quick start:g++ [flags ...] file ... -l /isip/tools/lib/$ISIP_BINARY/lib_algo.a #include <Prediction.h> Prediction(ALGORITHM algorithm = DEF_ALGORITHM, IMPLEMENTATION implementation = DEF_IMPLEMENTATION, long order = DEF_ORDER, float dyn_range = DEF_DYNAMIC_RANGE); boolean eq(const Prediction& arg); boolean setAlgorithm(ALGORITHM algorithm); boolean setOrder(long order);
description:Prediction lp; VectorFloat input(L"1.0, 2,0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0"); VectorFloat output; lp.set(Prediction::AUTOCORRELATION, Prediction::DURBIN, 4, -40); lp.compute(output, input);
static const String CLASS_NAME = L"Prediction";
enum ALGORITHM { AUTOCORRELATION = 0, COVARIANCE, LATTICE, REFLECTION, LOG_AREA_RATIO, DEF_ALGORITHM = AUTOCORRELATION };
enum IMPLEMENTATION { DURBIN = 0, LEROUX_GUEGUEN, CHOLESKY, BURG, STEP_DOWN, KELLY_LOCHBAUM, DEF_IMPLEMENTATION = DURBIN };
static const NameMap ALGO_MAP = L"AUTOCORRELATION, COVARIANCE, LATTICE, REFLECTION, LOG_AREA_RATIO";
static const NameMap IMPL_MAP = L"DURBIN, LEROUX_GUEGUEN, CHOLESKY, BURG, STEP_DOWN, KELLY_LOCHBAUM";
static const String DEF_PARAM = L"";
static const String PARAM_ALGORITHM = L"algorithm";
static const String PARAM_IMPLEMENTATION = L"implementation";
static const String PARAM_ORDER = L"order";
static const String PARAM_DYN_RANGE = L"dynamic_range";
static const long DEF_ORDER = -1;
static const float DEF_DYNAMIC_RANGE = (float)-100.0;
static const AlgorithmData::COEF_TYPE DEF_COEF_TYPE = AlgorithmData::CORRELATION;
static const long ERR = (long)71100;
static const long ERR_DYNRANGE = (long)71101;
static const long ERR_BETA = (long)71102;
static const long ERR_ENERGY = (long)71103;
static const long ERR_PREDERR = (long)71104;
ALGORITHM algorithm_d;
IMPLEMENTATION implementation_d;
long order_d;
float dyn_range_d;
static MemoryManager mgr_d;
static const String& name();
static boolean diagnose(Integral::DEBUG debug_level);
boolean debug(const unichar* message) const;
~Prediction();
Prediction(ALGORITHM algorithm = DEF_ALGORITHM, IMPLEMENTATION implementation = DEF_IMPLEMENTATION, long order = DEF_ORDER, float dyn_range = DEF_DYNAMIC_RANGE);
Prediction(const Prediction& arg);
boolean assign(const Prediction& arg);
Prediction& operator= (const Prediction& arg);
long sofSize() const;
boolean read(Sof& sof, long tag, const String& name = CLASS_NAME);
boolean write(Sof& sof, long tag, const String& name = CLASS_NAME) const;
boolean readData(Sof& sof, const String& pname = DEF_PARAM, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false);
boolean writeData(Sof& sof, const String& name = DEF_PARAM) const;
boolean eq(const Prediction& arg) const;
static void* operator new(size_t size);
static void* operator new[](size_t size);
static void operator delete(void* ptr);
static void operator delete[](void* ptr);
static boolean setGrowSize(long grow_size);
boolean clear(Integral::CMODE ctype = Integral::DEF_CMODE);
boolean setAlgorithm(ALGORITHM algorithm);
boolean setImplementation(IMPLEMENTATION implementation);
boolean setOrder(long order);
boolean setDynRange(float dyn_range);
boolean set(ALGORITHM algorithm = DEF_ALGORITHM, IMPLEMENTATION implementation = DEF_IMPLEMENTATION, long order = DEF_ORDER, float dyn_range = DEF_DYN_RANGE);
ALGORITHM getAlgorithm() const;
IMPLEMENTATION getImplementation() const;
long getOrder() const;
float getDynRange() const;
boolean get(ALGORITHM& algorithm, IMPLEMENTATION& implementation, long& order, float& dyn_range) const;
boolean compute(VectorFloat& output, const VectorFloat& input, long index = DEF_CHANNEL_INDEX, AlgorithmData::COEF_TYPE input_coef_type = DEF_COEF_TYPE, long index = DEF_CHANNEL_INDEX);
boolean compute(VectorFloat& output, const MatrixFloat& input, long index = DEF_CHANNEL_INDEX, AlgorithmData::COEF_TYPE input_coef_type = DEF_COEF_TYPE, long index = DEF_CHANNEL_INDEX);
boolean compute(VectorFloat& output, float& err_energy, const VectorFloat& input, long index = DEF_CHANNEL_INDEX, AlgorithmData::COEF_TYPE input_coef_type = DEF_COEF_TYPE, long index = DEF_CHANNEL_INDEX);
boolean compute(VectorFloat& output, float& err_energy, const MatrixFloat& input, long index = DEF_CHANNEL_INDEX, AlgorithmData::COEF_TYPE input_coef_type = DEF_COEF_TYPE, long index = DEF_CHANNEL_INDEX);
boolean assign(const AlgorithmBase& arg);
boolean eq(const AlgorithmBase& arg) const;
const String& className() const;
boolean init();
boolean apply(Vector<AlgorithmData>& output, const Vector< CircularBuffer<AlgorithmData> >& input);
boolean setParser(SofParser* parser);
boolean readDataCommon(Sof& sof, const String& pname, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false);
boolean writeDataCommon(Sof& sof, const String& pname);
boolean computeAutoDurbin(VectorFloat& output, float& err_energy, const VectorFloat& input);
boolean computeCovarCholesky(VectorFloat& output, float& err_energy, const MatrixFloat& input);
boolean computeLatticeBurg(VectorFloat& output, float& err_energy, const VectorFloat& input);
boolean computeReflectionStepDown(VectorFloat& output, const VectorFloat& input);
boolean computeLogAreaKellyLochbaum(VectorFloat& output, const VectorFloat& input);
Prediction lp; VectorFloat input; VectorFloat pred_coef; // use the following data as input: // // x(n) = 0 when n = 0, 1, 2, 3; // x(n) = 1*pow(0.99, n-4) - pow(0.99, 2(n-4)), when 4 <= n < 20; // x(n) = 0 when n = 20, 21, 22, 23 // input.setLength(24); double z = 1; for (long i = 4; i < 20; i++) { input(i) = 2 * z - z * z; z = 0.99 * z; } // set the order, algorithm and dynamic threshold // long order = 4; float dyn_range = -60; lp.set(order, Prediction::LATTICE, Prediction::BURG, dyn_range); // compute the prediction coefficents // lp.compute(pred_coef, input, AlgorithmData::SIGNAL, long(0));