
Evaluating Example-based Search Tools
Pearl H. Z. Pu

Human Computer Interaction Group
Faculty of Information and Communication Sciences

Swiss Federal Institute of Technology
1015 Lausanne, Switzerland

Tel: +41-21-6936081
pearl.pu@epfl.ch

Pratyush Kumar
Human Computer Interaction Group

Faculty of Information and Communication Sciences
Swiss Federal Institute of Technology

1015 Lausanne, Switzerland
Tel: +41-21-6936656

pratyush.kumar@epfl.ch

ABSTRACT
A crucial element in consumer electronic commerce is a catalog
tool that not only finds the product for the user, but also convinces
him that he has made the best choice. To do that, it is important to
show him ample choices while keeping his interaction effort
below an acceptable limit. Among the various interaction models
used in operational e-commerce sites, ranked lists are by far the
most popular tool for product navigation and selection. However,
as the number of product features and the complexity of user’s
criteria increase, a ranked list’s efficiency becomes less
satisfactory. As an alternative, research groups from the
intelligent user interface community have developed various
example-based search tools, including SmartClient from our
laboratory. These tools not only perform personalized search, but
also support tradeoff analysis. However, despite the academic
interest, example-based search paradigms have not been widely
adopted in practice.
We have examined the performance of such tools on a variety of
tasks involving selection and tradeoff. The studies clearly show
that example-based search is comparable to ranked lists on simple
tasks, but significantly reduces the error rate and search time
when complex tradeoffs are involved. This shows that such tools
are likely to be useful particularly for extending the scope of
consumer e-commerce to more complex products.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – evaluation/methodology, user-centered design.

General Terms
Performance, Experimentation, Human Factors.

Keywords
Empirical user study, personalized search with decision support,
example-based interface, e-commerce, decision tradeoff, product
comparison.

1. INTRODUCTION
A crucial element in consumer electronic commerce is a catalog
tool that not only finds the product that best matches the user’s

needs (personalization), but also convinces him that he has made
the best choice (decision support). Personalization is believed to
play a key role in converting site visitors to buyers in B2C e-
commerce environments [6], while decision support has been
considered important for choice problems. However, most search
tools used today either provide little support for personalization
and decision analysis, or require such a significant interaction
effort that users stay away from them. By far, the most common
tool is that of a ranked list: products that match the initial request
are shown in increasing order of a quantitative attribute, most
often price. This paradigm has the advantage that it is easy to
implement and gives the user an impression of control over the
selection process. Ranked lists provide decision support only for
one criterion at a time. However, when user’s preferences are a
combination of multiple and possibly conflicting criteria, the
ranked list’s efficiency becomes less satisfactory.
A more advanced search tool should provide decision support for
any number of criteria. This requires eliciting a preference model
from users, including identifying the criteria to be used for
evaluation (criteria enumeration) and how they influence the
decision outcome (value function). Traditional elicitation
approaches have required users to answer a fixed set of need or
preference assessment questions in a fixed order. This practice has
been found undesirable because users’ decision process is highly
adaptive [10] and thus their initial preferences can be uncertain
and erroneous, they may lack the motivation to answer
cognitively and psychologically demanding questions prior to any
perceived benefits [18], they may not have the domain knowledge
to answer the questions correctly [15], or any combination of
these factors. We believe that the preference elicitation process
must be an integral part of the search process. Our treatment of
personalization and decision support is therefore to provide an
intelligent interface to help users construct and reveal their true
preferences, and resolve conflicting desires.

The following are further explanations of a set of requirements for
such a search tool and its interface:

Decision uncertainty comes from not only the adaptive nature of
decision, but also users’ lack of domain knowledge. For example,
even though a user knows that he has to be in Hamburg by 2pm,
he may not be able to articulate a preference for the departure
time because he has no idea how long the total travel duration is.

Some preferences may become relevant only in certain contexts.
For example, a user will not likely express a preference for
intermediate airports unless the catalog shows that that all flights
transit somewhere. Only then would he evaluate whether Munich,
Frankfurt, or London is a more desirable airport for a stopover.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EC’04, May 17–20, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-711-0/04/0005…$5.00.

208

Search tools must also manage preference conflicts. A user who
put in a query for a spacious apartment with a low price range and
got “nothing found” as a reply learns very little about how to state
more suitable preferences. On the other hand, showing apartments
which partially satisfy his budget and spatial needs explains the
compromises required to meet his preferences.

Finally, because users’ decision objectives vary and depend on
partial search results, their expression of preferences is often not
compatible with a fixed order of questions imposed by a search
tool. Pu and Faltings [13] explained that a rigid elicitation order
would lead users to state preferences for means objectives, rather
than fundamental ones. This is considered as a less optimal
decision strategy [7]. For example, suppose that a traveler lives
near Geneva, and wants to be in Frankfurt by 3:00 pm (his
fundamental objective). However, if he was asked to state
departure time first, he would have to formulate a means
objective. Unfamiliar with the available flights, he can only
estimate the correct departure time, say 9 am. In this case, he
would have missed the non-stop flight that leaves Geneva at 12
noon, which will get him there before 3:00 pm.

Table 1. A requirements catalog of preference elicitation for
decision search tools.

R1:Incremental effort of elicitation The interface should
allow users to make an incremental rather than a one-shot
effort in constructing their preferences due to the highly
adaptive nature of decision process and user’s lack of
initial motivation in stating them.

R2:Any order The interface should not impose a rigid
order for preference elicitation.

R3:Any preference The interface should let users state
preferences under relevant contexts.

R4:Preference conflict resolution The decision search tool
should solve preference conflicts by showing partially
satisfied results with compromises.

R5:Tradeoff analysis In addition to search, the system and
the interface should help users perform decision tradeoff
analysis, such as “I like this apartment, but can I have
something cheaper?” or “I like this apartment, but can I
find something bigger?”

R6:Domain knowledge The system and the interface
should reveal domain knowledge whenever possible.

We have implemented SmartClient [12,20,21], initially known as
ATP in [19]. It is a personalized decision search tool for finding
travel products. Later on, we applied the same technique to a
number of online catalogs such as vacation packages, insurance
policies, and rental properties. Central to SmartClient is a user
system interaction model called example critiquing. In the past
years, we have performed usability tests as well as a comparative
study for evaluating the client-server architecture of SmartClient
[12]. Based on the accumulative experience and user evaluation,
we have identified a requirements catalog for a decision search
tool and its interface (Table 1). R1 through R3 and R6 were
derived from behavior decision theories [3,10,11] and value-
focused decision thinking [7], and have been tested in our

prototypes. Some were recently confirmed by researchers
studying interface design issues from marketing behavior theories
[18]. Recently, we were further interested in empirical analysis
from the point of view of decision support tasks, that is,
evaluating R4 and R5. In particular, do example-based search
tools require more time to learn than ranked lists for decision
tasks? If so, what is this learning period? After the initial training
cost, are example-based tools comparable to ranked lists for
search and tradeoff tasks? Do more complex tasks make a
difference in the evaluation? What are these tasks? We report in
this paper a comparative user study to qualitatively and
quantitatively evaluate example critiquing against a ranked list.
We expected that the results would also shed light on how to
improve example critiquing.

This paper will proceed as follows. We first describe the main
interaction component of SmartClient, the example critiquing
interface. Then we describe our user study in detail: data sets,
characteristics of our subjects, the experimental procedure, user
tasks, the main hypothesis, and measured data. We then describe
the main finding of this experiment. To make some conjectures on
how related example-based search tools would perform, we made
some extrapolation of our results along the dimensions of ease of
use and tradeoff complexities. We then compare our work with
other studies of user interaction issues in e-commerce, example
based recommender systems using natural language interfaces,
and decision evaluation tools that employ visualization
techniques. The section on future work describes our plan to
further compare SmartClient with ranked list for larger collections
of data, and steps to be taken to improve SmartClient’s interface.

2. SmartClient
SmartClient is an example-based search tool for finding flights,
and subsequently vacation packages, insurance policies and
apartments. Each SmartClient implementation consists of a user
interface and a search engine.

The SmartClient interface is based on the example critiquing
model (see Figure 4). A user starts the search by specifying one or
any number of preferences in the query area. Based on this initial
preference model, the search engine will find and display a set of
matching results (see Faltings et al [5] for the optimal number of
displayed solutions based on catalog sizes). The user either
accepts a result, or takes a near solution and starts posting
critiques to that result. Critiques are small revisions of the current
preference values. A user who desires to find a less expensive
apartment may compose a critique by clicking on the pulldown
menu next to the price and selecting the menu item “less
expensive”. A user can post one or several critiques
simultaneously, for example less expensive, closer, etc. In
addition to critiques, the user can also modify the relative
importance of a preference by setting the bars underlying each of
the attributes in four stages: zero, somewhat important, quite
important and very important. A full colored bar indicates his
strong desire to respect this preference. An almost-empty bar
indicates the contrary. Clicking the “compromise” button will set
the bar to the empty-color status, meaning that he is willing to
accept a compromised value of this attribute. With the possibility
to set the weight of a preference, a user can perform tradeoffs
while searching for products. For example, a user who wants a
less expensive apartment and is willing to commute can select the

209

pulldown menu option for a “less expensive” apartment, while
clicking the checkbox button, “compromise”, for distance.

Once a set of critiques has been composed, the system will show
another set of matching examples. This query/tweaking completes
one cycle of interaction, and it continues as long as users want to
further refine the results.

The search engine can be a simple ranking function for multi-
attribute products, such as the case for fining apartments. For
configurable products, SmartClient employs more sophisticated
constraint satisfaction algorithms and models user preferences as
soft constraints [1]. More detail on the modeling and search
engine issues is provided in [22].

3. USER STUDY
3.1 The Implemented Ranked List
Search tools that use ranked lists to show results are still the most
common solution for product search and selection. The earliest
ranked lists display products in a list in the increasing order of the
price attribute. More advanced versions can rank products on any
quantitative attribute, but one at a time. The one used in our study
implements the advanced version (see Figure 3 for a screen shot
of the interface).

Ranked lists are commonly used to display a search engine’s
results. The scenario we assumed in this study was that a person
has already used a search engine to prune the product space based
on his strong preferences. A ranked list was then used to compare
and select the final product among a set of uncertain decision
parameters.

3.2 Data Set and Subjects Used
The data set originally used in SmartClient dealt with multi-
attribute and configurable products in the travel industry.
However, we chose to evaluate SmartClient for apartment
searches in this study. Firstly, it is easier for our subjects to relate
to task scenarios used in apartment searches rather than finding
flights because they are not likely to be frequent travelers.
Secondly, travel data (price, intermediate airports, routes)
undergo frequent changes and therefore cannot remain relevant
throughout the duration of a research project (in this case two
years). On the other hand, apartment data are relevant for up to
three years, especially in countries where rent control is tight.
Furthermore, the evaluation of SmartClient for apartment searches
would demonstrate that the example critiquing interface is useful
not only for travel planning, but also for other industries.
We used two sets of 50 rental properties (student apartments)
located in the vicinity of our university. Each of the sets is used
for evaluating the ranked list (called RankedList henceforth) or
the example critiquing interface (called tweakingUI). The entries
in these two sets are not identical to avoid any learning effects
when users compare and evaluate the two tools. However, they
are equivalent with respect to user tasks. That is, each data set
contained at least a correct and similar answer for each of the user
questions. The rental properties used in the experiment were
based on real data with slight modifications. For instance, each
property, regardless of its type, was normalized for the purpose of
accommodating one person only.

All of the 22 subjects were recruited from our university (EPFL).
Since EPFL does not provide sufficient dormitory rooms for our
graduate students, our subjects are likely to be familiar with the
search tasks. To make the group as diverse as possible, the
subjects were selected from a variety of nationalities and
educational backgrounds. They were Swiss, Algerian, American,
Indian, Vietnamese, Chinese, and Mexican, and have different
educational background (undergraduate students, graduate
students, research assistants, and secretaries).
Users were given adequate time to familiarize themselves with the
interfaces. The data set used for this warm-up exercise was
different from the datasets used for the real experiments. To help
them learn how to use the interfaces, users were told to perform a
test search, for example finding an apartment for the price of 550
Swiss Francs and an area of 20 square meters.

3.3 Experimental Procedure
Before each user experiment, we explained to each subject the
experiment’s objectives, the meaning of labels on each of the
interfaces, and we told them that we will be recording their task
performances. We then gave them 5-10 minutes for trying out the
interfaces with test scenarios.
Users were asked to test Interface 1 (RankedList) and Interface 2
(tweakingUI, or example critiquing) by performing a list of tasks.
The order of the tools given in the evaluation sequence alternated
each time we tested a subject. This was to counter balance any
biases that users may develop while evaluating one interface and
carrying these biases to the evaluation of the other one.

3.4 User Tasks
3.4.1 Task Analysis: Decision Navigation
A decision maker is rarely content with what he initially finds
[14]. Instead, he explores the product space by navigating from
one product to others, looking for better deals. With example
critiquing interfaces, he can conveniently start the navigation
from a shown example, post a critique (e.g., a cheaper apartment),
and see a new set of products. We call this process the decision
navigation process. More precisely, decision navigation involves
finding products having more optimal values on one or several
attributes, while accepting compromised values for other
attributes. This type of tradeoff is known as attribute value
tradeoff. [14] discusses in more detail the types of decision
tradeoffs in product search.

As the number of attributes becomes larger, the complexity of the
tradeoff task increases. Let us define each tradeoff task as having
two variables: (optimize, compromise), where optimize
represents the set of attributes to be optimized, and compromise
the set of attributes to be compromised. So ({price}, {size
of room}) denotes that a user wants to get a better price by
sacrificing the size of his room. ({price}, {size of
room, distance to work}) denotes that the user wants to
get a better price by sacrificing the size of his room, the distance
to work, or both. Furthermore, we use pairs (x, y) to specify
the complexity of tradeoff tasks. (1,1) denotes that one attribute
is being optimized, while at the same time another attributed is
being compromised. (1, 2) denotes the participation of two
attributes for the compromising process, and one attribute for the
optimization process. It is clear that (1,1) entails one single
tradeoff scenario, while for the (1,2)case, there are three

210

scenarios because there are three ways to compromise two
attributes. As the number of variables participating in a tradeoff
scenarios increases, the optimize/compromise scenario pairs
increase exponentially. For the case of (1, 3), there are 7
optimize/compromise pairs. That is, there are 7 different ways to
compromise in order to gain on one attribute.

3.4.2 User Task Design
The objective of this experiment was to measure users’ task
performance and error rates while using two interfaces for
decision navigation. We thus started with a rather specific
decision goal by asking them to identify the most preferred
apartment. Then we asked everyone to navigate from that item,
and evaluated how quickly he found answers to a set of tradeoff
questions:

1. Find your most preferred apartment.

2. Can you find something closer? You can compromise on one
and only one attribute.

3. Can you find something bigger than what you found for
question #1? You can compromise on one and only one
attribute.

4. Find something which is roughly 100 francs less than the
answer to question #1. You can compromise on up to two
attributes, but not more.

5. Find an apartment which is 5 square meters bigger than the
answer to question #1. You can compromise on up to two
attributes but not more.

The questions can be broadly divided into three categories. The
first question is a simple search task of finding a multi-attribute
product from a list of products. This question on one hand ensures
that we get an idea of the user’s comfort level with the interfaces;
it also gives us a starting point for answering subsequent tradeoff
questions. The second category of questions (Question 2, 3) deals
with multi attribute tradeoff tasks with one attribute in each
direction of gain and compromise, i.e., the (1,1) tradeoff case.
The third category of questions (Question 4, 5) deals with making
tradeoffs when we gain on one attribute, and compromise on two
attributes, i.e., the (1, 2) case.

The entire user study was carried out in experiments scheduled in
three phases, with 11, 5, and 6 subjects involved in each of the
phases respectively.

3.5 Post Study Questionnaire
After each user evaluation, we asked subjects whether they were
more satisfied with RankedList than tweakingUI or vice versa,
and why. We also asked them to express any opinions they may
have regarding the interfaces, such as which interface gave them
higher confidence when answers were found.

3.6 Main Hypothesis and Measured Data
Our main hypothesis was that users will not take more time, nor
make more mistakes while performing the given tasks using
RankedList than tweakingUI. The task completion time was
defined to be the amount of time a subject took to answer each of
the questions. We also measured the error rate, which was defined

to be the total number of wrong answers a subject gave over the
total amount of questions.

4. ANALYSIS OF DATA

4.1 Multi Attribute Searching Task
The first question required users to find an apartment of their
choice. Our data showed that there were no significant
improvement of the response time for answering that question
using tweakingUI than RankedList (chi square p=0.617).
Furthermore, there were no errors recorded in either interfaces. A
number of individuals took longer time to fine the answer while
using tweakingUI than RankedList. We believe that this was
largely due to the fact that subjects took longer time to learn to
use tweakingUI, especially under testing conditions.

4.2 Trade-off with 2 Attributes
These questions (#2 and #3) required the subjects to achieve a
more optimal value on one identified attribute while
compromising the values of one of the four remaining attributes.
The improvement for response time in using tweakingUI was not
significant (p = 0.617), although the error rate for RankedList was
much greater (strong significance p <0.001). We concur that the
relatively high error rate was due to the fact that subjects had to
do a significant amount of visual search using RankedList, hence
they were more susceptible to make mistakes.

Average Time

0

10

20

30

40

50

60

70

80

90

100

Category - 1 Category - 2 Category - 3

Question Category

Ti
m

e
(s

ec
on

ds
)

RankedList
tweakingUI

Figure 1: average task completion times in seconds for the
three categories of tasks when evaluating RankedList and

tweakingUI respectively.

211

Error Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Category - 1 Category - 2 Category - 3

Question Category

A
ve

ra
ge

 E
rr

or
s

RankedList
tweakingUI

Figure 2: Average error rates for the three categories of tasks

when evaluating RankedList and tweakingUI respectively.

4.3 Trade-off with More Than 2 Attributes
This set of questions (#4 and #5) increased the complexity of
human decision making process by engaging them to perform
tradeoffs on more than two attributes. An analysis of the statistics
gave interesting observations. Not only there was a decrease in
average performance times in using tweakingUI as compared to
RankedList (p < 0.001), but the overall error rate also dropped by
a significant margin (approx 75%).
The overall performance of these two interfaces indicates that
users took increasingly less time to perform tradeoff tasks in
tweakingUI even though task complexities have increased,
indicating that learning is a worthwhile investment. On the
contrary, the task completion time for RankedList increased as
tradeoff tasks became more complex. The obtained data thus
suggests that tweakingUI provides a useful tool for making multi-
attribute tradeoff functions, especially as the complexity of
tradeoff tasks increases. In addition, by observing subjects
interacting with the interfaces, we noticed that the tradeoff tasks
were made significantly easier in tweakingUI because users can
just set an attribute to the “compromise” value when they were
willing to sacrifice it, and concentrate on the preferences whose
values are to be optimized. Making decisions in such a scenario
becomes easier as compared to using RankedList, where decision
navigation was done via visual scanning of the data in the list.

4.4 User Satisfaction and Confidence Level
16 subjects participated in the first and second stages of testing.
10 of them were more satisfied with RankedList, while the
remaining 6 were more satisfied with tweakingUI. When they
were told to provide the reasons for preferring RankedList over
tweakingUI, they said that it was easier to use RankedList, and
they felt more in control. For the second batch of subjects (6), we
gave them more time to get familiar with tweakingUI, and put
more effort in explaining the interface. The result was that 4 out
of 6 subjects strongly preferred tweakingUI, while 2 only slightly
preferred tweakingUI. None of the 6 subjects preferred
RankedList over tweakingUI. These results indicate that ease of
use influences a user’s satisfaction level of the interface. It also
points out that if a new interface is not easy to learn, there is a
decreased chance that users will prefer it over a traditional one.
A somewhat surprising result came from subjects commenting on
their confidence level when a solution was found. Even though

fewer of them committed errors using tweakingUI, more of them
expressed a higher confidence level with answers found using
RankedList. That is, they felt more certain that they found the
correct answer in RankedList. A recurring comment was that “the
search engine hides something from me,” whereas “I can see
everything in the ranked list.” However, when asked whether they
would still feel that way if the data set were very large, they all
responded negatively.

5. RESULTS EXTRAPOLATION
5.1 Usability Criteria
In light of the comparative user study described, we were able to
make some preliminary conjectures about usability and task
performances of various example-based critiquing interfaces such
as FindMe, Apt Decision, and ATA (Table 2). Since our findings
indicate that a user’s satisfaction is reduced significantly by an
interface which is unfamiliar and hard to operate, our first criteria
for the comparison was ease of use. Secondly, we evaluated
whether it is possible to perform value tradeoffs by directly
manipulating the value functions (weights) of an attribute. This
feature allows the user to make decision tradeoffs by setting
certain attributes to the “compromise” value (i.e., zero weight)
and other attributes (whose values are to be optimized) to higher
weights. Lastly, we assessed whether the interface enables simple
tradeoffs, i.e., the (1,1) case, and more complex tradeoffs, i.e.,
the (1,2) and (1,3) cases.

5.2 Performance Comparison of Example-
based Search tools
FindMe [2] aims at providing knowledge support to end-users as
they find their way through a large information space. This
approach has been implemented in various online product search
tools for renting apartments, choosing restaurants, finding cars,
selecting videos, etc. An important element in FindMe is
tweaking, an interaction model that enables users to navigate to
alternatives based on examples. Tweaking starts with a product
found by the system based on the initial set of preferences. Once a
user selects an almost ideal solution, he can post small changes
(tweaking), and view more results. That is, he can find apartments
that are cheaper, bigger, closer, or based on any combinations of
those criteria. Furthermore, FindMe explains tradeoffs conflicts.
For example, if a user wants both a fuel-efficient and high-
powered car, FindMe attempts to illustrate the tradeoff between
horsepower and fuel efficiency.
We were able to evaluate the most well known FindMe system,
Entrée1 (a restaurant recommender), by performing a cognitive
walkthrough on an online version. Example restaurants were
shown after an initial query. Choices of critiquing, such as less
expensive, quieter restaurants, were clearly presented to the user.
After each critique, another set of examples was shown. We found
the FindMe system easy to use. However, we are not sure how
novice users will judge FindMe. It provided decision tradeoff in
the (1,1) case via simple critiques such as less expensive
restaurants. It did not, however, allow the direct manipulation of
the value function of an attribute, nor provided functionalities for
complex tradeoff tasks.

1http://dent.infolab.nwu.edu/infolab/projects/projectmain.asp

212

SmartClient, initially known as ATP [20], was developed around
the same time as FindMe and ATA. It went through a number of
user studies. The comparative study reported here aimed at
measuring user performance for tradeoff tasks between
SmartClient’s example critiquing interface and a ranked list. In
2000, we conducted a comparative study [12] to measure the
number of server contacts and system’s response time as 43 users
were told to plan four trips using SmartClient and Travelocity.2 At
the same time, a usability test was done which showed that users
(mostly undergraduate students) were at ease with preference
posting and example critiquing operations in the travel version of
SmartClient (Figure 5). However, when secretaries (reserving
trips for professors) were studied, a small training period of 10-20
minutes was found necessary. Thus we rated SmartClient
easy/medium on usability. In the tradeoff study, we noticed that
many users concentrated on the attributes to be optimized. They
initially ignored the use of the compromise feature. After
examples were shown, they realized that clicking on the
compromise button returned better results. Once they were
familiar with manipulating attribute’s weight, their performance
on tradeoff tasks increased significantly.
Apt Decision [16] is an apartment search and decision support
tool. It uses learning techniques to synthesize users’ preference
models by observing their critiques of apartment features. Users
browse through the shown examples to discover new features of
interest. The system then revises their preference models
accordingly. Its main objective is profiling and predicting users’
preferences in apartment search for subsequent interactions. Thus
the goal is observing user behavior and making inferences about
regularity. The emphasis is on adaptive decision making, although
the authors also believe that example critiquing is an effective
interaction model to elicit hidden preferences for tradeoffs.
We were unable to evaluate Apt Search’s interface because it was
not available online. From the interface screenshots published in
the article, we conjecture that it is rather easy to use. According to
the article, the only way a user can perform tradeoff analysis was
to create several profiles. Thus we rated it hard, meaning that it is
difficult to perform both types of tradeoffs. Further, it does not
appear to us that users can manipulate preference weights.
Linden et al [8] described a decision support system for finding
flights. Initially only few user preferences need to be expressed.
The ATA system (automated travel assistant) uses a constraint
solver to obtain several optimal solutions. Five of them are shown
to the user, three optimal ones in addition to two extreme
solutions (least expensive and shortest flying time). User
preferences are modeled as soft constraints in the CSP formalism.
To elicit hidden preferences, ATA uses a candidate critiquing
agent (essentially an example-based search), which constantly
observes user’s modification to the expressed preference, and
refines the preference model in order to improve solution
accuracy. From reading [8], it seemed that posting preferences
was easy to perform, but preference weight manipulation was not
enabled. However, we did not find much description on how the
critiquing agent was used and what the interface looked like. We
were thus unable to judge ATA on the three accounts.

2 http://www.travelocity.com

Table 2. Comparison of example-based interfaces and
prediction of their performances. 3

 Ease of
Use

Access
to

Weights

Simple
Tradeoff

Complex
Tradeoff

FindMe Easy X X
SmartClient Easy/Med

ium

Apt Search Easy X Hard Hard

ATA Unsure X Unsure Unsure

The overall comparison of these systems suggests that
SmartClient is the only tool that enables complex tradeoffs, a
service that can potentially convince online users to switch to
decision search tools because of the significant performance gain.

6. RELATED WORK
VideoAdvisor [9] uses case-based reasoning techniques to
complete the preference structure of a partially established model.
When a new user expresses a partial set of preferences, the system
will match this preference structure with an existing user in order
to give recommendations of movies. Similar to SmartClient, this
work uses utility theory to represent user’s preferences. A major
difference, however, is that preferences are inferred in
VideoAdvisor, while SmartClient emphasizes preference
construction. Inferred preferences may be valuable to a
recommendation system of movies, they are less likely to help
buyers select and perform tradeoff analyses of high involvement
products. Buyers who do not participate in the preference
construction process are not likely to accept products based on
inferred preferences. Similar remarks were made in [3,11].
The ExpertClerk system [17] was designed to imitate the
interaction between salesclerks and shoppers. Analyses of a
conversational corpus and interviewing senior salesclerks
indicated that a good salesman typically alternates between asking
questions and proposing sample goods to understand a customer’s
buying points. This model of conversation was them implemented
in ExpertClerk as a two-stage interaction. The first stage,
navigation by asking, calculates the information gain of possible
questions and sorts them according to statistical efficiency. The
second stage, navigation by proposal, presents three sample goods
with explanations of their selling points to a shopper.
The method used to generate questions does not take into account
user’s domain knowledge level and may ask a question for which
certain users could not answer. In this case, he is likely to quit the
interaction or give a wrong answer. Consequently, this wrong
answer may lead the subsequent interaction in the wrong
direction. Furthermore, the system does not address decision
tradeoff, although some proposed products may happen to be
contrasting examples of a tradeoff scenario (such as an expensive
silk jacket vs. an inexpensive polyester one). ExpertClerk
proposes exactly three items to the shopper for selection.

3 Legend: X means that this function is not provided; means that this

function is enabled; hard means that it is rather difficult to perform this
function.

213

According to our experience [5], this number is not sufficient,
especially when a large catalog is involved.
Stolze [19] described three subcomponents of a product selection
tool: filtering, visualization, and evaluation. It was further
remarked that the evaluation process plays a crucial role in
convincing users in the selection process. ScoreCat not only ranks
products according to user’s preferences as was done in
SmartClient, it also visualizes the scoring mechanism by
displaying how each attribute of products scores in relation to the
user’s preference model. Such scoring tables provide more
detailed sensitivity analysis and augment users’ confidence level
for what they have selected. Because our users remarked a rather
low confidence level for evaluating a decision in SmartClient, we
will soon incorporate visualization techniques in the GUI and
evaluate the new prototype for further findings.
Previous work has sought to understand the reason for the delayed
adoption of advanced search tools by online consumers.
Psychological and social factors were some of the initial
explanations. In addition, since users’ preferences have to be
elicited in decision search tools in order to compute the best
matches, many users fear that they are revealing private
information. As studies indicated that privacy concerns
significantly impede an online shopper from making the final
purchase decision [4], it follows that decision search tools may
find themselves in a disadvantage compared to simple ranked
lists. Spiekermann and Paraschiv [18], for example, proposed to
design decision support interface systems with a whole range of
risk dimensions in mind: social, psychological, functional,
financial, as well as delivery. A detailed set of recommendations
mainly concerning the design of user system dialogs were
proposed. Several of these recommendations were already
implemented in SmartClient [13-15] (see also Table 1). For
instance, SmartClient offers a user to make interaction efforts so
long as he wants more accurate search results. This any-effort
interaction model provides a permanent “opt-out” option for less
accuracy-driven as well as expert users. The fact that users can
express search criteria in any order, on any preferences, and at
any time during the interaction, SmartClient proves to be very
adaptive to user’s readiness in terms of when they want and can
reveal information, their purchase context, and their knowledge
level.

7. FUTURE WORK
While the results of our user studies point in a positive direction,
more work needs to be done for an extensive user study and a
more suggestive design for the user interface.
We plan to increase the size of the database from the current
count of about 100 apartments to about 300-400. Our goal is to
include more cases involving tradeoffs and evaluate example
interfaces when the underlying database is larger. We also plan to
extend the findings from this experiment towards designing a
more general framework of decision tradeoff analysis for
configurable products. Configurable products not only provide a
more complex domain in terms of the number of available
products, but also can make tradeoff analysis more interesting and
relevant as the user has potentially many choices of values for
each attribute. For the current apartment case, each attribute has
two to four values. For general configurable products, this number
can be much larger and lead to many more choices that are

impossible to show in a RankedList. In such a scenario, we expect
the tweakingUI to have a significant edge over RankedList. This
is because the user can explore the decision outcomes as they
critique examples, whereas in RankedList, the system may have
to fetch many new products from a database each time a user
posts a set of tradeoff queries.
Some improvement of the SmartClient interface was carried out
during the user study. Users had the most difficulty in
understanding the manipulation of weights and its effect on
tradeoff analysis. After several trial and errors, we settled on
using labeled buttons “compromise” together with a bar. We plan
to perform an exclusive formative evaluation for the tradeoff
interface part.

8. CONCLUSIONS
This paper presented example critiquing, an interaction model
used in SmartClient, as well as in other decision search tools such
as FindMe and ATA. To analyze the qualitative and quantitative
performance of example critiquing, a comparative study was
conducted and described in this paper. The important finding was
that example critiquing performs only marginally better compared
to a ranked list for search and simple tradeoff tasks. As the
complexity of tradeoff tasks increases, the performance of a
ranked list degrades significantly, not only in terms of average
completion time, but also error rate, and example critiquing’s
performance becomes much stronger, overcoming the initial
learning cost. This provides, to our knowledge, the first empirical
proof that example-based search is a viable tool for enabling
complex consumer e-commerce scenarios that are up to now
impossible to implement.

9. ACKNOWLEDGEMENT
We thank the Swiss National Science Foundation for sponsoring
the reported research work. We are grateful to the participants of
our user studies for their patience and time. We are thankful to the
anonymous reviewers of this paper for their constructive
comments that helped us reorganize this paper. Li Chen from the
human computer interaction group at EPFL helped with
conducting the reported user studies. Finally, we thank Anne
Standley, Jiyong Zhang and Boi Faltings for contributing to the
final editing of this paper.

10. REFERENCES
[1] Bistarelli, S., Montanari, U., and Rossi, F. Semiring-based

Constraint Solving and Optimization. Journal of the ACM,
44, 2 (Mar. 1997), 201-236.

[2] Burke, R., Hammond, K., and Young, B. The FindMe
Approach to Assisted Browsing. In IEEE Expert: Intelligent
Systems and Their Applications, 12, 4 (Jul. 1997), 32-40.

[3] Carenini G. and Poole D. Constructed Preferences and
Value-focused Thinking: Implications for AI research on
Preference Elicitation. AAAI-02 Workshop on Preferences in
AI and CP: symbolic approaches, Edmonton, Canada, 2002.

[4] L.F. Cranor, J. Reagle, and M.S. Ackerman. Beyond
Concern: Understanding Net Users' Attitudes About Online
Privacy. In Ingo Vogelsang and Benjamin M. Compaine
(editors). The Internet Upheaval: Raising Questions, Seeking

214

Answers in Communications Policy. The MIT Press,
Cambridge, Massachusetts, 2000, 47-70.

[5] Faltings, B., Torrens, M., and Pu, P. Solution Generation
with Qualitative Models of Preferences, International
Journal of Computational Intelligence and Applications,
2004. To appear in 2004.

[6] Fink, J., and Kobsa, A. A Review and Analysis of
Commercial User Modeling Servers for Personalization on
the World Wide Web. User Modeling and User-Adapted
Interaction, 10, 3-4 (2000), 209-249.

[7] Keeney, R. Value-Focused Thinking: A Path to Creative
Decision Making. Harvard University Press, 1992.

[8] Linden, G., Hanks, S., and Lesh, N. Interactive assessment of
user preference models: The automated travel assistant.
Proceedings of User Modeling '97, 1997, 67-78.

[9] Nguyen, H., and Haddawy, P. The Decision-Theoretic Video
Advisor. In workshop notes, Recommender Systems, the
Fifteenth National Conference on Artificial Intelligence
(AAAI’98), 77-80.

[10] Payne, J.W., Bettman, J.R., and Johnson, E.J., The Adaptive
Decision Maker. Cambridge University Press, 1993.

[11] Payne, J.W., Bettman, J.R., and Schkade, D.A. Measuring
Constructed Preference: Towards a Building Code. Journal
of Risk and Uncertainty, 19, 1-3 (1999), 243-270.

[12] Pu, P., and Faltings, B. Enriching Buyers' experiences: the
SmartClient Approach. In Proceedings of the SIGCHI
conference on Human factors in computing systems
(CHI ’00) (The Hague, The Netherlands, April 1-6, 2000).
ACM Press, New York, NY, 2000, 289-296.

[13] Pu, P., Faltings, B., and Torrens, M. User-Involved
Preference Elicitation. In workshop notes, workshop on
Configuration, the Eighteenth International Joint Conference
on Artificial Intelligence (IJCAI’03), 2003.

[14] Pu, P., Kumar, P., and Faltings, B. User-Involved Tradeoff
Analysis in Configuration Tasks. In workshop notes, the
Third International Workshop on User-Interaction in

Constraint Satisfaction, Ninth International Conference on
Principles and Practice of Constraint Programming
(CP2003).

[15] Pu, P. and Faltings, B. User Preference Elicitation Via
Tradeoff. Submitted to the International Journal of
Constraints, December, 2003.

[16] Shearin, S., and Lieberman, H. Intelligent Profiling by
Example. Proceedings of the 6th international Conference
on Intelligent User Interfaces (Santa Fe, New Mexico, USA,
2001) ACM Press, New York, NY, 2001, 145-151.

[17] Shimazu, H. ExpertClerk: Navigating Shoppers' Buying
Process with the Combination of Asking and Proposing. In
Proceedings of the 17th International Joint Conference on
Artificial Intelligence (IJCAI’01) (Seattle, Washington, USA,
August 4-10, 2001).

[18] S. Spiekermann and C. Paraschiv. Motivating Human-Agent
Interaction: Transferring Insights from Behavioral Marketing
to Agent Design. Electronic Commerce Research, Kluwer
Academic Publishers, the Netherlands, (2002), 255-285.

[19] Stolze, M. Comparative Study of Analytical Product
Selection Support Mechanisms, Proceedings of INTERACT
99, Edinborough, UK, August 30 – September 3, 1999.

[20] M. Torrens, R. Weigel and B. Faltings. Java Constraint
Library: bringing constraints technology on the Internet
using the Java language. In workshop notes, Constraints and
Agents, the Fourteenth National Conference on Artificial
Intelligence (AAAI’97), July 1997.

[21] M. Torrens and B. Faltings. SmartClients: Constraint
satisfaction as a paradigm for scaleable intelligent
information systems. In workshop notes, Artificial
Intelligence for Electronic Commerce, the Sixteenth National
Conference on Artificial Intelligence (AAAI’99), July 1999,
10-15.

[22] Torrens, M., Faltings, B., and Pu, P., SmartClients:
Constraint Satisfaction as a Paradigm for Scaleable
Intelligent Information Systems. International Journal of
Constraints, 7, 1 (Jan. 2002), 49-69.

215

Figure 3: The RankedList Interface. Apartments are currently ranked in the ascending order

of their prices.

Figure 4: The front end of SmartClient, a personalized decision search tool. Shown in the

“tweak panel” is an example just selected from the “search query results” panel. It can serve
as a starting point for tradeoff queries. For example, a user can post a critique, “closer,” for

the distance attribute as shown in the dropdown menu, while compromising on price and
area attributes.

216

Figure 5. Example critiquing interface used in SmartClient for travel planning.

217

