
 

   

 

The ISIP Machine Learning Demonstration User Guide 

 January 1, 2026 

Prepared By: 

Sohail Aji and Joseph Picone 

The Neural Engineering Data Consortium 
College of Engineering, Temple University 

1947 North 12th Street 
Philadelphia, Pennsylvania 19122-6018 

Tel: 708-848-2846 
Email: {sohail.aji, picone}@temple.edu 

 

 

 



 

  v5.0.1: January 1, 2026 

EXECUTIVE SUMMARY 

The Institute for Signal and Information Processing (ISIP) Machine Learning Demo (IMLD) is an 
interactive, visual machine learning (ML) and pattern recognition tool developed entirely with open-source 
libraries in the Python programming language. It can be easily downloaded and run 
(www.isip.piconepress.com/projects/imld) either through an IDE or a command line/terminal in any 
operating system. In addition, the platform can be launched directly on most common web browsers, 
offering a convenient and fully online experience without needing a local installation. This accessibility 
allows users to experiment with machine learning concepts without a complex setup, making it ideal for 
both beginners and advanced practitioners. Designed with education in mind, IMLD provides an intuitive 
and engaging way to explore hands-on classification techniques, enabling users to visualize the concept of 
how different machine learning algorithm’s function.  

IMLD’s interface is designed to be both functional and educational. The train and eval plotting windows 
provide a side-by-side view for building and testing models visually, allowing users to see how different 
algorithms classify data and how changes in parameters affect model performance in real time. The 
algorithm toolbar simplifies the selection of various ML algorithms and outlines the respective parameters, 
allowing users to easily experiment with different models and settings. It provides an accessible entry point 
for understanding how parameter tuning can impact classification outcome and error rate. The process log 
provides a real-time summary of all users’ actions and model decisions, making the workflow transparent 
and easy to follow.  

IMLD provides users with multiple ways to generate and manipulate data for training and evaluation. Users 
can create their own classes and draw their own two-dimensional (2D) data points in either single point or 
Gaussian distributions for both the training and evaluation data input windows when generating data. They 
can also import data in a comma separated value (.csv) format, which is the same format IMLD exports 
data as well as when users choose to save their own data. Additionally, IMLD includes a selection of pre-
built demonstration datasets that are useful for exploring the theoretical properties of algorithms. Other 
options include toroidal (donut-shaped) distributions and a yin-yang distribution. This unique array of 
dataset shapes allows users to explore how different classifiers handle data that require complex decision 
boundaries. This provides deeper insight into the behavior of many common algorithms.  

Once the user has their desired data in the train and eval windows, they can choose from a list of algorithms 
used to classify the data. Algorithms, once selected, will present the user with a list of parameters that they 
can change to optimize the classification process. The application displays results to a process log window, 
which also keeps track of the creation and deletion of classes and the algorithm/parameters chosen by the 
user. Once a model has been created using the training data, it can be applied to blind evaluation data. An 
error rate will be calculated for that dataset. Users can then decide to delete the results from each window, 
delete the data itself, or reset the entire program. By resetting, users can use multiple algorithm parameters 
to compare error rates and optimize their model on the training or evaluation datasets as desired.  

IMLD has been in existence in various forms since the mid-1990’s. It was originally developed as a Java 
applet to support graduate-level instruction in machine learning. The current version is written in Python 
and is implemented in a client/server format so that it can be easily run as a web application. It makes 
extensive use of standard machine learning libraries such as Python’s SKLearn. The model API has been 
developed in a way that users can easily add new algorithms. This visual structure makes IMLD especially 
valuable as a teaching tool, allowing users to explore concepts such classification performance and error 
evaluation in an interactive manor. With its clear design and customizability, IMLD is well suited for 
classroom demonstrations, labs, or self-guided learning. Additionally, its open-source nature ensures that it 
remains fully adaptable to new advancements in machine learning research, and educators can use IMLD 
in their coursework to give students hands-on experience within machine learning. 
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1. Introduction 

The Interactive Machine Learning Demos (IMLD) platform provides an accessible, hands-on way to 
explore key concepts in machine learning (ML). Developed and hosted by the Institute for Signal and 
Information Processing (ISIP: www.isip.piconepress.com), the IMLD platform offers a collection of 
interactive tools designed to illustrate various ML algorithm concepts. Originally developed as a Java applet 
in the 1990’s (Shaffer et al., 1998), It has been used for over 20 years to teach a graduate-level course in 
machine learning (https://isip.piconepress.com/courses/temple/ece_8527/).  

IMLD was created at a time when Java was widely believed to be the future of computing, and Java applets 
were the primary way to deliver web-based demonstrations. It was part of an extensive library of open-
source signal processing tools (Huang & Picone, 2002). Although this app was functional, other languages 
such as Python began to become the primary environment for the development of machine learning 
algorithms. Despite running slower than Java in many cases, Python’s simpler syntax and flexibility make 
it highly popular among researchers who develop machine learning technology. These advantages 
ultimately led to the decision to rebuild IMLD as a Python-based application. This version proved an 
excellent tool for education and research in machine learning, helping newcomers to grasp abstract concepts 
while also supporting the research of those more experienced in ML (Thai et al., 2023; Cap et al., 2022).  

A major drawback, however, was accessibility, as users could only access the app by downloading and 
running the Python script locally. This prevented those with minimal technical experience from easily 
accessing it. The machine learning and graphics libraries use many third-party libraries, and installation of 
these libraries can often be complex due to versioning issues. This led to a decision to transform IMLD into 
a web application. This significantly increases its accessibility, allowing it to be easily found and used by 
anyone with access to a web browser. In addition to running the tool in a web browser, users also have the 
option to download a standalone version of the application directly from the IMLD website. This allows 
for offline use and provides greater flexibility for those who prefer working in a local environment.  

A key part of IMLD’s usability lies in its interface design shown in Figure 1, which shows screenshots of 
the original Java version and the current Python version. IMLD includes two data analysis windows that 
visualize the data and the results of an algorithm’s attempt to classify the data, a toolbar that lets users select 
file operations, algorithms, data sets, etc., and a log window that records each stage of the workflow. 
Together, these features make IMLD a powerful tool for visualizing the application of modern machine 
learning algorithms to two-dimensional data sets. 

This user guide will walk you through navigating the IMLD website, running the interactive demos, 
adjusting key parameters, and applying the underlying concepts to your own projects. You will learn how 
to get started quickly, and how to interpret algorithmic outputs. By the end, you should have a clear 
understanding of the website’s offerings and 
feel comfortable leveraging its demos to 
deepen your familiarity with ML techniques. 

This guide is structured into eight sections 
that include this introduction (Section 1), an 
overview of the tool (Section 2), a 
description of the user interface (Section 3), 
a description of the algorithms (Section 4), 
some typical use cases (Section 5), a 
discussion of how to integrate new 
algorithms (Section 6), how to download 
and install the tool (Section 7), and a 
summary (Section 8). 

 
Figure 1. IMLD began as a Java applet (left) and has evolved into a 
Python application run via a client/server interface. 
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2. Overview 

The basic IMLD user interface is shown in Figure 2. The application window contains 5 major components: 
the title bar, the menu bar, the plotting windows, the algorithm toolbar, and the process log. These 
components were designed to simplify the process of creating data and performing an evaluation. The main 
components of the user interface are: 

(1) Title Bar: located at the very top of the window, it displays the title of the application “The ISIP Machine 
Learning Demo” on the far left, as well as contact and share buttons on the far right. The former is linked to 
the IMLD web site, where you can find information on the latest software releases. The contact button 
provides opens a pop-up window that provides users with support resources, including an email address for 
questions or feedback (help@nedcdata.org). The share button provides a URL to the project web site. 

(2) Menu Bar: located at the top of the page below the title bar. It contains the options for generating, loading, 
and saving different datasets. Users can load preset parameter configurations, clear displays, reset data and 
obtain help (including viewing this manual). 

(3) Plot Windows: located in the middle of screen, it helps a user visualize each step of the algorithm process. 
On the left is the train plot, where the user sees the training data distribution and how the model fits that data. 
On the right is the eval plot, showing the evaluation data distribution and how well their generated model is 
categorizing the data distribution. 

(4) Algorithm Toolbar: located on the right side of the window, it allows users to select and configure 
algorithms. It has two buttons labeled “Train” and “Evaluate” which allow you to apply the selected 
algorithm to the train or eval data. Under these buttons is a dropdown menu containing each algorithm, where 
you select which algorithm you would like to use, and set its parameters. 

(5) Process Log: located at the bottom of the screen, it provides user feedback such as parameter settings, 
classification error rates and error messages.  

The overall application window can be resized as a normal desktop window, and the location of these 
components will be adjusted accordingly. 

 
Figure 2. An example of IMLD executing Principal Component Analysis (PCA) with a two-class Gaussian dataset for both 
training and evaluation data. The decision surface (the black line) visually separates the classes. 
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3. User Interface 

In this section, we describe the features available in the five main components of the user interface. We 
explain each menu option and button available to the user. 

3.1. Title Bar  

The title bar contains three key links. The title of the application on the far left, “The ISIP Machine Learning 
Demo,” is linked to the project web site that contains the latest information on software releases, 
publications and other relevant resources.  The text “Contact” on the right is linked to a page providing 
contact information to report bugs and receive help. The text “Share” on the far right provides a link to the 
download site where you can download the source code and a standalone version of the application. 

3.2. Menu Bar  

The Menu Bar, labeled (2) in Figure 2, is the primary navigation hub of the IMLD interface, grouping all 
high‑level actions under five intuitive drop downs menus: File, Edit, Classes, Data, and Help. From these 
menus, users can manipulate data, models and parameter settings. 

3.2.1.  File 

When hovering over “File” in the Menu Bar, shown in Figure 3, a drop-down menu appears displaying 
various options for managing data, models, and parameters. The File options allow users to load, save, and 
export datasets and models. The available options include: 

• Load Train Data: import a dataset to be used for training. 

• Load Eval Data: import a dataset to be used for evaluation. 

• Load Model Parameters: import a set of saved model 
parameters for reusing specific configurations. 

• Load Model: import a full model with structure and weights. 

• Save Train Data: save the current training dataset to a file. 

• Save Eval Data: save the current evaluation dataset to a file. 

• Save Model Parameters: save the current model parameters 
for reusability. 

• Save Model: save a full model with structure and weights. 

These options allow users to efficiently manage their datasets and models throughout the machine learning 
workflow. By enabling the loading of previously saved work, users can resume past sessions or compare 
results across runs. The ability to save trained models and parameter configurations supports experiment 
tracking, reproducibility, and iterative testing. This flexibility is especially useful when fine-tuning models, 
switching between datasets, or applying consistent settings across different experiments. 

IMLD uses a structured CSV (Comma-Separated Values) file format to import and export training and 
evaluation datasets. CSV files are perhaps the most popular format for machine learning research when 
dealing with small datasets. This format supports both user-defined datasets and datasets automatically 
generated by IMLD. An example CSV is shown in Figure 4. This format is compatible with several other 
machine learning tools developed by NEDC. 

A CSV file in IMLD consists of two sections: a header and data. The header contains five rows that include 
the data that allows IMLD to configure itself to the same state it was in when the data was generated. These 

 
Figure 3. The “File” drop-down menu in the Menu Bar 
displays options for importing and exporting datasets, 
models, and parameter configurations.  
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rows include the filename, the class labels, the colors 
assigned to each class, and the plot limits as a tuple 
(x_min, x_max, y_min, y_max). 

In the data section, each data point is listed on its own 
row, and consists of a tuple containing the class label, 
the x-coordinate, and the y-coordinate. Data points can 
be interleaved though by default IMLD writes them 
class by class. 

In addition to using CSV files for data, IMLD uses a 
standardized, extensible system to manage algorithm 
configurations through parameter files written in the 
Tom’s Obvious, Minimal Language (TOML) format. These files define the default settings and input 
controls for each machine learning algorithm available within the system, enabling users to load, reuse, and 
modify algorithm presets efficiently. Each algorithm has a unique set of hyperparameters, which are 
dynamically rendered in the interface based on the information provided in its corresponding TOML file. 
These files contain a structured, human-readable format for defining default settings and input types for 
each algorithm, making configuration reusable and easy to manage. An example, which was generated by 
selecting the algorithm “Support Vector Machine”, training a model, and executing the “Save Model” 
function, is shown in Figure 5. 

The “Save Model” function in IMLD writes a model in a Pickle file format (“.pkl”). This is a popular 
Python serialization format that stores model information in a mixture of text and binary data. These are 
not human readable but follow the same formats used 
by popular tools such as SKLearn. These files store the 
internal state of a trained model object, allowing it to 
be reused or evaluated without needing to retrain it 
from scratch. Pickled models preserve the structure, 
learned parameters (e.g., weights, biases), and 
configuration of an algorithm. This makes .pkl files 
ideal for saving trained models for future use, sharing 
models with others, and loading pre-trained models 
into a new IMLD session for evaluation or 
demonstration. 

Users can save trained models by selecting “Save 
Model” from the File menu. Models can later be 
reloaded with the “Load Model” function, allowing for 
immediate reuse or evaluation without repeating the 
training process. 

3.2.2.  Edit 

When hovering over “Edit” in the Menu Bar, shown in 
Figure 6, a drop-down menu appears providing options 
to adjust settings and clear various components of the 
workspace. The Edit options include: 
• Settings: opens a configuration panel where users can 

modify parameters related to data processing, 
visualization, or model training. 

# filename: /Downloads/imld_train.csv 
# classes: [dog,cat] 
# colors: [#1f77b4,#ff7f0e] 
# limits: [-2.0,4.0,-1.0,5.0] 
# 
dog, -0.616837, 0.483275 
dog, -0.487216, 0.479231 
cat, -0.394414, 0.725841 
cat, -0.372843, 0.701493 
... 

Figure 4. A sample of a CSV file generated by IMLD that 
contains the filename, the names of the two classes, two 
colors identified using hex color codes, the plot limit 
boundaries and the data represented as a tuple (class label, x-
coordinate and y-coordinate).	

[Support_Vector_Machines_SVM] 
name = "Support Vector Machines (SVM)" 
 
[Support_Vector_Machines_SVM.params.impleme
ntation_name] 
type = "select" 
default = "sklearn" 
 
[Support_Vector_Machines_SVM.params.c] 
type = "float" 
default = "1" 
 
[Support_Vector_Machines_SVM.params.gamma] 
type = "float" 
default = "0.1" 
 
[Support_Vector_Machines_SVM.params.kernel] 
type = "select" 
default = "linear" 
... 

Figure 5. A sample of a TOML model parameter file 
generated by the “Save Model” function. 

 
Figure 6. The “Edit” drop-down menu in the Menu Bar, 
displays options to adjust settings and clear various 
components of the workspace. 
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• Clear Train: expands to provide options for clearing specific elements of the training dataset. 

• Clear Eval: expands to provide options for clearing specific elements of the evaluation dataset. 

• Clear Process Log: removes all entries from the process log, resetting the recorded actions and messages. 

• Clear All: clears all datasets, logs, and other stored information in the session, resetting the workspace to its 
initial state. 

• Swap Train/Eval Data: swaps the datasets used for training and evaluation. 

These options allow users to manage their workspace effectively by resetting datasets, removing log entries, 
or adjusting system settings. 

3.2.3. Classes 

Figure 7 depicts the process for adding a new class. When hovering over “Classes” in the Menu Bar, an 
option appears allowing the user to add a new class or select options for an existing class. After hovering 
over Classes and selecting the Add Class option, the user is prompted to name the new class and select a 
color for plotting. Once a class is created, it will appear in the dropdown menu when hovering over Classes. 

When hovering over the class name in the drop down, a second dropdown appears containing the following: 

• Delete Class: this function not only erases any drawn data on the train and eval plots but also deletes the entire 
class. Users can create, delete and modify classes interactively. 

• Draw Points: when this option is selected the user can manually input data by clicking or dragging their mouse 
across either the Train or Eval plot windows. As 
shown in Figure 8 in the right side image, each 
mouse click or motion will generate individual 
data points corresponding to the currently 
selected class. This feature is very useful for 
creating data sets with specific characteristics that 
expose strengths and weaknesses of an algorithm. 

• Draw Gaussian: this option allows users to draw 
data distributed according to a Gaussian 
distribution instead of individual points. Once 
selected, users can click on the plot to define the 
center (mean) of a Gaussian distribution. As 
shown in Figure 8 (left), each motion plots more 
points centered around the cursor. 

 
Figure 7. Workflow for adding a new class is shown: the user selects Add Class, enters a class name, chooses a color using the 
color picker, and confirms by clicking Add Class. 

 

 

 

 

 

 

 

 

 

Figure 8. Examples of data input modes: The left plot shows a 
Gaussian-distributed dataset generated using the Draw Gaussian 
option, the right plot displays individual points manually drawn 
with the Draw Points tool. 
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Note that the drawing features can be used to add new data to 
existing data sets, including the data sets described below. 
This makes it very easy to create unique and interesting data 
sets, and to demonstrate special features of the algorithms. 

3.2.4. Data 

When hovering over “Data” in the Menu Bar, shown in 
Figure 9, a dropdown menu appears containing options for 
several preset data distributions. Once hovering over the 
desired data distribution, a second dropdown menu will 
appear where you can select whether you want this distribution to be used for training data (Train) or 
evaluation data (Eval). The preset data distributions were chosen because they have historical importance 
to the machine learning community. New data generators can be easily added, as explained in Section 6. 

The first choice on the menu, show in Figure 10, is referred to as the Two Gaussians data set, and consists 
of two distinct clusters of points, each sampled from a Gaussian (Normal) distribution. These clusters are 

typically placed at separate means with minimal overlap, making them linearly separable and ideal for 
demonstrating basic classification boundaries. The left image displays the parameters users can control such 
as the number of points (npts), the mean (location of the center of each class), and the covariance matrix 
(which controls the spread or shape). 

The second choice, Four Gaussians, introduces additional complexity by generating four distinct clusters, 
each sampled from a Gaussian distribution. As displayed in Figure 11, instead of just two linearly separable 
groups, this version includes four class labels that are placed at different means with minimal overlap. This 
allows users to explore how machine learning algorithms handle multi-class classification problems and 
more intricate decision boundaries. Just like in the Two Gaussians dataset, users can configure the number 
of points, the mean (center location), and the covariance matrix (which shapes each distribution) for each 
class, giving them full control over the position, density, and orientation of each class. 

The Overlapping Gaussians dataset, shown in Figure 12, is designed to demonstrate situations where class 
boundaries are not clean. It consists of two Gaussian clusters where the means and variances are set so that 
there is significant overlap between the clusters. This creates ambiguity between classes and is ideal for 

 
Figure 9. The “Data” drop-down menu in the Menu 
Bar, displays options to generate some interesting 
and useful predefined data sets. 

 
Figure 10. An example of the parameter input window for the Two Gaussians dataset 
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testing how well a classifier manages uncertainty. Users can adjust the distance between means, the spread 
(covariance), and the number of samples, allowing them to control how much the distributions intersect. 

The Two Ellipses dataset shown in Figure 13 features two class clusters shaped like ellipses rather than 
circles, indicating anisotropic (non-uniform) Gaussian distributions. These ellipses are defined by their 
covariance matrices, which stretch the data in specific directions. This dataset is useful for visualizing how 
algorithms that assume spherical clusters perform when that assumption is violated. Parameters include 
means, covariances (to control orientation and elongation), and number of points per class.  

The Four Ellipses dataset, displayed in Figure 14, is an extension of this that introduces four classes, 
requiring a slightly more sophisticated decision surface. The Rotated Ellipses dataset, displayed in 
Figure 15, uses Gaussian distributions with non-diagonal covariances matrices. This introduces even more 
complexity since the direction of variance is not co-aligned with the direction of discrimination. Parameters 
include the mean, covariance and number of points, allowing users to rotate the ellipses in any direction 
and analyze classification behavior on skewed data. 

 
Figure 11. An example of the parameter input window for the Four Gaussians dataset 

 
Figure 12. An example of the parameter input window for the Overlapping Gaussians dataset 
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Figure 13. An example of the parameter input window for the Two Ellipses dataset 

 
Figure 14. An example of the parameter input window for the Four Ellipses data set 

 
Figure 15. An example of the parameter input window for the Rotated Ellipses dataset 
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The Toroidal dataset displayed in Figure 16, also known as the donut-shaped dataset, arranges data points 
in a ring or circular pattern. Typically, one class is concentrated in the center while another wraps around 
it in a circular band. This nonlinearly separable structure is a good test for algorithms that handle complex 
boundaries. Parameters include the inner and outer radii of the torus, number of samples, and class 
assignment rules, which determine how inner and outer rings are classified. 

The Yin-Yang dataset introduces a visually complex, spiral-based structure inspired by the iconic Yin-Yang 
symbol, where two classes intertwine in a curving, symmetrical pattern. This dataset is particularly useful 
for testing how well algorithms can handle non-linearly separable and non-convex(a shape that a single 
straight line can’t cleanly separate) classification challenges. As shown in Figure 17, users can customize 
the dataset using several parameters: the means control the center location of the spiral; the radius 
determines the overall scale of the Yin-Yang shape; and the number of points for each class (Yin and Yang) 
lets users balance the dataset or simulate class imbalance. Additionally, the overlap parameter allows users 
to adjust how closely the two spirals intertwine, introducing varying levels of classification difficulty. This 
dataset is ideal for exploring the strengths and weaknesses of both linear and nonlinear classifiers in a 
visually intuitive format. 

Scikit-Learn’s “make_classification” (Sklearn in IMLD) is a data generator that is used to quickly create 
artificial datasets that mimic the structure of real-world classification problems. Instead of collecting and 

 
Figure 16. An example of the parameter input window for the Toroidal dataset	

 
Figure 17. An example of the parameter input window for the Yin-Yang dataset 
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cleaning real data (which can be time-consuming), you can use this tool to produce feature matrices (X) 
and label vectors (y) that follow controllable patterns. With this data generator, you can control the features 
that are useful for predicting a class, which are redundant and ones that are just uninformative and noisy. 
You can also control aspects such as the clusters per class, splitting them into multiple Gaussians and even 
controlling the class balance.  

3.2.5. Help 

When hovering over “Help” in the Menu Bar, a dropdown menu will appear with options to assist in 
navigating and using the IMLD website, as displayed in Figure 18. The Help options include the following:  

• About: selecting this option will open a 
window that gives a brief explanation 
of the IMLD app, as well as the current 
operating version.  

• User Guide: displays this user manual 
as a pdf file. 

• Report Issue: selecting this option 
opens a dialog box which includes two 
main input fields. An Issue Title, which 
is a short summary or heading for the 
issue being reported, and the Issue Description which is a larger text area where users can describe the issue in 
more detail. 

• Run Locally: downloads a copy of the IMLD source code to be ran locally.  

Issue reports are sent to the support team at the Neural Engineering Data Consortium (www.nedcdata.org). 
We try to respond to these requests within 24 hours. 

3.3. Plotting Windows   

The interface contains two side‑by‑side plotting windows, as shown in Figure 2, that allow users to compare 
what is called closed-loop performance (training and evaluating on the same data) and open-loop 
performance (training on the training data and evaluating on the evaluation data). The two windows are 
labeled as: 
• Train: displays the training data and the decision surface generated when you press Train. Performance metrics 

are displayed in the Process Log window at the bottom of the screen. 

• Eval: displays the evaluation data and how the previously trained model classifies those points when you press 
Evaluate. 

Together, these two visualizations let you see at a glance how well the model generalizes to classify unseen 
data – data that was not used in the training process. 

The small icons in each plotting window, shown in Figure 19, 
provide some basic interactive controls for the plotting 
windows. These controls are part of the Python library, Plotly 
(https://plotly.com), that is used to visualize the data and the 
resulting decision surfaces: 

• Camera (Left): Downloads the current plot as a PNG image. 

• House (Middle): Resets the axes and zoom to their defaults. 

• Logo (Right): Opens a link to the Plotly.com web site. 

These interactive tools enhance usability, allowing for easier exporting, resetting, and exploration of data. 

	
Figure 19. Plot window interactive buttons 

 

 
Figure 18. The “Help” drop-down menu in the Menu Bar, displays options for 
receiving help, including displaying this user guide. 
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3.4. Algorithm Toolbar 

The Algorithm Toolbar shown in Figure 20 and found on the 
far-right side of the IMLD interface, is where users select 
machine learning algorithms, adjust parameters, and initiate 
training or evaluation of models. This component serves as the 
main control panel for applying algorithms to the visualized 
data. 

At the top of the toolbar are two prominent buttons: Train and 
Evaluate. These are used to process data through the selected algorithm. The Train button is used to create 
a model based on the currently selected algorithm and the training data shown in the Train plot. When 
clicked, the platform processes the training dataset and builds a model using the specified algorithm and 
any parameters that have been set. 

Once a model is trained, the Evaluate button allows users to apply that trained model to the data displayed 
in the Eval plot. This step computes the model’s performance on new or unseen data, also produces metrics 
such as accuracy, precision, and error rate, which are logged in the Process Log.  

Below the Train and Eval buttons, is the algorithm selection 
drop down menu shown in Figure 21. IMLD currently 
supports a broad range of machine learning algorithms, each 
with its own unique set of parameters. These include popular 
models such as Principal Component Analysis (PCA), 
Support Vector Machines (SVM) and K-Nearest Neighbors 
(KNN), as well as more advanced techniques like Restricted 
Boltzmann Machines (RBM), Transformers and Quantum 
Neural Networks (QNN). A total of 17 algorithms are 
available in the dropdown menu. When an algorithm is 
selected, the corresponding parameters automatically appear 
in the Algorithm Toolbar, enabling fine-grained control over 
behavior, such as adjusting learning rates, selecting solvers, 
or configuring component counts—depending on the 
algorithm. 

For example, Principal Component Analysis (PCA) shown in Figure 22, is a dimensionality reduction 
technique that transforms potentially correlated variables into a smaller set of uncorrelated variables called 
principal components. Its goal is to preserve as much variance in the dataset as possible using fewer 
dimensions. In IMLD, PCA includes several configurable parameters: 

• Implementation: specifies the backend method used to 
compute the PCA solution. Options may differ in 
computational strategy, efficiency, or numerical stability. 
Selecting the appropriate implementation can impact both 
runtime and the numerical accuracy of the result. 

• Prior Probability: determines how prior beliefs about 
class distributions are incorporated into the analysis. 
Options like “ml” (Maximum Likelihood) or ‘map” 
(Maximum A Posteriori) allow users to influence model 
bias based on assumed or known class frequencies. 

• Covariance Type: controls how the algorithm models 
variance and correlation across features. A “full” 

	
Figure 20. Algorithm tool bar layout 

 

	
Figure 22. Principal Component Analysis parameters 

 

	
Figure 21. Algorithm selection drop-down menu 
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covariance type considers all pairwise feature relationships, while simpler alternatives (e.g., “diagonal”) assume 
features are uncorrelated. This impacts how flexibly the model adapts to data structure. 

• Center: defines how input data is centered before analysis. Options such as “none”, “tied”, or “untied” 
determine whether the data is mean-shifted globally, per class, or left as-is. Proper centering is crucial for 
ensuring meaningful principal component directions. 

• Scale: specifies the scaling method used to normalize data prior to PCA computation. Options include “none”, 
“biased”, “unbiased”, and “empirical’, each reflecting a different statistical approach to variance estimation. 
Scaling ensures features with larger numeric ranges don't dominate the analysis. 

• Number of Components: sets the number of principal components to retain in the reduced representation. A 
value of 2, for example, projects the data into two dimensions, preserving only the two directions of maximum 
variance. This directly controls the dimensionality of the output space. 

PCA is a well-known algorithm for doing simple classification tasks and is often one of the first algorithms 
students will be introduced to in a machine learning course. 

3.5. Process Log 

The Process Log, located at the bottom of the IMLD interface shown in Figure 2, provides a detailed, step-
by-step summary of all actions taken during a session. This includes data generation, class creation, 
algorithm selection, parameter configuration, model training, and evaluation results. It is updated in real 
time, offering users a transparent record of their workflow that can be used for debugging, experimentation, 
and documentation. 

When a user creates new classes, the log immediately confirms each addition (e.g., Added class: Class 0). 
This is followed by detailed summaries whenever a dataset is generated or loaded, including the dataset 
type (e.g., Two Gaussian, Toroidal, Yin-Yang) and whether it was applied to the Train or Eval window. 
For each class, the log displays key parameters such as the number of points, the class means, and class 
covariance matrices.  

Once a machine learning algorithm is selected, the log lists the algorithm name and a complete breakdown 
of its parameter settings, as specified in the algorithm toolbar. This ensures that all user configurations are 
preserved and visible for later reference. When the user clicks the Train button, the log captures the moment 
training begins (Process: Train) and may optionally display learned model parameters such as estimated 
means, priors, or cluster centers, depending on the algorithm. 

Following training, the log presents a standardized set of performance metrics: Accuracy, Error Rate, F1 
Score, Precision, Sensitivity (Recall), and Specificity. 

Clicking the Evaluate button triggers a similar process for the evaluation dataset. The log reports (Process: 
Eval) and displays the same set of performance metrics, allowing users to compare generalization between 
training and evaluation phases. In cases where training or evaluation fails (e.g., due to missing data, 
incompatible configurations, or model errors), the log provides a descriptive error message to help users 
identify and resolve the issue. By maintaining a comprehensive record of each session, the process log 
supports reproducibility, comparative testing, and transparent analysis – making it an essential tool for both 
new learners and advanced users. 

4. Algorithms 

There are 19 popular machine learning algorithms currently supported in IMLD. These can be roughly 
clustered into five groups: (1) discriminant, (2) non-parametric, (3) gradient-boosting, (4) neural network 
and (5) quantum computing. The first two groups are traditionally found in many entry-level machine 
learning courses. The next two groups are relatively more recent additions and reflect the modern emphasis 
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on neural networks and deep learning. The last group is relatively new and reflects an exciting emerging 
area of science known as quantum machine learning. These algorithms are experimental in nature and are 
quite computationally expensive. They are implemented using a quantum computer simulator. 

4.1. Discriminant Algorithms 

These algorithms are variants of the popular algorithm PCA that attempt to model data using a generative 
Gaussian distribution-based model. 

4.1.1. Euclidean Distance (EUCL) 

Euclidean Distance is a simple, intuitive classification method that assigns data points to the class of the 
closest reference point based on straight-line (L2) distance. While it performs well on linearly separable 
datasets with evenly spaced data, it is limited in its ability to handle complex, overlapping, or high-
dimensional data distributions. 

Parameters: 
• Implementation: Specifies the computational framework used (e.g., “discriminant”), which refers to a basic 

implementation focusing on class separation based on distance metrics. 

• Weights: Assigns a weighting factor to each class. This parameter allows for class-specific influence during the 
classification process. Adjusting these values can simulate class imbalance or prioritize certain classes over 
others. 

4.1.2. Principal Component Analysis (PCA) 

Principal Component Analysis is a statistical technique used to reduce the dimensionality of a dataset while 
preserving as much variance as possible. It works by transforming the original features into a new set of 
uncorrelated variables called principal components, which are ordered by the amount of variance they 
capture. 

Parameters: 
• Implementation: specifies the computational method used (e.g., discriminant-based); 

• Prior Probability: controls how class priors are applied (ml for maximum likelihood, map for maximum a 
posteriori); 

• Covariance Type: controls assumptions about the covariance matrix (full: the matrix is fully populated and 
symmetric, diagonal: assumes the features are decorrelated); 

• Center: determines how input data is centered (none, tied, untied); 

• Scale: selects the normalization method applied to input data (none, biased, unbiased, or empirical); 

• Number of Components: controls how many principal components are retained (e.g., 2 for 2D projection). 

4.1.3. Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis is a supervised learning algorithm used for both classification and 
dimensionality reduction. Unlike PCA, which seeks directions of maximum variance, LDA aims to find the 
feature space that best separates the classes. It does this by maximizing between-class variance while 
minimizing within-class variance, resulting in optimal linear decision boundaries for classification tasks. 
LDA is especially effective when class distributions are approximately Gaussian and share a common 
covariance structure. 

Parameters: 
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• Implementation: specifies the algorithmic backend used for computation; 

• Prior Probability: controls how class priors are applied (ml or map); 

• Covariance Type: sets the covariance structure (full or diagonal); 

• Center: determines how data is centered before analysis (none, tied, untied); 

• Scale: selects the normalization method applied to input data (none, biased, unbiased, or empirical); 

• Number of Components: controls how many principal components are retained (e.g., 2 for 2D projection). 

4.1.4. Quadratic Components Analysis (QDA) 

Quadratic Components Analysis is a supervised classification algorithm that extends Linear Discriminant 
Analysis (LDA) by allowing each class to have its own unique covariance matrix. This added flexibility 
enables QDA to model more complex, curved decision boundaries, making it especially effective for 
problems where class distributions differ in shape, scale, or orientation. QDA calculates class-specific 
probability distributions and assigns new observations to the class with the highest posterior probability. Its 
capacity to model class-specific variances and covariances leads to quadratic decision surfaces, giving it a 
significant advantage over linear models in cases with nonlinearly separable data. 

Parameters: 

• Implementation: specifies the backend method used for computation (e.g., discriminant); 

• Prior Probability: controls how class priors are applied (ml or map); 

• Covariance Type: sets the covariance structure (full or diagonal); 

• Center: determines how the data is centered before analysis (none, tied, or untied); 

• Scale: selects the normalization method applied to input data (none, biased, unbiased, or empirical); 

• Number of Components: controls how many principal components are retained (e.g., 2 for 2D projection). 
This typically matches the number of classes minus one, but QDA can support more due to its nonlinear nature. 

4.1.5. Quadratic Linear Discriminant Analysis (QLDA) 

Quadratic Linear Discriminant Analysis is a supervised algorithm that extends the principles of LDA by 
introducing greater flexibility in how it models class distributions. While LDA assumes that all classes 
share a common covariance structure, QLDA relaxes this assumption – allowing the algorithm to 
approximate nonlinear (curved) decision boundaries while maintaining the interpretability and 
computational efficiency of linear methods. This makes QLDA particularly valuable in cases where the 
class distributions vary modestly but not enough to require a fully nonlinear model like QDA. 

Parameters: 

• Implementation: specifies the discriminant-based solver used to compute the projection; 

• Prior Probability: controls how class priors are applied (ml or map); 

• Covariance Type: sets the covariance structure (full or diagonal); 

• Center: determines how the data is centered before analysis (none, tied, or untied); 

• Scale: selects the normalization method applied to input data (none, biased, unbiased, or empirical); 

• Number of Components: controls the number of projection components to retain, usually corresponding to the 
number of classes minus one. 
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4.1.6. Naive Bayes (NB) 

Naive Bayes is a simple, yet effective supervised learning algorithm based on Bayes’ Theorem, which 
calculates the probability that a data point belongs to a particular class given its features. The “naive” 
assumption refers to the algorithm treating all features as conditionally independent given the class label, 
which simplifies computation and often works surprisingly well in practice. Despite its simplicity, Naive 
Bayes performs competitively on many classification tasks, especially those involving text, document 
categorization, or other high-dimensional data. It is particularly well suited to problems where the 
independence assumption is approximately valid, or the dataset is noisy and sparse. 

Parameters: 
• Implementation: specifies the computational backend (e.g., sklearn) used for fitting the model; 

• Prior Probability: controls how class priors are applied (ml or map). 

4.1.7. Gaussian Mixture Model (GMM) 

A Gaussian Mixture Model (GMM) is a generative, unsupervised learning algorithm that models the 
underlying data distribution as a weighted sum of Gaussian distributions. Each component, or mixture, 
represents a cluster and the overall distribution is a weighted sum of these components. Unlike KMN, which 
assigns points to clusters based on distance, GMM assigns points based on probability, allowing soft 
clustering and more flexible cluster shapes. GMMs are particularly useful for identifying subpopulations 
within complex datasets and can model elliptical clusters with variable sizes and orientations. 

Parameters: 

• Implementation: specifies the method used for fitting the model (e.g., em for Expectation-Maximization); 

• Prior Probability: determines how class priors are estimated (ml for maximum likelihood); 

• Number of Components: specifies how many Gaussian components (clusters) the model should fit; 

• Random State: sets the seed for initialization, ensuring reproducibility across runs. 

4.2. Non-Parametric Algorithms 

Nonparametric algorithms can be quite powerful but are susceptible to overtraining. IMLD provides a very 
rich environment in which these issues can be explored via powerful visualizations. 

4.2.1. K-Nearest Neighbors (KNN) 

K-Nearest Neighbors is a non-parametric, supervised learning algorithm that classifies data points based 
on the class assignments of the closest training samples. When given a new data point, KNN identifies the 
K closest labeled training samples - typically using Euclidean distance – and assigns the class that is most 
common among those neighbors. KNN is intuitive, simple to implement, and does not involve any internal 
model training, making it ideal for establishing upper bounds on performance. 

Parameters: 
• Implementation: specifies the computational library used to execute the algorithm (e.g., sklearn). 

• Number of Neighbors: determines the number of nearest neighbors (K) used for majority voting. Common 
values range from 1 to 10, depending on the size and density of the dataset. 
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4.2.2. K-Means (KMN) 

K-Means is a widely used unsupervised learning algorithm for clustering data into K groups based on 
similarity. It works by iteratively assigning each data point to the nearest cluster center (centroid), then 
recalculating the centroids based on the assigned points until convergence. The result is a partitioning of 
the dataset into K compact, non-overlapping clusters with minimal intra-cluster variance. K-Means is fast, 
scalable, and particularly effective when the data has distinct spherical clusters of similar size. 

Parameters: 

• Implementation: specifies the underlying framework used to perform clustering (e.g., sklearn); 

• Number of Clusters: sets the number of clusters (K) that the algorithm will attempt to find; 

• Number of Initializations: defines how many times the algorithm will be run with different centroid seeds; the 
best result (lowest within-cluster variance) is selected; 

• Random State: sets the seed for reproducibility of centroid initialization; 

• Maximum Iterations: limits the number of iterations for convergence in each run. 

4.2.3.  Random Forest (RNF) 

Random Forest is a powerful ensemble classifier that builds multiple decision trees during training and 
merges their results to improve accuracy and control overfitting. Each tree is trained on a different bootstrap 
sample of the data, and features are randomly selected at each split, making the forest robust to noise and 
variability. It’s particularly well-suited for classification tasks where interactions between features are 
complex or non-linear. Because the final decision is based on majority voting (classification) or averaging 
(regression), RNF tends to generalize well without extensive hyperparameter tuning. 

Parameters: 

• Implementation: specifies the framework for execution (e.g., sklearn); 

• Number of Estimators: sets the number of trees to grow in the forest; 

• Maximum Depth: limits the depth of each decision tree, helping prevent overfitting; 

• Criterion: chooses the function used to measure the quality of splits (gini for Gini impurity or entropy for 
information gain); 

• Random State: controls randomness in sampling and feature selection for reproducible results. 

4.2.4.  Support Vector Machines (SVM) 

Support Vector Machines are a robust, high-performance classification method that works by finding the 
optimal hyperplane that maximizes the margin between two classes. SVM is particularly effective for both 
linearly and nonlinearly separable data through the use of kernel functions, which transform data into higher 
dimensions where separation is more feasible. SVMs are known for their strong theoretical foundation and 
are often the go-to method when high accuracy is needed, especially in high-dimensional spaces. 

Parameters: 
• Implementation: specifies the underlying library used to implement the algorithm (e.g., sklearn), which affects 

how the model is trained and evaluated; 

• Regularization Parameter (c): balances the trade-off between maximizing the margin and minimizing training 
error. A smaller C increases regularization, promoting simpler models that generalize better. A larger C reduces 
regularization, allowing the model to fit the training data more closely. 
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• Kernel Coefficient (Gamma): determines how much influence a single training example has. Lower values 
imply a wider, more generalized decision boundary, while higher values lead to tighter, more complex 
boundaries. This parameter is only applicable for non-linear kernels like rbf, poly, or sigmoid. 

• Kernel: specifies the kernel used to transform the input space. Options include linear (no transformation), and 
rbf, poly, and sigmoid, nonlinear transformations that allow the model to learn complex boundaries in high-
dimensional feature spaces. 

4.3. Gradient-Boosting Algorithms 

These algorithms use a technique called gradient-boosting for their training method. It gives a prediction 
model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions 
about the data, which are typically simple decision trees. 

4.3.1. LightGBM 

LightGBM (Light Gradient Boosting Machine) is a high-performance gradient boosting framework 
developed to handle large datasets with low memory usage and fast training speeds. Unlike traditional 
boosting methods, it uses histogram-based algorithms and grows decision trees leaf-wise (best-first) rather 
than level-wise, enabling it to capture complex patterns more efficiently. LightGBM supports classification, 
regression, and ranking tasks, and includes built-in mechanisms for handling imbalanced data. Its 
scalability, speed, and accuracy make it particularly effective for large-scale machine learning problems 
where computational efficiency is critical. 

Parameters: 

• Implementation: specifies the backend used to run the model. LightGBM is a fast, efficient gradient boosting 
framework optimized for large datasets and lower memory usage. 

• Bagging Fraction: defines the proportion of data used to train each boosting iteration. Using a value less than 
1.0 enables bagging, which helps reduce overfitting and improves generalization. 

• Bagging Frequency: specifies how often bagging is performed (in number of boosting iterations). A value of 0 
disables bagging. Higher values perform bagging less frequently. 

• Boosting Type: specifies the boosting method being used. 

• Evaluation Metric: defines the metric for validation with options such as binary logloss, multi error, and auc.  

• Early Stopping Rounds: specifies how many rounds with no improvement before training halts. Larger values 
allow more time but risk overfitting. 

• Validation Fraction: fraction of training data held out for early stopping. More validation data provides a 
stronger signal but leaves less for actual training. 

• Is Unbalanced: if set to 'true', LightGBM automatically adjusts class weights for imbalanced datasets. 

• L1 Regularization: adds L1 penalty to leaf weights, encouraging sparse solutions by shrinking less important 
features to zero. 

• L2 Regularization: adds L2 penalty to leaf weights, smoothing extreme values to reduce overfitting while 
preserving overall model complexity. 

• Learning Rate: controls step size shrinkage at each boosting round. Lower rates produce more stable models 
but require more trees to converge. 

• Max Depth: limits the depth of each tree. Deeper trees capture complex patterns but can overfit and slow down 
training. 

• Min Data in Leaf: specifies the minimum number of samples in a leaf node to avoid creating leaves that overfit 
on very few observations. 



S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 18 of 36 

  v5.0.1: January 1, 2026 

• Number of Estimators: total number of trees to build. More trees can improve fit but increase training time 
and risk overfitting. 

• Number of Leaves: sets the maximum number of leaves per tree. More leaves allow finer splits but can lead to 
overly complex models. 

• Random State: random seed to ensure reproducibility. 

• Solver: sets the learning objective, automatically setting by default. 'binary' is used for 2-class, 'multiclass' for 
more, 'regression' for continuous targets. 

• Test Size: fraction of dataset reserved for testing. Smaller values leave more data for training. 

• Verbosity: Controls logging detail. Higher values print more training info and diagnostics. 

4.3.2. XGBoost (XGB) 

XGBoost (Extreme Gradient Boosting) is an optimized gradient boosting framework designed for speed, 
scalability, and accuracy. It builds an ensemble of decision trees sequentially, where each new tree corrects 
the errors of the previous ones.  It is widely used for both classification and regression tasks and is especially 
effective for structured/tabular data, ranking problems, and scenarios requiring high predictive performance 
with efficient computation.  

Parameters: 

• Implementation: defines the backend used to run the model. XGBoost is a scalable and efficient gradient 
boosting framework commonly used for structured/tabular data. 

• Solver: the optimization algorithm used to minimize the loss during training. This selection affects convergence 
speed and final accuracy. Options include popular choices such as “multi: softmax” and “multi: softprob”. 

• Evaluation Metric: defines the validation metric. Options include choices such as “mlogloss” and “error”. 

• Early Stopping Rounds: halts training after no validation improvement for a set number of rounds. Larger 
values allow more iterations but risk overfitting. 

• Learning Rate: controls the contribution of each tree to the overall model. Lower rates generalize better but 
require more boosting rounds. 

• Max Depth: sets the maximum depth of each tree. Deeper trees capture more complexity but increase 
overfitting risk. 

•  Number of Estimators: specifies the total number of boosting rounds (trees). More rounds can improve fit but 
increase training time and risk of overfitting. 

• Number of Threads: sets the number of CPU threads used for training. Increasing threads speeds up 
computation on multi-core machines. 

• Random State: seed used to ensure reproducibility of results. 

• Test Size: fraction of data held out for testing. Smaller values leave more data available for training. 

• Verbosity: controls the level of logging output during training. Higher values produce more detailed 
diagnostics. 

4.4. Neural Network-Based Algorithms 

We have included some standard neural network algorithms in IMLD that are well-suited to problems 
involving vector input. Though the theoretical gains achieved by these algorithms on this data are not great, 
they provide important reference implementations that can be extended to problems where they excel, such 
as long-term contextual modeling (e.g., ChatGPT). 
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4.4.1.  Multi-Layer Perceptron (MLP) 

A Multi-Layer Perceptron is a type of feedforward artificial neural network composed of one or more 
hidden layers between the input and output. It is a supervised learning algorithm that models complex, 
nonlinear relationships by learning through backpropagation. MLPs are capable of handling both 
classification and regression tasks by adjusting their architecture and activation functions. They are 
particularly effective for datasets where patterns are not easily separable using linear decision boundaries. 

Parameters: 

• Implementation: defines the library or backend used to train the model (e.g., sklearn). Different 
implementations may offer varying trade-offs in performance, flexibility, or compatibility. 

• Hidden Size: specifies the number of units or neurons in the hidden layer(s). This determines the capacity of 
the model to learn complex relationships. A larger hidden size allows the model to capture more intricate 
patterns but also increases the risk of overfitting. 

• Activation: determines the nonlinear transformation applied at each neuron. The choice affects how signals 
propagate through the network and influences learning dynamics. Common choices include: 

§ relu: efficient and widely used, especially for deep networks. 
§ tanh or logistic: useful in shallower networks or where bounded output is preferred. 

• Solver: The optimization algorithm used to minimize the loss during training. This selection affects 
convergence speed and final accuracy. Options include: 

§ adam: a robust, adaptive method suitable for most tasks. 
§ sgd: stochastic gradient descent, which may converge more slowly but is highly customizable. 
§ lbfgs: offers high precision convergence, especially on small to medium-sized datasets. 

• Batch Size: determines how many samples are processed before updating the model weights. Setting this to 
auto lets the backend choose an optimal size. Smaller batches lead to faster updates but more variance; larger 
batches provide more stable updates. 

• Learning Rate: specifies the policy for adjusting the model’s learning rate over time. Common settings 
include: 

§ constant: Keeps the learning rate fixed throughout training. 
§ adaptive or invscaling: Adjusts learning rate as training progresses to fine-tune the model. 

• Initial Learning Rate: sets the starting step size for the optimization process. This value controls how large 
each update is during the early stages of training. A value that is too high may cause divergence; a value that is 
too low may slow learning. 

• Random State: seeds the random number generator used during initialization and training. This ensures 
consistent results across repeated runs, improving reproducibility and debugging. 

• Momentum: used to accelerate training by smoothing updates. It helps the model move consistently in 
directions that reduce error, avoiding small local minima and speeding up convergence. 

• Validation Fraction: sets the portion of training data to hold out for validation. This helps monitor overfitting 
by evaluating performance on unseen data during training. 

• Maximum Iterations: defines the maximum number of training epochs (complete passes over the data). This 
prevents excessive runtime and ensures that training halts within a practical timeframe. 

• Shuffle: if true, the training data is shuffled at each epoch. This reduces bias due to data order and promotes 
better generalization by exposing the model to different sequences of data. 

• Early Stopping: if enabled, training halts when the model's performance on the validation set no longer 
improves. This technique prevents overfitting and saves time by stopping training once optimal learning is 
reached. 
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4.4.2.  Restricted Boltzmann Machine (RBM) 

A Restricted Boltzmann Machine is a generative stochastic neural network used for dimensionality 
reduction, feature learning, and classification. It consists of a visible layer (input features) and a hidden 
layer (learned features), with connections only between these two layers, not within them – hence the name 
“restricted.” RBMs learn a probabilistic representation of the input data and can be used as building blocks 
for deeper models like Deep Belief Networks (DBNs). In IMLD, RBMs are primarily used for unsupervised 
feature extraction, followed by a classifier (e.g., KNN) for supervised learning. After training, the learned 
hidden representations are passed to the selected classifier to perform classification tasks. 

Parameters: 
• Implementation: defines the library or backend used to train the model (e.g., sklearn). 

• Classifier: defines the downstream classifier to apply to the learned features (e.g. KNN). 

• Learning Rate: controls how fast the model updates weights during training. 

• Batch Size: sets how many samples are used per training batch. A value of zero corresponds to full-batch training. 

• Verbose: enables detailed logging output for training diagnostics (0 = off, higher positive values = more info). 

• Random State: ensures reproducible results by fixing the seed used for random processes. 

• Number of Components: sets the number of hidden units or features to extract. 

• Maximum Iterations: limits the number of training passes through the dataset. 

4.4.3.  Transformer 

A Transformer model is a deep learning architecture that relies entirely on self-attention mechanisms to 
process input data. Originally introduced for natural language processing tasks, Transformers have since 
been adapted for a variety of domains including classification, sequence modeling, and time-series 
prediction. Unlike traditional models that rely on recurrence or convolution, Transformers learn 
relationships between all elements in the input sequence simultaneously, making them especially effective 
at capturing long-range dependencies. In IMLD, the Transformer is implemented using PyTorch and allows 
full customization of its architecture, offering flexibility in training and evaluation. 

Parameters: 

• Implementation: selects the backend library used to execute the model (e.g., PyTorch). 

• Epoch: number of complete passes through the training data. 

• Learning Rate: determines how quickly the model updates weights during optimization. 

• Batch Size: number of samples processed before the model’s parameters are updated. 

• Embed Size: dimensionality of the input embeddings that represent each data point. 

• Number of Heads: defines the number of attention heads in the multi-head attention mechanism, enabling the 
model to focus on different parts of the data simultaneously. 

• Number of Layers: controls the depth of the model by setting the number of stacked encoder layers. 

• MLP Dimension: size of the feed-forward layer following each attention block. 

• Dropout: introduces regularization to reduce overfitting by randomly setting a fraction of neurons to zero 
during training. 

• Random State: sets the seed for reproducibility. 

• Tolerance: determines the stopping condition for convergence (smaller values require tighter convergence). 
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• Validation Fraction: percentage of data held out for validation during training. 

• Early Stopping: halts training if performance on validation data stops improving. 

• Max Iterations: limits the number of training cycles to prevent excessively long training runs. 

4.5. Quantum Computing-Based Algorithms 

An interesting emerging area of computing is quantum computing. Quantum computers offer the potential 
to solve certain types of problems very quickly and perhaps find better solutions than conventional machine 
learning algorithms. In IMLD, we provide three historically important attempts to harness the power of 
quantum computing for machine learning. 

4.5.1. Quantum Restricted Boltzmann Machine (QRBM) 

The Quantum Restricted Boltzmann Machine (QRBM) is a hybrid quantum-classical model designed for 
unsupervised learning and dimensionality reduction using principles from quantum annealing. This model 
builds upon the structure of a classical Restricted Boltzmann Machine (RBM) but uses a quantum processor 
to perform optimization tasks. It is particularly well-suited for sampling complex probability distributions 
and encoding data into lower-dimensional latent spaces. QRBM in IMLD is implemented using the D-Wave 
quantum platform, which enables annealing-based optimization via binary quadratic models (BQMs). This 
allows the model to find low-energy representations of input data, mimicking how neural networks 
compress and interpret features. 

Parameters: 
• Implementation Name: specifies the backend platform, such as “dwave”, which executes the model using 

D-Wave’s quantum annealer. 

• Provider Name: identifies the service or interface layer (e.g., “dwave”), which is used to manage access and 
interaction with the quantum hardware. 

• Encoder Name: defines the encoding strategy, such as “bqm” (binary quadratic model), which represents the 
energy function of the RBM in a format solvable by quantum annealing. 

• Number Hidden Units: controls the number of hidden nodes in the model, which represent latent features 
extracted from the input data. 

• Number of Shots: determines how many times the quantum annealer samples from the solution space. More 
shots provide a better approximation of the probability distribution. 

• Chain Strength: a hyperparameter that adjusts the penalty for breaking chains of qubits representing logical 
variables. It affects solution quality and stability. 

• KNN Neighbors: specifies how many nearest neighbors use in the final classification step after feature 
extraction, integrating QRBM with a KNN classifier for supervised tasks. 

4.5.2. Quantum Neural Network (QNN) 

The Quantum Neural Network is a machine learning model that utilizes principles from quantum computing 
to perform classification and optimization tasks. Unlike classical neural networks that operate on real-
valued vectors, QNNs leverage quantum circuits to represent and manipulate data in quantum states. These 
models are especially well-suited for exploring quantum-enhanced feature spaces and are implemented 
using frameworks like Qiskit. In IMLD, QNNs are built using parameterized quantum circuits composed 
of feature maps and variational ansatz layers. These circuits are optimized iteratively using classical 
optimization algorithms. 

Parameters: 
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• Implementation Name: specifies the quantum framework used (e.g., “qiskit”). 

• Provider Name: defines the service or simulator provider (typically “qiskit”). 

• Hardware: specifies the execution platform, such as “cpu” for simulation or “qpu” for quantum hardware. 

• Encoder Name: determines the type of quantum feature map which encodes classical data into quantum states. 

• Number Qubits: sets the number of qubits used in the quantum circuit, impacting the model's capacity and 
complexity. 

• Entanglement: defines the pattern of entanglement among qubits (“full” means all qubits are entangled with 
one another). 

• Feature Map Repetitions: controls the number of times the feature map circuit is repeated to enhance 
representational power. 

• Ansatz Repetitions: controls how many times the trainable ansatz block is repeated to deepen the circuit. 

• Ansatz Name: specifies the form of the trainable quantum circuit, such as "real_amplitudes", which applies 
parameterized rotations. 

• Optimizer Name: selects the classical optimizer (e.g., “cobyla”) used to tune circuit parameters based on 
performance. 

• Optimizer Maximum Steps: limits the number of iterations the optimizer will run, preventing overfitting or 
long runtimes. 

• Measurement Type: specifies how measurement results are collected (e.g., “sampler” for probabilistic output). 

4.5.3. Quantum Support Vector Machine (QSVM) 

The Quantum Support Vector Machine extends classical SVM techniques into the quantum domain by 
leveraging quantum computing principles such as entanglement and superposition. It maps classical data 
into a quantum feature space using quantum circuits and then separates data using a kernel-based 
classification approach. This allows for solving classification problems that may be intractable for classical 
SVMs on certain datasets. QSVM in IMLD is implemented using Qiskit, a leading quantum computing 
framework, and can simulate execution on quantum hardware or classical backends. 

Parameters: 

• Implementation: selects the quantum backend library (e.g., Qiskit). 

• Provider Name: defines the service or simulator provider (typically “qiskit”). 

• Hardware: specifies the execution platform, such as “cpu” for simulation or “qpu” for quantum hardware. 

• Encoder Name: determines the type of quantum feature map, such as "zz" for ZZFeatureMap, which encodes 
classical data into quantum states. 

• Number of Qubits: sets the number of qubits used in the quantum circuit, impacting the model's capacity and 
complexity. 

• Entanglement: defines the pattern of entanglement among qubits (“full” means all qubits are entangled with 
one another). 

• Feature Map Repetitions: controls the number of times the feature map circuit is repeated to enhance 
representational power. 

• Kernel: specifies the kernel method used to compare quantum states (e.g., “fidelity” measures state overlap). 

• Number of Shots: indicates how many times the quantum circuit is run to estimate probabilities – higher values 
yield more stable results but take more computational time. 
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4.6. Summary 

We have attempted to provide a wide range of algorithms that are generally useful to entry-level students 
interested in understanding how machine learning actually works. As will be discussed in Section 6, it is 
fairly easy to add new algorithms to IMLD. We expect to continue implementing new algorithms over time 
as the field evolves. Some of the algorithms described above, such as Transformers, excel when processing 
long strings of sequential data. However, the implementations provided above are designed to provide fair 
comparisons of these algorithms on well-known data sets. 

5. Typical Use Cases 

This section presents a series of typical use cases 
that walk users through practical workflows. A 
workflow typically includes dataset creation, 
algorithm selection, training and evaluation, and 
interpretation of results. These examples are 
designed to highlight the strengths and limitations 
of various algorithms when applied to different 
data distributions, and to help users develop 
intuition about how to navigate model selection, 
parameter tuning, and performance assessment 
within the IMLD environment. 

5.1. PCA vs. QDA for Rotated Ellipses 

In this example, we will generate multivariate 
Gaussian data with an asymmetric covariance 
structure and explore how well the data can be 
classified using QDA. To generate Rotated 
Ellipses in IMLD, navigate to the Data tab in the 
menu bar and select the Rotated Ellipses option 
from the dropdown menu, as shown in Figure 23. 

After selecting Train or Eval, a parameter 
configuration window will appear (Figure 24), 
that allows the user to define the characteristics of 
the datasets such as class means, covariance 
matrices, and the number of points.  

After selecting “Submit”, the resulting data will 
then be populated in the corresponding Train or 
Eval plotting windows. The resulting window 
should resemble Figure 25, displaying two 
distinct rotated elliptical clusters in both the Train 
and Eval plotting windows. Their corresponding 
parameters are displayed in the Process Log. 

Next, we will select our desired algorithm. 
Navigate to the Algorithm Toolbar on the right 
hand side, and click the drop-down menu titled 
“Select an Algorithm” and select “Principal 
Component Analysis (PCA)”. After selecting 

	
Figure 23. Generation of a Rotated Ellipses dataset 

 
Figure 24. Rotated Ellipsis parameter configuration 

	

Figure 25. Window displaying generated Rotated Ellipses data 

	
Figure 26. The parameter window for the algorithm ‘PCA’ 
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PCA as the algorithm, configure its parameters according to your experimental needs. In this demonstration, 
we use the default parameters shown in Figure 26. Once configured, click the Train button to apply the 
PCA transformation to the training data. The Process Log will record details such as class means, prior 
probabilities, and resulting covariance matrices. 

After training, click Evaluate to apply the trained PCA model to the evaluation dataset. The Process Log 
will now include performance metrics such as accuracy, precision, F1 score, and confusion matrix entries. 
These results allow the user to assess the model’s ability to generalize beyond the training set. 

The PCA algorithm creates a linear, or straight, decision boundary by projecting the data onto a new axis. 
As shown in Figure 27, this works well when the data is already clearly separated. Even though PCA does 

	
Figure 27. PCA decision boundaries and evaluation metrics 

 
Figure 28. QDA Decision boundaries and evaluation metrics 
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not use class-specific shape or orientation information, it still performs perfectly in this case because the 
data is clean and well-separated. 

Next, repeat the process using Quadratic Discriminant Analysis (QDA) by selecting it from the drop-down 
menu. As shown in Figure 28, QDA allows each class to have its own shape and spread, which makes it 
capable of generating more complex decision surfaces. In this case, however, since the data is well 
separated, both algorithms produce perfect classification. 

5.2. QDA vs. RNF for Toroidal Data 

To generate Toroidal data in IMLD, navigate to 
the Data tab in the menu bar and select Toroidal 
from the dropdown menu (Figure 29). After 
selecting Train or Eval, a parameter 
configuration window will appear (Figure 30), 
allowing the user to define the characteristics of 
the datasets. After selecting Submit, the 
resulting data will be populated in the 
corresponding plotting window. The resulting 
view should resemble Figure 31, displaying a 
ring-shaped cluster centered around a circularly 
shaped inner cluster. All input parameters are 
displayed in the Process Log. 

Next, navigate to the Algorithm Toolbar on the 
right-hand side, open the Select an Algorithm 
dropdown menu, and choose Quadratic 
Discriminant Analysis (QDA). Configure the 
parameters as needed (Figure 32) or use the 
default settings. 

Click Train to apply QDA to the training 
dataset. The Process Log will display the 
resulting class statistics including means, prior 
probabilities, and the full covariance matrices 
for each class. Then click Evaluate to apply the 
trained QDA model to the evaluation set. 

The Process Log will now include performance 
metrics such as accuracy, precision, F1 score, 
and the confusion matrix. In this demonstration, 
QDA achieves fails to isolate the two classes, as 
shown in Figure 33, since it is not well-suited to 
this type of data. 

Now repeat the process using the Random 
Forest (RNF) algorithm by selecting it from the 
same dropdown menu. Once selected, click 
Train to fit the RNF model to the training data, 
and then Evaluate to apply the model to the 
evaluation dataset. As shown in Figure 34, RNF 
forms a very specific decision boundary that 

	
Figure 29. Navigation for the toroidal dataset 

	
Figure 30. Toroidal data set parameter configuration 

 
Figure 31. The plotting windows for the toroidal dataset 

 
Figure 32. The QDA parameter window 
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closely follows the toroidal contours of 
each class. The Process Log reports very 
high accuracy, often exceeding at 99%, 
along with precise class-specific metrics. 

QDA and RNF use fundamentally 
different approaches to classification, 
and their performance varies 
significantly on nonlinear datasets like 
Toroidal. This use case highlights that 
while QDA performs well on data with 
curved but regular shapes (like ellipses), 
RNF is the better choice when dealing 
with non-convex or nested topologies 
such as the toroidal configuration. When 
interpretability is less critical than 
performance, RNF's data-driven 
adaptability offers a clear advantage in 
both classification accuracy and 
boundary flexibility. 

5.3. Creating Custom Data Sets 

To create a custom dataset by drawing, 
first add a class by using the “Add Class” 
button under the Classes tab (Figure 35). 
Then, once again hovering over “Classes”, select the class you created, and choose Draw Points (for 
individual clicks) or Draw Gaussian. 

In this example, we will be drawing two Gaussian data plots and evaluating using the QDA algorithm. Click 
or drag inside either the Train or Eval plot to sketch the points you want (Figure 36). When you are satisfied 
with the sketch, we can save our data. 

IMLD supports two drawing modes: points and Gaussian. Gaussian generates data points from a Gaussian 
window using a paint brush approach. The ‘Draw 
Points’ function follows the cursor and lets you insert 
points in a more granular manner. Existing data sets can 
be augmented by using these tools to add points. New 
data sets can also be created starting from a blank 
canvas. 

To save the data, go to File → Save Train Data (or Save 
Eval Data) to export the hand-drawn points as a CSV 
file (Figure 37). The filename is fixed to the name 
“imld_train.csv” due to limitations of the client/server 
interface. Use your desktop tools to rename this file if 
you want to avoid overwriting it. 

The CSV file structure is shown in Figure 38. The 
header rows capture class labels, colors, and plot limits 
so the dataset can be reconstructed later.  

	

Figure 33. QDA decision boundaries for the toroidal dataset 

 
Figure 34. RNF decision surfaces 

 

	
Figure 35. Adding a class to draw Gaussian data 

 
Figure 36. Two manually drawn Gaussian plots 
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To verify the save-and-load workflow, clear the plot (Edit → Clear 
Train), then load the file you just saved via File → Load Train Data. 
The points reappear exactly as drawn, confirming that the CSV format 
preserves all geometry and metadata. 

Next, open the Algorithm Toolbar, select Quadratic Discriminant 
Analysis (QDA) from the drop-down list. Click Train to fit QDA to 
your custom drawing; the Process Log now shows class-specific 
means, priors, and full covariance matrices. Click Evaluate to test on 
the Eval set (or on the same data if no separate Eval file was loaded). 
QDA’s curved decision surface will bend to match the hand-drawn 
contours, and the Process Log reports accuracy, precision, recall, and 
F1 scores for immediate feedback. 

Finally, you may iterate: add extra points, save as a second file, reload, 
and retrain. With the data loaded, under the “Classes” tab, select the 
class you’d like to augment, and choose either Draw 
Points or Draw Gaussian to add new samples to that 
class. These new points will appear in real time on 
the plot and be automatically grouped with the 
selected class. Once the augmentation is complete, 
save the updated dataset using File → Save Train 
Data, then retrain the model to observe how the 
changes affect the classification boundary and 
performance metrics. This iterative process allows 
users to explore the effects of class imbalance, added 
variance, or shifted means, and how QDA adjusts its 
boundary accordingly through updated class 
statistics. 

The first data set shown in Figure 39, demonstrates a 
dataset with a curved boundary between the classes, 
which QDA captures well due to its use of class-
specific covariance matrices. As shown, QDA 
achieves nearly perfect performance on this data with 
99.95% accuracy and similarly high scores across 
other metrics – indicating that the model effectively 
aligns with the data’s inherent curvature. 

The second, augmented, data set shown in Figure 40 features a revised distribution where the boundary 
between classes appears more vertical and symmetric. Despite the change in structure, QDA performs 
remarkably well, achieving 99.97% accuracy. The curved decision boundary continues to model the data 
effectively, and performance metrics such as precision (100.00%), sensitivity (99.93%), and F1 score 
(99.96%) remain near perfect. 

This comparison demonstrates QDA’s versatility. Not only can QDA model complex distributions, but its 
ability to adapt without overfitting highlights the strength of class-specific covariance modeling. Just as 
importantly, this example illustrates IMLD’s flexibility: users can modify datasets by drawing new points, 
save and reload data files, and augment specific classes to explore how algorithm performance changes 
across different scenarios. 

	
Figure 37. Saving data to a file 

 
Figure 38. The CSV file structure	

 

	
Figure 39. QDA classification on the original dataset 

 
Figure 40. QDA Classification on augmented dataset 
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6. Extending IMLD 

In this section, we describe the architecture of the web application, how the application is organized, and 
how a user can expand upon the application. 

6.1. Software Architecture and Organization 

The IMLD application and its source code are 
packaged in a tar file named imld.tar.gz. To download 
this file, open the IMLD web application, and under the 
Help dropdown menu simply select Run Locally. This 
will prompt your web browser to download imld.tar.gz. 
This is shown in Figure 41. 

Once the download is completed, simply extract the 
files to where you’d like IMLD to be stored. In the 
extracted files, you will find a single folder named 
v5.0.1. This is the home directory. Within the home directory, there are two files and one directory of note: 

• imld.py: the file that users execute to run IMLD. Calls the IMLD class that is made in the app/ directory. 

• requirements.txt: contains all the libraries needed to run IMLD. 

• app/: contains containing the main code of the application.  

Within the app/ directory, IMLD is organized across 4 main directories: 
• backend/: contains the core logic that drives the application. It includes Python scripts responsible for 

managing data preprocessing, training, prediction, and evaluation of machine learning models. The backend is 
where the machine learning algorithms and data generators are executed. The parameter files are also located 
here. 

• extensions/: contains the extensions for the application. These extensions are used to add functionality to the 
Flask server, such as the routes, scheduling, and the base Flask app. 

• static/: contains all static resources required by the frontend of the application. These include HTML snippets, 
JavaScript files, CSS style sheets, fonts, and UI assets. Together, these files build the user-facing graphical 
interface and provide interactive controls for selecting models, tuning parameters, uploading datasets, and 
visualizing output. 

• templates/: contains the base HTML template for the IMLD app. This directory is required because the IMLD 
app is a Flask app, and Flask requires a base HTML template to be used for all the pages in the app. This base 
HTML template must be in a directory called “templates/” for Flask to find it. 

• __init__.py: defines the IMLD class that is run within imld.py.  

Within the backend/ directory, the following files exist: 

• algo_params_v00.toml: contains the parameters for the algorithms that are implemented within IMLD. This 
file also contains how the user may select parameter values, whether it be through a dropdown menu or integer 
input. 

• data_params_v00.toml: contains the parameters for the data generators that are implemented within IMLD. 
This file also contains how the user may select parameter values, whether it be through a dropdown menu or 
integer input. 

• nedc_cov_tools.py: provides functions for computing covariance matrices and related linear algebra operations. 

• nedc_debug_tools.py: provides classes that facilitate debugging and information display. 

• nedc_file_tools.py: contains file and path handling utilities. Functions in this module support opening, reading, 

	
Figure 41. Downloading a local copy of IMLD. 
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and writing data files reliably across environments. This file also contains certain conventions that may be used 
across other files within the application. 

• nedc_imld_tools.py: provides IMLD-specific helper functions for formatting responses, transforming UI 
selections, and interfacing between Flask endpoints and backend processing logic. 

• nedc_ml_tools_data.py: provides data generators that are to be used for ML Tools. 

• nedc_ml_tools.py: provides core machine learning functions such as model training, prediction, evaluation, and 
scoring. This file acts as the main entry point for backend ML processing logic used by IMLD. 

• nedc_qml_base_providers_tools.py: contains the base classes and hardware configuration class for the  
quantum machine learning providers. 

• nedc_qml_providers_tools.py: This file contains all the child classes implementing the QuantumProvider  
class.  Each child class is responsible for implementing the methods required to interact with a specific quantum 
provider. 

• nedc_qml _tools_constants.py: contains all the constants that are used in the nedc_qml_tools.py. 

• nedc_qml_tools.py: contains classes and functions that are used to implement quantum machine learning 
algorithms. 

• nedc_trans_tools.py: contains an implementation of the transformer architecture. 

Within the extensions/ directory, the following files are contained: 
• base.py: This file contains the base Flask app that is used to create the Flask server. It is used to create the 

Flask app and its configurations. This file is used by /app/__init__.py to load the base Flask app. 

• blueprint.py: This file contains the blueprint for the Flask app. It is used to create the routes for the Flask app. 
This file is used by /app/__init__.py to load the blueprint for the Flask app. All of the routes for the Flask app 
are defined in this file. 

• scheduler.py: This file contains the scheduler for the Flask app. It is used to create the scheduler for the Flask 
app. This file is used by /app/__init__.py to load the scheduler for the Flask app. The scheduler is used to 
schedule the task of removing old cached models from the server. 

Within the static/ directory, the following directories and file are contained: 

• components/: contains modular JavaScript components that form the IMLD frontend interface. Each file 
defines a different part of the user interface, such as toolbars, data parameter forms, plot displays, and event 
handling logic. 

• downloads/: contains the user’s guide and a version of the ISIP Machine Learning Demo. 

• fonts/: contains the font used across the application, Inter. 

• icons/: contains the information icon that appears next to parameters, giving the user more background on what 
each parameter does. 

• index.css: defines the styling used across the application. 

6.2. Customizing IMLD 

IMLD is an application designed to be user extensible. For example, a common way a user may choose to 
extend the application is by implementing a new algorithm or data generator. Thanks to the structure of the 
application, developers can add these with minimal effort by following existing patterns. Below is an 
example of how we may go about implementing one of our new native algorithms, LightGBM: 
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1. Open nedc_ml_tools.py and define your algorithm: 

1.1. Be sure that the libraries your algorithm needs to function are defined at the top of the file. In the case of 
LightGBM, these are “lightgbm”, “sklearn.model_selection.train_test_split”, 
“sklearn.metrics.accuracy_score”, “sklearn.metrics.confusion_matrix” and “numpy”. Be sure to update 
requirements.txt when you introduce new libraries to the program. 

1.2. Under the section at line 241 labelled “Algorithm-Specific Parameter Definitions”, define the algorithm 
name and the available implementation(s): 
LGBM_NAME = “LGBM” 
LGBM_IMPLS = [IMP_NAME_LGBM] 

While some algorithms may share the same implementations that are already defined, like “sklearn”, 
LightGBM has a unique implementation name “lightgbm”. Be sure to define this at line 138: 

IMP_NAME_LGBM = “lightgbm” 

You should also investigate algorithm-specific parameters that your algorithm may need to be 
implemented, as here is where they should be defined. At line 149, there is a list of common names 
found in many native algorithms in nedc_ml_tools.py. You should use these defined names within your 
algorithm’s train method, and if necessary, define new names here and use these.  

In LightGBM’s case, there are a few algorithm-specific parameters: 

LGBM_NAME_BFRAC= “bagging_fraction” 
LGBM_NAME_BFREQ= “bagging_freq” 
LGBM_NAME_BOOST= “boosting” 
LGBM_NAME_ISUNB = “is_unbalance” 
LGBM_NAME_LAMBDAL1= “lambda_l1” 
LGBM_NAME_LAMBDAL2= “lambda_l2” 
LGBM_NAME_MINDATA = “min_data_in_leaf” 
LGBM_NAME_NUML= “num_leaves” 

1.3. Implement the following methods for your algorithm within a class. In our example of the LightGBM 
algorithm, we need to implement these methods in the LGBM class: 

• def __init__(self): The user only needs to update these two lines:  

foo.CLASS_NAME__ = self.class.name__ 
self.model_d[ALG_NAME_IMP] = IMP_NAME_doe 

“foo” is the class name and “doe” is the implementation name. 

• def train(self, data: MLToolsData, write_train_labels: bool, fname_train_labels: str) 

• def predict(self, data: MLToolsData, model = None) 

• def get_info(self) 

It is very helpful to look at how these functions have been implemented in the native algorithms, as 
methods often either stay the same or are very similar to one another across algorithms, especially those 
of the same type. For instance, LightGBM and XGBoost, two gradient boosting models, have very 
similar predict and get_info methods. 

1.4. At line 7490, add your class within the ALGS dictionary. In LightGBM’s case: LGBM_NAME:LGBM. 

1.5. Save the file and close. 

2. Define its configuration in the TOML file algo_params_v00.toml: 
2.1. In line 47, add your class name in the LIST list. For LightGBM: “LGBM”. 

2.2. Define your parameters. Do note that you should follow the specific format seen throughout the 
algorithms. In LightGBM’s case: 
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[LGBM] 
name = “LightGBM” 
[LGBM.params] 

[LGBM.params.implementation_name] 

There are certain rules that need to be adhered to for all the parameters: 
• Each param needs a “name”, “type”, “default”, and “description” attribute.  

• If the type is a “select”, the param also needs an “options” attribute. 

• If the type is an “int” or “float”, the param also needs a “range” attribute.  

2.3. Save the file and close. 

3. Run IMLD. 

Your new algorithm should display as an available option within the application. If you’ve added new 
libraries, be sure to reinstall the libraries in the requirements.txt that now includes the new ones. For 
troubleshooting, please ensure that both your implementation and parameters line up with the existing 
formatting. 

We strongly recommend reviewing the existing native algorithm implementations and using these as a 
guide when adding new algorithms. 

7. Downloading and Installing IMLD 

In this section, we describe how a user can download and install the application locally. We also describe 
how the application can be installed on a web server using our web server, www.isip.piconepress.com, as 
an example. 

7.1. Running IMLD Locally 

Running IMLD locally is straightforward with Anaconda. In Section 6.1, we described how to download 
the tar file containing the application. To successfully run this, however, you need the proper set of Python 
extensions installed. Follow the steps below to set up an environment specifically for IMLD and launch the 
application: 

1. Create a Python environment: Open a terminal window in the root directory where IMLD was installed.  

1.1. conda create --name imld: create a virtual environment specifically for the IMLD application. 

1.2. conda activate imld: activate the newly created environment. 

1.3. conda install pip: ensures that pip is available in the environment for installing Python dependencies. 

1.4.     pip install -r requirements.txt: installs all required Python packages listed in requirements.txt, which 
include Flask, Plotly, and other necessary libraries. 

2. Run the IMLD application: Once the environment is set up and dependencies are installed, start the 
application by executing the command ‘python imld.py’. 

3. Access the web interface: After launching, the terminal will display an address such as: http://localhost:5000. 
Open this URL in your web browser to interact with the IMLD web interface. 

7.2. Installing IMLD on a Web Server 

Currently, the web version of IMLD runs on the NEDC web server (www.isip.piconepress.com). A network 
diagram of the Neuronix computing cloud is shown in Figure 42. An interactive view of the cluster can be 
found at https://isip.piconepress.com/projects/neuronix/. On this server, the IMLD application is deployed 



S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 32 of 36 

  v5.0.1: January 1, 2026 

using Gunicorn, a Python WSGI HTTP 
server, in conjunction with Apache acting 
as a reverse proxy. This architecture allows 
for a clean separation between application 
logic and public-facing network services. 

IMLD is configured to be used with https. 
Apache is responsible for terminating 
SSL/TLS connections, ensuring that all 
communication between the user’s browser 
and the server is encrypted. Once a secure 
https request is received, Apache forwards 
the request to Gunicorn, which runs the 
IMLD Flask application locally. Gunicorn 
is configured to launch multiple worker 
processes, allowing the backend to handle 
concurrent requests efficiently. 

This server setup allows IMLD to be 
accessed via a stable URL and reliably serve 
users interacting with the web interface. The 
use of Gunicorn and Apache together is a 
best-practice deployment method for 
Python web applications, and it has proven 
to be a reliable and robust solution for 
hosting IMLD in the Neuronix production 
environment. 

7.3. Deploying IMLD on a Web Server 

An overview of the IMLD architecture is 
shown in Figure 43. Gunicorn is used to 
deploy IMLD, which is a Python Flask app, 
because it can be easily used with reverse 
proxy servers such as Apache and Nginx. 
Gunicorn acts as an intermediary between a 
Python application (e.g., Flask) and the 
client by passing http requests to the 
application for processing. Gunicorn is very 
straightforward  to set up on an Apache web 
server, such as that used by the Neuronix 
cluster. The instructions below describe how to install IMLD on a web server running Rocky Linux. 

7.3.1. Create A Python Virtual Environment 

Using Anaconda, run these commands: 
conda create --name imld 
conda activate imld 
conda install pip 
pip install -r requirements.txt 

Gunicorn is one of many Python applications included in the file requirements.txt. 

	
Figure 42. The Neuronix cluster 

 

	
Figure 43. The IMLD architecture  
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7.3.2. Test Gunicorn  

From the IMLD application folder (where imld.py is located), run: 
gunicorn --workers 1 --bind 127.0.0.1:8000 imld:app 

This launches Gunicorn with 1 worker, bound to localhost:8000. imld:app tells Gunicorn to find the app 
object in imld.py. You can test it at this URL: http://127.0.0.1:8000. 

7.3.3. Enable Apache Proxy Modules 

Open this file: 
sudo emacs /etc/httpd/conf.modules.d/00-proxy.conf 

Paste these modules inside: 
LoadModule proxy_module modules/mod_proxy.so 
LoadModule proxy_http_module modules/mod_proxy_http.so 

These modules together let Apache act as a proxy and forward http requests to other servers. Be sure to 
save and exit after adding these. 

7.3.4. Create Apache Virtual Host Config 

Navigate to your Apache sites-available directory and create a file named imld.conf or the equivalent: 
<VirtualHost *:443> 

ServerName imld.local 
ServerAdmin yourname@example.com 

SSLEngine on 
SSLCertificateFile /etc/letsencrypt/live/yourdomain.com/cert.pem 
SSLCertificateKeyFile /etc/letsencrypt/live/yourdomain.com/privkey.pem 
SSLCACertificateFile /etc/letsencrypt/live/yourdomain.com/chain.pem 

ProxyRequests Off 
ProxyPreserveHost On 
<Proxy *> 

Require all granted 
</Proxy> 

ProxyPass "/app" "http://127.0.0.1:8000/" 
ProxyPassReverse "/app" "http://127.0.0.1:8000/" 

</VirtualHost> 

Make sure imld.local is listed in your /etc/hosts file if you're using it as the domain name. For the Neuronix 
cluster, this file is /etc/httpd/conf.d/virtualhost.conf. 
 
7.3.5. Enable the Site and Restart Apache 

Test out the Apache server: 
sudo httpd -t 

This command checks the Apache config files for syntax errors. If the output of this command is Syntax 
OK, it means your syntax works and Apache was able to successfully parse it. 

Next, restart the server: 
sudo systemctl restart httpd 

With Gunicorn running, IMLD should now be accessible through the browser at the specified domain or 
localhost port. 
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7.3.6. Set Up “.service” File (Optional) 

You can also set up a “.service” file so that you don’t have to start Gunicorn every time your server restarts, 
and you don’t need to have a terminal open either. Gunicorn will run in the background as daemon. 

First, create a new file titled imld.service in this directory: /etc/systemd/system. Paste this inside, replacing 
what is applicable for your server: 

[Unit] 
Description=Gunicorn instance to serve IMLD through Apache 
After=network.target 

[Service] 
User=your_user_here 
Group=your_group_here 
WorkingDirectory=/path/to/your/app 
Environment="IMLD_ISSUE_NUM=003" 
ExecStart=/bin/bash -c 'echo $IMLD_ISSUE_NUM > /tmp/imld_env.log && exec \ 

/path/to/your/conda/env/bin/gunicorn --worker-class eventlet --workers 2 --bind 127.0.0.1:8000 imld:app' 

[Install] 
WantedBy=multi-user.target 

After saving and exiting, you then need to then enable and start the service: 
sudo systemctl daemon-reload 
sudo systemctl enable imld.service 
sudo systemctl start imld.service 
sudo systemctl status imld.service 

You can check the status of the service by running this command:  
sudo systemctl status imld.service 

The service can also get reset by running this command: 
sudo systemctl restart imld.service 

Though this adds a bit of complexity to the installation, it is highly recommended you do this to make sure 
IMLD is available when the server is rebooted. 

8. Conclusions and Future Work 

IMLD is an application that has been evolving for over 40 years. In the latest version, we’re adding the ML 
algorithms LightGBM and XGBoost. These algorithms represent a major enhancement to IMLD’s 
capabilities, as they introduce gradient boosting—a class of ensemble learning methods not previously 
native within the application. Unlike traditional algorithms such as Euclidean distance classifiers or linear 
discriminants, gradient boosting models iteratively build ensembles of decision trees that focus on 
correcting the mistakes of previous iterations, allowing for highly accurate, nonlinear decision boundaries. 

LightGBM and XGBoost are among the most powerful and widely adopted gradient boosting frameworks 
in modern machine learning. Their addition marks the first time IMLD supports boosted decision tree 
ensembles, enabling users to explore techniques that are prevalent in both academic research and real-world 
applications such as finance, healthcare, and competitive data science. Both models function very similarly, 
using decision trees as their base learners and combining them sequentially to improve the model’s 
performance. Each new tree is then trained to correct the errors made by the previous tree.  
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With these models, IMLD now supports not just classical, interpretable methods but also high-performance 
algorithms capable of capturing complex feature interactions. Their inclusion introduces new types of 
parameters and training behaviors, offering a deeper educational experience and significantly expanding 
the platform’s modeling versatility. 

We’re also adding Scikit-Learn’s make_classification data generator. This tool creates synthetic multiclass 
datasets and is useful for testing how well classifiers handle noise and complexity. It can introduce 
redundant and uninformative features, create multiple clusters per class, and apply linear transformations 
to the feature space. These options allow us to simulate more realistic and challenging classification 
problems, making it easier to evaluate how robust a model is under different conditions. Note that for 
make_classification to work in IMLD, which is an application bound to 2D visualizations, datasets that 
contain more than two features are automatically projected to 2D using PCA. 

Finally, we have also added support for quantum computing-based algorithms in v5.0.1. These fairly new 
algorithms are extremely computationally demanding because they are run via a simulator. As this field 
matures, we will update IMLD appropriately. 

To learn more about IMLD, visit our project page at: https://isip.piconepress.com/projects/imld/. 
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