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 INTRODUCTORY LESSON

The one dimensional Kalman Filter

Suppose we have a random variable, x(t), whose value we want to estimate at certain times 
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Also, suppose we know that 
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In the above equation ( is a known number.   For an example we will use 0.9    

u(k) is a random number selected by picking a number from a hat.   Suppose the numbers in the hat are such that the mean of u(k) = 0 and the variance of u(k) is Q.  For an example, we will take Q to be 100.   u(k) is called white noise, which means it is not correlated with any other random variables and most especially not correlated with past values of u.

Now suppose that at time 
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 someone came along and told you he thought 
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 but he might be in error and he thinks the variance of his error is equal to P. 

Suppose that you had a great deal of confidence in this person and were therefore convinced that this was the best possible estimate of 
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Where E is the expected value operator .   
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 is the actual value of x at time 
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 is our best estimate of x.

For the example, we will take P = 40,000.  

Now we would like to estimate 
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Dr. Kalman says our new best estimate, 
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or in our example 900.   Do you see why Dr. Kalman is right.   We have no way of estimating u(0) except to use its mean value of zero.   How about 
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 would be 900.   If our initial estimate was high, then our new estimate will be high but we have no way of knowing whether our initial estimate was high or low (if we had some way of knowing that it was high than we would have reduced it).  So 900 is the best estimate we can make.

What is the variance of the error of this estimate?
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The last term is zero because u is assumed to be uncorrelated with 
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For our example, we have
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 = 40,000 X .81 + 100 = 32,500 

Now, let us assume we make a noisy measurement of x.  Call the measurement y.
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Where  w is white noise with variance, R, and M is some number.  We will use for our example

M = 1,  R= 10,000 and y(1) = 1200  

Notice that if we wanted to estimate y(1) before we look at the measurement we would use 
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Dr. Kalman says the new best estimate of 
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where K is a number called the Kalman gain

Notice that 
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 is just our error in estimating y(1).   For our example, this error is equal to plus 300.  Part of this is due to the noise, w, and  part to our error in estimating x.   If all the error were due to our error in estimating x, then we would be convinced that 
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 was low by 300.   But since some of this error is due to w, we will make a correction of less than 300 to come up with 
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.   What value of K should we use?   Before we decide, let us compute the variance of the error
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Where the cross product terms dropped out because w is assumed to be uncorrelated with x and 
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So the newer value of the variance is now given by
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Make sure you understand the notation we are using
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P is the variance of the error in 
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 is the variance of the error in 
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If we want to minimize the estimation error we should minimize the value of P in equation 5.   We do that by differentiating P with respect to K and setting the derivative equal to zero and then solving for K.   A little algebra shows that the optimal K is given by
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For our example, K = 0.7647
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These are the five equations of the Kalman filter.   At time 
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, we start again using 
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 to be the value of 
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 to insert in equation 1 and the new value of P as P in equation 2.   then we calculate K from equation 4 and use that along with the new measurement y(2) in equation 3 to get another estimate of x and we use equation 5 to get the corresponding P.   And this goes on computer cycle after computer cycle.

In the multi-dimensional Kalman filter, x is a column matrix with many components.   For example if we were determining the orbit of a satellite, x would have 3 components corresponding to the position of the satellite and 3 more corresponding to the velocity plus other components corresponding to other random variables.

Then equations 1 through 5 would become matrix equations and the simplicity and intuitive logic of the Kalman filter becomes obscured.   The remaining lessons deal with the more complex nature of the multi-dimensional Kalman filter.

PREFACE  (REVISED  7/17/99)

The purpose of this preface is to establish the notation I will be using and to ensure that the reader has the correct math background.   The reader is assumed to be familiar with matrix algebra.

We will be dealing with nX1 column Matrices (sometimes we will call a column matrix a vector).   Say x is a column vector.  We are interested in the value of x at particular times  EQ t\s\do6(1), t\s\do6(2), t\s\do6(3), etc.

We call the value of x at time  EQ t\s\do6(k) , x(k).   The components of x(k), we will call  EQ x\s\do6(1)(k), x\s\do6(2)(k), etc. Frequently the components of x(k) will be random variables.

We will denote the expected value of  EQ x\s\do6(i)(k) (i.e. the mean of  EQ x\s\do6(i)(k)) by E EQ x\s\do6(i)(k)
 Ex(k) is the vector whose components are Error! Bookmark not defined.,  EQ E x\s\do6(2)(k), etc.   Often we are interested in vectors that have zero means 

( i.e. Ex(k) =0)

We will call the transpose of x,  EQ x\s\up6(T) .

Suppose x has zero mean.   Now consider the product of x and  EQ x\s\up6(T) , 

 EQ xx\s\up6(T)  is an nXn matrix 

Let P = E EQ xx\s\up6(T) . 

P is called the covariance matrix of x.   The i,jth component of P,  EQP\s\do6(ij)   is equal to

 EQ P\s\do6(ij)(k) = E x\s\do6(i)(k) x\s\do6(j)(k)
Notice that the terms on the main diagonal of P,  EQP\s\do6(ii)  are just the variances of the  EQ x\s\do6(i).   The off diagonal terms are called the covariances.  The covariance  EQ P\s\do6(ij) is related to the correlation coefficient between  EQ x\s\do6(i)  and  EQ x\s\do6(j) .

If you can follow the above notation then you have a sufficient math background to learn Kalman filtering.

Lesson 1

The Problem

Let us start with the basic problem:

We assume a linear system (if it is non-linear we will linearize it later).

The linear system has a state vector called x.   If you were trying to determine the orbit of a satellite, the state vector's components would include the satellite's position and velocity.   It could also include the biases in the tracking radar and the uncertainties in the constants describing the earth's gravitational field, etc.   Choice of the right state variables is a critical problem in Kalman filter design and we will discuss that further later.

We are interested in x at times   EQ t\s\do6(1), t\s\do6(2), t\s\do6(3), etc.   The usual notation is to call these values x(1), x(2), x(3), etc.

We assume that 
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Where ((k) is called the state transition matrix and u(k) is a random disturbance.   (In lesson 3 we will show you an example of a state transition matrix)

u(k) is assumed to have zero mean and to be white noise (i.e. u(k) is independent of u(j) if k does not equal j).   The covariance matrix of u(k) is called Q(k).

We also assume that at times  EQ t\s\do6(1), t\s\do6(2), t\s\do6(3), etc. we make measurements y(1), y(2), y(3), etc.

Where the measurements are a linear function of x.   Again we will deal with non-linear cases later.

y(k) = M(k) x(k) +w(k)

where M(k) is the measurement matrix and w(k) is the measurement noise; assumed to be white noise with zero mean with a covariance matrix called R(k). (Again, we will give you an example in lesson 3)

The Kalman filter is an algorithm used to estimate x(k) from the 

measurements, y.

Lesson 2

Filter Equations

Our goal is to compute an estimate of x(k).   Call the estimate 
[image: image41.wmf](k)

x

ˆ

.   The hat over the x indicates it is the estimate.

The centerpiece of a Kalman filter is the computation of the covariance matrix of the error in estimating x.   Call the covariance matrix P.

The Kalman filter begins with an initial guess at x.    This is called the a priori estimate and is denoted 
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.
Its error covariance matrix is P(0).   In most problems it doesn't matter where your a priori estimate comes from.   Make a wild guess and put in large values along the main diagonal of P(0).   Sometimes it does matter and we will treat the a priori estimate more carefully later.

Now we want to estimate x(1).   Kalman says that we can extrapolate from our estimate of x(0) using the following equation
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We are using the notation of a bar over the x to indicate that this is an extrapolation from 
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 and we have not included any new measurement data yet.

To simplify the notation we will drop the arguments and write
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The error covariance matrix of the new 
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where 
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Again dropping arguments we have
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Now, we take a measurement y(1).   Kalman says the new optimal estimate is

where K is the "Kalman filter gain".   The optimal gain can be computed from the following equations
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The new 
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 has an error covariance matrix, which can be computed by
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The Kalman filter consists of repeated use of equations 1 through 5 for each measurement.

In text books you often see equation 5 simplified to
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This is a bad simplification.   It is true that if K is given by equation 4, then equation 5 simplifies to equation 5 BAD.   However, even the smallest error in computing equation 4 (due to round off say) can lead to horrific errors when using equation 5 BAD.   The original equation 5 is numerically stable and yields correct answers even when K is inaccurate.   Equation 5 BAD is numerically unstable and can lead to catastrophic errors.   This was a real problem in the 1960's and caused many problems in Kalman filter design.   For more information see the book by Bucy and Joseph.

In lesson 5, we will derive equations 2 and 5.  The installment after that will derive the remaining equations.

Lesson 3

A Simple Example

Before we derive the Kalman filter equations let us work a very simple example.

Suppose we have an airplane.   Call its altitude at time 
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.  Call its vertical velocity 
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 are the first and second components  of the vector x(k) which in this simple example has only 2 components. 
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Suppose the airplane has an accelerometer which measures its vertical acceleration.   Call the accelerometer measurement 
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Here g is the acceleration due to gravity (accelerometers don't sense gravity).

v is the error in the measurement.   For the sake of simplicity we will assume the error is white noise.   In real accelerometers the error is much different from white noise but for the sake of simplicity assume it is white noise.    By white noise we mean that the value of v at time 
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 is completely independent of the value of v at any other time and that it is completely independent of any other variable in the problem.    White noise also means that v has zero mean.

v has a non-zero standard deviation.   Let us assume that it is 0.1 ft/sec/sec.   Then the variance of v is 0.01

Let us assume that the measurement times are made at .5 second intervals so that 
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We can now write
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In matrix form and dropping the k arguments
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where 
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In lesson 1 we had the equation 
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  without the h term.   It would have been better if we had included the h term in lesson 1.   The only change in the resulting Kalman filter equations is that equation 1 of lesson 2 becomes
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Proceeding with our example.   Assume the airplane has an altimeter and that every .5 seconds we make a measurement, y.
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Where w is the error in the measurements.   Again we will assume that w is white noise.   Real altimeters have other errors beside white noise but white noise is not an unreasonable first model.   Assume the standard deviation of w is 100 feet.   Then the variance of w is 
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In matrix form 

y  = Mx + w

Where 
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M only has one row.  y and w are one by one matrices (or just ordinary numbers)

The covariance matrix Q has components

[image: image103.wmf]]

(Kw)

)

x

(x

KM)

E[(1

2

2

2

+

-

-

=


[image: image104.wmf]2

2

RK

KM)

(1

P

+

-

=


[image: image105.wmf]5)

 

(Equation 

       

RK

KM)

(1

P

P

2

2

+

-

=


The covariance matrix, R, is a one by one matrix whose value is 
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In the next lesson we will process some  measurements with this Kalman filter.

               LESSON 4

           Numerical Results

Let us assume the pilot turns on the system during flight.   He guesses his altitude as 10,000 feet and his altitude rate as zero.

Therefore, set
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He guesses that his error in estimating altitude has a standard deviation of  1000 feet and his error in estimating altitude rate has a standard deviation of 5 feet/sec.

Therefore set 
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We will assume the errors in altitude and altitude rate are uncorrelated and therefore 
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Now begin the Kalman filter.   If our first accelerometer measurement is  

and if we use 

g= - 32
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then using equation 1A (from lesson 3) yields
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Equation 2 yields
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You can do these computations by hand since the matrices are only 2 dimensional but you are better off writing a computer program.   After all, the Kalman filter is an algorithm intended to be programmed on a digital computer.   If you are going to learn to use Kalman filters you ought to get used to programming them.   My Kalman filter is programmed in Visual Basic.   The visual part is no help so you could just as well use QBasic.   If you use Basic you will need to write subroutines to add, multiply, transpose, and invert matrices.   If you limit you inversion routine to 1,2,or 3 dimensional matrices it will be much simpler and will be good enough for most problems.   If you have Mathematica or Matlab things will be much easier but they are  expensive.

Equation 4 of the Kalman filter yields
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for the Kalman gains

Assume that our first altimeter measurement is 

y(1) = 11,000 feet

Then equation 3 yields
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Notice that we had to compute equation 4 before equation 3.

Finally equation 5 yields the newest covariances
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We now return to equations 1A and 2 again

I will just give the results of equation 2

[image: image113.wmf]5

2

1

10

1.2376

K

.990099

K

-

´

=

=


Then we use equations 4, 3 and 5 again.   I will just give the result of equation 5
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Notice that 
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, the altitude variance is decreasing nicely but that 
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 has hardly decreased at all.   Even after 6.5 seconds 
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 is still 22.47 ,it takes a long time to estimate altitude rate.

After 2 or 3 minutes, the covariances settle down to their steady state values corresponding to an altitude error standard deviation of 14.9 ft. and an altitude rate error standard deviation of 0.47 ft./sec.

Let us notice something about this example.   The first value of 
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 that we computed was about .99   If we had decided that our error in our a priori estimate was 10,000 ft instead of 1000 ft., 
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 would have been even closer to one.   Suppose that through some error 
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 had been rounded up to one.   Then the use of equation 5 would have resulted in 
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 being computed as 10,000 instead of the 9901 that we computed earlier.   If we had used equation 5BAD  instead of equation 5, we would have gotten 
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 = 0.   That could be a disaster.   The Kalman filter thinks it knows the altitude perfectly.   This may lead the Kalman filter to make ridiculous estimates in the future.

If 
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 had been rounded to 1.01, then 
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 computed by equation 5BAD would have turned out negative which is even worse.

Moral: never use equation 5BAD

THE REMAINING LESSONS

I urge you to puchase the remaining lessons for $8.95.

You can send a check to

Peter Joseph

2740 W. 233 St.

Torrance, CA 90505

Or you can pay over the internet by going to PayPal.com

The advanced topics covered in the remaining lessons include:

We will deal with NON-WHITE NOISE

So far we have assumed that u and w are white noise.  There are 2 lessons on how to generalize the Kalman filter to include noise which is not white.

Then we will deal with STABILITY AND DIVERGENCE.   

Many people have had the experience of building Kalman filters that seemed to work all right for a while but whose estimates gradually got worse and worse until they became ridiculous.   These people described their experience as "the divergence of the Kalman Filter".   Let us be perfectly clear.   Properly designed Kalman filters do not diverge.   The lessons on this topic will point out the types of design mistakes that lead to divergence.   Once you understand these mistakes you will have no trouble designing Kalman filters that are stable.

The next advanced topic will be NON-LINEAR SYSTEMS.   

Kalman filters are intended to work on systems which are governed by linear equations.   Many systems in nature obey non-linear equations.   A strategy which is highly successful in dealing with this difficulty is to linearize the equations.   In these lessons, I will show you how to linearize a non-linear problem

Another topic is SUB-OPTIMAL FILTERING.

The Kalman filter is an optimal filter.   The filters you will build will not be optimal.   Consider for example, you might think your altimeter's error has a standard deviation of 100 feet.   But you might be wrong.   Maybe it is 120 feet.   The filter you designed based on 100 feet is not optimal.   How bad is it?   In these lessons, I will show you how to determine this.

Topic five will be DELIBERATE SIMPLIFICATION.   

This topic is closely related to the previous one.   We will deliberately choose a sub-optimal filter because it is simpler than the optimal one.   This is a necessity.   The world is a very complicated place.   We must use simplified models if we are going to fit them into a computer with finite size and speed.  In these lessons I will try to help you with the simplification problem.

Topic 6  TESTING AND SIMULATION.   

We will want to test our filter in a controlled environment before we use it.   In these lessons we will learn how to build a computer simulation of the world and use it to test our filter.

DERIVATIONS

I include the mathematical derivations of the Kalman filter and the proof it is optimal.  I think it is interesting but you can skip it if you don't enjoy mathematical proofs.

Seven Additional lessons on MODERN LINEAR CONTROL THEORYwill be included.
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