quick start:g++ [flags ...] file ... -l /isip/tools/lib/$ISIP_BINARY/lib_math_matrix.a #include <MatrixComplexDouble.h> MatrixComplexDouble(long nrows = DEF_SIZE, long ncols = DEF_SIZE, long type = DEF_TYPE); MatrixComplexDouble(const MatrixComplexDouble& matrix);
description:MatrixComplexDouble val0(2, 3, L"1.2-6.5j, 2.5+5.4j, -3.6+4.3j, -4.8-4.2j, -5.1-8j, 6.7-4.6j"); MatrixComplexDouble val1(3, 3, L"1.2-6.5j, 2.5+5.4j, -3.6+4.3j, -4.8-4.2j, -5.1-8j, 6.7-4.6j", Integral::LOWER_TRIANGULAR);
static const String CLASS_NAME = L"MatrixComplexDouble";
static const long ERR = 25100;
static MemoryManager mgr_d;
static const String& name();
static boolean diagnose(Integral::DEBUG debug_level);
boolean debug(const unichar* message) const;
~MatrixComplexDouble();
MatrixComplexDouble(long nrows = DEF_SIZE, long ncols = DEF_SIZE, long type = DEF_TYPE);
MatrixComplexDouble(const MatrixComplexDouble& matrix);
these methods are inherited from the MMatrix template class
MatrixComplexDouble& operator=(const MatrixComplexDouble& matrix);
boolean read(Sof& sof, long tag, const String& name = CLASS_NAME);
boolean write(Sof& sof, long tag, const String& name = CLASS_NAME) const;
these methods are inherited from the MMatrix template class
static void* operator new(size_t size);
static void* operator new[](size_t size);
static void operator delete(void* ptr);
static void operator delete[](void* ptr);
static boolean setGrowSize(long grow_size);
MatrixComplexDouble(long nrows, long ncols, const unichar* arg, long type = DEF_TYPE, const Char delim = DEF_DELIM);
MatrixComplexDouble& operator=(complexdouble value);
#include <MatrixComplexDouble.h> #include <VectorComplexDouble.h> // this example solve a system of equations Ax = b // where A is a complex matrix and b is a complex vector // int main() { // define the complex matrix A, complex vector b // and the resulting complex vector x // MatrixComplexDouble A(3, 3, L"1, 2.0j, -3, -4.0, 0, 1j, 1, 1, 1+1j", Integral::FULL); VectorComplexDouble b(L"-3.9-3j, -5.4+1j, 1.1+3j"); VectorComplexDouble x; // compute the matrix inversion // A.inverse(); // multiply inverse matrix by b, put the result into x // A.multv(x, b); // print the solution // x.debug(L"Solution:"); return true; }