Hello, I am Sanjay Patil. I am into my second year of doctoral studies. I am working with the NSF funded Nonlinear Statistical Modeling of Speech project. With the idea of doing fundamental research in nonlinear modeling of speech, we are probing different options of statistical modeling. With the past efforts, we have HMM based ASR, and research in SVMs and RVMs. In search for better options, we are attempting the nonlinear modeling of speech.  The intention is to satisfy one (or all) of the criterions of:

1. having a nonlinear statistical model of speech which gives better performance as compared to the prevailing linear modeling techniques,
2. having a nonlinear statistical model of speech which will parsimoniously represent the speech signal as compared with  the prevailing linear models with no compromise on the performance side.

In doing so, we would like the research community to know a few more details of nonlinear modeling techniques. This month’s tutorial will explain the basics of particle filtering, which has been one of the strong contenders for state/ model representation in nonlinear domain.

Hello, I am Sanjay Patil. I am a second year Doctoral Student and am currently working on the NSF funded Nonlinear Statistical Modelling of Speech project. With the idea of doing fundamental research in nonlinear modeling of speech, we are probing different options to statistical model the speech signal. We have our HMM based speech recognition system giving excellent performance. Now, we intend to implement a variation into speech recognition system. We are probing different options in order to find better options to do so. The intention is to satisfy one of the criterions:

3. have a nonlinear statistical model of speech which gives better performance as compared to the prevailing linear modeling techniques
4. have a nonlinear statistical model for speech which will parsimoniously represent the speech signal as compared with  the prevailing linear models without affecting the performance baseline.
In doing so, we would like the research community to know a few more details of nonlinear modeling techniques. This month’s tutorial will explain the basics of particle filtering, which has been one of the strong contenders for state/ model representation.
Actual tutorial:
Quick Overview of modeling technique:

While working on system modeling, the idea is to find a parameter which is unknown or hidden. To estimate the unknown state, the observations are taken. These observations aren’t usually exact representation of the unknown because of noisy conditions. As the state can only be estimated based on these dirty observations we have to model and verify and reestimate the state based on these observations along with other assumptions.
Consider Xj to be the state to be calculated for jth instant, Yi to be the observation taken at ith instant, then, we can have one of three setups for calculation:

1. for j < i, a case of smoothing. Such an implementation has to be offline.
2. for j = i, a case of filtering, which can be implemented online.

3. for j > i, a case of prediction, which can as well be implemented online.

For the options 2 and 3, i.e, for filtering and prediction, the value of the state can be estimated in real time. Thus, a technique – sequential signal estimation – can be implemented. Usually, the state is estimated and then verified with the actual, to go ahead to estimate the state for the next time instant as the observations become available.

As in for practical applications of nonlinear systems, it is very difficult to have the exact filtering or prediction equations ready before the system in running. The best way is to approximate such a system by use of probability functions, using a Bayesian representation. Most of the systems are dynamic and modeled by the discrete time state-space equations:


Xt 
= 
At ( xt-1, ut)  
………………… eqn(1)

Yt 
= 
Bt(xt, vt)
………………… eqn(2)
The eqn (1) is called the state equation with the term At being state transition model, Ut is the process noise associated with the state. In case At is linear term then the system is a linear system, or else, it is a nonlinear system.

The second equation, eqn(2), is called the observation equation with Bt being the observation transfer function model. Vt is the observation noise associated. The system can be modeled with Gaussian distribution or otherwise. which can be evolving model.
Thus, we have clearly four variations available for the state-space equations:

1. Linear, Gaussian

2. Linear nonGaussian

3. Nonlinear Gaussian

4. Nonlinear, non-Gaussian.

The level of difficult in solving for the system increases as we travel through linear, Gaussain to nonlinear, non-Gaussian. 

Till recently, Kalman filtering techniques or its variants were used for the system modeling. The Kalman filtering technique works by linearizing the nonlinearities and using the Gaussian approximation. Though the results approximate with a degree with the actual values, still there are cases wherein the techniques try to over simplify the system model. Hence, not always can such an approximation help to predict the state, and justify the solution. 

Various application areas, for example, tracking of objects in video sequences, robot navigation, and car positioning using map information, require more accurate modeling of the system. It is in this light that particle filtering needs to be understood.
The idea behind this tutorial is to give the readers a peep-into the methodology behind particle filtering, and help them appreciate one of the many methods of nonlinear statistical modeling.

The two system equations are represented in terms of the probability distributions as  Bayesian filters can be written as

P(xK|xK-1) for the state equation

P(yK|xK) for the observation equation.

These density functions need not be Gaussian. 

With particle filtering technique, the probability distributions are revealed by drawing samples from it. Hence, the samples (henceforth called as particles and hence this technique is called particle filtering) represent the density function. More the samples better we are representing the equations.
The drawing of samples to represent the distribution is inspired from the technique called Monte Carlo techniques. Boostrap algorithm, the condensation algorithm, interacting particle approximations, survival of the fittest algorithm all represents the same class of Monte Carlo techniques. 

Let us have a close look at the equations stated above,

The probability distribution p(x) models our prior knowledge of x, while p(y|x) represents the conditional probability distribution of observation given the state. 
Using the bayes theorem and simplifying the equation, 
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In the above equation, the posterior can be completed represented.  But each of the terms for prior and evidence are gotten by integrating the previous terms. Hence, posterior requires finding solutions to the intractable integrals. If the integrals are converted into summations, then there stands a possibility of getting a solution. Integrals can be discretized by drawing samples each drawn close to the other. Hence, particle filtering seems to be a viable approach to reach the posterior. As we are discretizing the system equations, it is an approximate computational technique.
For the samples to truly represent the distribution from which it is drawn, it needs to be weighed accordingly. So, for randomly drawn samples to represent the distribution, we need to drawn properly weighted sample count.
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Figure 2. Each circle denotes the sample with the diameter of the circle denoting the weights associated with that particle.
In most of the cases, the posterior distribution (let us call this distribution as target distribution) is very difficult to sample from, hence some other distribution which can mimic the target distribution is considered. The mimicking distribution is called proposal distribution. The relationship between the mimicked distributions with the mimicking one is called as importance function. The proposal distribution is selected such that the samples can easily be drawn from it.

Now let us understand the steps in Generic Particle filter algorithm –

1. create particles from the initial state distribution p(xo).

2. predict the current state from these particles using the state equation,

3. compute the weights associated with each particle using the likelihood function (proposal distribution) as the weighting function and the current observation.

4. continue with the steps 2 and 3, till all the observations are exhausted. 

5. In most of the cases, before going back to step 2 again, the particles are redistributed within the same distribution. This avoids degeneracy problem.

Figure 3. The flow of particles to initial distribution to the predict stage into update stage and resample stage, back to the predict stage till all the samples are exhausted.

A lot of variations to particle filtering are possible, by changing the importance function, or by changing the resampling procedure, or by involving some heuristics into the process. 
Particle filtering seems to be the good approximate computational alternative for solving nonlinear, non-Gaussian model. The estimate becomes asymptotically optimal as the number of particles goes to infinity. The solutions are easy to formulate as the user can define the proposal distribution, thus the multi-modal distributions are not a problem.

Even with the above advantages, the particle filtering technique is said to involve significant computational time, and how large the count of particles is large enough cannot be easily answered. 

Inspite of all these demerits, particle filters are being used in variety of applications, mostly associated with tracking of objects. 
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