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[57] ABSTRACT 
A chart parser is disclosed which incorporates rule and 
observation probabilities with stochastic uni?cation 
grammars. The parser operates frame synchronously to 
provide top-down hypotheses and to incorporate obser 
vation probabilities as they become available. Because 
the language model produces multiple explanations of 
the speech data between frames, the prediction and 
combination of rules may create cycles in a graph repre 
senting the best scores. Score calculation includes the 
detection of these cycles and propagation of the best 
scores to the next frame. The algorithm creates no more 
states than a nonprobilistic chart parser, and remains 
linear for regular grammars and cubic in the worst case 
for CFGs. The parser allows a direct integration of 
statistical speech information and linguistic constraints 
within the same language model, while the language 
model permits a generalization of HMM-type models. 
The efficiency of the parser makes it applicable to multi 
ple levels of a spoken language system (e.g., sentence, 
word, phoneme, and phone levels). 

33 Claims, 3 Drawing Sheets 
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CHART PARSER FOR STOCHASTIC 
UNIFICATION GRAlvIMAR 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to spoken language interfaces, 

and more particularly to a spoken language processor 
containing a chart parser that incorporates rule and 
observation 10 probabilities with stochastic uni?cation 
grammars. 

2. Description of the Related Art 
It has been the goal of recent research to make ma 

chine understanding of spoken language possible 
through a tight coupling between speech and natural 
language systems. The dif?culty posed by this coupling 
lies in trying to integrate statistical speech information 
with natural language grammars. Furthermore, speech 
systems have come to rely heavily on grammar con 
straints to accurately recognize connected speech. 
Language modeling has become an essential element 

in high performance, speaker-independent, continuous 
speech systems. Until recently, speech recognition sys 
tems have primarily used Finite State Automatons 
(FSAs) as the language model. These models offer ef? 
cient processing, easily accommodate observation prob 
abilities, and permit simple training techniques to pro 
duce transition probabilities. Attempts to model spoken 
language with FSAs have resulted in stochastic lan 
guage models such as bigrams and trigrams. These mod 
els provide good recognition results when perplexity 
can be minimized, but preclude any direct support for 
spoken language systems by eliminating the semantic 
level. 
Language models have traditionally proven valuable 

in natural language systems, but only during the past 
decade have computationally-oriented, declarative 
grammar formalisms become widely available. These 
formalisms, generally known as uni?cation grammars, 
offer great ?exibility with respect to processing for both 
parsing and generation. Uni?cation grammars have 
allowed the close integration of syntax, semantics, and 
pragmatics. These grammars are especially signi?cant 
for spoken language systems because syntactic, seman 
tic, and pragmatic constraints must be applied simulta 
neously during processing. Discourse and domain con 
traints can then limit the number of hypotheses to con 
sider at lower levels, thereby greatly improving perfor 
mance. 

Several efforts have been made to combine Context 
Free Grammars (CFGs) and uni?cation grammars 
(U Gs) with statistical acoustic information. Loosely 
coupled systems, such as bottom-up systems or word 
lattice parsers, have produced nominal results, primar 
ily due to time alignment problems. Top-down con 
straints from CFG’s have been integrated with speech 
using the Cocke-Younger-Kasami (CYK) algorithm, 
but this algorithm has bad average time complexity 
(cubic). This complexity becomes especially detrimen 
tal with frame synchronous parsing where the number 
of input hypotheses under consideration is typically 
large. For example, a person’s average speech input is 
4-5 seconds long, which corresponds to 400-500 
frames. When cubed, those 400-500 frames yield 
64,000,000-l25,000,000 processing steps to recognize an 
input. 
The ?rst algorithm that had N3 time complexity was 

the CYK algorithm. With natural language systems, N 
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2 
is traditionally words; however with speech systems, N 
is equal to frames, which are the fundamental time units 
used in speech recognition. The algorithm was signi? 
cant in that it provided a time synchronous algorithm 
for speech recognition which improved accuracy be 
cause the processor did not have to be concerned about 
how the words ?t together. The CYK algorithm is very 
simple in that it resembles matrix multiplication. Unfor 
tunately it always takes N3 time, rather than linear time, 
even when processing a regular grammar. Additionally, 
the CYK algorithm is exhaustive; it systematically ex 
pands everything whether it will be needed or not. Such 
an algorithm uses a great deal of processing time and 
memory space. 

Earley’s algorithm (J. Earley, ‘An Efficient Context 
Free Parsing Algorithm’,Comm. of the ACM, Vol. 13, 
No. 2, Feb. 1970, pp. 94-102) is one of the most ef?cient 
parsing algorithms for written sentence input and can 
operate in linear time for regular grammars. It was one 
of the ?rst parsing methods that used a central data 
structure, known as a chart, for storing all intermediate 
results during the parsing process of a sentence. Subse 
quently chart parsers were widely used in natural lan 
guage systems for written input. 
Due to the variability and ambiguity of a spoken 

input signal, modi?ed algorithms were created to im 
prove on Earley’s algorithm and to adapt it to spoken 
language recognition. An example of such a modi?ed 
algorithm is shown in A. Paeseler, ‘Modi?cation of 
Earley’s Algorithm for Speech Recognition’, Proc. of 
NATO ASI, Bad Windsheim, 1987. Paeseler’s algo 
rithm combines probabilities in context-free grammars 
based on Earley’s algorithm but it does not do so opti 
mally due to certain defects in the algorithm. One such 
defect involves the calculation of probabilities. For 
context-free grammars, a nonterminal symbol may re 
write to another nonterminal symbol without having to 
go through a terminal symbol. Probabilities can there 
fore occur from many directions in the grammar. In 
order to progress in the parsing of the input, those sub 
sequent symbols must also be expanded. But in order to 
expand those subsequent symbols, according to Pa 
eseler’s algorithm, the best probability must be known, 
otherwise if a better probability appears, the parsing 
must be redone. This means potentially an exponential 
amount of work, which is highly undesirable. 

SUMMARY OF THE INVENTION 

In view of the above problems, the primary purpose 
of the present invention is to provide a chart parser that 
incorporates rule and observation probabilities with 
stochastic uni?cation grammars, thereby enabling the 
language processor to increase accuracy in spoken lan 
guage understanding by exploiting all knowledge 
sources simultaneously, improve the languages that can 
be represented and to improve a speech recognition 
processor’s representational power. 
Another goal of the present invention is to provide a 

chart parser that correctly computes hypothesis proba 
bilities in an ef?cient manner for CFGs and stochastic 
uni?cation grammars, by interleaving the search for 
explanations of symbols from both the top down and 
from the bottom up. 
A further goal is the provision of a chart parser capa 

ble of correctly applying CFGs and UGs to a speech 
recognition problem in an ef?cient manner, saving pro 
cessing time and memory space. It saves time and mem 
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ory space by expanding symbols only once. Thus the 
processor often operates in linear or quadratic time and 
only in the worst case does it take N3 processing steps to 
recognize an input as oppposed to either N3 processing 
steps all the time or, as seen empirically from Paeseler’s 
algorithm, exponential processing steps, either of which 
are quite undesirable for real-time systems. 
The present invention extends Earley’s basic CFG 

parsing algorithm to combine rule and observation 
probabilities with the use of uni?cation grammars. This 
retains the Barley algorithm complexity while extend 
ing the results to spoken input recognition: linear for 
regular grammars, quadratic for unambiguous CFGs, 
and cubic for general CFGs. The complexity results 
also hold for uni?cation grammars that do not include 
arbitrary nesting of features. Because of this ef?ciency, 
the algorithm applies to multiple grammar levels of a 
spoken language system. 

In accordance with the invention, a method is dis 
closed for combining uni?cation grammars with rule 
and observation probabilities to enable a processor to 
recognize a speech signal input for several levels of a 
language model. The present invention loads the gram 
mars and the reference data from a disk or appropriate 
memory space into internal data structures for access by 
the parser. The present invention then enables the chart 
processor to predict all start symbols and parse for all 
input frames. The parse function requires that the pro 
cessor alternately repeat a predict function and a com 
plete function until no new states can be added. If the 
processor is on the bottom grammar level, then it will 
score any terminal symbols with respect to the input 
frame. If the processor is not on the bottom level, then 
it will predict the terminal symbols at the next lower 
level and proceed to parse. The processor will scan 
observations from a lower grammar level into the cur 
rent grammar level. It will complete active states as 
new complete states become available and return to the 
next higher grammar level the complete states from 
symbols of the current grammar level. 
The present invention assigns probabilities to the 

hypotheses that it next wants to explore. It also employs 
a beam pruning technique, well-known in the art, and a 
delayed commitment in the score caluclation to deter 
mine the most probable correct response (speech recog 
nition). Delayed commitment is not continuously calcu 
lating the best probability, but instead setting reminder 
pointers to the previous states that need a particular 
symbol so that when the processor needs to know the 
probability, it can trace back and then decide, having all 
the information at hand, which one actually was the 
higher probability. 
These and other features and advantages of the inven 

tion will be apparent to those skilled in the art from the 
following detailed description of a preferred embodi 
ment, taken together with the accompanying drawings, 
in which: 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram showing a speech recogni 
tion processor which employs the present invention; 
FIG. 2 is a stack diagram demonstrating a possible 

grammar level structure and positioning as used by the 
present invention; 
FIGS. 3A-C show an example demonstrating frame 

synchronous parsing using probabilities employed by 
the present invention; 
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4 
FIGS. 4A-D show an example showing a typical left 

recursive rule showing rule probabilities correctly com 
puted by the present invention; and 
FIG. 5 is a graph showing the effect of chart parsing 

on pruning as employed by the present invention. 

DETAILED DESCRIPTION OF A PREFERRED 
EMBODIMENT 

The present invention discloses a method which 
makes use of an algorithm (discussed below) which 
includes a parsing subalgorithm to affect the central 
data structure of a spoken language processor. As seen 
in FIG. 1, an input device 10 receives input from a user 
and transmits the input along connecting element 12 to 
processor 14. Processor 14 contains a central data struc 
ture, known as a chart 24, not shown, where the algo 
rithm is implemented. The algorithm instructs proces 
sor 14 to load a grammar, a lexicon, probabilities, and 
other appropriate operating data from processor mem 
ory 16. Processor 14 communicates with processor 
memory 16 via connecting element 18. After processor 
14 has completed the algorithm and has identi?ed the 
input from input device 10, processor 14 transmits an 
output to output device 22 via connecting element 20. 
The grammar contains rules which define the appro 

priate grammar used and is well known in computa 
tional linguistics arts. The lexicon contains de?nitions of 
the terminal symbols of the grammar. These terminal 
grammar symbols are preferably word classi?cation 
descriptors, such as verb, noun, and article, with syntac 
tic and semantic information. The terms of the lexicon 
are assigned features, such as tense, plurality, or de? 
niteness. Some elements of the lexicon contain detailed 
descriptions of the types of words which are valid in 
certain circumstances. The actual words, also called 
atoms, are de?ned elsewhere, such as in a knowledge 
base. 
The grammar and lexicon, taken together, can be 

compiled without reference to a particular domain. The 
result is to define a spoken language reference which 
can be a fairly complex subset of a language. Since the 
rules for the grammar and lexicon refer only to word 
types, the number of rules is relatively small, even at 
execution time, so they run quickly. 

It should be noted that “input” may be spoken, writ 
ten, typed, etc. “Input device” may be a terminal, mi 
crophone, phonograph, etc. “Output” may be a proces 
sor response written to a screen, an oral response by the 
processor, a processor action, etc. The “output device” 
may be a screen, another processor, an audio speaker, a 
robotic arm, etc. In the implementation of the preferred 
emmbodiment of the present invention, the input is 
spoken, the input device is a microphone, the output 
and output device involve a processor response written 
to a screen. However, this should not in any way limit 
the present invention. 

Before considering the algorithm of the present in 
vention, two de?nitions are needed. First, one de?nes a 
stochastic uni?cation grammar which is based on the 
de?nition of stochastic context-free grammar and is 
described by the generalization that the symbols are not 
restricted to atomic symbols but can be feature-value 
pairs or feature sets. Speci?cally, a “stochastic uni?ca 
tion grammar” is a four-tuple G,=(N,T,P,,S), where N 
and T are ?nite and sets of nonterminals and terminals, 
S C N is the set of start symbols, and p, is a ?nite set of 
stochastic productions each of which is of the form A, 
p—>a, where AeN and Be(N UT)", and p is the probabil 
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ity of applying the rule. Let the set of probabilities of all 
k stochastic productions in P, with A on the left be 
{NAM-r13, i, i=1, . . . , it}. Then 0<p,~§l and 

The nonterminals and terminals are feature-value pairs. 
Next, one de?nes a “feature set” as a set of “feature 

value pairs” of the form FzV, where f is a constant 
(0-ary function or atomic symbol) and V is either a 
constant, a variable, or a feature set. A feature set may 
be indexed with a variable using the notation X+FS, 
where X is a variable and F S is a feature set. The vari 
able may be used elsewhere to denote the occurence of 
the same feature set. 
The preferred embodiment of the present invention is 

as follows: 
INPUT: 
A vector of grammars, G, G0, . . . 

An ending frame n. 
OUTPUT: 
A matrix of state sets E, 1 rows and n columns. , the 

best score for S of G0. 
METHOD: 
1. Let i=0, l=0,a'o=0.0 (log probability). Make ELO 
empty for all 1. 

3. If i=n and [O,p,s,a,j,e,i,o-o,o']eE1,,,, where seS, then 
return E and 0'. 

4. Parse (i,E,l ). 
5. Go to (3). 
PARSE: 
INPUT: 
The matrix of state sets E, a level 1, and a frame 

index i. 
OUTPUT: 
. An extra state set in E, E1,;+1. 
METHOD: 

1. Repeat the following two steps until no new 
states can be added: 
(a) Predict 
(b) Complete 

2. Hypothesize. 
3. Scan. 
4. Set i=i+l 
5. Repeat the following two steps until no new 

states can be added: 
(a) Predict 
(b) Complete 

In implementing the above algorithm, the processor 
reads a vector of grammars representing any number of 
grammar levels. Looking for the moment at FIG. 2, an 
example of grammar levels is shown. The highest level 
is sentence grammar level 0. Below that is word gram 
mar level 1, and below that is phoneme grammar level 
2. The next lower level shown is phone grammar level 
3. Each lower level contains narrower and narrower 
portions of the inputted data until the lowest level or 
reference frame grammar level 1 is reached. 
A reference frame is the fundamental time unit set by 

the speech developer. For example, the fundamental 
time unit may be 20 milliseconds. This means that every 
20 milliseconds the processor will characterize speech 
data with a vector of length 18 or so, ?oating point 
features of various characteristics of the speech signal 

, G1. 
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6 
and will match those characteristics to the expected 
data or symbols which correspond to words. 

Returning to the algorithm, before the processor has 
completed the input, it generates an output of a matrix 
of state sets E which is 1 rows corresponding to the 
number of levels and N columns corresponding to the 
number of input frames of speech. Furthermore the 
processor will output a score of for best sentence expla 
nation at grammar level 0 (FIG. 2), which is the sen 
tence level grammar. 

After reading the vector of grammars, in the pre— 
ferred embodiment, the processor will then input an 
ending frame indicator n. Although this is not required, 
it makes the algorithm more complete. Furthermore, 
there are other means by which the end point can be 
indicated to the processor. 
At this point, the processor initializes all of the state 

sets to empty at all levels of the ?rst frame and sets the 
initial probability to 0.0 which is a logarithmic probabil 
ity. The processor sets the level to 0 (starts at the sen 
tence grammar level), and sets the frame to 0. This 
completes initialization. For each start symbol of gram 
mar, the processor predicts the current frame’s initial 
and ?nal probability as 0.0. 

If the processor has reached the end of the input at 
this point, which is unlikely the ?rst time the processor 
proceeds through the algorithm, and if the processor 
has found a state corresponding to a start symbol which 
is complete, the processor can then explain the whole 
set input and can output that state and its score. The 
processor then parses, given the start frame, the state 
set, and the level. 

In the parse algorithm, the processor inputs the ma 
trix of state sets, a level 1, a frame index i, and outputs 
an extra state for the next input frame request i+ 1. This 
cycle is repeated until no new predicted and completed 
states are added. The cycle produces some terminal 
symbols that are hypothesized at the next lower gram 
mar level. The processor hypothesizes the terminal 
symbols from this level as start symbols at the next 
lower grammar level. It returns a set of observations 
which are scanned into the waiting states. In the pre 
ferred embodiment, the frame counter is then incre 
mented because any state that completes will do so at 
the next frame. It should be noted, however, that the 
frame counter may be incremented at other times dur 
ing the execution of the algorithm depending on how 
one wants to keep track of the frames. At this point, 
either the states are complete or are reported as obser 
vations to the next higher grammar level. They may 
also still be active (not completed) and be placed in a 
pending list for processing during the next cycle. 

Returning again to FIG. 2, the processor looks at the 
inputted grammar and sees that there is a symbol, say S, 
that corresponds to a sentence. The processor proceeds 
to the parse function, does the prediction and comple 
tion, and ?nds out that it needs some words which are 
terminal symbols in the sentence grammar level. The 
processor then calls the hypothesizer with that set of 
words, which also are start symbols at the next lower 
level-level 1 in this case. Then the processor predicts 
and completes grammar rules for the words which are 
composed of phonemes and when it ?nds a set of pho~ 
nemes which are terminal symbols, it then calls itself at 
grammar level 2 which has phoneme symbols as start 
symbols. This continues until the level which has Hid 
den Markov Model (HMM) grammars. HMM gram~ 
mars have reference vectors symbols corresponding to 
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reference vectors as their terminal symbols. The proces 
sor then scores these reference vectors and gets proba 
bilities for the frame and returns those as observations 
to the next higher level. Those observations are scanned 
into that next higher level. Through the next iteration, 
the processor predicts and completes those states that 
were advanced. This continues until all of the input has 
advanced up to sentence grammar level 0 and advanced 
S over several time frames to cover all of the input data. 
At this point, the processor has completed its parse and 
outputs its hypothesis of the spoken input. 
There are four basic functions in addition to parse and 

compute, in the preferred embodiment of the present 
invention; three of them use another function called 
add. Explanations of each of those different functions 
are given below. Assume a chart state is of the form 
[f,p,A,a,j,B,i,o-o,o-], where f is the starting frame, p is 
the production number, A is the left hand side (LHS) of 
the rule, a is a string of symbols that have been com 
pleted, j is the length of a, B is the remainder of the 
right hand side (RHS) symbols, i is the ending frame of 
this state, cro is the initial probability, and o' is the accu 
mulated probability. Further assume all symbols are at 
level 1 unless otherwise indicated. 

To predict a symbol using uni?cation grammars, the 
processor has at least one state that is looking for a 
symbol B; and has a rule p’ which begins or has at its 
lefthand side the symbol B2, where B and B2 unify to 
produce a new uni?ed symbol B3. If B1 and B2 are 
atomic symbols for context-free grammars, then they 
are uni?ed by default. Next the set of symbols is added 
to the set of states under consideration. The new state 
begins at the ending state of the input state which is i, 
rule number p’, with a lefthand side symbol B3, the 
number of symbols processed as 0 and an empty string 
of symbols to be processed which is the and corre 
sponds to the right hand side of the rule. This is what 
the processor needs to see to indicate it has seen B3. 6 is 
a string of 0 or more terminals and nonterminals In this 
case the ending frame is also the current frame because 
the processor has not processed anything. The begin 
ning probability is the ending probability plus the rule 
probability of symbol B3. This is especially important 
for left recursive rules. Subtracting the beginning prob 
ability from the ending probability, yields 11. 

To complete the symbol, there is a state that begins at 
some time k and ends at some time i, containing the 
symbol V for which the ?nal probability is o- and the 

probability is 00. Then for each state looking for 
a symbol B; which uni?es with the symbol B1 to B3, the 
processor produces a new state which has seen B3, and 
which has the same rule number as the state being com 
pleted, has the same starting time as the state being 
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completed, namely f, and the number of symbols com 
pleted is incremented to j+ l. The ending frame is cur 
rent frame i, the initial probability is the initial probabil 
ity of the state being completed, p0, and the ending 
probability is the ending probability of the symbol B3 
being seen which is cr~o'o, determined by subtracting 
the starting probability from the ending probability for 
each state. 

hypothesize 

and terminal(b,l), compute (p,p’) 
predict at 1 + 1 [i,_.b._._.»._.p'.p'l 
?nally, call parse at l + 1 

To hypothesize, the processor takes a terminal sym 
bol b from a state needed to advance a given state or a 
set of states. For all terminals “b” at a given level 1, the 
processor computes a new probability based on the 
ending probability p of the state, p’. This is part of the 
delayed commitment algorithm. Since the processor is 
at a terminal symbol, it can then perform this algorithm 
because all states have been predicted and completed 
and there is no more information available to enable it 
to predict or complete any more states. The processor 
will predict at level 1+1, which is the next lower level. 
That is indicated by symbol b at the current frame with 
initial and ending probabilities p’. The processor then 
loops down to the bottom level, advances as many 
states as possible and then returns to parse. This shows 
a mutually recursive relationship between hypothesize 
and parse. 

scan 

for all make E1’,- 4.1mm. 

for all observations [hp] + i.bz.y.j'.e.i+ 1. v0 .0’] 

Sean is essentially the same as complete. The only 
difference is that “complete” deals with nonterminal 
symbols and “scan” deals with terminal symbols. First 
the processor makes the state set at level 1, frame i+ 1, 
empty. For all observations at the next lower level 
which, for example, have b1 in the left hand side, and 
that b1 uni?es with some symbol b1 in some state at this 
level that needs that terminal symbol, the processor 
advances the state by putting the uni?ed symbol b3 on 
the advanced completed symbol list in this state at the 
beginning frame of the state that is being completed. Its 
probability is p, that is the ending probability of that 
state plus the ending probability of the completed state 
minus the initial probability of the completed state. 

add 

given [spawn/31 J. 170,7] 

and subsumes(A1,A2) 
replace p with max(p,o'),symbolically 
otherwise append the given state to E1‘; 

To add, there must be given a state that differs from 
a current state in the state set. Furthermore, assuming 
the new left hand side symbol A1 subsumes the existing 
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symbol A2, which means the processor has something 
more general to hypothesize than the ?rst hypothesis, 
the processor symbolically replaces the existing proba~ 
bility of the existing state in the state set with the maxi 
mum of p and sets 0' as the ending probability of the 
given state. It does not evaluate p or 0', but instead 
marks the ending in the existing state set, thereby noting 
it has been added until the processor can later look up 
the probability and ?nd the maximum. Otherwise the 
processor will just append the given state to the state set 
at level 1 of frame i, because there is no other existing 
subsumming state. 

Ef?cient implementation of the algorithm depends on 
use of some details set out in Earley’s work. These 
details include: keeping a linked list of alternatives for 
each nonterminal when the processor is in the predic 
tion step, so they can be easily found; the states in the 
state set are also kept in a linked list so they can be 
processed in order; the states are indexed in a state set S 
by their starting points making it easy to determine if a 
state has already been added so the processor does not 
do it again; processing null or empty productions by 
making a note that the symbol has already been seen; 
and keeping all states organized according to the sym 
bol they need so that when the processor has a complete 
symbol it can ?nd them ef?ciently. Furthermore, inher 
ent throughout the program is a compute function. 
When ?nding probabilities for terminal symbols, it is up 
to the compute step to note cycles and ef?ciently ?nd 
the probability of a given state. 
Looking now at FIG; 3, an example of frame syn 

chronous parsing using probabilities is demonstrated. In 
the portion labeled A, a simple grammar is given which 
consists of one rule, namely sentence rewrites to a noun 
and a verb. One noun “boys” and two verbs “sleep" and 
“leap” are given. 
The portion of FIG. 3 labeled B discloses a word 

lattice, which is the input to the system (in this example) 
showing the beginning and ending frames of each of the 
word hypotheses. The lattice contains a plurality of 
lines which show the logarithmic probability of seeing a 
particular word over a particular span of data and gives 
such probability as a negative number. According to the 
word lattice seen in portion B, the probability of ?nding 
“boys” from frame 0 to frame 2 is -—0.04, that of finding 
“boys” from frame 0 to frame 2 is —0.03, that of ?nding 
“sleep.” from frame 2 to frame 5 is --0.05 and that of 
?nding “leap” from frame 3 to frame 5 is -—0.03. 

Considering now the portion of FIG. 3 labeled C, at 
frame i=0, a prediction is done and a state is established 
based on the rule “sentence rewrites to noun and verb”, 
and is begun at time zero. This is denoted by the sub 
script before the S of 0 and a subscript after the arrow 
of 0. The dot above that refers to the place in the rule or 
how far one has progressed through the rule which, at 
this point, is none. The numbers at the end of the rule 
represent the logarithmic probabilities of the initial and 
?nal probabilities, respectively. At frame i=0, since the 
parser is still in the same state and has not done any 
thing, the probability is zero. The ?rst state came about 
because of predicting the start symbol S. At frame 0 
there was a state corresponding to the rule S and the 
parser predicted the rule for the noun which is noun 
rewrites to “boys” which has the same starting and 
ending time as the previous state of 0 and the same 
starting and ending probabilities of the previous state of 
0.0. The starting probability represents the probability 
of wanting to start this hypothesis and the ending proba 
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bility represents having seen as much of the hypothesis 
as has been seen. 
When the parser has predicted and completed as 

much as it can, it has a set of terminal symbols that it 
needs to see before it can go on and the set consists of 
one element which is “boys”. It then looks at frame i=1 
for some input, and sees none. It proceeds on to look at 
frame i=2 for some input and sees “boys” from frame 0 
to frame 2, with an initial probability of 0.0 and an end 
ing probability of —0.04. It then scans that terminal 
symbol into the previous noun state and advances the 
dot past “boys” which represents the act of seeing 
“boys” and puts an ending frame of 2 on that state and 
adjusts the ?nal probability of the state to -0.04. Once 
it has a complete noun from frame 0 to frame 2, it 
checks if there are any symbols that ended at zero that 
needed a noun that it can complete and ?nds there was 
one starting with S in the very ?rst state. It then creates 
a new state that indicates it has seen a noun by having 
the dot after the n and indicates that the noun extends to 
frame 2 with the same probability, —0.04, as its ending 
probability. When it has done all the predicting and 
completing it can do, it sees that it needs a verb indi 
cated by v. There are two verb rules, so it predicts 
them. One is “sleep” and the other is “leap”, both begin 
ning at frame 2 and having initial and final probabilities 
of —-0.04. 
The parser then looks at frame i=3 for input. There 

it sees “boys” again with the probability of —0.03. 
Scanning the input “boys” from frame 0 to frame 3 the 
parser creates a new state, indicated in FIG. 3 as state 7, 
which is the noun “boys” from frame 0 to frame 3 with 
the probability of —0.03 Then it checks if it has any 
states that ended at 3 that needed a noun as before and 
?nds the same state needs it, but this time the noun ends 
at frame 3 and has an ending probability of —0.03. The 
two noun hypotheses (“boys” from frame 0 to frame 2 
and “boys” from frame 0 to frame 3) are non-intersect 
ing hypotheses since they have different stop times, and 
therefore remain separate. 
Now the parser sees that at frame 3 it needs a verb 

from state 8 so it predicts that verb and creates states 9 
and 10 that both begin at frame 3 and end at frame 3. 
One of the newly created states needs the terminal 
“sleep” and one needs terminal “leap”, both of which 
have the same beginning and end probabilities of -0.03. 
It looks at frame i=4 for data and finding none, looks at 
frame i=5 for data. There it sees both “sleep" and 
“leap”, but “sleep” begins at frame 2 and “leap” begins 
at frame 3. It creates two new states: state 11 with an 
initial probability of —0.04 for “sleep” starting at frame 
2 and with an ending probability of —0.09, and state 12 
with an initial probability of —0.03 for “leap" starting at 
frame 3 and with an ending probability of ——0.06. The 
ending probabilities are calculated by adding the intial 
probability plus the probability of seeing the particular 
word from its starting frame to its ending frame. The 
parser now has two complete verb symbols and it ex 
tends, or looks, for states that need a verb that starts at 
either frame 2 or frame 3 and finds an S that corre 
sponds to both back in state 8 and state 4. Now the 
parser has a complete state corresponding to the start 
symbol S in state 13 and one corresponding to the start 
symbol S in state 14, although the middle states for each 
are different. Since the parser has probabilites of —0.09 
on state 13 and 0.06 on state 14, it chooses the best one, 
which is -0.06, and traces back through the parse state 
to find “boys leap”. This phrase will then be outputted 
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as the speech recognition processor’s best explanation 
for the spoken input given. The desired probability is 
that which is most positive, or as seen in this example, 
the least negative. 
FIG. 4 is an example of a typical left recursive rule 

showing rule probabilities, using a treatment of con 
junctions and disjunctions such as “a or b or d”. As seen 
in portion A of FIG. 4, the example shown has the four 
terminal symbols: a, b, d and “or”. The input is assumed 
to start at frame 0 and have one frame for each word of 
a or b or c ending at frame 5. The tree in portion B 
re?ects the desired outcome of this parse. The tree 
shows that to recognize this input the parser has to use 
a left recursive rule two times and the non-left recursive 
S choice, which is S goes to C, once at the bottom. The 
tree also shows the rule probabilities. The probability of 
parsing this input is the product of all the rule probabili 
tiesthat are given in portion C of FIG. 4. The trace seen 
in Portion D of FIG. 4 shows the behaviour of the 
algorithm with these rule probabilities with respect to 
the input. The input is shown down the middle of por 
tion D (a or b or c) and the various states that arise after 
each of these inputs are being shown in at the left. Be 
cause the chart parser parses symbols only once, it can 
speci?cally treat left recursive rules. To add the proba 
bilities correctly, it is very important that the predict 
function add the rule probabilitiy onto the ?nal proba 
bility of the state, not to add it onto the initial probabil-= 
ity of the state. Thus each time the state is used the rule 
probability will then be added into subsequent states 
using the previous state. At the bottom of the trace, it is 
seen that the one-third arises the correct number of 
times (3), the 0.4 arises twice, and the 0.6 arises once, 
which accurately reflect the number of times the left 
and nonleft recursive rule were applied. 
FIG. 5 is a graph showing the effect of chart parsing 

by the present invention on pruning. The graph con 
siders time versus logarithmic probability of hypothe 
ses. Each of the dots represent the same hypothesis 
symbol at times tiand tk. The top line represents the best 
probability of any symbol on any explanation. The bot~ 
tom line represents the best plus some predetermined 
log probability amount, or threshold. With other algo~= 
rithms, if the probability of a symbol drops below that 
threshold at any point, it is discarded. With chart pars 
ing as embodied in the present invention, since the 
parser only parses a symbol once at a given time frame, 
no matter how many times it is needed, and no matter 
how bad a probability it has, as long as it is above the 
pruning threshold the parser uses the best probability of 
that symbol. Furthermore, when the best probability 
symbol completes, the parser will then associate the 
lower probability symbols with their starting states. It 
then completes their states and, as may be the case, and 
as shown in FIG. 5 by the crossed lines, this lower 
probability symbol actually ends up as the best explana 
tion of the data and the processor is able to then recog 
nize the input properly whereas it would have been 
misrecognized in other algorithms. 
While a speci?c embodiment of the invention has 

been shown and described, it should be understood that 
numerous variations and alternate embodiments will 
occur to those skilled in the art. Accordingly, it is in 
tended that the invention be limited only in terms of the 
appended claims. 

I claim: 
1. A method for recognizing a spoken input repre 

senting a plurality of words, comprising the steps of: 
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12 
(a) inputting a desired spoken input composed of a 

plurality of grammar levels; 
(b) inputting grammars having terminal and non-ter 

minal symbols for de?ning allowable sentence 
structures; 

(0) inputting a lexicon having entries for defining 
terminal symbols of the grammar in terms of lin 
guistic, syntactic or semantic features; 

(d) generating a matrix of state sets; 
(e) initializing said state sets; 
(f) reading said desired spoken input; ' 
(g) predicting initial and ?nal probabilities for a cur 

rent frame for each start symbol of grammar; 
(h) parsing said start symbols according to said spo 
ken input and grammars to produce observations of 
said symbols based on delayed commitment calcu 
lation of said predicting step; and 

(i) explaining said spoken input based on the observa 
tions of said step of parsing. 

2. The method for recognizing spoken sentences of 
claim 1, further comprising the steps of: 

(1') between steps (d) and (e) reading an ending frame 
indicator; and 

(k) after step (h), incrementing a frame counter. 
3. The method for recognizing spoken sentences of 

claim 1, wherein said step (h) of parsing includes the 
steps of: 

(i) predicting a valid next nonter'minal symbol to 
thereby create at least one state from its corre 
sponding at least one rule according to the gram 
mar; 

(k) completing said at least one state as explanations 
for symbols become available; 

(1) generating a probability score for each said com 
pleted state; 

(m) repeating steps (j) to (1) until no new states can be 
created; 

(n) parsing terminal symbols from the current gram 
mar level as start symbols for the next lower gram 
mar level unless at the lowest grammar level; 

(0) if at said lowest grammar level, comparing fea 
tures of said spoken input with features of the pre 
dicted next lexical entries; 

(p) scanning observations from said next lower gram 
mar level into waiting states of said current gram 
mar level; 

(q) repeating steps (j) through (p) until no new states 
can be completed; 

(r) reporting complete states corresponding to start 
symbols of said current level to the next higher 
grammar level; 

(s) parsing said start symbols according to the spoken 
input and grammars to produce observations of 
said symbols; and 

(t) explaining the input based on the results of said 
step of parsing. 

4. The method for recognizing spoken sentences of 
claim 3, further comprising the steps of: 

(u) between steps (d) and (e) reading an ending frame 
indicator; and 

(v) after step (g), incrementing a frame counter. 
5. The method of claim 3, wherein said probability 

score for said completed state is the probability for 
completing states in the state set using already complete 
states in the state sets. 

6. The method of claim 3, wherein said score is calcu 
lated by summing the ending probability of the active 
state with the difference between the ending and initial 
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probabilities of the complete state, wherein the active 
state is the state requiring the symbol which the com 
plete state de?nes. 

7. The method of claim 3, wherein a complete state is 
a state which fully explains a segment of the spoken 
input. 

8. The method for recognizing spoken sentences of 
claim 1, wherein said state sets are 1 rows correspond 
ing to the number of grammar levels and N columns 
correspondong to the number of input frames of speech. 

9. The method for recognizing spoken sentences of 
claim 1, wherein said grammar is a stochastic uni?ca 
tion grammar. 

10. The method for recognizing spoken sentences of 
claim 1, wherein said grammar is a context-free or regu 
lar grammar. 

11. A system for recognizing a spoken sentence repre 
senting a plurality of words, comprising: 

a processing means; a 

a grammar coupled to said processing means for de 
?ning sentences in terms of elements of a language 
model; 

a lexicon for de?ning elements of the grammar in 
terms of symbols; 

a parser coupled to said grammar for combining 
words into partial sentences, for generating sets of 
states and for determining completed states; 

a predictor coupled to said grammar and said pro 
cessing means for predicting the symbols of valid 
next elements generated by said parser; 

a completer for explaining the results from the parser; 
and 

output means coupled to said processing means for 
generating the explanation developed by said com 
pleter. 

12. The system for recognizing a spoken sentence of 
1 claim 11, further comprising a means for generating a 
chart, wherein the chart is accessed by said parser, said 
predictor, and said completer for storing intermediate 
results. 

13. The system for recognizing a spoken sentence of 
claim 12, wherein the chart comprises states and state 
sets, said states to be manipulated by said parser and said 
predictor. 

14. The system for recognizing a spoken sentence of 
claim 11, further comprising a scanner coupled to said 
parser and said completer, for reading symbols from the 
parser to the completer. 

15. The system for recognizing a spoken sentence of 
claim 11, further comprising a knowledge base for sup 
plying symbols, wherein said predictor is coupled to 
said knowledge base. 

16. The system for recognizing a spoken sentence of 
claim 11, wherein said language model incorporates 
stochastic uni?cation grammars. 

17. The system for recognizing a spoken sentence of 
claim 11, wherein said language model incorporates 
context-free or regular grammars. 

18. The system for recognizing a spoken sentence of 
claim 11, wherein said processing means includes an 
input means for recording spoken words and an acous 
tic device for tranforming spoken words into a medium 
readable by said processing means. 

19. The system for recognizing a spoken sentence of 
claim 11, wherein said processing means is coupled to a 
translating means adapted to receive spoken input and 
transform said input into a medium readable by said 
processing means. 

20 

25 

30 

35 

40 

45 

55 

65 

14 
20. A system for parsing a spoken sentence having a 

plurality of words, comprising: 
input means for recording spoken words; 
a processing means; 
an acoustic device for transforming spoken words 

into a medium readable by said processing means; 
a grammar coupled to said processing means for de 

?ning sentences in terms of elements of a language 
model; 

a lexicon for de?ning elements of the grammar in 
terms of symbols or features; 

a parser coupled to said grammar for combining 
words into partial sentences, for generating sets of 
states and for determining completed states; 

a predictor coupled to said lexicon and said process 
ing means for predicting the symbols of valid next 
elements generated by said parser; 

a means for generating a chart, wherein the chart is 
accessed by said parser and said predictor for stor 
ing intermediate results; 

a completer for explaining the results from the parser; 
a scanner coupled to said parser and said compiler for 

reading symbols and features from the parser to the 
completer; and output means coupled to said pro 
cessing means for generating the explanation devel 
oped by said completer. 

21. The system for parsing of claim 20, wherein the 
chart comprises states and state sets, said states to be 
manipulated by said parser and said predictor. 

22. The system for parsing of claim 20, further com 
prising a knowledge base coupled to said predictor for 
supplying symbols and appropriate operating data. 

23. The system for parsing of claim 20, wherein said 
language model incorporates stochastic uni?cation 
grammars. 

24. The system for parsing of claim 20, wherein said 
language model incorporates context-free grammars. 

25. A method for parsing a spoken sentence having a 
plurality of words, comprising the steps of: 

(a) inputting a desired spoken input composed of a 
plurality of grammar levels; 

(b) inputting at least one grammar having terminal 
and nonterminal symbols for defining allowable 
sentence structures; 

(c) inputting a lexicon having entries for de?ning 
terminal symbols of said at least one grammar in 
terms of linguistic, syntactic or semantic features; 

(d) generating a matrix of state sets; 
(e) initializing said state sets; 
(f) reading said desired spoken input; 
(g) predicting initial and ?nal probabilities for a cur 

rent frame for each start symbol of grammar; 
(h) predicting a valid next nonterminal symbol to 

thereby create at least one state from its corre 
sponding at least one rule according to said at least 
one grammar; 

(i) completing said at least one state as explanations 
for symbols become available; 

(j) generating a probability score for each said com 
pleted state; 

(k) repeating steps (b) to (j) until no new states can be 
created; 

(1) parsing terminal symbols from the current gram 
mar level as start symbols for the next lower gram 
mar level unless at the lowest grammar level; 

(m) if at lowest grammar level, comparing features of 
the spoken input with features of the predicted next 
lexical entries; 
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(n) scanning observations from said next lower gram 
mar level into waiting states of said current gram 
mar level; 

(i) repeating steps (h) through (n) until no new states 
can be completed; 

(p) reporting complete states corresponding to start 
symbols of said current level to the next higher 
grammar level; 

(q) parsing said start symbols according to the spoken 
input and grammars to produce observations of 10 
said symbols; and 

(r) explaining the input based on the results of said 
step of parsing. 

26. The method for parsing of claim 25, wherein a 
complete state is a state which fully explains a segment 
of the spoken input. 

27. The method for parsing of claim 25, further com 
prising the steps of: 

(s) between steps (d) and (e), reading an ending frame 
indicator; and 

(t) after step (11), incrementing a frame counter. 
28. The method for parsing of claim 25, further com 

prising the steps of: 
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(s) between steps (d) and (e), reading an ending frame 

indicator; and 
(t) after step (k), incrementing a frame counter. 
29. The method for parsing of claim 25, wherein said 

state sets are 1 rows corresponding to the number of 
grammar levels and N columns corresponding to the 
number of input frames of speech. 

30. The method for parsing of claim 25, wherein said 
grammar incorporates context-free or regular gram 
mars. 

31. The method for parsing of claim 25, wherein said 
grammar incorporates stochastic uni?cation grammars. 

32. The method of parsing of claim 25, wherein said 
probability score for said completed state is the proba 
bility for completing states in the state set using already 
complete states in the state sets. 

33. The method of parsing claim 25, wherein said 
score is calculated by summing the ending probability 
of the active state with the difference between the end 
ing and initial probabilities of the complete state, 
wherein the active state is the state requiring the symbol 
which the complete state de?nes. 
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