 0o < 1 A)
for closed loop direct neurostimulation devices in

epilepsy", Journal of Neural Engineering, 2019

Crossref

, : 40
ﬂxg.sprlngerprofe33|onal.de 70 words — < /o

: 40
l\:}\t/x\é\t/.mdchom 69 Words - < /0

. o
ai.vub.ac.be 68 words — < 1 A)

Internet

"Computer Vision — ECCV 2016", Springer Nature, gq .\ 0o < 1 %
2016

Crossref

0
Irnrt1e?nt;t.embopress.org 55 words — < 1 /0

andysarroff.com 40
Internet 52 words — < /0

: : : : o
Meysam Golmohammadi, Amir Hossein Harati. 52 words — < q /0
Nejad Torbati, Silvia Lopez de Diego, lyad Obeid,

Joseph Picone. "Automatic Analysis of EEGs Using Big Data and

Hybrid Deep Learning Architectures", Frontiers in Human

Neuroscience, 2019

Crossref

www.mitpressjournals.org 48 words — < %

Internet

pdfs.semanticscholar.org 47 words — < %

Internet

webapps.itc.utwente.nl



22

23

24

25

26

27

28

29

30

B B
—

Internet

46 words — < 1 0

Yo

. . 40
Igfscz’fgre Notes in Computer Science, 2015. 46 words — < /0

S. Ferrell, E. von Weltin, |. Obeid, J. Picone. "Open 44 words — < %
Source Resources to Advance EEG Research",

2018 IEEE Signal Processing in Medicine and Biology

Symposium (SPMB), 2018

Crossref

journals.plos.org 43 words — < 1 %

Internet

www.deeplearning.net 43 words — < 1 %

Internet

Chaopeng Shen. "A trans-disciplinary review of 42 words — < 1 %
deep learning research and its relevance for water
resources scientists", Water Resources Research, 2018

Crossref

www.waset.org 42 words — < 1 %

Internet

: : : o
V. Shah, M. G.olmohgmmac'!l, S..Z|ly.abar|, E. Von 40 words — < 1 A)
Weltin, |. Obeid, J. Picone. "Optimizing channel

selection for seizure detection", 2017 IEEE Signal Processing in

Medicine and Biology Symposium (SPMB), 2017

Crossref

. 40
m.Scirp.org 39 words — < /0
0
4
core.ac.uk 38 words — < /o0
www.intechopen.com 37 words — < %

Internet



¢yd bulletin.temple.edu 37 words — <

Internet

xky Scikit-learn.org 36 words — <

Internet

xrdl www.tandfonline.com

Internet

35 words — <

:'A\Crgrenrf)cuat’elrnl/’iséig%— ECCV 2018", Springer Nature 35 words — <
Crossref

?r/]\t/mé\t/.univagora.ro 34 words — <

Iir:?le.rf\ertlthropomatik.kit.edu 33 words — <

hjweide.github.io 33 words — <

Internet

w
©

"Artificial Neural Networks and Machine Learning ~33 words — <
ICANN 2018", Springer Nature America, Inc, 2018

Crossref

"Computer Vision — ECCV 2018 Workshops", 33 words — <
Springer Nature, 2019
Crossref
digitalassets.lib.berkeley.edu
mtgcr’net y 33 words — <
www.ieeespmb.or
Internet p g 33 WordS - <
ﬁtreﬁ'gf org 32 words — <

N. Capp, E. Krome, . Obeid, J. Picone. "Facilitating the annotation

\

\

\

\

\

\

\




B e
(0)) 6))

B &
oo ~

(9] ()] &) (0) o
w N - (@) ©

B B
(&) A

of seizure events through an extensible < 1

visualization tool", 2017 IEEE Signal Processing in 31 words —
Medicine and Biology Symposium (SPMB), 2017

Crossref

academictree.org 31 words — <

Internet

www.int-arch-photogramm-remote-sens-spatial- 31 words — <
inf-sci.net

Internet

doras.dcu.ie 31 words — <

Internet

"Bridging the Semantic Gap in Image and Video <
Analysis", Springer Nature, 2018 30 words

Crossref

Egrnngtentdm.exchange.viterbo.edu 30 words — <
Eti\ﬂtel.archives—ouvertes.fr 30 words — <
:tn(t)e\:\n/eatrdsdatascience.com 30 words — <
I\r/1\t/;/vm\é\t/.scribd.com 29 words — <
ﬁgggero.ch

28 words — <
www.sastechjournal.com 28 words — <

Internet

\

\

\

\

\

\

\

\

%
%
%o

%
%

%
%

%
%

. : - )
Yinda Zhang, Shuhan Yang, Yang Liu, Yexian 27 words — < 1 A)

Zhang, Bingfeng Han, Fengfeng Zhou. "Integration
of 24 Feature Types to Accurately Detect and Predict Seizures



(0)) (@) (0)) o (0)) )] 9] (&) o)
&) H~ w N - © oo ~ (0))

(o))
~

Using Scalp EEG Signals", Sensors, 2018

Crossref

gershmanlab.webfactional.com

Internet

www.hydrol-earth-syst-sci.net

Internet

stanfordhealthcare.org

Internet

eprints.fri.uni-lj.si

Internet

aclweb.org

Internet

www.biorxiv.org

Internet

journal.frontiersin.org

Internet

data.snu.ac.kr

Internet

bfrl.nist.gov

Internet

eprints.whiterose.ac.uk

Internet

Klaus Nordhausen, Hannu Oja. "Independent
component analysis: A statistical perspective",

27 words — <
27 words — <
26 words — <
26 words — <
26 words — <
25 words — <
24 words — <
24 words — <
24 words — <
23 words — <
23 words — <

Wiley Interdisciplinary Reviews: Computational Statistics, 2018

Crossref

%
%
%
%
%
%
%
%
%
%
%

Tim Albrecht, Gregory Slabaugh, Eduardo Alonso, 5o \\ o cqe < 1 %

SM Masudur R Al-Arif. "Deep learning for single-
molecule science", Nanotechnology, 2017

Crossref



\

%
%

ﬁéﬂgmfo 22 words — <

\

Jlansheng Wu, Qiuming Zhang, Wemary Wu, Tao 22 words — <
Pang, Haifeng Hu, Wallace KB Chan, Xiaoyan Ke,

Yang Zhang. "WDL-RF: Predicting Bioactivities of Ligand
Molecules Acting with G Protein-coupled Receptors by

Combining Weighted Deep Learning and Random Forest",
Bioinformatics, 2018

Crossref

"Neural Information Processing”, Springer Nature, 55\ o 4o < 1 %
2017

Crossref

B
(@]
\
o
o=

Ic_gscs:’fgre Notes in Computer Science, 2016. 21 words — <

B
—

N
\
o

o=

g mapi.com 20 words — <

Internet

\
o
NS

~
w

Akira Tanaka, Noz"oml Hata, Nariaki Tateiwa, 19 words — <
Katsuki Fujisawa. "Practical approach to

evacuation planning via network flow and deep learning", 2017
IEEE International Conference on Big Data (Big Data), 2017

Crossref

g4 S. Yang, S. Lopez, M. Golmohammadi, |. Obeid, J. 19 words — < 1 %
Picone. "Semi-automated annotation of signal

events in clinical EEG data", 2016 IEEE Signal Processing in

Medicine and Biology Symposium (SPMB), 2016

Crossref

\

%
%

&y repository.upi.edu 18 words — <

Internet

\

(g "Advances in Multimedia Information Processing — 4g /.o qe <
PCM 2018", Springer Nature America, Inc, 2018

Crossref

: : : 0
yad icheminf.springeropen.com 18 words — < 1 A)

Internet



78

79

H B
—

82

83

84

85

87

88

Signals and Communication Technology, 2015. 17 words — <

Crossref

i 17 words — <

Ozal Ylldl'rl'lm, Ulas Baran Baloglu, U. Rajendra 17 words — <
Acharya. "A deep convolutional neural network

model for automated identification of abnormal EEG signals”,
Neural Computing and Applications, 2018

Crossref

JyxJyufi 17 words — <

Internet

usir.salford.ac.uk
Internet 17 WordS - <

Duo Zhang, Geir Lindholm, Harsha Ratnaweera. 17 words — <
"Use long short-term memory to enhance Internet

of Things for combined sewer overflow monitoring", Journal of
Hydrology, 2018

Crossref

publications.polymtl.ca 17 words — <

Internet

Chen Liang, Xiao Yang, Drew Wham,"B_art Pursel, 17 words — <
Rebecca Passonneaur, C. Lee Giles. "Distractor

Generation with Generative Adversarial Nets for Automatically
Creating Fill-in-the-blank Questions", Proceedings of the
Knowledge Capture Conference on - K-CAP 2017, 2017

Crossref

www.analyticsindiamag.com 17 words — <

Internet

hal.archives-ouvertes.fr 17 words — <

Internet

d-scholarship.pitt.edu

Internet

1%

1%
1%




E B
N LN

9

9

9

(e}
~

3

4

5

Y
o
(@)

epilepsycurrents.org

Internet

ttic.uchicago.edu

Internet

asa.scitation.org

Internet

en.wikipedia.org

Internet

15 words — < 1 %

15 words — <
15 words — <
15 words — <
15 words — <

S. Lopez, A. Gross, S. Yang, M. Golmohammadi, |. 14 words — <

Obeid, J. Picone. "An analysis of two common

reference points for EEGS", 2016 IEEE Signal Processing in

Medicine and Biology Symposium (SPMB), 2016

Crossref

Aatif M. Husain. "Raw versus Processed EEG:
Which One is Better?", Epilepsy Currents, 2018

Crossref

www.ncbi.nim.nih.gov

Internet

"Speech and Computer", Springer Nature, 2017

Crossref

mdp-toolkit.sourceforge.net

Internet

ruder.io

Internet

scholar.sun.ac.za

Internet

www.sourcesignal.com

Internet

14 words — <
14 words — <
14 words — <
14 words — <

\

\

\

\

\

\

\

\

%
%
%
%
%

%

0
13 words — < 1 /0

o
13 words — < 1 A)



13 words — < 1%

espace.library.ug.edu.au 13 words — <

Internet

image-net.org 13 words — <

Internet

Pallgvi Kaushik, Anrr'?ol Gupta, Partha Pratim Roy, 13 words — <
Debi Prosad Dogra. "EEG-Based Age and Gender

Prediction Using Deep BLSTM-LSTM Network Model", IEEE
Sensors Journal, 2019

Crossref

www.mysmu.edu 12 words — <

Internet

Anselmo ?arlcqto, Isabella Melchionda, Massimo 45 \\ 0 qs <
Antonelli. "Continuous Electroencephalography

Monitoring in Adults in the Intensive Care Unit", Critical Care,

2018

Crossref

eprints.nottingham.ac.uk
IntFe)rnet 9 12 words — <

www.geosci-model-dev.net 12 words — <

Internet

R. Schlrrme|ste"r, L. Gemelr), K. Eggensperggr, F. 12 words — <
Hutter, T. Ball. "Deep learning with convolutional

neural networks for decoding and visualization of EEG

pathology", 2017 IEEE Signal Processing in Medicine and Biology
Symposium (SPMB), 2017

Crossref

brage.bibsys.no 12 words — <

Internet

Anan Banharnsakun. "Towards improving the 12 words — <
convolutional neural networks for deep learning

\

\

\

\

\

\

\

%
%
%

%
%

%
%



Y
RN
N

—
-
W

— —_— —
H H B
(©)) (@) s

—_—
—_—
N

using the distributed artificial bee colony method", International
Journal of Machine Learning and Cybernetics, 2018

Crossref

: : " : o
V. Shah, R. Anstotz, l. Obeid, J Picone. " Adapting 11 words — < 1 A)
an Automatic Speech Recognition System to Event

Classification of Electroencephalograms ", 2018 IEEE Signal

Processing in Medicine and Biology Symposium (SPMB), 2018

Crossref

I(r?t[;)rt:)ertmreview.net 11 words — < %
med4you.me 11 words — < 170
www.locus.ufv.br 11 words — < %
I(r?tremrlrige.uminho.pt 11 words — < %
oa.upm.es 11 words — < 1 %

Internet

Syed Umar Amin, M. Shamim Hossain, Ghulam 11 words — < 1 %
Muhammad, Musaed Alhussein, Md. Abdur

Rahman. "Cognitive Smart Healthcare for Pathology Detection

and Monitoring", IEEE Access, 2019

Crossref

L. Veloso, J. McHugh, E. von Weltin, S. Lopez, |. 10 words — < 1 %
Obeid, J. Picone. "Big data resources for EEGs:

Enabling deep learning research", 2017 IEEE Signal Processing

in Medicine and Biology Symposium (SPMB), 2017

Crossref

Indar Sugiarto, Felix Pasila. "Understanding a Deep,IO words — < 1 %
Learning Technique through a Neuromorphic

System a Case Study with SpiNNaker Neuromorphic Platform",

MATEC Web of Conferences, 2018

Crossref



.

wlt) Nn.neurology.org 10 words — <

Internet

—
El
—_—

dblp2.uni-trier.de 10 words — <

Internet

www.m-hikari.com

—
R
N

Internet 10 words — <
Etlirtn)erpan.mpdl.mpg.de 10 words — <
Ltee&ce)tsitorio-aberto.u p.pt 10 words — <
125 ?ﬁYéNmT .cmc.edu 10 words — <
126 ﬁgﬂ?'-ai 10 words — <
llrgi?ngchengom4.github.io 10 words — <
I;r?tlejrlr?eltikationen.suIb.u ni-saarland.de 10 words — <

Wl "Modern Electroencephalographic Assessment 10 words — <
Techniques", Springer Nature America, Inc, 2015
Crossref
130 Li&gtsltory.tudelft.nl 10 words — <
L‘;’:‘l;;[‘”a-” 10 words — <
fn?elfnigus'es 10 words — <

—
w
W

Cheng-Hao Cai, Yanyan Xu, Dengfeng Ke, Kaile Su, Jing Sun.

\

\




— —
H B
(&) B

—
w
(@)

—_—
w
N

Y
w
0

—_— — —_—
HE HH
— (@) ©

—
BN
\)

Y
AN
(OF)

—
I

—
N
(@)

—
o
(@))

"Trainable back-propagated functional transfer
matrices”, Applied Intelligence, 2018

Crossref

nzdementia.org

Internet

www.qucosa.de

Internet

www.seas.upenn.edu

Internet

www.cbica.upenn.edu

Internet

josvanderwesthuizen.github.io

Internet

citeseerx.ist.psu.edu

Internet

atlantic.cps.msu.edu

Internet

aaltodoc.aalto.fi

Internet

epdf.tips

Internet

shareok.org

Internet

baptiste-wicht.com

Internet

github.com

Internet

Yanfei Zhong, Xiaobing Han, Liangpei Zhang.

9 words — < 1%

o
9 words — < 1 A)

9 words — <
9 words — <
9 words — <
9 words — <
9 words — <
9 words — <
9 words — <

9 words — <

9 words — <
9 words — <
9 words — <

9 words — <

\

\

%
%
%
%
%
%
%
%



—
1SN
N

—
o
(0]

—_
1SN
()

—_— — —_—
H B B
N — (@)

— —
H H
B (O8]

—
)]
U1

—
(&)
(®))

—_—
(@)
N

—
(@)
(@)

"Multi-class geospatial object detection based on a position-
sensitive balancing framework for high spatial resolution remote
sensing imagery", ISPRS Journal of Photogrammetry and

Remote Sensing, 2018

Crossref

udspace.udel.edu

Internet

Communications in Computer and Information

Science, 2015.

Crossref

publications.idiap.ch

Internet

www.ies.uni-kassel.de

Internet

www.nap.edu

Internet

lup.lub.lu.se

Internet

sispress.org

Internet

cmuchimps.org

Internet

www.onepetro.org

Internet

psycho.unibas.ch

Internet

ro.ecu.edu.au

Internet

iab-rubric.org

Internet

9 words — <
9 words — <
9 words — <
8 words — <
8 words — <
8 words — <
8 words — <
8 words — <
8 words — <
8 words — <

%
%

%
%
%
%
%
%
%
%

o
8 words — < 1 /0

o
8 words — < 1 A)



- - — —
H H B H
N — (@) ©

—
(0))
(O)

—
(@)
i

—
()]
()]

—
(@)
(©))

—_—
(0))
N

—
(@)
()

—
E
©

—
~
o

- : o)
digitalcommons.fiu.edu 8 words — < 1 A)

Internet

I;r?srziectzles.pericles-prod.Iiteratumonline.c:om 8 words — < 1 %
I(r?tgr-n(ejtemand-gtc.gputechconf.com 8 words — < 1 %
Etczrrngt.ucc.ie 8 words — < %
dspace.cc tut fi 8 words — < 1 %
es.scribd.com 8 words — < %
L\Srln.gniv-lorraine.fr 8 words — < 1 %
Patricia L. Suarez, Angel D. Sappa, Boris X. 8 words — < 1 %

Vintimilla. "Chapter 26 Colorizing Infrared Images
Through a Triplet Conditional DCGAN Architecture", Springer
Nature, 2017

Crossref

. . 40
Igsscs:’gre Notes in Computer Science, 2013. 8 words — < /0
: 40
I\r/]\t/z:a\é\t/.sl|cer.org 8 words — < A)
onlinelibrary.wiley.com 8 words — < { %

Internet

Radenen, Mathieu, and Thierry Artieres. "Handling 7 words — < 1 %
signal variability with contextual markovian models",
Pattern Recognition Letters, 2013.

Crossref



171

Eunbi Seo, Hyun Min Song, Huy Kang Kim. "GIDS: < 10
GAN based Intrusion Detection System for In- 7 words 1 /0
Vehicle Network", 2018 16th Annual Conference on

Privacy, Security and Trust (PST), 2018

Crossref

: : o
Lecture Notes in Computer Science, 2014. 7 words — < 1 Yo

Crossref

Guo, L.. "Automatic feature extraction using genetic6 words — < 1 %
programming: An application to epileptic EEG
classification", Expert Systems With Applications, 201108

Crossref

Helal, Alaa Eldeen Mahmoud, Ahmed Farag Seddik,s \\ 0o < 1 %
Mohammed Ali Eldosoky, and Ayat Allah Farouk

Hussein. "An Efficient Method for Epileptic Seizure Detection in
Long-Term EEG Recordings", Journal of Biomedical Science and
Engineering, 2014.

Crossref

. : . o
V|_n|t Shah, Eva von Weltin, Silvia Lopez, James 6 words — < 1 /0
Riley McHugh, Lillian Veloso, Meysam

Golmohammadi, lyad Obeid, Joseph Picone. "The Temple

University Hospital Seizure Detection Corpus", Frontiers in
Neuroinformatics, 2018

Crossref

: : : : o
Xinyu Li, RaTdaII S. Burd, _Yanyl Zhang, Jianyu 6 words — < 1 A)
Zhang et al. "Progress Estimation and Phase

Detection for Sequential Processes", Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017

Crossref

"Intelligence Science I", Springer Nature, 2017 6 words — < 1 %

Crossref

"Image Analysis and Processing - ICIAP 2017",

Springer Nature, 2017 o
Crossref 6 WordS _ < 1 /O



Seyedmahdad Mirsamadi, John H.L. Hansen. "Multi-o . o < 1 %
domain adversarial training of neural network
acoustic models for distant speech recognition”,
Speech Communication, 2018

Crossref

OFF OFF
OFF



	A34
	By 1 1

	A34
	ORIGINALITY REPORT
	PRIMARY SOURCES


