Notes on Kalman filtering and it’s use for Robust Speech Recognition:
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Kalman filtering is a popular tool in the research community for estimating non-stationary processes when it is possible to model the system dynamics by linear behavior and Gaussian statistics [1].  Previously, Kalman filters have been applied for speech enhancement applications when the corrupting process was additive white Gaussian noise [2]. We now have a working implementation of the Kalman filter and plan to use it in our feature extraction front-end for robust speech recognition.  It is hoped that use of the Kalman filter as a non-stationary process estimator will enable us to recover clean features from noisy observations and will increase noise robustness of our baseline recognition system.
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In the above illustration, x(n) is the state vector, y(n) is the noisy observation and s(n) is the estimated clean signal based on an estimate of the state generated by the noisy observation. 

The following document summarizes the Kalman filtering algorithm as used in a ‘recursive-filtering’ problem. Note that all variables with a cap (^) refer to filtered (a posteriori) estimates while variables with a superscript (-) refer to predicted estimates (not containing the information contained in the most recent observation sample). 

Kalman filters are linear recursive filters where a Gaussian random (state) vector is propagated through a linear state space model. The objective is to find a ‘filtered’ estimate of the state vector, x at time k, represented as a linear combination of the measurements up to time k such that the following quadratic cost function [3] is minimized:
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where M is a symmetric nonnegative definite weighting matrix.

A summary of the sequence of recursive equations for the one-step Kalman filter algorithm:
1. System Dynamical Model:
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2. Measurement Model:
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3. State Prediction:
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4. Error Covariance Extrapolation:

                 
[image: image11.wmf]11

kkk

Q

--

=+

-+T

PFPF


5. State Estimate Observational update:
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6. Error Covariance update:
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7. Kalman Gain update:
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8. Estimate of the Clean (filtered) Signal:
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These are the steps (numbered in the same sequence as that required by the algorithm) for implementing a recursive Kalman filter. Please refer to ‘kalman.m’ at /hse/ies/projects/nsf_nonlinear/downloads/software/matlab/kalman_filter/ for a reference implementation in Matlab.
As a useful debugging tool, it is useful to note that at the covariance matrix update (steps 4 and 6), we can check the resultant error covariance matrix for symmetry and positive definiteness. Failure to attain either condition is a sign that something is wrong – either a bug or an ‘ill-conditioned’ problem. In order to overcome ill-conditioning (a system that is badly sensitive to the input data), another equivalent expression for 
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 (called the Joseph form [3]) is:
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Some key reasons for realization of ill-conditioned Kalman filtering problems:

1. Large uncertainties in the values of the matrix parameters F, Q, H, or R. Such modeling errors are not incorporated in the formulation of the Kalman filtering algorithm. 

2. Large ranges of the actual values of these matrix parameters (remember when we were getting a diverging KF implementation --- the AR coefficients used in the F matrix were coming out to be large numbers, because they were not being computed over a short stationary frame). 
3. Ill-conditioning induced by matrix inversion in the Kalman gain update formula.

4. Large matrix dimensions – the complexity grows as cube of the matrix dimension and the round-off errors can grow exponentially.
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