The ISIP Machine Learning Demonstration User Guide

January 1, 2026

‘e0e ISIP Machine Learning Demonstration
IMLD File Edit Classes Patterns Demo Algorithms Process

Train: Process Log:

1.00

Classes: added class 'Classo’
Classes: added class 'Classl®

Algorithn: Class Dependent Principle Component
Analysis (CD-PCA)

PARAMETERS @ ® ® ISIP Machine Learning Demonstration
co
000 torated_p MLD File Edit Classes Patterns Demo Algorithms Process
n_componer
025 n_oversang o .)
power. itel d Process Log:
-0.50 random_sta
Ty 1.00
svd_solve:
075 tol ors Algorithn: Random Forest (RF)
whiten -
-1.00 PARAMETER VALUE
~1.00 -0.75 -0.50 ~0.25 0.00 025 0.50 0.75 100 Means: ’ 050 bootstrap True
Classo: ccp_alpha 0.0
Classi: [025 class weig @ @ @ ISIP Machine Learning Demonstration
Eval: criterion — -
Covariance 000 max_depth | IMLD File Edit Classes Pattems Demo Algorithms Process
Classo: max_featu
[[0.2846 ¢ -025 max_leaf n _
[0.0064 @ max_sample 11N Process Log:
Classl: -0.50 min_impuri
[1o.0082 @ min_sample ALYUT LU C @SS UEPSIuSe 1 LiCLp e
[6.0001 ¢ 075 :i“":f‘:'::f‘: Component Analysis (CD-PCA) 2l
Training £ g0 monotonic_| PARAMETERS VALUES
Eval . .75 -0.50 ~0.25 0.00 025 050 075 1.00 n_gstimat ve
valuation :do!;:ore iterated_power auto
025 Process Re Eval: randon_sta :::c’e"':‘s':;:{:s 2
—050 “"‘“‘5: | power_iteration_normalizer auto
Loo warm_star random_state 5
-075 015 Training E :Z‘:—““’er 3‘_’;°
—0.50 i
100 0350 Evaluation vhiten Fatse
~1.00-0.75 ~0.50 0.25 0.00 0.25 050 0.75 100 o5 "
= leans:
025 Process Rq Class: [-0.50155398 0.50249642]
-1.00 Classl: [0.49759644 -0.49677448]
000 ~1.00-0.75-0.50 ~0.25 0.00 025 050 075 100 (lass2: [-0.50188232 —0.50097394]
Class3: [0.49877829 0.50107974]
-0.25
Eval: Covariance Matrix:
050 Classo:
[[0.0252 0.0002]
075 [0.0002 0.02581]
Classl:
100 [[0.0248 0.0002]
~1.00-0.75 -0.50 -0.25 0.00 025 050 075 100 cLo.0002 0.02481]
[10.0247 0.0000]
[0.0000 0.02541]
Class3:
[[0.0248 -0.0001]
[-0.0001 0.02501]
050 Training Error Rate = 64 / 40000 = 0.16%
os Evaluation Error Rate = 4459 / 40000 = 11.15%
oo Process Resetting...
~1.00-0.75 ~0.50 ~0.25 0,00 025 050 0.5 100

Prepared By:
Sohail Aji and Joseph Picone

The Neural Engineering Data Consortium
College of Engineering, Temple University
1947 North 12" Street
Philadelphia, Pennsylvania 19122-6018
Tel: 708-848-2846
Email: {sohail.aji, picone}@temple.edu

NEURAL ENGINEERING
DATA CONSORTIUM

EXECUTIVE SUMMARY

The Institute for Signal and Information Processing (ISIP) Machine Learning Demo (IMLD) is an
interactive, visual machine learning (ML) and pattern recognition tool developed entirely with open-source
libraries in the Python programming language. It can be easily downloaded and run
(www.isip.piconepress.com/projects/imld) either through an IDE or a command line/terminal in any
operating system. In addition, the platform can be launched directly on most common web browsers,
offering a convenient and fully online experience without needing a local installation. This accessibility
allows users to experiment with machine learning concepts without a complex setup, making it ideal for
both beginners and advanced practitioners. Designed with education in mind, IMLD provides an intuitive
and engaging way to explore hands-on classification techniques, enabling users to visualize the concept of
how different machine learning algorithm’s function.

IMLD’s interface is designed to be both functional and educational. The train and eval plotting windows
provide a side-by-side view for building and testing models visually, allowing users to see how different
algorithms classify data and how changes in parameters affect model performance in real time. The
algorithm toolbar simplifies the selection of various ML algorithms and outlines the respective parameters,
allowing users to easily experiment with different models and settings. It provides an accessible entry point
for understanding how parameter tuning can impact classification outcome and error rate. The process log
provides a real-time summary of all users’ actions and model decisions, making the workflow transparent
and easy to follow.

IMLD provides users with multiple ways to generate and manipulate data for training and evaluation. Users
can create their own classes and draw their own two-dimensional (2D) data points in either single point or
Gaussian distributions for both the training and evaluation data input windows when generating data. They
can also import data in a comma separated value (.csv) format, which is the same format IMLD exports
data as well as when users choose to save their own data. Additionally, IMLD includes a selection of pre-
built demonstration datasets that are useful for exploring the theoretical properties of algorithms. Other
options include toroidal (donut-shaped) distributions and a yin-yang distribution. This unique array of
dataset shapes allows users to explore how different classifiers handle data that require complex decision
boundaries. This provides deeper insight into the behavior of many common algorithms.

Once the user has their desired data in the train and eval windows, they can choose from a list of algorithms
used to classify the data. Algorithms, once selected, will present the user with a list of parameters that they
can change to optimize the classification process. The application displays results to a process log window,
which also keeps track of the creation and deletion of classes and the algorithm/parameters chosen by the
user. Once a model has been created using the training data, it can be applied to blind evaluation data. An
error rate will be calculated for that dataset. Users can then decide to delete the results from each window,
delete the data itself, or reset the entire program. By resetting, users can use multiple algorithm parameters
to compare error rates and optimize their model on the training or evaluation datasets as desired.

IMLD has been in existence in various forms since the mid-1990’s. It was originally developed as a Java
applet to support graduate-level instruction in machine learning. The current version is written in Python
and is implemented in a client/server format so that it can be easily run as a web application. It makes
extensive use of standard machine learning libraries such as Python’s SKLearn. The model API has been
developed in a way that users can easily add new algorithms. This visual structure makes IMLD especially
valuable as a teaching tool, allowing users to explore concepts such classification performance and error
evaluation in an interactive manor. With its clear design and customizability, IMLD is well suited for
classroom demonstrations, labs, or self-guided learning. Additionally, its open-source nature ensures that it
remains fully adaptable to new advancements in machine learning research, and educators can use IMLD
in their coursework to give students hands-on experience within machine learning.

<7,

/, v5.0.1: January 1, 2026
—

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

5

Table of Contents

1. Introduction 1
2. Overview 2
3. User Interface 3
3Ll THELE BAT ittt b et ettt ettt e h et b e e he et ee b 3
320 MENU BT ettt ettt ettt 3
3.3, PlOtNG WINAOWS ...oiiiiiiiiiieiieiieieeieeie et e eteete et e st e ssaeestesstesssesssesssesssesssesssesssesssesssesssesssenssenns 10
3.4, AlGOTIthIM TOOIDALoccviiiiiiieiieieeie ettt ete et e st e st e st e s b e sssessbesssesnsesnsesssesssenssensnenns 11
3.5, PIOCESS LLOZ ittt ettt et ettt et e et e et e e ate e nteeenteeebeeeneeenne 12

4. Algorithms 12
4.1. Discriminant AIZOTIRIMSccccciveiiiiciieciieiieie ettt et ete et eebeebe e s e ebeesseesseessaenseenseensens 13
4.2. Non-Parametric AIZOTILNIMSc.ccccveeiieiiieiieiieie ettt ee e re e beeseebeesseesseenseensees 15
4.3. Gradient-Boosting AIGOTItNIMSccciecviiiiiiiiiiiieie ettt e ebe e esseenseensees 17
4.4. Neural Network-Based AIZOTItRMSc.cccieviiiiiiiiiieiieiieceie ettt es 18
4.5. Quantum Computing-Based AIZOTItRMSccccveviieriieciieriieiecie e 21
4.0, SUIMIMATY ..ouvvieiiiieeiieeiieeette ettt esteeeteesteestteeteeesteesateesnseesaseesnseesnsaesasseesnseesaseesseesnsaesnssessnsessnseenn 23

5. Typical Use Cases 23
5.1. PCA vs. QDA for Rotated EILPSEScccvevieciieiieiiiieiieeie et eie et sve e snesvesnaesnsesnnessnessnessnenns 23
5.2. QDA vs. RNF for Toroidal Datacccooevuiiiiiiiiciiieiee ettt ettt vee e 25
5.3. Creating Custom Data SELScceeciiriiiriieiiiieiieieeie et eteete e et e ereesessessbesssesssesssesssesssesssesssenns 26

6. Extending IMLD 28
6.1. Software Architecture and OTganiZationc.cccceeevreieerieerieesieesrenereereesreeeessessessessesssessaenns 28
6.2. Customizing IMLDccocciiiiieiieiieieee ettt ettt ete et e st e st e et e sstessbesssesnsesssesnsesssesssennnenns 29

7. Downloading and Installing IMLD 31
7.1. Running IMLD LOCAILYc.ccciieciieiiiiiiieeie ettt ettt et seaesstesnsesnsesnsesnsessnesnnenns 31
7.2. Installing IMLD 0n @ WED S@IVELccccviiiiieiieiieieeieete ettt eve et sve e saesnsesnesnnessnesnne e 31
7.3. Deploying IMLD 0n @ WeD SEIVETcccceeciiiiiieiiiiieiieie et eie et see e saesssesnesnnessnesnne e 32

8. Conclusions and Future Work 34
Acknowledgements 35
References 35
2%;;“ v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 1 of 36

1. Introduction

The Interactive Machine Learning Demos (IMLD) platform provides an accessible, hands-on way to
explore key concepts in machine learning (ML). Developed and hosted by the Institute for Signal and
Information Processing (ISIP: www.isip.piconepress.com), the IMLD platform offers a collection of
interactive tools designed to illustrate various ML algorithm concepts. Originally developed as a Java applet
in the 1990’s (Shaffer et al., 1998), It has been used for over 20 years to teach a graduate-level course in
machine learning (https.//isip.piconepress.com/courses/temple/ece 8527/).

IMLD was created at a time when Java was widely believed to be the future of computing, and Java applets
were the primary way to deliver web-based demonstrations. It was part of an extensive library of open-
source signal processing tools (Huang & Picone, 2002). Although this app was functional, other languages
such as Python began to become the primary environment for the development of machine learning
algorithms. Despite running slower than Java in many cases, Python’s simpler syntax and flexibility make
it highly popular among researchers who develop machine learning technology. These advantages
ultimately led to the decision to rebuild IMLD as a Python-based application. This version proved an
excellent tool for education and research in machine learning, helping newcomers to grasp abstract concepts
while also supporting the research of those more experienced in ML (Thai et al., 2023; Cap et al., 2022).

A major drawback, however, was accessibility, as users could only access the app by downloading and
running the Python script locally. This prevented those with minimal technical experience from easily
accessing it. The machine learning and graphics libraries use many third-party libraries, and installation of
these libraries can often be complex due to versioning issues. This led to a decision to transform IMLD into
a web application. This significantly increases its accessibility, allowing it to be easily found and used by
anyone with access to a web browser. In addition to running the tool in a web browser, users also have the
option to download a standalone version of the application directly from the IMLD website. This allows
for offline use and provides greater flexibility for those who prefer working in a local environment.

A key part of IMLD’s usability lies in its interface design shown in Figure 1, which shows screenshots of
the original Java version and the current Python version. IMLD includes two data analysis windows that
visualize the data and the results of an algorithm’s attempt to classify the data, a toolbar that lets users select
file operations, algorithms, data sets, etc., and a log window that records each stage of the workflow.
Together, these features make IMLD a powerful tool for visualizing the application of modern machine
learning algorithms to two-dimensional data sets.

This user guide will walk you through navigating the IMLD website, running the interactive demos,
adjusting key parameters, and applying the underlying concepts to your own projects. You will learn how
to get started quickly, and how to interpret algorithmic outputs. By the end, you should have a clear
understanding of the website’s offerings and
feel comfortable leveraging its demos to
deepen your familiarity with ML techniques. e

This guide is structured into eight sections
that include this introduction (Section 1), an
overview of the tool (Section2), a
description of the user interface (Section 3),
a description of the algorithms (Section 4),
some typical use cases (Section5), a
discussion of how to integrate new
algorithms (Section 6), how to download

and install the tool (Section?7), and a Figure 1. IMLD began as a Java applet (left) and has evolved into a
summary (Section 8). Python application run via a client/server interface.

Output Display

.
X
RO

ek

<7,

% v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

[N

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 2 of 36

2. Overview

The basic IMLD user interface is shown in Figure 2. The application window contains 5 major components:
the title bar, the menu bar, the plotting windows, the algorithm toolbar, and the process log. These
components were designed to simplify the process of creating data and performing an evaluation. The main
components of the user interface are:

()

2

)

(4)

®)

Title Bar: located at the very top of the window, it displays the title of the application “The ISIP Machine
Learning Demo” on the far left, as well as contact and share buttons on the far right. The former is linked to
the IMLD web site, where you can find information on the latest software releases. The contact button
provides opens a pop-up window that provides users with support resources, including an email address for
questions or feedback (help@nedcdata.org). The share button provides a URL to the project web site.

Menu Bar: located at the top of the page below the title bar. It contains the options for generating, loading,
and saving different datasets. Users can load preset parameter configurations, clear displays, reset data and
obtain help (including viewing this manual).

Plot Windows: located in the middle of screen, it helps a user visualize each step of the algorithm process.
On the left is the train plot, where the user sees the training data distribution and how the model fits that data.
On the right is the eval plot, showing the evaluation data distribution and how well their generated model is
categorizing the data distribution.

Algorithm Toolbar: located on the right side of the window, it allows users to select and configure
algorithms. It has two buttons labeled “Train” and “Evaluate” which allow you to apply the selected
algorithm to the train or eval data. Under these buttons is a dropdown menu containing each algorithm, where
you select which algorithm you would like to use, and set its parameters.

Process Log: located at the bottom of the screen, it provides user feedback such as parameter settings,
classification error rates and error messages.

The overall application window can be resized as a normal desktop window, and the location of these
components will be adjusted accordingly.

(1) Title Bar ~ (2) Menu Bar (3) Plot Windows (4) Algorithm Toolbar

The ISIP Machine Learning Demo

Train Eval Algorithms
e [

Principle Component Analyss (PCA

Imglementation sscrminart ~
Prior Probability . v

Covanance Type

Process Log

Performance: Eval
Accuracy: 100 00%
0.00%

X0,00%
Sensitivity: 100.00%
Specificity: 100.00% E

(5) Process Log

Figure 2. An example of IMLD executing Principal Component Analysis (PCA) with a two-class Gaussian dataset for both
training and evaluation data. The decision surface (the black line) visually separates the classes.

&
)=
.

379 v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 3 of 36

3. User Interface

In this section, we describe the features available in the five main components of the user interface. We
explain each menu option and button available to the user.

3.1. Title Bar

The title bar contains three key links. The title of the application on the far left, “The ISIP Machine Learning
Demo,” is linked to the project web site that contains the latest information on software releases,
publications and other relevant resources. The text “Contact” on the right is linked to a page providing
contact information to report bugs and receive help. The text “Share” on the far right provides a link to the
download site where you can download the source code and a standalone version of the application.

3.2. Menu Bar

The Menu Bar, labeled (2) in Figure 2, is the primary navigation hub of the IMLD interface, grouping all
high-level actions under five intuitive drop downs menus: File, Edit, Classes, Data, and Help. From these
menus, users can manipulate data, models and parameter settings.

3.2.1. File

When hovering over “File” in the Menu Bar, shown in Figure 3, a drop-down menu appears displaying
various options for managing data, models, and parameters. The File options allow users to load, save, and
export datasets and models. The available options include:

¢ Load Train Data: import a dataset to be used for training. File Edit Classes Data Help
. . Load Train Data
¢ Load Eval Data: import a dataset to be used for evaluation. ot Eval Dt Train
. Load Model Parameters
¢ Load Model Parameters: import a set of saved model Vs o
parameters for reusing specific configurations. Save Train Data
. . . Save Eval Data
¢ Load Model: import a full model with structure and weights. Save Model Parameters

Save Model
e Save Train Data: save the current training dataset to a file.
) Figure 3. The “File” drop-down menu in the Menu Bar
e Save Eval Data: save the current evaluation dataset to a file. displays options for importing and exporting datasets,

models, and parameter configurations.
o Save Model Parameters: save the current model parameters P &

for reusability.
e Save Model: save a full model with structure and weights.

These options allow users to efficiently manage their datasets and models throughout the machine learning
workflow. By enabling the loading of previously saved work, users can resume past sessions or compare
results across runs. The ability to save trained models and parameter configurations supports experiment
tracking, reproducibility, and iterative testing. This flexibility is especially useful when fine-tuning models,
switching between datasets, or applying consistent settings across different experiments.

IMLD uses a structured CSV (Comma-Separated Values) file format to import and export training and
evaluation datasets. CSV files are perhaps the most popular format for machine learning research when
dealing with small datasets. This format supports both user-defined datasets and datasets automatically
generated by IMLD. An example CSV is shown in Figure 4. This format is compatible with several other
machine learning tools developed by NEDC.

A CSV file in IMLD consists of two sections: a header and data. The header contains five rows that include
the data that allows IMLD to configure itself to the same state it was in when the data was generated. These

<7,

/, v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 4 of 36

filename: /Downloads/imld_train.csv
classes: [dog,cat]

colors: [#1f77b4,#ff7f0e]

limits: [-2.0,4.0,-1.0,5.0]

#

. C e 1 . dog, -0.616837, 0.483275

In the data sec'tlon, each data pomt 1.s listed on its own dog, —0.487216, 0.479231

row, and consists of a tuple containing the class label, cat, -0.394414, 0.725841

the x-coordinate, and the y-coordinate. Data points can cat, -0.372843, 0.701493

be interleaved though by default IMLD writes them "'

class by class.

rows include the filename, the class labels, the colors
assigned to each class, and the plot limits as a tuple
(x_min, Xx_max, y_min, y_max).

Figure 4. A sample of a CSV file generated by IMLD that
contains the filename, the names of the two classes, two
colors identified using hex color codes, the plot limit
boundaries and the data represented as a tuple (class label, x-
coordinate and y-coordinate).

In addition to using CSV files for data, IMLD uses a
standardized, extensible system to manage algorithm
configurations through parameter files written in the
Tom’s Obvious, Minimal Language (TOML) format. These files define the default settings and input
controls for each machine learning algorithm available within the system, enabling users to load, reuse, and
modify algorithm presets efficiently. Each algorithm has a unique set of hyperparameters, which are
dynamically rendered in the interface based on the information provided in its corresponding TOML file.
These files contain a structured, human-readable format for defining default settings and input types for
each algorithm, making configuration reusable and easy to manage. An example, which was generated by
selecting the algorithm “Support Vector Machine”, training a model, and executing the “Save Model”
function, is shown in Figure 5.

The “Save Model” function in IMLD writes a model in a Pickle file format (“.pkl”). This is a popular
Python serialization format that stores model information in a mixture of text and binary data. These are
not human readable but follow the same formats used

by popular tools such as SKLearn. These files store the
internal state of a trained model object, allowing it to
be reused or evaluated without needing to retrain it
from scratch. Pickled models preserve the structure,
learned parameters (e.g., weights, biases), and
configuration of an algorithm. This makes .pkl files
ideal for saving trained models for future use, sharing
models with others, and loading pre-trained models
into a new IMLD session for evaluation or
demonstration.

Users can save trained models by selecting “Save
Model” from the File menu. Models can later be
reloaded with the “Load Model” function, allowing for
immediate reuse or evaluation without repeating the
training process.

3.2.2.

When hovering over “Edit” in the Menu Bar, shown in
Figure 6, a drop-down menu appears providing options
to adjust settings and clear various components of the
workspace. The Edit options include:

Edit

o Settings: opens a configuration panel where users can
modify parameters related to data processing,
visualization, or model training.

<7,

T
ey

NEURAL ENGINEERING
DATA CONSORTIUM

X

[Support_Vector_Machines_SVM]
name = "Support Vector Machines (SVM)"

[Support_Vector_Machines_SVM.params.impleme
ntation_namel

type = "select"

default = "sklearn"

[Support_Vector_Machines_SVM.params.c]
type = "float"
default = "1"

[Support_Vector_Machines_SVM.params.gammal
type = "float"
default = "0.1"

[Support_Vector_Machines_SVM.params.kernel]
type = "select"
default = "linear"

Figure 5. A sample of a TOML model parameter file
generated by the “Save Model” function.

File Edit Classes Data Help
Settings »
Clear Train » ain®
Clear Eval »

Clear Process Log
Clear All
Swap Train/Eval Data

Figure 6. The “Edit” drop-down menu in the Menu Bar,
displays options to adjust settings and clear various
components of the workspace.

v5.0.1: January 1, 2026

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 5 of 36

e Clear Train: expands to provide options for clearing specific elements of the training dataset.

¢ Clear Eval: expands to provide options for clearing specific elements of the evaluation dataset.

¢ Clear Process Log: removes all entries from the process log, resetting the recorded actions and messages.

o Clear All: clears all datasets, logs, and other stored information in the session, resetting the workspace to its

initial state.

e Swap Train/Eval Data: swaps the datasets used for training and evaluation.

These options allow users to manage their workspace effectively by resetting datasets, removing log entries,

or adjusting system settings.

3.2.3. Classes

Figure 7 depicts the process for adding a new class. When hovering over “Classes” in the Menu Bar, an
option appears allowing the user to add a new class or select options for an existing class. After hovering
over Classes and selecting the Add Class option, the user is prompted to name the new class and select a
color for plotting. Once a class is created, it will appear in the dropdown menu when hovering over Classes.

File Edit Classes Data Help
Add Class
Add Class X
Class Name: Class 1
Add Class J
1 File Edit Classes Data Help

Class 1 »
Add Class

Figure 7. Workflow for adding a new class is shown: the user selects Add Class, enters a class name, chooses a color using the

color picker, and confirms by clicking Add Class.

When hovering over the class name in the drop down, a second dropdown appears containing the following:

o Delete Class: this function not only erases any drawn data on the train and eval plots but also deletes the entire
class. Users can create, delete and modify classes interactively.

e Draw Points: when this option is selected the user can manually input data by clicking or dragging their mouse

across either the Train or Eval plot windows. As
shown in Figure 8 in the right side image, each
mouse click or motion will generate individual
data points corresponding to the currently
selected class. This feature is very useful for
creating data sets with specific characteristics that
expose strengths and weaknesses of an algorithm.

Draw Gaussian: this option allows users to draw
data distributed according to a Gaussian
distribution instead of individual points. Once
selected, users can click on the plot to define the
center (mean) of a Gaussian distribution. As
shown in Figure 8 (left), each motion plots more
points centered around the cursor.

STES

“E
ey

NEURAL ENGINEERING
DATA CONSORTIUM

Train Train

Figure 8. Examples of data input modes: The left plot shows a
Gaussian-distributed dataset generated using the Draw Gaussian
option, the right plot displays individual points manually drawn
with the Draw Points tool.

v5.0.1: January 1, 2026

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 6 of 36

File Edit Classes Data Help

Note that the drawing features can be used to add new data to i
existing data sets, including the data sets described below. Traiin € Four Gaussians

1 Overlapping Gaussians

This makes it very easy to create unique and interesting data Tuo Elipses
sets, and to demonstrate special features of the algorithms. * o
o Toroidal

Yin-Yang

3.2.4. Data 05 Skleam

When hovering over “Data” in the Menu Bar, shown in Figure 9. The “Data” drop-down menu in the Menu
Figure 9, a dropdown menu appears containing options for Bar, displays options to generate some interesting
several preset data distributions. Once hovering over the and useful predefined data sets.

desired data distribution, a second dropdown menu will

appear where you can select whether you want this distribution to be used for training data (Train) or
evaluation data (Eval). The preset data distributions were chosen because they have historical importance
to the machine learning community. New data generators can be easily added, as explained in Section 6.

The first choice on the menu, show in Figure 10, is referred to as the Two Gaussians data set, and consists
of two distinct clusters of points, each sampled from a Gaussian (Normal) distribution. These clusters are

Train
Set Train Parameters X 5
Number of Points Mean Covarlance
0
Number of Points Mean Covarilance

Legend

Class 0

Figure 10. An example of the parameter input window for the Two Gaussians dataset

typically placed at separate means with minimal overlap, making them linearly separable and ideal for
demonstrating basic classification boundaries. The left image displays the parameters users can control such
as the number of points (npts), the mean (location of the center of each class), and the covariance matrix
(which controls the spread or shape).

The second choice, Four Gaussians, introduces additional complexity by generating four distinct clusters,
each sampled from a Gaussian distribution. As displayed in Figure 11, instead of just two linearly separable
groups, this version includes four class labels that are placed at different means with minimal overlap. This
allows users to explore how machine learning algorithms handle multi-class classification problems and
more intricate decision boundaries. Just like in the Two Gaussians dataset, users can configure the number
of points, the mean (center location), and the covariance matrix (which shapes each distribution) for each
class, giving them full control over the position, density, and orientation of each class.

The Overlapping Gaussians dataset, shown in Figure 12, is designed to demonstrate situations where class
boundaries are not clean. It consists of two Gaussian clusters where the means and variances are set so that
there is significant overlap between the clusters. This creates ambiguity between classes and is ideal for

- 1{},}\ v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 7 of 36

Train ®
Set Train Parameters X
Number of Points Mean Covariance
%00 x
%0
Number of Points. Mean Covarlance
x 0 = 0000
00 0
Number of Points. Mean Covanance
x a %0
Number of Points. Mean Covarance
x 0 0
[Pesets N Clea X Subest __J

Legend

Class 0 Class 1 Class2 Class 3

Figure 11. An example of the parameter input window for the Four Gaussians dataset

Train ©
1
Set Train Parameters X
Number of Points Mean Covariance 0.5
10000 00000 00250 00000
00000 00000 00250 !
(
Number of Points Mean Covariance
10000 00000 00250 00000
00000 00000 00250 i
[Pesets X __ Cear N Submt ____J

Legend

Class 0 Class 1

Figure 12. An example of the parameter input window for the Overlapping Gaussians dataset

testing how well a classifier manages uncertainty. Users can adjust the distance between means, the spread
(covariance), and the number of samples, allowing them to control how much the distributions intersect.

The Two Ellipses dataset shown in Figure 13 features two class clusters shaped like ellipses rather than
circles, indicating anisotropic (non-uniform) Gaussian distributions. These ellipses are defined by their
covariance matrices, which stretch the data in specific directions. This dataset is useful for visualizing how
algorithms that assume spherical clusters perform when that assumption is violated. Parameters include
means, covariances (to control orientation and elongation), and number of points per class.

The Four Ellipses dataset, displayed in Figure 14, is an extension of this that introduces four classes,
requiring a slightly more sophisticated decision surface. The Rotated Ellipses dataset, displayed in
Figure 15, uses Gaussian distributions with non-diagonal covariances matrices. This introduces even more
complexity since the direction of variance is not co-aligned with the direction of discrimination. Parameters
include the mean, covariance and number of points, allowing users to rotate the ellipses in any direction
and analyze classification behavior on skewed data.

ST .
;{:’3‘ v5.0.1: January 1, 2026
NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide

Set Train Parameters
Number of Points Mean
10000 -0 5000

05000
Number of Points Mean
10000 0 5000
-0 5000

Covariance
00333 00000
0 0000 00043
Covariance
00333 0.0000
0.0000 00043

-1

Train ©

Page 8 of 36

-0.5

0
Legend

Class 0 Class 1

0.5

Figure 13. An example of the parameter input window for the Two Ellipses dataset

Set Train Parameters

Number of Points Mean Covariance

30000 -0 5000 0033 0 0000
0 5000 0 0000 00043

Number of Points Mean Covarlance

10000 0 %000 0032 0 0000
0 5000 0 0000 00043

Number of Points Mean Covariance

10000 0 5000 00333 0 0000
0 5000 0 0000 00043

Number of Points Mean Covariance

0000 0 5000 0032 0 0000
05000 0 0000 0 0043

Figure 14. An example of the parameter input window for the Four Ellipses data set

Set Train Parameters
Number of Points Mean Covarlance
10000 05000 00329 00000
0 5000 00000 00043
Number of Points Mean Covarlance
10000 0 5000 00043 00000
05000 00000 00333
Subm

Train ©

-0.5

Class 0 Class1 Class2 Class 3

Legend

0.5

-0.5

Figure 15. An example of the parameter input window for the Rotated Ellipses dataset

2
)

=

NEURAL ENGINEERING
DATA CONSORTIUM

Train ®

-0.5

V]
Legend

Class 0 Class 1

v5.0.1: January 1, 2026

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 9 of 36

The Toroidal dataset displayed in Figure 16, also known as the donut-shaped dataset, arranges data points
in a ring or circular pattern. Typically, one class is concentrated in the center while another wraps around
it in a circular band. This nonlinearly separable structure is a good test for algorithms that handle complex
boundaries. Parameters include the inner and outer radii of the torus, number of samples, and class
assignment rules, which determine how inner and outer rings are classified.

The Yin-Yang dataset introduces a visually complex, spiral-based structure inspired by the iconic Yin-Yang
symbol, where two classes intertwine in a curving, symmetrical pattern. This dataset is particularly useful
for testing how well algorithms can handle non-linearly separable and non-convex(a shape that a single
straight line can’t cleanly separate) classification challenges. As shown in Figure 17, users can customize
the dataset using several parameters: the means control the center location of the spiral; the radius
determines the overall scale of the Yin-Yang shape; and the number of points for each class (Yin and Yang)
lets users balance the dataset or simulate class imbalance. Additionally, the overlap parameter allows users
to adjust how closely the two spirals intertwine, introducing varying levels of classification difficulty. This
dataset is ideal for exploring the strengths and weaknesses of both linear and nonlinear classifiers in a
visually intuitive format.

Scikit-Learn’s “make_classification” (Sklearn in IMLD) is a data generator that is used to quickly create
artificial datasets that mimic the structure of real-world classification problems. Instead of collecting and

Train

Set Train Parameters X
Number of Points (Ring) Number of Points (Mass) 0.5
Inner Radius (Ring) Outer Radius (Ring)
Mean Covariance

-1 -0.5 0 0.5 1
Legend

Class 0

Figure 16. An example of the parameter input window for the Toroidal dataset

Train

Set Train Parameters 3 1

Means,

Radius

Number of Points (Yin) 0

Number of Points (Yang)

Overlap

1

[Pesets N _______Clear X _______ Submit] 1 .5 0 0.5 1

Legend

Class 0

Figure 17. An example of the parameter input window for the Yin-Yang dataset

TR
Ny v5.0.1: January 1, 2026
| =50
Sy
NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 10 of 36

cleaning real data (which can be time-consuming), you can use this tool to produce feature matrices (X)
and label vectors (y) that follow controllable patterns. With this data generator, you can control the features
that are useful for predicting a class, which are redundant and ones that are just uninformative and noisy.
You can also control aspects such as the clusters per class, splitting them into multiple Gaussians and even
controlling the class balance.

3.2.5. Help

When hovering over “Help” in the Menu Bar, a dropdown menu will appear with options to assist in
navigating and using the IMLD website, as displayed in Figure 18. The Help options include the following:

e About: selecting this option will open a

of the IMLD app, as well as the current File Edt Classes Data Help
operating version. About
e User Guide: displays this user manual Train © User Guide
as a pdf file. 1 Report Issue
Run Locally

* Report Issue: selecting this option I

opens a dialog box which includes two Figure 18. The “Help” drop-down menu in the Menu Bar, displays options for
main input fields. An Issue Title, which receiving help, including displaying this user guide.

is a short summary or heading for the

issue being reported, and the Issue Description which is a larger text area where users can describe the issue in
more detail.

¢ Run Locally: downloads a copy of the IMLD source code to be ran locally.

Issue reports are sent to the support team at the Neural Engineering Data Consortium (www.nedcdata.org).
We try to respond to these requests within 24 hours.

3.3. Plotting Windows

The interface contains two side-by-side plotting windows, as shown in Figure 2, that allow users to compare
what is called closed-loop performance (training and evaluating on the same data) and open-loop
performance (training on the training data and evaluating on the evaluation data). The two windows are
labeled as:

e Train: displays the training data and the decision surface generated when you press Train. Performance metrics
are displayed in the Process Log window at the bottom of the screen.

e Eval: displays the evaluation data and how the previously trained model classifies those points when you press
Evaluate.

Together, these two visualizations let you see at a glance how well the model generalizes to classify unseen
data — data that was not used in the training process.

The small icons in each plotting window, shown in Figure 19,
provide some basic interactive controls for the plotting
windows. These controls are part of the Python library, Plotly m
(https://plotly.com), that is used to visualize the data and the
resulting decision surfaces:

e Camera (Left): Downloads the current plot as a PNG image. Figure 19. Plot window interactive buttons

¢ House (Middle): Resets the axes and zoom to their defaults.
¢ Logo (Right): Opens a link to the Plotly.com web site.

These interactive tools enhance usability, allowing for easier exporting, resetting, and exploration of data.

- 1{},}\ v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 11 of 36

3.4. Algorithm Toolbar

The Algorithm Toolbar shown in Figure 20 and found on the
far-right side of the IMLD interface, is where users select

machine learning algorithms, adjust parameters, and initiate | n ~ e
training or evaluation of models. This component serves as the
main control panel for applying algorithms to the visualized
data.

Algorithms

[Select an Algorithm v]

Figure 20. Algorithm tool bar layout

At the top of the toolbar are two prominent buttons: Train and

Evaluate. These are used to process data through the selected algorithm. The Train button is used to create
a model based on the currently selected algorithm and the training data shown in the Train plot. When
clicked, the platform processes the training dataset and builds a model using the specified algorithm and
any parameters that have been set.

Once a model is trained, the Evaluate button allows users to apply that trained model to the data displayed
in the Eval plot. This step computes the model’s performance on new or unseen data, also produces metrics
such as accuracy, precision, and error rate, which are logged in the Process Log.

Below the Train and Eval buttons, is the algorithm selection —
drop down menu shown in Figure 21. IMLD -currently Tein Evauste

supports a broad range of machine learning algorithms, each
with its own unique set of parameters. These include popular
models such as Principal Component Analysis (PCA),
Support Vector Machines (SVM) and K-Nearest Neighbors
(KNN), as well as more advanced techniques like Restricted
Boltzmann Machines (RBM), Transformers and Quantum
Neural Networks (QNN). A total of 17 algorithms are
available in the dropdown menu. When an algorithm is
selected, the corresponding parameters automatically appear
in the Algorithm Toolbar, enabling fine-grained control over
behavior, such as adjusting learning rates, selecting solvers,
or configuring component counts—depending on the
algorithm.

Select an Algorithm v

Euclidean Distance

Principle Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

Quadratic Components Analysis (QDA)
Quadratic Linear Discriminant Analysis (QLDA)
Naive Bayes (NB)

Gaussian Mixture Model (GMM)

K-Nearest Neighbors (KNN)

K-Means (KMEANS)

Random Forest (RNF)

Support Vector Machines (SVM)

LightGBM

XGBoost (XGB)

Multi-Layer Perceptron (MLP)

Restricted Boltzmann Machine (RBM)
Transformer

Quantum Restricted Boltzmann Machine (QRBM)
Quantum Neural Network (QNN)

Quantum Support Vector Machine (QSVM)

Figure 21. Algorithm selection drop-down menu

For example, Principal Component Analysis (PCA) shown in Figure 22, is a dimensionality reduction
technique that transforms potentially correlated variables into a smaller set of uncorrelated variables called
principal components. Its goal is to preserve as much variance in the dataset as possible using fewer
dimensions. In IMLD, PCA includes several configurable parameters:

e Implementation: specifies the backend method used to
compute the PCA solution. Options may differ in
computational strategy, efficiency, or numerical stability.
Selecting the appropriate implementation can impact both
runtime and the numerical accuracy of the result.

Algorithms ©

[Train] [Evaluate]

l Principle Component Analysis (PCA) vl

Implementation discriminant v

Prior Probability ml v

Prior Probability: determines how prior beliefs about
class distributions are incorporated into the analysis.
Options like “ml” (Maximum Likelihood) or ‘map”
(Maximum A Posteriori) allow users to influence model
bias based on assumed or known class frequencies.

Covariance Type full v
Center none v
scale ¢ none v

Number of Components 2

Figure 22. Principal Component Analysis parameters

Covariance Type: controls how the algorithm models
variance and correlation across features. A “full”

<7,

Al
V]
Soeg

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

v5.0.1: January 1, 2026

[N

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 12 of 36

covariance type considers all pairwise feature relationships, while simpler alternatives (e.g., “diagonal’’) assume
features are uncorrelated. This impacts how flexibly the model adapts to data structure.

o Center: defines how input data is centered before analysis. Options such as “none”, “tied”, or “untied”
determine whether the data is mean-shifted globally, per class, or left as-is. Proper centering is crucial for
ensuring meaningful principal component directions.

e Scale: specifies the scaling method used to normalize data prior to PCA computation. Options include “none”,
“biased”, “unbiased”, and “empirical’, each reflecting a different statistical approach to variance estimation.
Scaling ensures features with larger numeric ranges don't dominate the analysis.

e Number of Components: sets the number of principal components to retain in the reduced representation. A
value of 2, for example, projects the data into two dimensions, preserving only the two directions of maximum
variance. This directly controls the dimensionality of the output space.

PCA is a well-known algorithm for doing simple classification tasks and is often one of the first algorithms
students will be introduced to in a machine learning course.

3.5. Process Log

The Process Log, located at the bottom of the IMLD interface shown in Figure 2, provides a detailed, step-
by-step summary of all actions taken during a session. This includes data generation, class creation,
algorithm selection, parameter configuration, model training, and evaluation results. It is updated in real
time, offering users a transparent record of their workflow that can be used for debugging, experimentation,
and documentation.

When a user creates new classes, the log immediately confirms each addition (e.g., Added class: Class 0).
This is followed by detailed summaries whenever a dataset is generated or loaded, including the dataset
type (e.g., Two Gaussian, Toroidal, Yin-Yang) and whether it was applied to the Train or Eval window.
For each class, the log displays key parameters such as the number of points, the class means, and class
covariance matrices.

Once a machine learning algorithm is selected, the log lists the algorithm name and a complete breakdown
of its parameter settings, as specified in the algorithm toolbar. This ensures that all user configurations are
preserved and visible for later reference. When the user clicks the Train button, the log captures the moment
training begins (Process: Train) and may optionally display learned model parameters such as estimated
means, priors, or cluster centers, depending on the algorithm.

Following training, the log presents a standardized set of performance metrics: Accuracy, Error Rate, F1
Score, Precision, Sensitivity (Recall), and Specificity.

Clicking the Evaluate button triggers a similar process for the evaluation dataset. The log reports (Process:
Eval) and displays the same set of performance metrics, allowing users to compare generalization between
training and evaluation phases. In cases where training or evaluation fails (e.g., due to missing data,
incompatible configurations, or model errors), the log provides a descriptive error message to help users
identify and resolve the issue. By maintaining a comprehensive record of each session, the process log
supports reproducibility, comparative testing, and transparent analysis — making it an essential tool for both
new learners and advanced users.

4. Algorithms

There are 19 popular machine learning algorithms currently supported in IMLD. These can be roughly
clustered into five groups: (1) discriminant, (2) non-parametric, (3) gradient-boosting, (4) neural network
and (5) quantum computing. The first two groups are traditionally found in many entry-level machine
learning courses. The next two groups are relatively more recent additions and reflect the modern emphasis

<7,

/, v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 13 of 36

on neural networks and deep learning. The last group is relatively new and reflects an exciting emerging
area of science known as quantum machine learning. These algorithms are experimental in nature and are
quite computationally expensive. They are implemented using a quantum computer simulator.

4.1. Discriminant Algorithms
These algorithms are variants of the popular algorithm PCA that attempt to model data using a generative
Gaussian distribution-based model.

4.1.1. Euclidean Distance (EUCL)

Euclidean Distance is a simple, intuitive classification method that assigns data points to the class of the
closest reference point based on straight-line (L2) distance. While it performs well on linearly separable
datasets with evenly spaced data, it is limited in its ability to handle complex, overlapping, or high-
dimensional data distributions.

Parameters:

¢ Implementation: Specifies the computational framework used (e.g., “discriminant”), which refers to a basic
implementation focusing on class separation based on distance metrics.

o Weights: Assigns a weighting factor to each class. This parameter allows for class-specific influence during the
classification process. Adjusting these values can simulate class imbalance or prioritize certain classes over
others.

4.1.2. Principal Component Analysis (PCA)

Principal Component Analysis is a statistical technique used to reduce the dimensionality of a dataset while
preserving as much variance as possible. It works by transforming the original features into a new set of
uncorrelated variables called principal components, which are ordered by the amount of variance they
capture.

Parameters:

o Implementation: specifies the computational method used (e.g., discriminant-based);

e Prior Probability: controls how class priors are applied (ml for maximum likelihood, map for maximum a
posteriori);

e Covariance Type: controls assumptions about the covariance matrix (full: the matrix is fully populated and
symmetric, diagonal: assumes the features are decorrelated);

o Center: determines how input data is centered (none, tied, untied);
o Scale: selects the normalization method applied to input data (none, biased, unbiased, or empirical);

e Number of Components: controls how many principal components are retained (e.g., 2 for 2D projection).

4.1.3. Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis is a supervised learning algorithm used for both classification and
dimensionality reduction. Unlike PCA, which seeks directions of maximum variance, LDA aims to find the
feature space that best separates the classes. It does this by maximizing between-class variance while
minimizing within-class variance, resulting in optimal linear decision boundaries for classification tasks.
LDA is especially effective when class distributions are approximately Gaussian and share a common
covariance structure.

Parameters:

<7,

/, v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 14 of 36

e Implementation: specifies the algorithmic backend used for computation;

e Prior Probability: controls how class priors are applied (ml or map);

e Covariance Type: sets the covariance structure (full or diagonal);

o Center: determines how data is centered before analysis (none, tied, untied);

o Scale: selects the normalization method applied to input data (none, biased, unbiased, or empirical);

e Number of Components: controls how many principal components are retained (e.g., 2 for 2D projection).

4.1.4. Quadratic Components Analysis (QDA)

Quadratic Components Analysis is a supervised classification algorithm that extends Linear Discriminant
Analysis (LDA) by allowing each class to have its own unique covariance matrix. This added flexibility
enables QDA to model more complex, curved decision boundaries, making it especially effective for
problems where class distributions differ in shape, scale, or orientation. QDA calculates class-specific
probability distributions and assigns new observations to the class with the highest posterior probability. Its
capacity to model class-specific variances and covariances leads to quadratic decision surfaces, giving it a
significant advantage over linear models in cases with nonlinearly separable data.
Parameters:

o Implementation: specifies the backend method used for computation (e.g., discriminant);

e Prior Probability: controls how class priors are applied (ml or map);

e Covariance Type: sets the covariance structure (full or diagonal);

o Center: determines how the data is centered before analysis (none, tied, or untied);

o Scale: selects the normalization method applied to input data (none, biased, unbiased, or empirical);

e Number of Components: controls how many principal components are retained (e.g., 2 for 2D projection).

This typically matches the number of classes minus one, but QDA can support more due to its nonlinear nature.

4.1.5. Quadratic Linear Discriminant Analysis (QLDA)

Quadratic Linear Discriminant Analysis is a supervised algorithm that extends the principles of LDA by
introducing greater flexibility in how it models class distributions. While LDA assumes that all classes
share a common covariance structure, QLDA relaxes this assumption — allowing the algorithm to
approximate nonlinear (curved) decision boundaries while maintaining the interpretability and
computational efficiency of linear methods. This makes QLDA particularly valuable in cases where the
class distributions vary modestly but not enough to require a fully nonlinear model like QDA.

Parameters:
o Implementation: specifies the discriminant-based solver used to compute the projection;
e Prior Probability: controls how class priors are applied (ml or map);
e Covariance Type: sets the covariance structure (full or diagonal);
o Center: determines how the data is centered before analysis (none, tied, or untied);
o Scale: selects the normalization method applied to input data (none, biased, unbiased, or empirical);

e Number of Components: controls the number of projection components to retain, usually corresponding to the
number of classes minus one.

<7,

/, v5.0.1: January 1, 2026
—

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

5

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 15 of 36

4.1.6. Naive Bayes (NB)

Naive Bayes is a simple, yet effective supervised learning algorithm based on Bayes’ Theorem, which
calculates the probability that a data point belongs to a particular class given its features. The “naive”
assumption refers to the algorithm treating all features as conditionally independent given the class label,
which simplifies computation and often works surprisingly well in practice. Despite its simplicity, Naive
Bayes performs competitively on many classification tasks, especially those involving text, document
categorization, or other high-dimensional data. It is particularly well suited to problems where the
independence assumption is approximately valid, or the dataset is noisy and sparse.

Parameters:

o Implementation: specifies the computational backend (e.g., sklearn) used for fitting the model;

e Prior Probability: controls how class priors are applied (ml or map).

4.1.7. Gaussian Mixture Model (GMM)

A Gaussian Mixture Model (GMM) is a generative, unsupervised learning algorithm that models the
underlying data distribution as a weighted sum of Gaussian distributions. Each component, or mixture,
represents a cluster and the overall distribution is a weighted sum of these components. Unlike KMN, which
assigns points to clusters based on distance, GMM assigns points based on probability, allowing soft
clustering and more flexible cluster shapes. GMMSs are particularly useful for identifying subpopulations
within complex datasets and can model elliptical clusters with variable sizes and orientations.

Parameters:
e Implementation: specifies the method used for fitting the model (e.g., em for Expectation-Maximization);
e Prior Probability: determines how class priors are estimated (ml for maximum likelihood);

e Number of Components: specifies how many Gaussian components (clusters) the model should fit;

o Random State: sets the seed for initialization, ensuring reproducibility across runs.

4.2. Non-Parametric Algorithms

Nonparametric algorithms can be quite powerful but are susceptible to overtraining. IMLD provides a very
rich environment in which these issues can be explored via powerful visualizations.

4.2.1. K-Nearest Neighbors (KNN)

K-Nearest Neighbors is a non-parametric, supervised learning algorithm that classifies data points based
on the class assignments of the closest training samples. When given a new data point, KNN identifies the
K closest labeled training samples - typically using Euclidean distance — and assigns the class that is most
common among those neighbors. KNN is intuitive, simple to implement, and does not involve any internal
model training, making it ideal for establishing upper bounds on performance.

Parameters:

e Implementation: specifies the computational library used to execute the algorithm (e.g., sklearn).

e Number of Neighbors: determines the number of nearest neighbors (K) used for majority voting. Common
values range from 1 to 10, depending on the size and density of the dataset.

<7,

/, v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 16 of 36

4.2.2. K-Means (KMN)

K-Means is a widely used unsupervised learning algorithm for clustering data into K groups based on
similarity. It works by iteratively assigning each data point to the nearest cluster center (centroid), then
recalculating the centroids based on the assigned points until convergence. The result is a partitioning of
the dataset into K compact, non-overlapping clusters with minimal intra-cluster variance. K-Means is fast,
scalable, and particularly effective when the data has distinct spherical clusters of similar size.

Parameters:
o Implementation: specifies the underlying framework used to perform clustering (e.g., sklearn);

e Number of Clusters: sets the number of clusters (K) that the algorithm will attempt to find;

e Number of Initializations: defines how many times the algorithm will be run with different centroid seeds; the
best result (lowest within-cluster variance) is selected;

e Random State: sets the seed for reproducibility of centroid initialization;

e Maximum Iterations: limits the number of iterations for convergence in each run.

4.2.3. Random Forest (RNF)

Random Forest is a powerful ensemble classifier that builds multiple decision trees during training and
merges their results to improve accuracy and control overfitting. Each tree is trained on a different bootstrap
sample of the data, and features are randomly selected at each split, making the forest robust to noise and
variability. It’s particularly well-suited for classification tasks where interactions between features are
complex or non-linear. Because the final decision is based on majority voting (classification) or averaging
(regression), RNF tends to generalize well without extensive hyperparameter tuning.

Parameters:
o Implementation: specifies the framework for execution (e.g., sklearn);
e Number of Estimators: sets the number of trees to grow in the forest;

e Maximum Depth: limits the depth of each decision tree, helping prevent overfitting;

o Criterion: chooses the function used to measure the quality of splits (gini for Gini impurity or entropy for
information gain);

¢ Random State: controls randomness in sampling and feature selection for reproducible results.

4.2.4. Support Vector Machines (SVM)

Support Vector Machines are a robust, high-performance classification method that works by finding the
optimal hyperplane that maximizes the margin between two classes. SVM is particularly effective for both
linearly and nonlinearly separable data through the use of kernel functions, which transform data into higher
dimensions where separation is more feasible. SVMs are known for their strong theoretical foundation and
are often the go-to method when high accuracy is needed, especially in high-dimensional spaces.

Parameters:

e Implementation: specifies the underlying library used to implement the algorithm (e.g., sklearn), which affects
how the model is trained and evaluated;

¢ Regularization Parameter (c): balances the trade-off between maximizing the margin and minimizing training
error. A smaller C increases regularization, promoting simpler models that generalize better. A larger C reduces
regularization, allowing the model to fit the training data more closely.

<7,

/, v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 17 of 36

¢ Kernel Coefficient (Gamma): determines how much influence a single training example has. Lower values
imply a wider, more generalized decision boundary, while higher values lead to tighter, more complex
boundaries. This parameter is only applicable for non-linear kernels like rbf, poly, or sigmoid.

o Kernel: specifies the kernel used to transform the input space. Options include linear (no transformation), and
rbf, poly, and sigmoid, nonlinear transformations that allow the model to learn complex boundaries in high-
dimensional feature spaces.

4.3. Gradient-Boosting Algorithms

These algorithms use a technique called gradient-boosting for their training method. It gives a prediction
model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions
about the data, which are typically simple decision trees.

43.1. LightGBM

LightGBM (Light Gradient Boosting Machine) is a high-performance gradient boosting framework
developed to handle large datasets with low memory usage and fast training speeds. Unlike traditional
boosting methods, it uses histogram-based algorithms and grows decision trees leaf-wise (best-first) rather
than level-wise, enabling it to capture complex patterns more efficiently. LightGBM supports classification,
regression, and ranking tasks, and includes built-in mechanisms for handling imbalanced data. Its
scalability, speed, and accuracy make it particularly effective for large-scale machine learning problems
where computational efficiency is critical.

Parameters:

o Implementation: specifies the backend used to run the model. LightGBM is a fast, efficient gradient boosting
framework optimized for large datasets and lower memory usage.

e Bagging Fraction: defines the proportion of data used to train each boosting iteration. Using a value less than
1.0 enables bagging, which helps reduce overfitting and improves generalization.

e Bagging Frequency: specifies how often bagging is performed (in number of boosting iterations). A value of 0
disables bagging. Higher values perform bagging less frequently.

¢ Boosting Type: specifies the boosting method being used.
¢ Evaluation Metric: defines the metric for validation with options such as binary logloss, multi error, and auc.

¢ Early Stopping Rounds: specifies how many rounds with no improvement before training halts. Larger values
allow more time but risk overfitting.

e Validation Fraction: fraction of training data held out for early stopping. More validation data provides a
stronger signal but leaves less for actual training.

o Is Unbalanced: if set to 'true’, LightGBM automatically adjusts class weights for imbalanced datasets.

¢ L1 Regularization: adds L1 penalty to leaf weights, encouraging sparse solutions by shrinking less important
features to zero.

o L2 Regularization: adds L2 penalty to leaf weights, smoothing extreme values to reduce overfitting while
preserving overall model complexity.

¢ Learning Rate: controls step size shrinkage at each boosting round. Lower rates produce more stable models
but require more trees to converge.

e Max Depth: limits the depth of each tree. Deeper trees capture complex patterns but can overfit and slow down
training.

e Min Data in Leaf: specifies the minimum number of samples in a leaf node to avoid creating leaves that overfit
on very few observations.

<7,

/, v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 18 of 36

e Number of Estimators: total number of trees to build. More trees can improve fit but increase training time
and risk overfitting.

e Number of Leaves: sets the maximum number of leaves per tree. More leaves allow finer splits but can lead to
overly complex models.

e Random State: random seed to ensure reproducibility.

o Solver: sets the learning objective, automatically setting by default. 'binary’ is used for 2-class, 'multiclass' for
more, 'regression’ for continuous targets.

o Test Size: fraction of dataset reserved for testing. Smaller values leave more data for training.

e Verbosity: Controls logging detail. Higher values print more training info and diagnostics.

4.3.2. XGBoost (XGB)

XGBoost (Extreme Gradient Boosting) is an optimized gradient boosting framework designed for speed,
scalability, and accuracy. It builds an ensemble of decision trees sequentially, where each new tree corrects
the errors of the previous ones. It is widely used for both classification and regression tasks and is especially
effective for structured/tabular data, ranking problems, and scenarios requiring high predictive performance
with efficient computation.

Parameters:

o Implementation: defines the backend used to run the model. XGBoost is a scalable and efficient gradient
boosting framework commonly used for structured/tabular data.

e Solver: the optimization algorithm used to minimize the loss during training. This selection affects convergence
speed and final accuracy. Options include popular choices such as “multi: softmax” and “multi: softprob”.

e Evaluation Metric: defines the validation metric. Options include choices such as “mlogloss” and “error”.

o Early Stopping Rounds: halts training after no validation improvement for a set number of rounds. Larger
values allow more iterations but risk overfitting.

¢ Learning Rate: controls the contribution of each tree to the overall model. Lower rates generalize better but
require more boosting rounds.

e Max Depth: sets the maximum depth of each tree. Deeper trees capture more complexity but increase
overfitting risk.

e Number of Estimators: specifies the total number of boosting rounds (trees). More rounds can improve fit but
increase training time and risk of overfitting.

o Number of Threads: sets the number of CPU threads used for training. Increasing threads speeds up
computation on multi-core machines.

¢ Random State: seed used to ensure reproducibility of results.
o Test Size: fraction of data held out for testing. Smaller values leave more data available for training.

e Verbosity: controls the level of logging output during training. Higher values produce more detailed
diagnostics.

4.4. Neural Network-Based Algorithms

We have included some standard neural network algorithms in IMLD that are well-suited to problems
involving vector input. Though the theoretical gains achieved by these algorithms on this data are not great,
they provide important reference implementations that can be extended to problems where they excel, such
as long-term contextual modeling (e.g., ChatGPT).

<7,

?%\ v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

X

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 19 of 36

4.4.1. Multi-Layer Perceptron (MLP)

A Multi-Layer Perceptron is a type of feedforward artificial neural network composed of one or more
hidden layers between the input and output. It is a supervised learning algorithm that models complex,
nonlinear relationships by learning through backpropagation. MLPs are capable of handling both
classification and regression tasks by adjusting their architecture and activation functions. They are
particularly effective for datasets where patterns are not easily separable using linear decision boundaries.

Parameters:

Implementation: defines the library or backend used to train the model (e.g., sklearn). Different
implementations may offer varying trade-offs in performance, flexibility, or compatibility.

Hidden Size: specifies the number of units or neurons in the hidden layer(s). This determines the capacity of
the model to learn complex relationships. A larger hidden size allows the model to capture more intricate
patterns but also increases the risk of overfitting.

Activation: determines the nonlinear transformation applied at each neuron. The choice affects how signals
propagate through the network and influences learning dynamics. Common choices include:

= relu: efficient and widely used, especially for deep networks.
» tanh or logistic: useful in shallower networks or where bounded output is preferred.

Solver: The optimization algorithm used to minimize the loss during training. This selection affects
convergence speed and final accuracy. Options include:

* adam: a robust, adaptive method suitable for most tasks.
» sgd: stochastic gradient descent, which may converge more slowly but is highly customizable.
= [bfgs: offers high precision convergence, especially on small to medium-sized datasets.

Batch Size: determines how many samples are processed before updating the model weights. Setting this to
auto lets the backend choose an optimal size. Smaller batches lead to faster updates but more variance; larger
batches provide more stable updates.

Learning Rate: specifies the policy for adjusting the model’s learning rate over time. Common settings
include:

= constant: Keeps the learning rate fixed throughout training.
» adaptive or invscaling: Adjusts learning rate as training progresses to fine-tune the model.

Initial Learning Rate: sets the starting step size for the optimization process. This value controls how large
each update is during the early stages of training. A value that is too high may cause divergence; a value that is
too low may slow learning.

Random State: seeds the random number generator used during initialization and training. This ensures
consistent results across repeated runs, improving reproducibility and debugging.

Momentum: used to accelerate training by smoothing updates. It helps the model move consistently in
directions that reduce error, avoiding small local minima and speeding up convergence.

Validation Fraction: sets the portion of training data to hold out for validation. This helps monitor overfitting
by evaluating performance on unseen data during training.

Maximum Iterations: defines the maximum number of training epochs (complete passes over the data). This
prevents excessive runtime and ensures that training halts within a practical timeframe.

Shuffle: if true, the training data is shuffled at each epoch. This reduces bias due to data order and promotes
better generalization by exposing the model to different sequences of data.

Early Stopping: if enabled, training halts when the model's performance on the validation set no longer
improves. This technique prevents overfitting and saves time by stopping training once optimal learning is
reached.

<7,

X

,\%\ v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 20 of 36

4.4.2. Restricted Boltzmann Machine (RBM)

A Restricted Boltzmann Machine is a generative stochastic neural network used for dimensionality
reduction, feature learning, and classification. It consists of a visible layer (input features) and a hidden
layer (learned features), with connections only between these two layers, not within them — hence the name
“restricted.” RBMs learn a probabilistic representation of the input data and can be used as building blocks
for deeper models like Deep Belief Networks (DBNs). In IMLD, RBMs are primarily used for unsupervised
feature extraction, followed by a classifier (e.g., KNN) for supervised learning. After training, the learned
hidden representations are passed to the selected classifier to perform classification tasks.
Parameters:

o Implementation: defines the library or backend used to train the model (e.g., sklearn).

o Classifier: defines the downstream classifier to apply to the learned features (e.g. KNN).

e Learning Rate: controls how fast the model updates weights during training.

e Batch Size: sets how many samples are used per training batch. A value of zero corresponds to full-batch training.

e Verbose: enables detailed logging output for training diagnostics (0 = off, higher positive values = more info).

¢ Random State: ensures reproducible results by fixing the seed used for random processes.

e Number of Components: sets the number of hidden units or features to extract.

e Maximum Iterations: limits the number of training passes through the dataset.

4.4.3. Transformer

A Transformer model is a deep learning architecture that relies entirely on self-attention mechanisms to
process input data. Originally introduced for natural language processing tasks, Transformers have since
been adapted for a variety of domains including classification, sequence modeling, and time-series
prediction. Unlike traditional models that rely on recurrence or convolution, Transformers learn
relationships between all elements in the input sequence simultaneously, making them especially effective
at capturing long-range dependencies. In IMLD, the Transformer is implemented using PyTorch and allows
full customization of its architecture, offering flexibility in training and evaluation.
Parameters:

o Implementation: selects the backend library used to execute the model (e.g., PyTorch).

¢ Epoch: number of complete passes through the training data.

e Learning Rate: determines how quickly the model updates weights during optimization.

e Batch Size: number of samples processed before the model’s parameters are updated.

e Embed Size: dimensionality of the input embeddings that represent each data point.

e Number of Heads: defines the number of attention heads in the multi-head attention mechanism, enabling the
model to focus on different parts of the data simultaneously.

o Number of Layers: controls the depth of the model by setting the number of stacked encoder layers.
e MLP Dimension: size of the feed-forward layer following each attention block.

¢ Dropout: introduces regularization to reduce overfitting by randomly setting a fraction of neurons to zero
during training.

e Random State: sets the seed for reproducibility.

¢ Tolerance: determines the stopping condition for convergence (smaller values require tighter convergence).

<7,

/, v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 21 of 36

e Validation Fraction: percentage of data held out for validation during training.
o Early Stopping: halts training if performance on validation data stops improving.

e Max Iterations: limits the number of training cycles to prevent excessively long training runs.

4.5. Quantum Computing-Based Algorithms

An interesting emerging area of computing is quantum computing. Quantum computers offer the potential
to solve certain types of problems very quickly and perhaps find better solutions than conventional machine
learning algorithms. In IMLD, we provide three historically important attempts to harness the power of
quantum computing for machine learning.

4.5.1. Quantum Restricted Boltzmann Machine (QRBM)

The Quantum Restricted Boltzmann Machine (QRBM) is a hybrid quantum-classical model designed for
unsupervised learning and dimensionality reduction using principles from quantum annealing. This model
builds upon the structure of a classical Restricted Boltzmann Machine (RBM) but uses a quantum processor
to perform optimization tasks. It is particularly well-suited for sampling complex probability distributions
and encoding data into lower-dimensional latent spaces. QRBM in IMLD is implemented using the D-Wave
quantum platform, which enables annealing-based optimization via binary quadratic models (BQMs). This
allows the model to find low-energy representations of input data, mimicking how neural networks
compress and interpret features.

Parameters:

o Implementation Name: specifies the backend platform, such as “dwave”, which executes the model using
D-Wave’s quantum annealer.

¢ Provider Name: identifies the service or interface layer (e.g., “dwave”), which is used to manage access and
interaction with the quantum hardware.

¢ Encoder Name: defines the encoding strategy, such as “bqm” (binary quadratic model), which represents the
energy function of the RBM in a format solvable by quantum annealing.

e Number Hidden Units: controls the number of hidden nodes in the model, which represent latent features
extracted from the input data.

e Number of Shots: determines how many times the quantum annealer samples from the solution space. More
shots provide a better approximation of the probability distribution.

e Chain Strength: a hyperparameter that adjusts the penalty for breaking chains of qubits representing logical
variables. It affects solution quality and stability.

o KNN Neighbors: specifies how many nearest neighbors use in the final classification step after feature
extraction, integrating QRBM with a KNN classifier for supervised tasks.

4.5.2. Quantum Neural Network (QNN)

The Quantum Neural Network is a machine learning model that utilizes principles from quantum computing
to perform classification and optimization tasks. Unlike classical neural networks that operate on real-
valued vectors, QNN leverage quantum circuits to represent and manipulate data in quantum states. These
models are especially well-suited for exploring quantum-enhanced feature spaces and are implemented
using frameworks like Qiskit. In IMLD, QNN are built using parameterized quantum circuits composed
of feature maps and variational ansatz layers. These circuits are optimized iteratively using classical
optimization algorithms.

Parameters:

<7,

/, v5.0.1: January 1, 2026
—

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

5

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 22 of 36

e Implementation Name: specifies the quantum framework used (e.g., “qiskit”).

¢ Provider Name: defines the service or simulator provider (typically “qiskit”).

e Hardware: specifies the execution platform, such as “cpu” for simulation or “qpu” for quantum hardware.

¢ Encoder Name: determines the type of quantum feature map which encodes classical data into quantum states.

e Number Qubits: sets the number of qubits used in the quantum circuit, impacting the model's capacity and
complexity.

¢ Entanglement: defines the pattern of entanglement among qubits (“full” means all qubits are entangled with
one another).

o Feature Map Repetitions: controls the number of times the feature map circuit is repeated to enhance
representational power.

o Ansatz Repetitions: controls how many times the trainable ansatz block is repeated to deepen the circuit.

o Ansatz Name: specifies the form of the trainable quantum circuit, such as "real amplitudes", which applies
parameterized rotations.

o Optimizer Name: selects the classical optimizer (e.g., “cobyla”) used to tune circuit parameters based on
performance.

o Optimizer Maximum Steps: limits the number of iterations the optimizer will run, preventing overfitting or
long runtimes.

o Measurement Type: specifies how measurement results are collected (e.g., “sampler” for probabilistic output).

4.5.3. Quantum Support Vector Machine (QSVM)

The Quantum Support Vector Machine extends classical SVM techniques into the quantum domain by
leveraging quantum computing principles such as entanglement and superposition. It maps classical data
into a quantum feature space using quantum circuits and then separates data using a kernel-based
classification approach. This allows for solving classification problems that may be intractable for classical
SVMs on certain datasets. QSVM in IMLD is implemented using Qiskit, a leading quantum computing
framework, and can simulate execution on quantum hardware or classical backends.

Parameters:
o Implementation: selects the quantum backend library (e.g., Qiskit).
o Provider Name: defines the service or simulator provider (typically “qiskit”).

e Hardware: specifies the execution platform, such as “cpu” for simulation or “qpu” for quantum hardware.

¢ Encoder Name: determines the type of quantum feature map, such as "zz" for ZZFeatureMap, which encodes
classical data into quantum states.

e Number of Qubits: sets the number of qubits used in the quantum circuit, impacting the model's capacity and
complexity.

¢ Entanglement: defines the pattern of entanglement among qubits (“full” means all qubits are entangled with
one another).

o Feature Map Repetitions: controls the number of times the feature map circuit is repeated to enhance
representational power.

o Kernel: specifies the kernel method used to compare quantum states (e.g., “fidelity” measures state overlap).

e Number of Shots: indicates how many times the quantum circuit is run to estimate probabilities — higher values
yield more stable results but take more computational time.

% v5.0.1: January 1, 2026
\fi;/

NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 23 of 36

4.6. Summary

We have attempted to provide a wide range of algorithms that are generally useful to entry-level students
interested in understanding how machine learning actually works. As will be discussed in Section 6, it is
fairly easy to add new algorithms to IMLD. We expect to continue implementing new algorithms over time
as the field evolves. Some of the algorithms described above, such as Transformers, excel when processing
long strings of sequential data. However, the implementations provided above are designed to provide fair

comparisons of these algorithms on well-known data sets.

5. Typical Use Cases

This section presents a series of typical use cases
that walk users through practical workflows. A
workflow typically includes dataset creation,
algorithm selection, training and evaluation, and
interpretation of results. These examples are
designed to highlight the strengths and limitations
of various algorithms when applied to different
data distributions, and to help users develop
intuition about how to navigate model selection,
parameter tuning, and performance assessment
within the IMLD environment.

5.1. PCA vs. QDA for Rotated Ellipses

In this example, we will generate multivariate
Gaussian data with an asymmetric covariance
structure and explore how well the data can be
classified using QDA. To generate Rotated
Ellipses in IMLD, navigate to the Data tab in the
menu bar and select the Rotated Ellipses option
from the dropdown menu, as shown in Figure 23.

After selecting Train or Eval, a parameter
configuration window will appear (Figure 24),
that allows the user to define the characteristics of
the datasets such as class means, covariance
matrices, and the number of points.

After selecting “Submit”, the resulting data will
then be populated in the corresponding Train or
Eval plotting windows. The resulting window
should resemble Figure 25, displaying two
distinct rotated elliptical clusters in both the Train
and Eval plotting windows. Their corresponding
parameters are displayed in the Process Log.

Next, we will select our desired algorithm.
Navigate to the Algorithm Toolbar on the right
hand side, and click the drop-down menu titled
“Select an Algorithm” and select “Principal
Component Analysis (PCA)”. After selecting

AR
e

NEURAL ENGINEERING
DATA CONSORTIUM

The ISIP Machine Leamning Demo

File Edit Classes Data Help
Two Gaussians

»
Four Gaussians 3

1 Overlapping Gaussians »
Two Ellipses »
»

»

»

»

Four Ellipses
Rotated Ellipses Set Parameters
Toroidal

Yin-Yang

Train
Eval

Figure 23. Generation of a Rotated Ellipses dataset

Set Train Parameters X
Number of Points Mean © Covariance ®
10000 05000 00333 00000
os0 || oo 00083
Number of Points () Mean (O Covariance ®
10000 05000 00043 00000
05000 00000 003
[Cea X Suwmt______J

Figure 24. Rotated Ellipsis parameter configuration

=

Figure 25. Window displaying generated Rotated Ellipses data

Algorithms ©®
[Train] [Evaluate }

[Principle Component Analysis (PCA) V]
Implementation () discriminant v
Prior Probability (1) ml v
Covariance Type (© full v

Center () none v
scale (0 none v

Number of Components (O 2

Figure 26. The parameter window for the algorithm ‘PCA’

v5.0.1: January 1, 2026

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 24 of 36

PCA as the algorithm, configure its parameters according to your experimental needs. In this demonstration,
we use the default parameters shown in Figure 26. Once configured, click the Train button to apply the
PCA transformation to the training data. The Process Log will record details such as class means, prior
probabilities, and resulting covariance matrices.

After training, click Evaluate to apply the trained PCA model to the evaluation dataset. The Process Log
will now include performance metrics such as accuracy, precision, F1 score, and confusion matrix entries.

These results allow the user to assess the model’s ability to generalize beyond the training set.

The PCA algorithm creates a linear, or straight, decision boundary by projecting the data onto a new axis.
As shown in Figure 27, this works well when the data is already clearly separated. Even though PCA does

The ISIP Machine Learning Demo Contact

File Edit Classes Data Help
Train ® Eval ® Algorithms ©
| ' R
[Principle Component Analysis (PCA) V]
Implementation () discriminant v
0 0
Prior Probability () ml v
Covari D full v
s e ovariance Type () ul
Center () none ~
1 r T i) 1 T T | Scale (O none v
1 0.5 4 05 1 1 0.5 0 05 1
Legend Legend Number of Components (1) 2
Class 0 Class 1 Class 0 Class 1

Process Log ©®

Performance: Eval
Accuracy: 100.00%
Error Rate: 0.00%
F1 Score: 100.00%
Precision: 100.00%
Sensitivity: 100.00%
Specificity: 100.00% []

Figure 27. PCA decision boundaries and evaluation metrics

The ISIP Machine Learning Demo Contact
File Edit Classes Data Help
Train © Eval ® Algorithms ©

: : _ _

[Quadratic Components Analysis (QDA)]

Implementation () discriminant v
0 0
Prior Probability () mi v
Covariance Type (O full v
0.5 0.5 Type
Center (O none v
-1 T T 1 -1 T T 1 Scale () none v
-1 -05 0 1 =1 =05 o 1
Lenend Legend Number of Components (D 2
Class 0 Class 1 Class 0 Class 1

Process Log ®

Performance: Eval
Accuracy: 100.00%
Error Rate: 0.00%
F1 Score: 100.00%
Precision: 100.00%
Sensitivity: 100.00%
Specificity: 100.00% 0

Figure 28. QDA Decision boundaries and evaluation metrics

e ;;) v5.0.1: January 1, 2026

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 25 of 36

not use class-specific shape or orientation information, it still performs perfectly in this case because the
data is clean and well-separated.

Next, repeat the process using Quadratic Discriminant Analysis (QDA) by selecting it from the drop-down
menu. As shown in Figure 28, QDA allows each class to have its own shape and spread, which makes it
capable of generating more complex decision surfaces. In this case, however, since the data is well
separated, both algorithms produce perfect classification.

5.2. QDA vs. RNF for Toroidal Data

To generate Toroidal data in IMLD, navigate to
the Data tab in the menu bar and select Toroidal
from the dropdown menu (Figure 29). After

The ISIP Machine Leamning Demo

File Edit Classes Data Help

Two Gaussians
Four Gaussians

selecting Train or Eval, a parameter : P
configuration window will appear (Figure 30), ot

allowing the user to define the characteristics of os T
the datasets. After selecting Submit, the Y era =

resulting data will be populated in the ‘
corresponding plotting window. The resulting Figure 29. Navigation for the toroidal dataset
view should resemble Figure 31, displaying a

Set Train Parameters X
ring-shaped cluster centered around a circularly Number of Polns (Rng) O Number of Polnts (Mas5) O
shaped inner cluster. All input parameters are
displayed in the Process Log. . S

Mean (D) Covariance (1)

Next, navigate to the Algorithm Toolbar on the ooms om0
right-hand side, open the Select an Algorithm o o

L som

dropdown menu, and choose Quadratic
Discriminant Analysis (QDA). Configure the
parameters as needed (Figure 32) or use the
default settings.

Figure 30. Toroidal data set parameter configuration

Click Train to apply QDA to the training
dataset. The Process Log will display the
resulting class statistics including means, prior
probabilities, and the full covariance matrices
for each class. Then click Evaluate to apply the
trained QDA model to the evaluation set.

The Process Log will now include performance

metrics such as accuracy, precision, F1 score,
and the confusion matrix. In this demonstration,
QDA achieves fails to isolate the two classes, as
shown in Figure 33, since it is not well-suited to
this type of data.

Now repeat the process using the Random
Forest (RNF) algorithm by selecting it from the
same dropdown menu. Once selected, click
Train to fit the RNF model to the training data,
and then Evaluate to apply the model to the
evaluation dataset. As shown in Figure 34, RNF
forms a very specific decision boundary that

AR
5z
=
A
S

NEURAL ENGINEERING
DATA CONSORTIUM

Figure 31. The plotting windows for the toroidal dataset

Algorithms (

[w | DO

[Quadratic Components Analysis (QDA) v]

Implementation (O discriminant v

Prior Probability () ml v

scale () none v

Number of Components (0 2

Figure 32. The QDA parameter window

v5.0.1: January 1, 2026

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 26 of 36

closely follows the toroidal contours of
each class. The Process Log reports very
high accuracy, often exceeding at 99%,
along with precise class-specific metrics.

QDA and RNF use fundamentally | I -
different approaches to classification, R -
and their performance varies

significantly on nonlinear datasets like
Toroidal. This use case highlights that
while QDA performs well on data with
curved but regular shapes (like ellipses),
RNF is the better choice when dealing
with non-convex or nested topologies
such as the toroidal configuration. When
interpretability is less critical than
performance, RNF's data-driven
adaptability offers a clear advantage in
both classification accuracy and
boundary flexibility.

5.3. Creating Custom Data Sets

To create a custom dataset by drawing,
first add a class by using the “Add Class” Figure 34. RNF decision surfaces

button under the Classes tab (Figure 35).

Then, once again hovering over “Classes”, select the class you created, and choose Draw Points (for
individual clicks) or Draw Gaussian.

In this example, we will be drawing two Gaussian data plots and evaluating using the QDA algorithm. Click
or drag inside either the Train or Eval plot to sketch the points you want (Figure 36). When you are satisfied
with the sketch, we can save our data.

IMLD supports two drawing modes: points and Gaussian. Gaussian generates data points from a Gaussian
window using a paint brush approach. The ‘Draw
Points’ function follows the cursor and lets you insert
. . [N The ISIP Machine Learming Demo
points in a more granular manner. Existing data sets can _
be augmented by using these tools to add points. New T LI
lass 3 Class Options

data sets can also be created starting from a blank Add Class Delete Class
canvas. () Draw Points

Draw Gaussian

To save the data, go to File — Save Train Data (or Save
Eval Data) to export the hand-drawn points as a CSV
file (Figure 37). The filename is fixed to the name
“imld_train.csv” due to limitations of the client/server
interface. Use your desktop tools to rename this file if
you want to avoid overwriting it. e | -

Figure 35. Adding a class to draw Gaussian data

The CSV file structure is shown in Figure 38. The
header rows capture class labels, colors, and plot limits
so the dataset can be reconstructed later.

Figure 36. Two manually drawn Gaussian plots

- f% v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 27 of 36

The ISIP Machine Learning Demo

To verify the save-and-load workflow, clear the plot (Edit — Clear Fle Edt Gsses Daia Help
Train), then load the file you just saved via File — Load Train Data. Losa Tan e S
The points reappear exactly as drawn, confirming that the CSV format Losdodel Prancter
preserves all geometry and metadata. Save Tran Data

o ol it
Next, open the Algorithm Toolbar, select Quadratic Discriminant SaveModel :
Analysis (QDA) from the drop-down list. Click Train to fit QDA to Figure 37. Saving data to a file

your custom drawing; the Process Log now shows class-specific
means, priors, and full covariance matrices. Click Evaluate to test on
the Eval set (or on the same data if no separate Eval file was loaded).
QDA’s curved decision surface will bend to match the hand-drawn
contours, and the Process Log reports accuracy, precision, recall, and
F1 scores for immediate feedback.

filename: /Downloads/imld_train.csv
classes: [0,2]

colors: [#3543ea, #ea3535]

limits: [-1.0,1.0,-1.0,1.0]

O OO O O 3 Ak

Finally, you may iterate: add extra points, save as a second file, reload, Figure 38. The CSV file structure
and retrain. With the data loaded, under the “Classes” tab, select the

class you’d like to augment, and choose either Draw
Points or Draw Gaussian to add new samples to that
class. These new points will appear in real time on
the plot and be automatically grouped with the
selected class. Once the augmentation is complete,
save the updated dataset using File — Save Train
Data, then retrain the model to observe how the
changes affect the classification boundary and
performance metrics. This iterative process allows
users to explore the effects of class imbalance, added
variance, or shifted means, and how QDA adjusts its Figure 39. QDA classification on the original dataset
boundary accordingly through updated class
statistics.

The first data set shown in Figure 39, demonstrates a
dataset with a curved boundary between the classes,
which QDA captures well due to its use of class-
specific covariance matrices. As shown, QDA
achieves nearly perfect performance on this data with
99.95% accuracy and similarly high scores across
other metrics — indicating that the model effectively Figure 40. QDA Classification on augmented dataset
aligns with the data’s inherent curvature.

The second, augmented, data set shown in Figure 40 features a revised distribution where the boundary
between classes appears more vertical and symmetric. Despite the change in structure, QDA performs
remarkably well, achieving 99.97% accuracy. The curved decision boundary continues to model the data
effectively, and performance metrics such as precision (100.00%), sensitivity (99.93%), and F1 score
(99.96%) remain near perfect.

This comparison demonstrates QDA’s versatility. Not only can QDA model complex distributions, but its
ability to adapt without overfitting highlights the strength of class-specific covariance modeling. Just as
importantly, this example illustrates IMLD’s flexibility: users can modify datasets by drawing new points,
save and reload data files, and augment specific classes to explore how algorithm performance changes
across different scenarios.

- 1{},}\ v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 28 of 36

6. Extending IMLD

In this section, we describe the architecture of the web application, how the application is organized, and
how a user can expand upon the application.

6.1. Software Architecture and Organization

The IMLD application and its source code are
packaged in a tar file named imld.tar.gz. To download © = TRCHE TS T

this file, open the IMLD web application, and under the File ~ Bdit ~ Classes ~ Data Help

Help dropdown menu simply select Run Locally. This _ About |

will prompt your web browser to download imld.tar.gz. Train © User Guide

This is shown in Figure 41. 1 gepoLrt Iss"ue
un Locally

!
Once the download is completed, simply extract the

files to where you’d like IMLD to be stored. In the
extracted files, you will find a single folder named
v5.0.1. This is the home directory. Within the home directory, there are two files and one directory of note:

Figure 41. Downloading a local copy of IMLD.

o imld.py: the file that users execute to run IMLD. Calls the IMLD class that is made in the app/ directory.
e requirements.txt: contains all the libraries needed to run IMLD.
e app/: contains containing the main code of the application.

Within the app/ directory, IMLD is organized across 4 main directories:

¢ backend/: contains the core logic that drives the application. It includes Python scripts responsible for
managing data preprocessing, training, prediction, and evaluation of machine learning models. The backend is
where the machine learning algorithms and data generators are executed. The parameter files are also located
here.

e extensions/: contains the extensions for the application. These extensions are used to add functionality to the
Flask server, such as the routes, scheduling, and the base Flask app.

e static/: contains all static resources required by the frontend of the application. These include HTML snippets,
JavaScript files, CSS style sheets, fonts, and UI assets. Together, these files build the user-facing graphical
interface and provide interactive controls for selecting models, tuning parameters, uploading datasets, and
visualizing output.

o templates/: contains the base HTML template for the IMLD app. This directory is required because the IMLD
app is a Flask app, and Flask requires a base HTML template to be used for all the pages in the app. This base
HTML template must be in a directory called “templates/” for Flask to find it.

e _ init__.py: defines the IMLD class that is run within imld.py.
Within the backend/ directory, the following files exist:

e algo_params_v00.toml: contains the parameters for the algorithms that are implemented within IMLD. This
file also contains how the user may select parameter values, whether it be through a dropdown menu or integer
input.

e data_params_v00.toml: contains the parameters for the data generators that are implemented within IMLD.
This file also contains how the user may select parameter values, whether it be through a dropdown menu or
integer input.

¢ nedc_cov_tools.py: provides functions for computing covariance matrices and related linear algebra operations.
¢ nedc_debug_tools.py: provides classes that facilitate debugging and information display.

¢ nedc_file_tools.py: contains file and path handling utilities. Functions in this module support opening, reading,

I v5.0.1: January 1, 2026
=)
Sy
NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 29 of 36

and writing data files reliably across environments. This file also contains certain conventions that may be used
across other files within the application.

¢ nedc_imld_tools.py: provides IMLD-specific helper functions for formatting responses, transforming Ul
selections, and interfacing between Flask endpoints and backend processing logic.

e nedc_ml_tools_data.py: provides data generators that are to be used for ML Tools.

e nedc_ml_tools.py: provides core machine learning functions such as model training, prediction, evaluation, and
scoring. This file acts as the main entry point for backend ML processing logic used by IMLD.

e nedc_qml_base_providers_tools.py: contains the base classes and hardware configuration class for the
quantum machine learning providers.

e nedc_qml_providers_tools.py: This file contains all the child classes implementing the QuantumProvider
class. Each child class is responsible for implementing the methods required to interact with a specific quantum
provider.

e nedc_qml _tools_constants.py: contains all the constants that are used in the nedc_qml_tools.py.

e nedc_qml_tools.py: contains classes and functions that are used to implement quantum machine learning
algorithms.

e nedc_trans_tools.py: contains an implementation of the transformer architecture.
Within the extensions/ directory, the following files are contained:

o base.py: This file contains the base Flask app that is used to create the Flask server. It is used to create the
Flask app and its configurations. This file is used by /app/ _init _.py to load the base Flask app.

e blueprint.py: This file contains the blueprint for the Flask app. It is used to create the routes for the Flask app.
This file is used by /app/ _init .py to load the blueprint for the Flask app. All of the routes for the Flask app
are defined in this file.

o scheduler.py: This file contains the scheduler for the Flask app. It is used to create the scheduler for the Flask
app. This file is used by /app/ _init__.py to load the scheduler for the Flask app. The scheduler is used to
schedule the task of removing old cached models from the server.

Within the static/ directory, the following directories and file are contained:

e components/: contains modular JavaScript components that form the IMLD frontend interface. Each file
defines a different part of the user interface, such as toolbars, data parameter forms, plot displays, and event
handling logic.

e downloads/: contains the user’s guide and a version of the ISIP Machine Learning Demo.
e fonts/: contains the font used across the application, Inter.

e icons/: contains the information icon that appears next to parameters, giving the user more background on what
each parameter does.

o index.css: defines the styling used across the application.
6.2. Customizing IMLD

IMLD is an application designed to be user extensible. For example, a common way a user may choose to
extend the application is by implementing a new algorithm or data generator. Thanks to the structure of the
application, developers can add these with minimal effort by following existing patterns. Below is an
example of how we may go about implementing one of our new native algorithms, LightGBM:

<7,

/, v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 30 of 36

1. Open nedc_ml_tools.py and define your algorithm:

1.1. Be sure that the libraries your algorithm needs to function are defined at the top of the file. In the case of
LightGBM, these are “lightgbm”, “sklearn.model selection.train_test split”,

“sklearn.metrics.accuracy score”, “sklearn.metrics.confusion_matrix” and “numpy”. Be sure to update
requirements.txt when you introduce new libraries to the program.

1.2. Under the section at line 241 labelled “Algorithm-Specific Parameter Definitions”, define the algorithm
name and the available implementation(s):

LGBM_NAME = “LGBM”
LGBM_IMPLS = [IMP_NAME LGBM]

While some algorithms may share the same implementations that are already defined, like “sklearn”,
LightGBM has a unique implementation name “lightgbm”. Be sure to define this at line 138:

IMP_NAME_LGBM = “lightgbm”

You should also investigate algorithm-specific parameters that your algorithm may need to be
implemented, as here is where they should be defined. At line 149, there is a list of common names
found in many native algorithms in nedc_ml tools.py. You should use these defined names within your
algorithm’s train method, and if necessary, define new names here and use these.

In LightGBM’s case, there are a few algorithm-specific parameters:

LGBM NAME BFRAC= “bagging_ fraction”
LGBM NAME BFREQ= “bagging freq”

LGBM NAME BOOST= “boosting”

LGBM NAME ISUNB = “is_unbalance”

LGBM NAME LAMBDALI=“lambda 11~
LGBM NAME LAMBDAL2= “lambda 12”
LGBM NAME MINDATA = “min_data in_leaf”
LGBM NAME NUML= “num_leaves”

1.3. Implement the following methods for your algorithm within a class. In our example of the LightGBM
algorithm, we need to implement these methods in the LGBM class:

e def init (self): The user only needs to update these two lines:

foo.CLASS NAME =self.class.name
self.model d[ALG NAME IMP]=IMP NAME doe

“foo” is the class name and “doe” is the implementation name.
o def train(self, data: MLToolsData, write train labels: bool, fname train labels: str)
o def predict(self, data: MLToolsData, model = None)
o def get_info(self)

It is very helpful to look at how these functions have been implemented in the native algorithms, as
methods often either stay the same or are very similar to one another across algorithms, especially those
of the same type. For instance, LightGBM and XGBoost, two gradient boosting models, have very
similar predict and get info methods.

1.4. At line 7490, add your class within the ALGS dictionary. In LightGBM’s case: LGBM_NAME:LGBM.
1.5. Save the file and close.

2. Define its configuration in the TOML file algo_params_v00.toml:
2.1. Inline 47, add your class name in the LIST list. For LightGBM: “LGBM”.

2.2. Define your parameters. Do note that you should follow the specific format seen throughout the
algorithms. In LightGBM’s case:

<7,

; . v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 31 of 36

[LGBM]
name = “LightGBM”
[LGBM.params]

[LGBM.params.implementation name]
There are certain rules that need to be adhered to for all the parameters:
o Each param needs a “name”, “type”, “default”, and “description” attribute.
« If the type is a “select”, the param also needs an “options” attribute.
« If the type is an “int” or “float”, the param also needs a “range” attribute.
2.3. Save the file and close.
3. Run IMLD.

Your new algorithm should display as an available option within the application. If you’ve added new
libraries, be sure to reinstall the libraries in the requirements.txt that now includes the new ones. For
troubleshooting, please ensure that both your implementation and parameters line up with the existing
formatting.

We strongly recommend reviewing the existing native algorithm implementations and using these as a
guide when adding new algorithms.

7. Downloading and Installing IMLD

In this section, we describe how a user can download and install the application locally. We also describe
how the application can be installed on a web server using our web server, www.isip.piconepress.com, as
an example.

7.1. Running IMLD Locally

Running IMLD locally is straightforward with Anaconda. In Section 6.1, we described how to download
the tar file containing the application. To successfully run this, however, you need the proper set of Python
extensions installed. Follow the steps below to set up an environment specifically for IMLD and launch the
application:

1. Create a Python environment: Open a terminal window in the root directory where IMLD was installed.
1.1. conda create --name imld: create a virtual environment specifically for the IMLD application.
1.2. conda activate imld: activate the newly created environment.
1.3. conda install pip: ensures that pip is available in the environment for installing Python dependencies.

1.4. pip install -r requirements.txt: installs all required Python packages listed in requirements.txt, which
include Flask, Plotly, and other necessary libraries.

2. Run the IMLD application: Once the environment is set up and dependencies are installed, start the
application by executing the command ‘python imld.py’.

3. Access the web interface: After launching, the terminal will display an address such as: http.//localhost:5000.
Open this URL in your web browser to interact with the IMLD web interface.

7.2. Installing IMLD on a Web Server

Currently, the web version of IMLD runs on the NEDC web server (www.isip.piconepress.com). A network
diagram of the Neuronix computing cloud is shown in Figure 42. An interactive view of the cluster can be
found at https://isip.piconepress.com/projects/neuronix/. On this server, the IMLD application is deployed

<7,

/, v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide

using Gunicorn, a Python WSGI HTTP
server, in conjunction with Apache acting
as a reverse proxy. This architecture allows
for a clean separation between application
logic and public-facing network services.

IMLD is configured to be used with https.
Apache is responsible for terminating
SSL/TLS connections, ensuring that all
communication between the user’s browser
and the server is encrypted. Once a secure
https request is received, Apache forwards
the request to Gunicorn, which runs the
IMLD Flask application locally. Gunicorn
is configured to launch multiple worker
processes, allowing the backend to handle
concurrent requests efficiently.

This server setup allows IMLD to be
accessed via a stable URL and reliably serve
users interacting with the web interface. The
use of Gunicorn and Apache together is a
best-practice deployment method for
Python web applications, and it has proven
to be a reliable and robust solution for
hosting IMLD in the Neuronix production
environment.

7.3. Deploying IMLD on a Web Server

An overview of the IMLD architecture is
shown in Figure 43. Gunicorn is used to
deploy IMLD, which is a Python Flask app,
because it can be easily used with reverse
proxy servers such as Apache and Nginx.
Gunicorn acts as an intermediary between a
Python application (e.g., Flask) and the
client by passing http requests to the
application for processing. Gunicorn is very
straightforward to set up on an Apache web
server, such as that used by the Neuronix

cluster. The instructions below describe how to install IMLD on a web server running Rocky Linux.

7.3.1. Create A Python Virtual Environment

Using Anaconda, run these commands:

conda create --name imld
conda activate imld

conda install pip

pip install -r requirements.txt

She®

=

Figure 42. The Neuronix cluster

Presentation Layer

Web Browser

Connects application to web
server

Provides logic to answering
requests

- 1

Communication Layer

Apache Server

Page 32 of 36

Flask

Handle HTTP requests

Connects application to web
server

Manages and scales traffic

Provides logic to answering

Manages security

requests

Data Generation

Application Layer

Demonstration Data

Drawing Data

IMLD Tools

Decision Surfaces

Algorithm diagnostics

ML Tools

Data formatting

Algorithms

Training and Evaluation

Load and Save Datasets

Figure 43. The IMLD architecture

Gunicorn is one of many Python applications included in the file requirements.txt.

STES

“E
ey

NEURAL ENGINEERING
DATA CONSORTIUM

v5.0.1: January 1, 2026

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 33 of 36

7.3.2. Test Gunicorn
From the IMLD application folder (where imld.py is located), run:
gunicorn --workers 1 --bind 127.0.0.1:8000 imld:app

This launches Gunicorn with 1 worker, bound to localhost:8000. imld:app tells Gunicorn to find the app
object in imld.py. You can test it at this URL: http://127.0.0.1:8000.

7.3.3. Enable Apache Proxy Modules
Open this file:

sudo emacs /etc/httpd/conf.modules.d/00-proxy.conf
Paste these modules inside:

LoadModule proxy module modules/mod_proxy.so
LoadModule proxy http module modules/mod_proxy http.so

These modules together let Apache act as a proxy and forward http requests to other servers. Be sure to
save and exit after adding these.

7.3.4. Create Apache Virtual Host Config
Navigate to your Apache sites-available directory and create a file named imld.conf or the equivalent:

<VirtualHost *:443>
ServerName imld.local
ServerAdmin yourname@example.com

SSLEngine on

SSLCertificateFile /etc/letsencrypt/live/yourdomain.com/cert.pem
SSLCertificateKeyFile /etc/letsencrypt/live/yourdomain.com/privkey.pem
SSLCACettificateFile /etc/letsencrypt/live/yourdomain.com/chain.pem

ProxyRequests Off
ProxyPreserveHost On
<Proxy *>

Require all granted
</Proxy>

ProxyPass "/app" "http://127.0.0.1:8000/"
ProxyPassReverse "/app" "http://127.0.0.1:8000/"
</VirtualHost>

Make sure imld.local is listed in your /etc/hosts file if you're using it as the domain name. For the Neuronix
cluster, this file is /etc/httpd/conf.d/virtualhost.conf.
7.3.5. Enable the Site and Restart Apache
Test out the Apache server:
sudo httpd -t

This command checks the Apache config files for syntax errors. If the output of this command is Syntax
OK, it means your syntax works and Apache was able to successfully parse it.

Next, restart the server:
sudo systemctl restart httpd

With Gunicorn running, IMLD should now be accessible through the browser at the specified domain or
localhost port.

<7,

= A
V)
o

NEURAL ENGINEERING
DATA CONSORTIUM

v5.0.1: January 1, 2026

A /&/I

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 34 of 36

7.3.6. Set Up “.service” File (Optional)

You can also set up a “.service” file so that you don’t have to start Gunicorn every time your server restarts,
and you don’t need to have a terminal open either. Gunicorn will run in the background as daemon.

First, create a new file titled imld.service in this directory: /etc/systemd/system. Paste this inside, replacing
what is applicable for your server:

[Unit]
Description=Gunicorn instance to serve IMLD through Apache
After=network.target

[Service]

User=your user_here

Group=your_group_here

WorkingDirectory=/path/to/your/app

Environment="IMLD ISSUE NUM=003"

ExecStart=/bin/bash -c 'echo $IMLD_ISSUE NUM > /tmp/imld_env.log && exec \
/path/to/your/conda/env/bin/gunicorn --worker-class eventlet --workers 2 --bind 127.0.0.1:8000 imld:app

[Install]
WantedBy=multi-user.target

After saving and exiting, you then need to then enable and start the service:

sudo systemctl daemon-reload
sudo systemctl enable imld.service
sudo systemctl start imld.service
sudo systemctl status imld.service

You can check the status of the service by running this command:
sudo systemctl status imld.service

The service can also get reset by running this command:
sudo systemectl restart imld.service

Though this adds a bit of complexity to the installation, it is highly recommended you do this to make sure
IMLD is available when the server is rebooted.

8. Conclusions and Future Work

IMLD is an application that has been evolving for over 40 years. In the latest version, we’re adding the ML
algorithms LightGBM and XGBoost. These algorithms represent a major enhancement to IMLD’s
capabilities, as they introduce gradient boosting—a class of ensemble learning methods not previously
native within the application. Unlike traditional algorithms such as Euclidean distance classifiers or linear
discriminants, gradient boosting models iteratively build ensembles of decision trees that focus on
correcting the mistakes of previous iterations, allowing for highly accurate, nonlinear decision boundaries.

LightGBM and XGBoost are among the most powerful and widely adopted gradient boosting frameworks
in modern machine learning. Their addition marks the first time IMLD supports boosted decision tree
ensembles, enabling users to explore techniques that are prevalent in both academic research and real-world
applications such as finance, healthcare, and competitive data science. Both models function very similarly,
using decision trees as their base learners and combining them sequentially to improve the model’s
performance. Each new tree is then trained to correct the errors made by the previous tree.

<7,

/, v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

/&}

S

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 35 of 36

With these models, IMLD now supports not just classical, interpretable methods but also high-performance
algorithms capable of capturing complex feature interactions. Their inclusion introduces new types of
parameters and training behaviors, offering a deeper educational experience and significantly expanding
the platform’s modeling versatility.

We’re also adding Scikit-Learn’s make _classification data generator. This tool creates synthetic multiclass
datasets and is useful for testing how well classifiers handle noise and complexity. It can introduce
redundant and uninformative features, create multiple clusters per class, and apply linear transformations
to the feature space. These options allow us to simulate more realistic and challenging classification
problems, making it easier to evaluate how robust a model is under different conditions. Note that for
make_classification to work in IMLD, which is an application bound to 2D visualizations, datasets that
contain more than two features are automatically projected to 2D using PCA.

Finally, we have also added support for quantum computing-based algorithms in v5.0.1. These fairly new
algorithms are extremely computationally demanding because they are run via a simulator. As this field
matures, we will update IMLD appropriately.

To learn more about IMLD, visit our project page at: https.//isip.piconepress.com/projects/imld).

Acknowledgements

IMLD has been a work in progress for many years and has been funded as part of many grants. Most
recently, this material is based on work supported by several organizations including the National Science
Foundation (grants nos. 2211841 and 1726188 and 1925494), the Temple University Catalytic
Collaborative Funding Initiative and most recently by the Pennsylvania Breast Cancer Coalition Breast and
Cervical Cancer Research Initiative. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of these
organizations.

Numerous researchers have contributed to the development of this tool. It would be impossible to list all of
them. The original version of the system was derived from work by Janna Shaffer and Daniel May when
ISIP was located at Mississippi State University. Most recently, the web version was developed by a senior
design team at Temple University that included Raynel Lopez, Shane McNicholas, Brian Thai,
and Kayla Toner. Salvatore Tanelli and Sohail Aji were responsible for the current release. Our senior
software engineers, Dylan Heathcote, Phuykong Meng and Rick Duncan, also played significant roles in
the development of this tool over the years.

References

Cap, T., Kreitzer, A., Miranda, M., & Vadimsky, D. (2022). IMLD: A Python-Based Interactive Machine
Learning Demonstration. Senior Design II, College of Engineering, Temple University, 1-12. url: www.
isip.piconepress.com/publications/presentations_misc/2021/senior_design/imld/.

Cap, T., Kreitzer, A., Miranda, M., Vadimsky, D., & Picone, J. (2021). IMLD: A Python-Based
Interactive Machine Learning Demonstration. In I. Obeid, I. Selesnick, & J. Picone (Eds.), Proceedings of
the IEEE Signal Processing in Medicine and Biology Symposium (SPMB)(pp. 1-4). Philadelphia,
Pennsylvania, USA. (Download). doi: 10.1109/SPMB52430.2021.96722635.

Huang, K., & Picone, J. (2002). Internet-Accessible Speech Recognition Technology. Proceedings of the
IEEE Midwest Symposium on Circuits and Systems, I1I-73-111-76. doi: 10.1109/MWSCAS.2002.
1186973.

STES

% v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

S. Aji, et al.: The ISIP Machine Learning Demonstration Users Guide Page 36 of 36

May, D., & Picone, J.. (2002). The ISIP Pattern Recognition Applet. Institute for Signal and Information
Processing, College of Engineering, Mississippi State University. url: www.isip.piconepress.com/projects/
speech/software/demonstrations/applets/util/pattern_recognition/current/.

McNicholas, S., Thai, B., Toner, K., & Lopez-Morel, R. (2024). ISIP Machine Learning Demo. Senior
Design, College of Engineering, Temple University, 1-13. url: www.isip.piconepress.com/publications/
presentations_misc/2024/senior_design/imld/.

Picone J., Duncan, R., & Hamaker, J.. (2001). Internet-Accessible Speech Recognition Technology.
O’Reilly Open Source Convention. url: www.isip.piconepress.com/publications/conference
presentations/2001/oscon/software/.

Picone, J. (2000). Internet-Accessible Technology Demonstrations. Institute for Signal and Information
Processing, College of Engineering, Mississippi State University. url: www.isip.piconepress.com/projects/
speech/software/demonstrations/.

Shaffer, J., Hamaker, J., & Picone, J. (1998). Visualization of signal processing concepts. Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing, 3, 1853—1856. doi: 10.
1109/ICASSP.1998.681824.

Thai, B., McNicholas, S., Shalamzari, S. S., Meng, P., & Picone, J. (2023). Towards a More Extensible
Machine Learning Demonstration Tool. Proceedings of the IEEE Signal Processing in Medicine and
Biology Symposium, 1-4. doi: 10.1109/SPMB59478.2023.10372731.

STES

i%« v5.0.1: January 1, 2026

NEURAL ENGINEERING
DATA CONSORTIUM

