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Abstract 

Analysis of time series data for classification or prediction tasks is very useful in a variety of 
applications including healthcare, climate studies and finance. As big data resources have become 
available in many fields, it is now possible to apply extremely high dimensional deep learning models 
that can model long-term temporal and spatial context. Traditional methods such as autoregressive 
integrated moving average (ARIMA), long short-term memory networks (LSTM), gated recurrent units 
(GRUs) and recurrent neural networks (RNN) have provided robust frameworks in the analysis of time 
series data. However, these methods have had limited success when applied to applications where long-
term context is crucial. Transformer-based architectures such as GPT, BERT, have emerged as a 
powerful method for this class of problems. In this review, we present a detailed study of  the evolution 
of various techniques applied in time series data from classical approaches to the  state of the art in deep 
learning systems that model long-term context. We review the transformer-based architectures that have 
been successfully applied to applications involving time series or high-resolution image data. We have 
focused on enhanced transformer architectures that can solve important challenges such as segmenta-
tion, forecasting, and classification.  

1. Introduction 

Time series data analysis involves the examination of datasets composed of time-ordered entries. This 
analysis is crucial in many fields for predicting future trends, understanding past behaviors, and making 
informed decisions. Time series data analysis is a fundamental aspect of statistical studies and data 
science, playing a critical role in numerous fields ranging from healthcare and finance to climate science 
and engineering. The core idea of time series analysis is to understand, model, and predict temporal 
data. The values in time series data are recorded at successive points in time, often at equally spaced 
intervals, and hence the data is inherently sequential. 

Time series data possess several distinct characteristics that are critical for its analysis and interpreta-
tion. Some important characteristics of time series analysis are autocorrelation, trend and seasonal-
ity [1], [2], [3]. Autocorrelation in time series data refers to the degree of correlation between a time 
series and a delayed, or lagged, version of itself. Autocorrelation shows how similar current data points 
are to their past values within the series. The autocorrelation 𝑅(𝜏) of a time series 𝑥(𝑡) at lag 𝜏 is defined 
as: 

𝑅(𝜏)  =  
𝐸[(𝑥(𝑡)  −  𝜇)(𝑥(𝑡  +  𝜏)  −  𝜇)]

𝜎! 	 , 				(1) 

where 𝐸 is the expected value, 𝜇 is the mean of the time series, and 𝜎! is the variance of the time series.  

Trend refers to the long-term movement or direction in the data over time, disregarding short-term 
fluctuations. It represents the underlying tendency of the data to increase, decrease, or remain stable 
over a long period. Trends can be linear or nonlinear and can vary in slope and shape depending on the 
nature of the data and the factors influencing it. 

Seasonality captures the regular fluctuations or patterns that occur at specific regular intervals, such as 
daily, weekly, monthly, or yearly. This is especially common in data related to weather, retail sales, and 
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energy consumption, where the time of year significantly influences the data. Sometimes such seasonal 
variations can be at irregular intervals. These irregular intervals are referred as cyclical variations rather 
than seasonality. 

Stationarity is another characteristic of time series data where statistical properties such as mean, vari-
ance, and autocorrelation are constant over time. Many time series models assume that the data is sta-
tionary or attempt to transform the data to achieve stationarity. The random variation in the data that 
cannot be attributed to trend, seasonality, or cycles may be considered as noise. Noise is inherently 
stochastic and unpredictable, often referred to as the “error” or “residual” part of a time series.  

Careful analysis of time series data is crucial in many diverse domains since it enables predictive ana-
lytics and gives us insights into important temporal patterns. In the financial sector, time series data 
such as stock prices, exchange rates, and economic indicators like GDP and inflation rates are essential 
for market analysis and forecasting [4]. Financial time series are characterized by their volatility and 
are often analyzed for trend detection, anomaly identification, and risk assessment [5],[6]. Similarly, 
environmental, and climatological time series, including temperature recordings, rainfall measure-
ments, and air quality indices, play a vital role in climate modeling and environmental research. These 
datasets are integral for understanding long-term climate patterns, seasonal variations, and environmen-
tal change assessments [7]. 

Biomedical time series data, including heart rate monitoring and EEG recordings, are fundamental in 
patient health monitoring and medical research [8]. In speech signal processing, time series analysis has 
been applied to enhance voice recognition systems and improve human-computer interaction. Algo-
rithms for speech signal analysis have been developed to extract features in both time and frequency 
domains, providing valuable insights for speech recognition and processing [9]. In industrial settings, 
time series data such as production levels and equipment performance metrics aid in optimizing opera-
tions and predictive maintenance. Retail and business analytics heavily rely on time series data for sales 
forecasting and understanding consumer behavior patterns.  

Over the past decade, large language model (LLM) based algorithms [10], [11], [12], which are typi-
cally based on a transformer architecture [13], [14], have enjoyed significant success across a wide 
range of disciplines due to their ability to efficiently encode long-term memory. They have had success 
in both traditional and generative artificial intelligence (AI) applications. For example, the use of a 
transformer architecture to enrich feature diversity of images, showcases the potential of LLMs in image 
processing applications [15]. Furthermore, the integration of LLMs in image processing highlights the 
significance of spatial and temporal contexts. Spatial context often requires detailed analysis within a 
snapshot, while temporal context benefits from long-term models that track changes over time. 

Each of these time series data categories, with their unique properties and patterns, require specialized 
analytical techniques. From stochastic models and machine learning algorithms to signal processing 
and statistical methods, the insights derived from these analyses are pivotal in decision-making pro-
cesses across various sectors. For example, in Figure 1, we show the stock market variation in Dow 
Jones from Jan. 2023 to Feb. 2024. Trend is very important in such signals, and such signals are not 
zero mean or easily modeled by stable linear systems. 

In Figure 2, [16] we show a satellite image of glacier shrinkage due to climatic conditions. It is to be 
noted the time series data need not always be one dimensional as in stock market or biomedical signals. 
The idea of spatial context, the ability to model the relationship between adjacent pixels, is important 
in applications, such as image and video processing, environmental modeling, and geographical infor-
mation systems. In such applications, the data encapsulates not only the change over time but also the 
intricate spatial interconnections between data points. For instance, in satellite imagery analysis used 
for environmental monitoring or urban planning, each pixel's value evolves over time, reflecting 
changes due to natural events, human activities, or seasonal cycles. 
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In Figure 3, we provide another example of time series data obtained from the EEG recordings. Such 
signals, which are multichannel in nature, have both temporal and spatial dependencies. Here, spatial 
dependencies mean correlations between channels, where each channel corresponds to a signal col-
lected from a sensor placed in a specific location on the scalp. A temporal event, such as a seizure, 
occurs on multiple channels which are physically close to one another. 

2. Traditional Time Series Analysis Techniques 

Traditional methods for time series analysis have evolved over the years. To analyze time series data, 
classical approaches such as autoregressive models were widely used, especially for prediction tasks. 
These models predict future data points using a linear combination of past values. The autoregressive 
model assumes that the output variable depends linearly on its previous values and a stochastic term. 
Talwar [17] explored various autoregressive models for dynamic forecasting of equity markets, empha-
sizing the use of past data in predicting future volatility. Bondon [18] provided an explicit formula for 
the prediction error of future values of a stationary process with incomplete past data, highlighting the 
use of autoregressive processes. Madadi et al. [19] expanded autoregressive models to forecast dynamic 
line ratings in power networks, addressing the trend and fluctuation of past data. Ray [20] discussed the 
use of mid-prediction filters in autoregressive models for separating the nonstationary part of a signal. 
Hall et al. [21] explored high-dimensional generalized linear autoregressive models, offering insights 
into predicting future observations using current and past observations. Engle [22] introduced auto-
regressive conditional heteroscedastic (ARCH) processes, a class of stochastic processes used for fore-
casting with nonconstant variances conditional on the past. Rather [23] presented an autoregressive 
neural network approach for predicting stock returns, emphasizing the use of past values in regression 
variables. 

2.1. Correlation-Based Methods 

A moving average (MA) model uses a weighted sum of past input values in a regression-like model. 
An MA model helps in smoothing out noise from random fluctuations in time series data. An auto-
regressive (AR) model uses past values of the output. An autoregressive moving average (ARMA) 
model combines both AR and MA models to capture both short and long-term dynamics of a signal. 
AR, MA and ARMA models were staples of pattern recognition technologies in the 1970’s and early 
1980’s, finding success in problems such as speech and image recognition. Sun et al. [24] proposed an 
MA method based on complex exponential decomposition for noise elimination in non-stationary and 
non-linear signals.  

An autoregressive integrated moving average (ARIMA) model is a generalization of an ARMA model 
that is useful when the data shows evidence of non-stationarity. An ARIMA model includes differenc-
ing of raw observations (integration) to make the time series stationary, which is a common requirement 
for AR and MA models. ARIMA models are designed to handle time series where the mean changes 
over time (e.g., an upward or downward trend). The “Integrated” part (differencing) is specifically 
aimed at stabilizing the mean.  ARIMA is less effective when the variance of the time series changes 
over time (e.g., periods of high volatility followed by calm periods). While some advanced ARIMA 
variations can address this to an extent, it's not the model's primary strength.  

Loneck & Zurbenko [25] discussed the Kolmogorov-Zurbenko periodogram with DiRienzo-Zurbenko 
smoothing for spectral analysis of time series data, comparing its performance to traditional ARIMA 
algorithms. Lee et al. [26]  applied an ARIMA model to predict future network throughput, crucial for 
improving network protocols. Garg et al. [27] used the ARIMA model to analyze long-term noise mon-
itoring data in traffic noise pollution studies. Valipour et al. [28] estimated the ability of ARIMA models 
in forecasting the monthly inflow of Dez dam reservoir. Sameh & Elshabrawy [29] investigated the 
application of ARIMA and SARIMAX models in the context of climate change time series forecasting. 
Pitfield [30] compared the efficiency of ARIMA and regression models in simulating air-transport pas-
sengers by route. 
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The Box-Jenkins methodology [1],[31] is a systematic method for applying an ARIMA model. Hav-
iluddin & Alfred [32] presented an approach for network traffic characterization using the ARIMA 
technique, demonstrating its application in modeling internet network traffic. Jafarian-Namin et al. [33] 
focused on modeling and forecasting the yearly inflation rate of Iran using ARIMA, employing the 
Box-Jenkins methodology to confirm the effectiveness of different ARIMA models. Duarte et al. [34] 
compared Box and Jenkins methodologies with artificial neural networks (ANNs) in time series fore-
casting, comparing the performance of ARIMA and Transfer Function Models (TFMs) to ANNs. Jamii 
et al. [35] aimed to predict carbon dioxide emissions in Morocco using the Box-Jenkins ARIMA ap-
proach, demonstrating the application of this methodology to environmental modeling. 

Seasonal decomposition techniques decompose a time series into seasonal, trend, and residual compo-
nents, typically using moving averages. Dozie & Ibebuogu [36] discussed the decomposition of a mixed 
model using the Buys-Ballot method, emphasizing the estimation of trend parameters, seasonal indices, 
and residual components. Hebbel & Heiler [37] presented a method for decomposing a time series into 
trend-cyclical and seasonal components, using a smoothness criterion and goodness of fit criterion. 
He et al. [38] developed a seasonal-trend decomposition-based dendritic neuron model (STLDNM) for 
financial time series prediction, highlighting the effectiveness of seasonal-trend decomposition in com-
plex data series. Sulandari et al. [39] combined deterministic function and neural network models to 
forecast time series with trend and seasonal patterns, utilizing singular spectrum analysis (SSA) for 
decomposition. Lacroix [40] explored short-term analysis and business cycle estimation using seasonal 
decomposition, focusing on the consistency of methodologies in seasonal adjustment and trend-cycle 
estimation. Zhang & Li [41] proposed a novel decomposition and combination technique for forecast-
ing electricity consumption, using STL decomposition to separate trend, season, and residual compo-
nents of time series. 

Cross-correlation and autocorrelation analysis measure the relationship between a time series and 
lagged versions of another time series (cross) or itself (auto). Dean & Dunsmuir [42] highlight the 
dangers of cross-correlation in time series analysis within various fields, emphasizing the importance 
of constructing transfer function autoregressive models to avoid spurious relationships due to autocor-
relation. Olden & Neff [43] discuss the biases in cross-correlation analysis caused by intra-multiplicity 
(the time lags observed and the cross-correlation coefficients that are computed within a pair of time 
series) even in the absence of autocorrelation, and provide formulas to quantify and minimize these 
biases. Taylor [44] explains how autocorrelations, correlograms, and plots of the autocorrelation func-
tion can reveal the structure of a cycle within time-series data, providing statistical methods for deeper 
analysis. Zhang, Huang, Shekhar, & Kumar  [45] utilize spatial autocorrelation to propose new pro-
cessing strategies for correlation-based similarity range queries and joins, offering a novel approach to 
managing the computational cost of correlation analysis in spatial time series datasets. Stattegger [46] 
employs time series analysis techniques like autocorrelation and cross-correlation to reconstruct tec-
tonic structures from geochemical drill hole log data, demonstrating the application of these methods 
in geology. 

2.2. Frequency Domain and Multi-Timescale Based Methods 

Fourier analysis techniques transform a time series into its frequency components. This is particularly 
useful in signal processing and in situations where periodic patterns need to be identified. Kaiser [47] 
discussed windowed Fourier transforms, highlighting their utility in providing information about sig-
nals simultaneously in the time and frequency domains, which is essential in signal processing. Brad-
ford [48] examined time-frequency analysis methods, including the Fourier transform, for analyzing 
systems with changing dynamic properties, underlining their importance in civil engineering and seis-
mology. Kolawole [49] covered frequency analysis of signals using Fourier series and Fourier trans-
form, emphasizing its role in signal processing and systems design. Vergura et al. [50] showcased the 
application of Fourier analysis to power systems by detecting properties of power required by different 
types of users, conducting a time-frequency analysis using both Fourier and wavelet transforms. 
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Spectral analysis techniques operate in the frequency domain and consider the frequency spectrum of 
time series data. This is particularly useful in fields like seismology and electrophysiology. 
Ghaderpour et al. [51] introduced the antileakage least-squares spectral analysis for seismic data regu-
larization and random noise attenuation, offering solutions to the spectral leakage problem. Baisch & 
Bokelmann [52] presented a method for spectral analysis of non-equidistantly spaced samples of a time 
series, applying the CLEAN algorithm to seismological data to detect temporal changes in elastic wave 
velocities. Ghil et al. [7] reviewed advanced spectral methods for climatic time series, illustrating con-
nections between time series analysis and nonlinear dynamics, and discussing signal-to-noise enhance-
ment. 

Wavelet analysis decomposes time series data into different frequency components and studies each 
component with a resolution matched to its scale. Karim et al. [53] explored the use of wavelets (sym-
let 16) to detect business cycles in Malaysia by decomposing time series to study long-term trends and 
high-frequency components. Bartosch & Wassermann [54] presented a wavelet coherence method to 
display local coherence information between two seismic stations, applying it to seismic near-field data 
from the Stromboli volcano. Masuda & Okabe [55] discussed the application of the wavelet transform 
to stationarity analysis and predictions of time series, allowing the observation of series in both the time 
and frequency domains simultaneously. Schiff [56] adapted a noise reduction technique for time series 
data using wavelets, presenting a method that filters noise using control surrogate data sets. Torrence 
& Compo [57] provided a practical guide to wavelet analysis with examples from the El Niño–Southern 
Oscillation (ENSO), including statistical significance tests for wavelet power spectra. 

Exponential smoothing techniques include methods like Simple Exponential Smoothing for univariate 
data without trend or seasonality, and Holt-Winters’ Exponential Smoothing for data with trend and/or 
seasonality. Gelper et al. [58] presented robust versions of exponential and Holt-Winters smoothing 
methods suitable for forecasting univariate time series in the presence of outliers, offering a recursive 
updating scheme for pre-cleaned data. Taylor & McSharry [59] evaluated univariate forecasting meth-
ods using European electricity demand data, highlighting the performance of double seasonal Holt-
Winters exponential smoothing among other methods for predicting up to a day-ahead demand. 
Luoman [60] introduced three kinds of exponential smoothing — simple, Holt and Winters. These are 
applicable to time series data with a variety of characteristics including trend and seasonality. 

2.3. Nonlinear Methods 

Time series exhibiting nonlinear behavior, such as chaos and limit cycles, pose additional challenges 
that cannot be captured adequately by linear models. Hegger et al. [61] describe the TISEAN package, 
which implements methods of nonlinear time series analysis based on deterministic chaos and includes 
algorithms for data representation, prediction, noise reduction, dimension and Lyapunov estimation, as 
well as nonlinearity testing. Small [62] focuses on time series embedding and reconstruction, essential 
for analyzing experimental time series data with nonlinear methods, including discussions on determin-
ism and stationarity in physiological data. Bradley & Kantz [63] revisit nonlinear time series analysis, 
discussing the practical issues that restrict the approach's power, such as signal sampling and noise, and 
highlighting its successful application across thousands of real and synthetic data sets. 

Kantz [64] discusses the potentials and limitations of nonlinear time series analysis, emphasizing the 
need for extensions of methods towards systems coupled to random noises and those with more than a 
few active degrees of freedom. Zou et al. [65] provide an in-depth review of complex network methods 
for characterizing dynamical systems based on time series, covering phase space-based recurrence net-
works, visibility graphs, and Markov chain-based transition networks. Pereda et al. [66] describe non-
linear multivariate analysis methods used in neurophysiology to study the relationship between simul-
taneously recorded signals, covering concepts of phase synchronization, generalized synchronization, 
and event synchronization. 
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2.4. Regression-Based Methods 

Identifying and analyzing trends in time series data often requires statistical techniques to model and 
forecast future values based on observed trends. Neves & Cordeiro [67] presented an approach integrat-
ing exponential smoothing and bootstrap methodologies for time series prediction, emphasizing the 
importance of selecting the best model for accurate forecasts. Zavala & Messina [68] provided a statis-
tical framework based on dynamic harmonic regression for examining modal behavior, trend extraction, 
and forecasting in wind power generation, showcasing the flexibility of time series models. Miah [69] 
explored techniques for the analysis of financial data using time series models, demonstrating how to 
analyze and forecast economic indicators and perform trend analysis.  

Jha et al. [70] investigated contemporary approaches for forecasting vehicle population in India, com-
paring trend line analysis, econometric analysis, and time series analysis, and found time series analysis 
to be more accurate. Wonu & Orlu [71] modeled time-series data on senior secondary student mathe-
matics achievement over 29 years, using trend analysis and ARIMA techniques to forecast future val-
ues, highlighting the effectiveness of these methods in educational data analysis. Idrees et al. [72] dis-
cussed analyzing the Indian stock market using time series data to build a statistical model for efficient 
future stock predictions. This research demonstrates the significance of time series analysis in financial 
markets for uncovering market trends and forecasting stock performance. Rivera [73] emphasized the 
role of stationarity in business and economic research, discussing the importance of identifying non-
stationary time series and the need for stationarity in the data prior to analysis. Hu [74] introduced the 
combination of time series forecasting with topological data analysis as a technique to solve real-world 
problems, using COVID-19 pandemic data as a case study. 

In this section we have discussed the traditional time series analysis methods ranging from auto-regres-
sive models, which leverage past values for predictions, and moving average models, aimed at smooth-
ing out noise, to more complex ARIMA models. These techniques have been successfully applied 
across a diverse range of domains including finance, climate studies, biomedical engineering, and hu-
man language technology. Techniques such as seasonal decomposition and Fourier analysis are used to 
identify the periodic patterns whereas exponential smoothing and trend analysis provide tools for han-
dling data with or without seasonal variations. Spectral, wavelet, and nonlinear time series analyses 
offer advanced methods for dealing with complex data structures. The variety of methodologies dis-
cussed in this section highlights the evolution of time series analysis in capturing and forecasting the 
intricate behaviors of sequential data across various fields. 

3. Modern Approaches in Time Series Analysis 

Modern methods for time series analysis have significantly evolved, incorporating advanced statistical 
techniques, machine learning algorithms, and artificial intelligence. These methods are capable of han-
dling large volumes of data, complex patterns, and non-linear relationships, making them suitable for a 
wide range of applications. In this section, we highlight several approaches that represented fundamen-
tal advances in the field or introduced paradigms that became the foundation for more advanced ap-
proaches. 

3.1. Reinforcement Learning 

Reinforcement learning optimizes a cumulative reward metric to make decisions over time. Ansari et al. 
[75] proposed a novel decision support system for automated stock trading based on deep reinforcement 
learning, observing both past and future trends of stock prices to make optimal trading decisions. This 
study demonstrated the effective use of reinforcement learning in algorithmic trading and stock market 
forecasting. Aboussalah et al. [76] explored the value of the cross-sectional approach to deep reinforce-
ment learning in dynamic asset allocation. This research provides insights into the effectiveness of re-
inforcement learning algorithms in financial applications, particularly in portfolio management.  
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Roy et al. [77] presented an augmented AI algorithmic trading approach that combines a thick data 
heuristic with deep reinforcement learning for day and swing trading order timing executions. The study 
shows the integration of AI and heuristics with deep learning techniques for effective trading decisions. 
Lei et al. (2020) proposed a time-driven feature-aware jointly deep reinforcement learning model (TFJ-
DRL) for algorithmic trading, integrating deep learning with reinforcement learning for improved fi-
nancial signal representation and decision-making [78]. Li et al. [79] introduced a robust deep rein-
forcement learning-based trading agent for algorithmic trading in dynamic financial markets, using deep 
Q-network and asynchronous advantage actor-critic for adapting to trading markets. Chen et al. [80] 
proposed an agent-based reinforcement learning system to mimic professional trading strategies, 
demonstrating its ability to reproduce trading decisions and improve convergence in dynamic environ-
ments.  

3.2. Nonparametric Methods 

Techniques such as k-Nearest Neighbors (k-NN), Support Vector Machines (SVMs), and similar clus-
tering algorithms are widely used for time series clustering and classification tasks. These methods are 
robust and powerful, and often are used to establish baseline performance for new data sets and appli-
cations. Chandralekha & Shenbagavadivu [81] explored clustering and classification in machine learn-
ing by investigating the prediction of heart disease from various medical diagnostic parameters and 
patterns. They compared unsupervised learning (e.g., K-means, K-modes, K-medoids) and supervised 
learning (e.g., SVM, Random Forest, Decision Tree, and k-NN). Senthil & Suseendran [82] proposed 
a Sliding Window Technique-based Improved Association Rule Mining with Enhanced SVM (SWT-
IARM with ESVM) for time series data classification. This approach focuses on efficient rule discovery 
and classification by combining ESVM classification with IARM for more accurate rule classification. 

Ougiaroglou et al. [83] explored the application of data reduction techniques as a preprocessing step 
before training neural networks and SVMs for time series classification. They also proposed a new data 
reduction technique based on the k-median clustering algorithm. Yang et al. [84] developed a kernel 
fuzzy c-means clustering-based fuzzy SVM algorithm (KFCM-FSVM) for dealing with classification 
problems involving outliers or noises, using FCM clustering in a high-dimensional feature space. Sath-
yamoorthy & Sivasankar [85] presented a hybrid approach where clustering algorithms were used to 
reduce the training dataset size, followed by the application of complex algorithms like SVM and MLP 
for classification on the reduced data set. 

Advanced algorithms such as Isolation Forest, One-Class SVM, and Autoencoders are used to identify 
unusual patterns or outliers in time series data, crucial in fraud detection and system health monitoring. 
Aguilar et al. [86] proposed the first interpretable autoencoder based on decision trees, designed to 
handle categorical data without the need to transform data representation. This model provides a natural 
explanation for experts in application areas and is among the top-ranked anomaly detection algorithms, 
along with One-Class SVM and Gaussian mixtures.  Park et al. [87] proposed multi-modal anomaly 
detection in embedded systems using time-correlated measurements of power consumption and 
memory accesses. They trained one-class SVM and isolation forest classifiers for anomaly detection, 
showing accurate detection of anomalies. 

Ma & Perkins [88] introduced a new algorithm for time-series novelty detection based on one-class 
SVMs. They converted time-series into vectors in phase spaces and interpreted novel events as outliers 
of a normal distribution. Alfeo et al. [89] proposed an anomaly detection approach based on deep learn-
ing for smart manufacturing. They combined an autoencoder with a discriminator based on general 
heuristics, proving the convenience of this approach over Isolation Forest in industrial applications. 
Yang et al. [90] proposed a high-dimensional anomaly detection algorithm based on Isolated Forest 
with a deep autoencoder (AE-IForest), mapping high-dimensional data to a low-dimensional space and 
fusing reconstruction error with data isolation scores for anomaly detection. 

Derbentsev et al. [91] discuss short-term forecasting of cryptocurrency time series using random forests 
and a stochastic gradient boosting machine, highlighting the applicability of machine learning 
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ensembles for forecasting cryptocurrency prices. Pop et al. [92] analyze the performance of random 
forests and gradient boosting algorithms in forecasting energy consumption, and compare them to a 
Weighted Average Ensemble Method. Mienye et al. [93] present a concise overview of ensemble learn-
ing, covering bagging, boosting, and stacking, and focuses on widely used ensemble algorithms, in-
cluding random forest and gradient boosting. 

3.3. Deep Neural Networks 

Convolutional Neural Networks (CNNs), primarily known for image processing, have enjoyed signifi-
cant success in time series analysis, and have become a key component of many deep learning systems. 
CNNs capture spatial-temporal patterns in data, making them useful for multichannel time series with 
spatial components (e.g., EEG and cardiology signals). Liu et al. [94] proposed a multivariate convolu-
tional neural network (MVCNN) for multivariate time series classification, integrating a tensor scheme 
with a novel deep learning architecture. Nakamura et al. [95] discussed using one-dimensional convo-
lutional neural networks (1D-CNNs) for time series analysis and proposed a method to mitigate noise 
interference by injecting noise into the data for feature extraction. Younis et al. [96] proposed a new 
approach to interpret CNN outputs for multivariate time series data by extracting and clustering acti-
vated time series sequences learned from a trained network. Chadha et al. [97] proposed permutation 
layers in CNNs to overcome inefficiencies in capturing features from unsorted “2D-images” formed by 
multivariate time-series analysis. Chervyakov et al. [98] focused on reducing the hardware cost of 
CNNs in applications like time series analysis, suggesting a CNN architecture based on the Residue 
Number System (RNS). Utama et al. [99] optimized a CNN architecture for multivariate time-series 
data analysis using Particle Swarm Optimization (PSO), showing improvements in performance com-
pared to ordinary CNNs.  

A Long Short Term Memory Network (LSTM) is a type of recurrent neural network (RNN) effective 
in complex time series forecasting due to its ability to model long-term dependencies. Manaswi  [100] 
discusses the concepts of recurrent neural networks (RNNs) and LSTMs, highlighting their use in se-
quence prediction and time-series forecasting. Wu et al. [101]  propose a new forecasting framework 
with LSTM models for forecasting Bitcoin daily prices, validating the excellent forecasting accuracy 
of the proposed models. Luo & Wang  [102] introduce a long-term prediction model for time series 
using fuzzy information granules and recurrent fuzzy neural networks, integrating type-2 fuzzy sets and 
LSTMs to improve anti-noise and memory ability. Kim et al. [103] propose a novel neural network 
architecture using a combination of LSTMs and convolutional layers to predict time-series energy data 
with high accuracy. Chen & Xu  [104] developed a piecewise time series prediction model combining 
stacked LSTM networks with a genetic algorithm, demonstrating its effectiveness in automatically se-
lecting the proper structure according to the data. 

Similar to LSTMs, Gated Recurrent Units (GRU) are a type of RNN that are efficient in modeling 
temporal sequences and their long-range dependencies. They are used in situations where LSTMs might 
be too computationally intensive. Onyekpe et al. [105] proposed a Quaternion Gated Recurrent Unit 
(QGRU) for sensor fusion, leveraging quaternion algebra to map correlations within multidimensional 
features more efficiently than traditional GRUs. Tallec & Ollivier (2018) proved that learnable gates in 
recurrent models provide quasi-invariance to general time transformations in input data, leading to a 
new way of initializing gate biases in LSTMs and GRUs. Shen et al. [106] explored the use of GRU 
networks for predicting trading signals for stock indexes, comparing GRU-based models with tradi-
tional deep nets and SVMs [107]. Zheng & Chen  [108] proposed a novel GRU model with selective 
state updating and adaptive mixed gradient optimization for accurate power time-series prediction.  

Erichson et al. [109] introduced a novel gated recurrent unit with a weighted time-delay feedback mech-
anism to improve the modeling of long-term dependencies in sequential data. Dangovski et al. [110] 
developed the Rotational Unit of Memory (RUM), a phase-coded representation of the memory state in 
RNNs, which unifies unitary learning and associative memory, showing improved performance over 
LSTMs and GRUs. Morchid  [111] proposed the Parsimonious Memory Unit (PMU) based on the as-
sumption that short and long-term dependencies are related, showing better efficiency and processing 
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time compared to GRU. Bilkhu et al. [112] implemented a Transformer-based model for video caption-
ing using GRUs, showing improved performance on video captioning tasks. Hong et al. [113] proposed 
the Long Memory Gated Recurrent Unit (LMGRU) based on LSTM and GRU models, achieving better 
effectiveness and efficiency in time series classification tasks. Som et al. [114] utilized GRUs in com-
bination with RNNs for text classification, achieving a classification accuracy of 87% on a movie re-
view dataset. 

DeepAR is a probabilistic forecasting model with autoregressive recurrent networks. DeepAR provides 
accurate forecasting, especially for large datasets with many related time series. Jiang et al. [115] pro-
posed an optimized DeepAR model using the Sparrow Search Algorithm for atmospheric PM2.5 pre-
diction, demonstrating improved forecasting accuracy in both interval and point predictions. Dong et 
al. [116] introduced a real-time wireless monitoring system and employed the DeepAR model for de-
formation prediction of unstable slopes, showing good safety control ability and prediction accuracy. 
Jeon & Seong [117] modified the DeepAR model to address the intermittent and irregular characteristics 
of sales demand, achieving robust and stable predictions in time series forecasting. Consoli et al. [77] 
used economic news within a DeepAR framework to forecast the Italian 10-year interest rate spread, 
showing that a deep learning network outperforms classical methods. Park et al. [118] investigated 
DeepAR models for probabilistic forecasting of photovoltaic generations, evaluating the tightness of 
the prediction interval with normalized residues.  

Shen et al. [119] proposed DeepARMA, an LSTM-based model derived from DeepAR, addressing 
weaknesses in rolling window size determination and noise neglect. Li et al. [120] built a model based 
on deep neural networks combining convolutional, recurrent and autoregressive networks. Gouttes et 
al. [121] proposed a method for probabilistic time series forecasting, combining an autoregressive re-
current neural network with Implicit Quantile Networks [122]. 

Prophet, developed by Facebook [123], is designed for forecasting with daily observations that display 
patterns on different time scales. It is particularly effective for handling outliers, missing data, and sea-
sonal effects. Chuwang & Chen [124] employed the Box–Jenkins time series with the Facebook Prophet 
algorithm for forecasting daily and weekly passenger demand for urban rail transit stations, demonstrat-
ing better computational forecasting performance. Toharudin et al. [125] employed LSTM and Face-
book Prophet models in air temperature forecasting, highlighting the performance of Prophet in man-
aging complex data series.  

Saiktishna et al. [126] analyzed stock market trends using FB Prophet, noting its improved performance 
and accuracy in prediction. Huang [127] utilized Facebook Prophet with macroeconomic regressors for 
forecasting stock prices, demonstrating its superiority in prediction accuracy compared to other models. 
Mahmud [128] predicted and analyzed COVID-19 daily cases in Bangladesh using the Facebook 
Prophet Model, demonstrating its capability in handling complex data series. Mphale et al. [129] pro-
posed Prophet for forecasting COVID-19 mortality, highlighting its effectiveness in prediction. Suresh 
et al. [130] conducted historical analysis and forecasting of the stock market using Prophet.   

Vector Autoregression (VAR) is an extension of the AR model that captures the linear interdependen-
cies among multiple time series. VAR models are widely used in econometrics. Lu [131] discusses the 
application of VAR in analyzing the dynamics among geographic processes and for spatial autoregres-
sive modeling. Myers et al. [132] used VAR methods to analyze the contribution of supply, demand, 
and policy shocks to fluctuations in the Australian wool market. Alvarez-De-Toledo et al. [133] offer 
an approximation between econometric techniques and system dynamics methodology, showing how 
to simulate a Structural VAR (SVAR) model. McCracken et al. [134] assess forecasts from a mixed-
frequency VAR to obtain intra-quarter forecasts of output growth as new information becomes availa-
ble. Kilian & Lütkepohl [135] review the SVAR approach in econometrics, contrasting it with other 
methodologies and highlighting its application in macroeconomics and finance. 
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3.4. Hybrid Methods 

Ensemble Methods combine predictions from multiple models to improve forecasting accuracy. Meth-
ods like random forests, gradient boosting, and bagging are used in an ensemble manner for time series 
predictions. Galicia et al. [136] presents ensemble models for forecasting big data time series, combin-
ing decision tree, gradient boosted trees, and random forest methods. The performance is evaluated on 
electricity consumption data, showing that the ensemble models outperform individual members. 
Valatsos et al. [137] predict critical time intervals for freight transportation using ensemble learning 
techniques, including bagging, random forest, and gradient boosting. 

Levy & O’Malley [138] combined traditional statistical models with modern machine learning tech-
niques to capture both linear and non-linear aspects of data. They introduced “Interaction Transformer,” 
an algorithm that boosts logistic regression by integrating machine learning to identify interaction fea-
tures from a random forest model. Chen [139] reviews models for predicting business bankruptcies, 
noting the shift from traditional statistical methodologies to machine learning techniques. The author 
emphasizes the role of hybrid classifiers, combining machine learning algorithms like SVMs, decision 
trees, and genetic algorithms to improve the accuracy of bankruptcy prediction models. Anifowose et 
al. [140] present a hybrid machine learning approach to predict the formation cementation factor in 
Archie’s equation (used in petroleum industry applications) that combines the nonlinear feature selec-
tion capability of functional networks (FNs) with traditional artificial neural networks (ANNs). The 
FN-ANN hybrid model demonstrates improved accuracy and computational efficiency. 

Von Rueden et al. [141] describe the combination of machine learning and simulation in a hybrid mod-
eling approach, suitable for applications based on both causal relationships and hidden dependencies. 
The authors discuss various types of combinations using simulation-assisted machine learning and ma-
chine learning-assisted simulation.  Sadat et al. [142] developed a hybrid cryptographic framework for 
secure and efficient regression analysis over distributed data, combining somewhat homomorphic en-
cryption and Intel Software Guard Extensions (Intel SGX). The framework ensures privacy while main-
taining computational efficiency.  These modern methods are often more flexible and powerful than 
traditional approaches, particularly in handling non-linear patterns, large datasets, and real-time analy-
sis. They require a good understanding of the underlying models and appropriate preprocessing of data. 
The choice of method often depends on the specific characteristics of the time series data and the ob-
jectives of the analysis.  

In Table 1 we provide a comparison of traditional methods for time series modeling and discuss the 
pros and cons of each approach. In Table 2, we provide a similar summary for modern approaches. 

4. Long-Term Dependencies in Time Series Data 

The temporal dependencies in time series data are crucial in various applications such as stock market 
prediction and fault diagnosis. These dependencies can span timeframes of a few hours to a few years 
making the analysis and classification of such data a challenging task. Time series data in energy sys-
tems, like wind turbines, inherently contain extremely long-term dependencies that are essential for 
forming classifiable features and effective fault diagnosis [143]. Biomedical time series data, such as 
EEG and ECG, do exhibit long-term dependencies, as demonstrated by Maiorana [144] in their study 
on the longitudinal behavior of EEG signals. This was further supported by Nakano  [145], who found 
a relationship between the slowing of EEG and mental function decline in the elderly. The importance 
of capturing these long-term dependencies in predicting clinical events was highlighted by Li [146], 
who developed a hierarchical Transformer-based model for accurate prediction using longitudinal elec-
tronic health records. Zhao [147] also emphasized the need to retain sequential information in temporal 
data, which is crucial for prediction tasks in the biomedical domain. 

The studies by Thombs  [140], Lutz [141], Kim [142], and Jackson [143] collectively suggest that time 
series data from climate studies does exhibit long-term dependencies. Thombs and Kim both highlight 
the importance of analyzing historical time series data and the need for alternative adjustment methods 
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to account for seasonality and long-term trends. Lutz and Jackson further emphasize the significance of 
longitudinal data in understanding the impact of climate change on forest ecosystems and ecological 
processes. These studies collectively underscore the presence of long-term dependencies in climate-
related time series data. 

Time series data obtained from financial analysis, such as stock market and inflation data, often exhibit 
long-term dependencies. This is due to the inherent nature of these data, which are characterized by 
sequential observations over time. These dependencies can be attributed to various factors, including 
the presence of heterogeneity, omitted variable bias, and duration dependence [152]. In the context of 
stock trading markets, univariate time series models have been found to be effective in certain cases, 
particularly in segments with sufficient historical data [153]. However, the effectiveness of these mod-
els may not be generalizable to all domains, particularly in forecasting. The presence of serial depend-
encies in time series data can pose challenges in analysis, particularly when conventional methods that 
ignore this dependency are used [154]. Despite these challenges, time series analysis remains a valuable 
tool for understanding the underlying processes and patterns of change in financial data [155].  

Despite these advancements, capturing long term dependencies and rare event detections is challenging. 
Modeling long-term dependencies poses what amounts to a combinatorial problem. Until the introduc-
tion of the so-called Large Language Model (LLM), this was an elusive problem. The Transformer 
model, which is based on an architecture that implements what is known as self-attention, has been a 
disruptive force in machine learning. 

4.1. Introduction to the Transformer Architecture 

The transformer architecture, shown in Figure 4, introduced by Vaswani et al. [13], leverages self-at-
tention (scaled dot-product attention) as its core mechanism. This enables the model to assign im-
portance weights to different parts of the input sequence, unlike recurrent and convolutional layers. 
These weights allow a transformer to focus on relevant elements during processing, capturing long-
range dependencies effectively. Central to self-attention is the computation of attention weights, which 
determine which parts of the input sequence are most relevant for a particular element. This eliminates 
the need for recurrent layers, which struggle with modeling long-range dependencies. In the original 
architecture, the input words or phrases are represented as vectors of real numbers in a high-dimensional 
space. This process is called input embedding and during this process the information about the order 
of the input sequence will be lost. Hence the authors introduced the concept of positional encoding 
which generates a vector informing the model about element positions within the sequence. 

In Scaled Dot-Product Attention, the attention weights are computed as a function of the query (𝑄) and 
the key (𝐾) matrices, scaled by the dimension of the keys (𝑑"): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	(𝑄, 𝐾, 𝑉) = 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥 9
𝑄𝐾#

:𝑑"
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where 𝑄 is the matrix of queries, 𝐾 is the matrix of keys, 𝑉 is the matrix of values, and 𝑑" is the 
dimensionality of the key vectors. 

A transformer architecture enhances the ability of the model to focus on different positions by employ-
ing multiple heads for the attention mechanism. Each head captures different aspects of the attention. 
The output of each head is concatenated and linearly transformed into the desired dimensionality: 
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* are the parameter matrices for 𝑖,% head, and 𝑊&  is the output linear transformation 

matrix. 
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In the original model, which was designed for natural language processing, positional encodings are 
added to the input embeddings to give the model information about the position of each word in a 
sentence. This concept is crucial for time series analysis as well, where the order of data points signifi-
cantly impacts their meaning. For time series, positional encodings can be adapted to represent the 
sequential nature of the data more accurately, ensuring the model recognizes the temporal order of 
observations. This involves encoding not just the position within a sequence but also the actual time 
intervals between observations, which can be particularly important in irregularly sampled time series. 
Adjustments to the architecture, such as customizing the input and output layers or integrating domain-
specific features, can help the model better interpret and predict these continuous values. By introducing 
mechanisms such as cyclic positional encodings into the model, a transformer can recognize and predict 
these cyclic patterns more effectively. Researchers have introduced various modifications to the archi-
tecture, as shown in Figure 5. In this figure, we enumerate application areas and domain specific archi-
tectures that have been successful for these applications. 

This review emphasizes applications in signal processing that address time series-related tasks such as 
forecasting, classification, and anomaly detection. The architectural modifications and specific appli-
cations are divided into three categories of time series forecasting in Table 3: general, long-term and 
multivariate time series. Popular architectures used for such applications include: 

• Transformer-XL [156]: a foundational architecture that introduced recurrence mechanisms and rel-
ative positional encoding for improved long-range dependency modeling; 

• Informer [157]: a general-purpose model that utilizes ProbSparse self-attention and distillation to 
improve efficiency for long sequence forecasting; 

• Autoformer [158]: a model that enhances efficiency through a decomposition architecture and 
auto-correlation mechanism; 

• Pyraformer [159]: a model that introduces a pyramidal structure for multi-scale attention to cap-
ture both long- and short-term dependencies; 

• Probabilistic Transformer [160]: incorporates probabilistic modeling to quantify uncertainty in 
predictions; 

• Non-stationary Transformers [161]: models that address the challenges posed by non-stationary 
time series data.  

Additionally, the review includes specialized variations of these, namely LogTrans [162], InPar-
former [163] and Sageformer [164], which incorporate long sequences, personalized predictions, and 
external knowledge, respectively. Multivariate models such as Crossformer [165] and Temporal Fusion 
Transformers (TFT) [166], [167], [168] are also examined. Transformers designed for specific data 
representation like W-Transformers [169] and privacy-preserving learning such as FEDformer [170] 
are also considered in this review. 

4.2. Foundational and General-Purpose Models 

We have identified four models in this category that laid the groundwork for transformer-based time 
series analysis and vare ersatile enough to be applied to a wide range of forecasting tasks. Transformer-
XL, a seminal model in this category, introduced recurrence mechanisms and relative positional 
encoding to enhance long-range dependency modeling. Informer, introduces ProbSparse self-attention 
and distillation, significantly improving the efficiency of long sequence forecasting. Autoformer further 
advanced efficiency through a novel decomposition architecture and an auto-correlation mechanism, 
effectively capturing and utilizing inherent correlations within time series data. Lastly, Pyraformer 
brought forth a pyramidal structure with multi-scale attention, enabling the model to effectively capture 
both long-term trends and short-term fluctuations, making it a versatile tool for various time series 
forecasting scenarios. 
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4.2.1 Transformer-XL 

The limited context length of a standard transformer is addressed by Transformer-XL [156] by intro-
ducing a novel approach to capturing longer-term dependencies beyond fixed-length contexts. It 
achieves this through a segment-level recurrence mechanism and a new positional encoding scheme, 
significantly improving performance over traditional models like RNNs and vanilla transformers. 
Transformer-XL demonstrates its effectiveness across various datasets, significantly reducing perplex-
ity and enhancing text generation quality. This model represents a substantial advancement in handling 
sequential data, offering promising applications in areas requiring nuanced understanding of long-term 
context. 

Transformer-XL incorporates a recurrence mechanism at the segment level, allowing the model to carry 
over information from previous segments. This design enables the model to maintain a longer effective 
context without being limited by the fixed size of input segments. During training, hidden states from 
previous segments are reused as extended context for the current segment, enhancing the model's ability 
to capture long-term dependencies. This approach addresses both the limitations of fixed-length con-
texts and the context fragmentation problem, leading to improved modeling of longer sequences.  

A crucial innovation in Transformer-XL is the introduction of relative positional encodings, which re-
place the absolute positional encodings used in standard transformers. This change is necessary to main-
tain the coherence of positional information when reusing hidden states across segments. Relative po-
sitional encodings allow the model to understand the relative positions of tokens within a sequence, 
enabling the reuse of states without causing confusion about the temporal order of events. This tech-
nique not only preserves temporal information but also allows for more flexible and efficient handling 
of sequence lengths. 

Transformer-XL reduced the state-of-the-art (SoTA) perplexity from 20.5 to 18.3, on WikiText-103 
[171], showcasing its superiority over previous models in capturing long-term dependencies in a large 
dataset with an average article length of 3.6K tokens [156]. On the enwik8 dataset [172], which contains 
100M bytes of unprocessed Wikipedia text, Transformer-XL achieved new SoTA results, outperform-
ing previous Transformer models and conventional RNN-based models by a significant margin. Nota-
bly, the 12-layer Transformer-XL matched the performance of a 64-layer network from a previous study 
with only 17% of the parameter budget, emphasizing its efficiency  [156].  

Similar to enwik8, text8 contains 100M processed Wikipedia characters created by lowercasing the text 
and removing any character other than the 26 letters a through z, and space. Transformer-XL adapted 
the same model and hyper-parameters from enwik8, achieving a new SoTA result of 0.99 on en-
wik8 [156]. Transformer-XL significantly improved the SoTA from 23.7 to 21.8 [156] on the One Bil-
lion Word dataset [173], indicating its generalizability and effectiveness in modeling both short and 
long sequences. 

4.2.2 Informer 

The Informer model, shown in Figure 6, is designed to handle the high prediction capacity required for 
capturing long-range dependencies between input and output efficiently. Informer addresses several 
problems with the traditional transformer model, such as quadratic time complexity, high memory us-
age, and limitations of the encoder-decoder architecture. To overcome these, Informer introduces three 
key innovations: (i) a ProbSparse self-attention mechanism that reduces time complexity and memory 
usage to O(L log L) while maintaining performance, (ii) self-attention distilling that emphasizes domi-
nant attention and manages extremely long input sequences effectively, and (iii) a generative style de-
coder that predicts long time series sequences in one forward operation, significantly speeding up in-
ference for long-sequence predictions. The Informer model demonstrates superior performance over 
existing methods through extensive experiments on four large-scale datasets [170]. 
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4.2.3 Autoformer 

The Autoformer approach [158] is a variation of the transformer architecture that includes an autocor-
relation mechanism, as shown in Figure 7. An Autoformer consists of an autocorrelation mechanism, 
an inner series decomposition block, and a corresponding encoder and decoder. The Autoformer fea-
tures an autocorrelation mechanism inspired from the concepts of stochastic process, which focuses on 
the periodicity of the series to discover dependencies and aggregate representations at the sub-series 
level. The period-based dependencies are calculated by the series autocorrelation and aggregates similar 
sub-series by time delay aggregation. In Autoformer, Q, K, and V act as inputs to the Auto-Correlation 
block. Q represents the current time step, K represents historical time steps, and V holds the information 
associated with each historical time step. Autocorrelation uses autocorrelation between Q and K to 
identify periodic patterns and efficiently aggregates information from similar phases across time 
through time delay aggregation of V. This approach replaces the computationally expensive dot product 
attention, significantly reducing complexity and enhancing scalability for long sequences. This mecha-
nism is more efficient and accurate than traditional self-attention, particularly for long-term forecasting 
tasks.  

The Autoformer achieved state-of-the-art accuracy, with a 38% relative improvement over existing 
methods on six benchmark datasets that span five practical applications, including energy, traffic, eco-
nomics, weather, and disease [174]. These datasets included  (i) load and oil temperature data from an 
electric transformer, (ii) an electricity dataset that contains the hourly electricity consumption, (iii) ex-
change records of the daily exchange rates of eight different countries, (iv) hourly traffic data from 
California Department of Transportation, (v) weather recorded every 10 minutes for the year 2020 con-
taining 21 meteorological indicators, and (vi) weekly recorded influenza like illness (ILI) patients data 
from Centers for Disease Control and Prevention of the United States. For the multivariate setting, 
Autoformer achieved state of the art performance for all benchmarks and all prediction length settings. 
Autoformer gave a 74% MSE reduction in ETT, 18% in electricity, 61% in exchange, 15% in traffic 
and 21% in weather. For the input 36-predict-60 setting of ILI, Autoformer delivered a 43% MSE re-
duction. Overall, Autoformer yielded a 38% averaged MSE reduction. 

4.2.4 Pyraformer 

In Pyraformer, a novel pyramidal attention-based transformer is proposed to bridge the gap between 
capturing the long-range dependencies and achieving a low space and time complexity [159]. The over-
all architecture of Pyraformer is shown in Figure 8. The process involves embedding the observed data, 
the covariates and the positional encoding. Further using a coarser scale construction module (CSCM), 
a multi-resolution C-ary tree is constructed. To capture the temporal dependencies of different ranges, 
a pyramidal attention module (PAM) is used that uses the attention mechanism in the pyramidal graph 
as shown in Figure 9. This design reduces the computation required for long sequences by summarizing 
information at multiple scales and then integrating these summaries to capture long-range dependencies. 
By leveraging this pyramidal structure, Pyraformer significantly reduces the space and time complexity 
associated with processing long sequences. This efficiency makes it a practical choice for large-scale 
applications where computational resources are a limiting factor. The architecture's design is inherently 
adaptable, making it suitable for a wide range of applications beyond just text processing. It has shown 
promising results in time series forecasting, where capturing long-range dependencies is crucial for 
accurate predictions. 

The Pyraformer model has been evaluated across multiple datasets to demonstrate its effectiveness and 
efficiency. For long-range multi-step forecasting on the Electricity, ETTh1, and ETTm1 datasets, Pyr-
aformer consistently achieves the lowest MSE and MAE across all prediction lengths (168, 336, and 
720) compared to several popular competing architectures including Informer and LogTrans [159]. For 
instance, on the ETTh1 dataset with a prediction length of 720, Pyraformer's MSE is 1.022 and MAE 
is 0.806, while the second-best model, Longformer, has an MSE of 1.091 and MAE of 0.832. Similar 
trends are observed for the ETTm1 and Electricity datasets, with Pyraformer consistently outperforming 
other models.  
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A comparison of the results among foundational and general-purpose transformer models for time series 
forecasting reveals distinct performance advantages for different models. Autoformer consistently 
demonstrates superior accuracy across multiple datasets and metrics, particularly excelling in capturing 
periodic patterns (lowest MSE, MAPE, and sMAPE). Informer, while competitive, showcases its 
strength in handling long sequences and missing values, evident in its strong performance on ETTm2 
and low normalized loss.  Pyraformer proves its ability to capture multi-scale dependencies, achieving 
the lowest MAE on ETTm1. Although Transformer-XL shows strong performance in language model-
ing tasks (WikiText-103), it lags behind newer architectures in time series forecasting metrics.   

4.3 Specialized Variations of Transformer Models 

In this category, we have examined transformer architectures designed to address specific challenges 
or cater to particular requirements within time series analysis. Unlike the foundational models, which 
offer broad applicability, these specialized variations introduce unique mechanisms and structures to 
tackle distinct issues. We have considered the following models that broadly fit into this category (i) 
Probabilistic Transformers that quantify uncertainty, (ii) Non-Stationary Transformers that can handle 
changing statistical properties, (iii) LogTrans which excels with long sequences, (iv) InParformer that 
personalizes predictions, and (v) Sageformer that incorporates external knowledge. 

4.3.1 Probabilistic Transformer 

Probabilistic transformer [160] architectures leverage deep probabilistic methods to integrate state-
space models (SSMs) with self-attention mechanisms. Unlike linear dynamical systems (LDS), where 
latent variable dependencies are restricted to first-order Markov processes, this approach enables the 
modeling of non-Markovian dynamics by facilitating attention-based interactions between all latent 
variables within a sequence. As shown in Figure 10, the latent variable zt+1 depends not only on zt but 
also on all of its preceding latent variables, including zt-1. This means that the model can capture long-
range dependencies and complex temporal patterns in sequential data, which is particularly beneficial 
for time-series forecasting and sequence modeling tasks. The architecture leverages a stochastic varia-
tional inference (SVI) framework, a scalable Bayesian inference technique that combines variational 
inference with stochastic optimization. In this implementation, both single and multi-layered ap-
proaches are employed, creating a generative model that captures the underlying data distribution and 
an inference model that approximates the posterior distribution over latent variables. Both models are 
jointly trained end-to-end, optimizing a single stochastic variational inference objective. 

While increasing the depth of the model by stacking multiple layers of latent variables can enhance its 
capacity to capture intricate dependencies within the data, this also introduces a trade-off. Specifically, 
the computational complexity and the number of parameters to be learned grow linearly with the num-
ber of layers. This can pose challenges in terms of training time, memory requirements, and potential 
overfitting, especially when dealing with large-scale datasets or limited computational resources. There-
fore, careful consideration must be given to balancing model expressiveness with computational effi-
ciency when deciding on the optimal number of layers for a given task.  

The model's effectiveness is demonstrated on two tasks: time series forecasting and human motion pre-
diction, often studied separately despite their similarity as conditional prediction problems. Evaluation 
across five diverse public datasets (SOLAR, ELECTRICITY, TRAFFIC, TAXI, and WIKIPEDIA) 
shows competitive performance, particularly outperforming all baselines on SOLAR, TRAFFIC, and 
TAXI. An ablation study on the TRAFFIC dataset highlights the importance of stochasticity for model 
performance, while other components like context attention or multiple stochastic variable layers show 
more subtle benefits. In human motion prediction, the model surpasses all baselines on both ADE and 
FDE metrics, with greater improvement on the larger Human3.6M dataset. Notably, this is achieved 
with random sampling, unlike a competitor that uses an additional model for diverse sample selection, 
suggesting a potential for additional gains by combining both approaches. 
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4.3.2 Non-stationary Transformers 

The consistent statistical properties of stationary time series are crucial for accurate forecasting. Non-
stationary time series, with their fluctuating statistics (e.g., a time-varying mean), pose a challenge for 
deep learning models. This is because these models struggle to generalize effectively when faced with 
data that differs significantly from the data they were trained on. Non-stationary Transformers [161] 
address the challenges posed by non-stationary time series data with a two-pronged approach that com-
bines data preprocessing and attention mechanism refinement. This preprocessing step involves making 
the time series stationary using techniques like differencing, normalization, and detrending. This im-
proves model generalizability for forecasting tasks. De-stationary Attention reintroduces the inherent 
non-stationary information of the original time series into the model's attention mechanism. This allows 
the model to leverage the full richness of the data, leading to more accurate predictions and better gen-
eralization performance. Figure 11 illustrates the two operations employed to address non-stationary 
time series data. The normalization module, applied at the input stage mitigates the non-stationarity 
caused by fluctuations in mean and standard deviation, enhancing model performance. The De-normal-
ization Module, implemented at the output stage, converts the normalized model predictions back to 
their original statistical properties, ensuring results align with the original data's characteristics. 

Leveraging these designs, Non-stationary Transformers can enhance both data predictability and model 
capability simultaneously.  The authors propose a straightforward, parameter-free design called series 
stationarization, which functions as a wrapper around existing transformer models. In line with estab-
lished practices of applying transformers to time series forecasting, a standard encoder-decoder archi-
tecture (Figure 11) is employed. The encoder serves to extract pertinent information from past obser-
vations, while the decoder aggregates this information and refines initial predictions, resulting in more 
accurate forecasts. The Non-stationary Transformer architecture enhances the predictive capability of 
the Transformer model for non-stationary time series data. This is achieved by wrapping series station-
arization around both the input and output of the vanilla transformer [13], and replacing self-attention 
by de-stationary attention.  

Experiments were conducted to assess the performance of Non-stationary Transformers on six real-
world time series forecasting benchmarks [161]. These experiments were designed to validate the gen-
eral applicability of the proposed framework across various mainstream transformer variants. In multi-
variate forecasting tasks, the Non-stationary Transformer framework consistently demonstrated state-
of-the-art performance across all benchmarks and prediction lengths. Notably, it excelled on datasets 
with high non-stationarity, achieving a 17% MSE reduction on Exchange and a 25% reduction on ILI 
compared to previous best results for prediction length of 336.  The results show that Non-stationary 
Transformers consistently outperform Autoformer and Informer models by a large margin, demonstrat-
ing its effectiveness in handling non-stationary time series data. For example, on the ETTm2 dataset 
the averaged MSE/MAE of all prediction lengths, Non-stationary Transformers achieves a relative MSE 
reduction ratio of 79.61% on Transformer and 67.38% on Informer and 5.86% on Autoformer. 

4.3.3 LogTrans 

The LogTrans architecture shown in Figure 12, introduces an architecture that provides a combination 
of a transformer architecture and CNN parallel network for biomedical image segmentation [162]. 
CNNs excel at learning local dependencies within images. However, they tend to lack a broader under-
standing of the overall structure and relationships between different regions and components. LogTrans 
offers a hybrid approach using parallel branches consisting of a CNN and a transformer. The CNN 
branch focuses on extracting localized features (textures, edges, specific cell patterns), whereas the 
transformer branch specializes in learning global spatial relationships and contextual information. In 
the LogTrans architecture for biomedical image segmentation, EfficientNet serves as the backbone of 
the convolutional neural network (CNN) branch. 

The Separate-Combiner (SeCo) module is the heart of the LogTrans architecture. Instead of just jam-
ming outputs from the two branches together, this module does two things: (1) separate – allows CNN 
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and transformer features to further refine on their own, emphasizing relevant patterns for their specific 
focus; and (2) combiner: strategically fuses the refined features, enriching the representation. This gives 
the resulting segmentation the best of both worlds. 

The LogTrans framework was evaluated on several biomedical datasets, including ablation studies on 
ISIC-2017 and UITNS-2022 as shown in Table 4. On the ISIC-2017 dataset, LogTrans outperforms all 
other methods across the four evaluation metrics used: Jaccard, Sensitivity, mean Intersection over Un-
ion (mIoU), and Dice coefficient. Notably, it shows a relative improvement over the classical U-Net 
model by 7.91% in Jaccard, 7.51% in sensitivity, 5.22% in mIoU, and 4.25% in Dice. Compared to the 
Swin-Unet, another transformer-based model, LogTrans also demonstrates improvements, albeit 
smaller, across all metrics. Similarly, on the UITNS-2022 dataset, LogTrans achieves the best perfor-
mance across all metrics compared to the baseline methods. It shows a substantial improvement over 
the U-Net model, with relative gains of 6.54% in Jaccard, 7.06% in sensitivity, 3.41% in mIoU, and 
3.18% in Dice. The results highlight that LogTrans consistently outperforms both traditional CNN-
based and transformer-based models on both datasets. The improvements are more significant com-
pared to the CNN-based models, suggesting that the integration of a transformer architecture in 
LogTrans is effective in capturing global context and improving segmentation accuracy. 

4.3.4 FEDFormer 

An important variant of the Informer architecture is the Frequency Enhanced Decomposed Transformer, 
FEDFormer, which aims to improve long-term series forecasting by combining a transformer model 
with a seasonal-trend decomposition model (with a frequency enhancement) to handle short-term de-
tails [170]. FEDformer is shown to be more effective and efficient than the standard transformer, with 
a linear complexity in sequence length [175]. However, the Informer's distinctive characteristics, par-
ticularly its ProbSparse self-attention mechanism and generative style decoder, are unique solutions to 
the specific challenges of modeling long-term dependencies and are not addressed in the FEDformer 
approach. 

The FEDformer architecture [170] is shown in Figure 13. It combines transformer models with sea-
sonal-trend decomposition and frequency domain analysis to enhance forecasting accuracy. By incor-
porating Fourier and wavelet transforms, FEDformer achieves linear computational complexity, out-
performing state-of-the-art models in efficiency and accuracy across multiple datasets. The approach 
addresses the limitations of traditional transformer models in capturing global time series trends, offer-
ing significant improvements in multivariate and univariate forecasting tasks. 

The FEDformer architecture introduces a dual-path design integrating both Fourier and wavelet trans-
forms to enhance time series forecasting. This structure allows for efficient processing of long se-
quences by decomposing them into frequency components, enabling the model to capture both global 
and local temporal dependencies with reduced computational complexity. The innovative use of fre-
quency-enhanced attention mechanisms in FEDformer facilitates a more effective and scalable ap-
proach to long-term forecasting tasks. 

The FEDformer model's performance was evaluated using six datasets covering a range of real-world 
scenarios including energy, economics, traffic, weather, and disease. FEDformer outperformed all other 
models on the six benchmark datasets across all prediction horizons, with an overall 14.8% relative 
MSE reduction compared to Autoformer. Notably, for some datasets like Exchange and ILI, the im-
provement was even more significant, exceeding 20%. This showcases FEDformer's strength in long-
term forecasting and its ability to handle data without clear periodicity effectively. 

In univariate time series forecasting, FEDformer achieved an overall 22.6% relative MSE reduction 
compared to Autoformer [158]. For certain datasets, such as traffic data, the improvement exceeded 
30%. This further validates FEDformer's effectiveness in long-term forecasting. The model's dual-path 
structure, utilizing both Fourier and wavelet transforms (denoted as FEDformer-f and FEDformer-w), 
allows it to excel across different datasets by leveraging their complementary strengths. 
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4.3.5 InParformer 

InParformer [163] is another model based on a transformer architecture that is designed for long-term 
time series forecasting. The architecture, shown in Figure 14, features an interactive parallel attention 
mechanism (InPar Attention) for learning dependencies in both the time and frequency domains. These 
have been enhanced with query selection, key-value pair compression, and evolutionary seasonal-trend 
decomposition modules (EvoSTD). These innovations target the challenges of redundancy, semantic 
density, and complex temporal patterns in time series data. The methodology emphasizes efficiency 
and interpretability, significantly outperforming state-of-the-art models across various real-world da-
tasets. 

InParformer demonstrates remarkable performance in long-term time series forecasting (LTSF) across 
various datasets and metrics. This performance is highlighted by its comparison with other state-of-the-
art models such as FEDformer, Autoformer, Informer, and others, offering a comprehensive view of its 
capabilities. InParformer consistently outperformed competing models across multiple datasets, includ-
ing ETT (Electricity Transformer Temperature), Electricity, Exchange, and Weather datasets, showcas-
ing its versatility and robustness in handling different types of time series data. The model achieved 
significant reductions in Mean Square Error (MSE) and Mean Absolute Error (MAE), indicating its 
precise forecasting ability. For instance, in the ETTm2 dataset, InParformer achieved an MSE of 0.260 
and an MAE of 0.323 for a prediction length of 192, outperforming FEDformer, which had an MSE of 
0.269 and an MAE of 0.328 for the same prediction length. 

Similarly, in the Exchange dataset, InParformer outperformed other models with an MSE reduction of 
up to 15.1% compared to FEDformer, highlighting its efficiency in datasets lacking clear periodicity. 
These results underscore InParformer's advanced design, incorporating interactive parallel attention and 
evolutionary seasonal-trend decomposition, which enables it to capture complex temporal dependencies 
more effectively than its counterparts. Its superior performance across diverse forecasting horizons fur-
ther emphasizes its stability and adaptability in varying temporal resolutions. 

4.3.6 SageFormer 

The Series-Aware Framework for Long-Term Multivariate Time Series Forecasting architecture, 
known as SageFormer, introduces a novel framework for forecasting multivariate time series (MTS) 
data [164]. MTS data are quite common with the rise of Internet of Things (IoT) devices. These devices 
generate vast amounts of MTS data, necessitating advanced forecasting models capable of understand-
ing the intricate interplays and temporal dynamics within this data. Long-term forecasting of MTS data 
is particularly challenging due to the need to capture both intra- and inter-series dependencies accu-
rately.  

SageFormer, shown in Figure 15, leverages graph structures to discern and model complex relationships 
between different series, capturing diverse temporal patterns while filtering out redundant information. 
The framework integrates seamlessly with existing transformer-based models, enhancing their ability 
to understand inter-series relationships. This integration enriches the models without significantly in-
creasing complexity. Through extensive experiments on real-world and synthetic datasets, SageFormer 
demonstrates superior forecasting performance compared to contemporary state-of-the-art approaches. 

Unlike a traditional transformer architecture where input tokens are obtained by projecting input time 
series in a patch, SageFormer integrates global tokens to enhance series awareness [164]. It uses an 
iterative message-passing process shown in Figure 16. Graph Structure Learning employs end-to-end 
learning of the adjacency matrix to capture relationships across series without prior knowledge, making 
it versatile for different datasets. Experiments on six real-world datasets (e.g., Traffic, Electricity, 
Weather) and two synthetic datasets, were conducted demonstrating SageFormer's effectiveness across 
various domains. SageFormer outperformed nine popular models for long-term MTS forecasting mod-
els, including models that focus on inter-series dependencies and long-term context using transformers. 
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4.3.7 W-Transformers 

The W-Transformer [169] is a wavelet-based transformer framework that marks a significant advance-
ment in univariate time series forecasting. This framework, shown in Figure 17, leverages the maximal 
overlap discrete wavelet transformation (MODWT) to decompose time series data, enabling the capture 
of nonstationary and long-range nonlinear dependencies. The W-Transformer framework is designed 
to tackle the challenges of forecasting non-stationary time series data, which is a common scenario in 
real-world applications. 

W-Transformers address this challenge by incorporating wavelet transformations with the Transformer 
architecture, allowing for the efficient capture of both local and global temporal dependencies in the 
data. The MODWT is employed as a preprocessing step to decompose the time series data into various 
frequency components. This decomposition allows the W-Transformer to analyze the data at multiple 
resolutions, capturing the inherent multi-scale temporal dynamics. Wavelet decomposition provides a 
multi-resolution view of the time series, allowing the model to capture both short-term fluctuations and 
long-term trends. 

This is crucial for non-stationary time series, where the behavior can vary significantly across different 
time scales. By modeling each decomposed component separately, W-Transformers can adapt to the 
specific characteristics of different frequency bands. This is particularly useful for non-stationary time 
series, where the statistical properties can change across frequencies. Wavelet decomposition can help 
separate the signal from noise in the time series. By focusing on the relevant components, the model 
can improve the accuracy and robustness of its forecasts. The wavelet transformation's ability to handle 
non-stationarity makes it an ideal choice for preprocessing time series data for forecasting tasks. The 
W-Transformer architecture exhibited superior performance in root mean square error (RMSE) on four 
different datasets as shown in Table 5. 

4.4 Multivariate Models for Time Series Analysis 

Multivariate refers to datasets where multiple related variables are tracked and measured over time such 
as in healthcare, if we use patient's heart rate, blood pressure, and temperature then this is considered at 
multivariate data. Multivariate time series forecasting involves predicting the future values of these 
multiple variables, considering their complex interdependencies. This is a more challenging task than 
univariate forecasting (predicting a single variable) due to the additional relationships between the var-
iables that need to be captured and modeled. Two transformer models we have considered under this 
category are Temporal Fusion Transformers and CrossFormer due to their ability to handle multivariate 
data. While CrossFormer might not be directly tailored for time series analysis, its architectural ad-
vancements offer insights into the evolving landscape of research in Transformer models. 

4.4.1 Temporal Fusion Transformer 

The Temporal Fusion Transformer (TFT) [147], [166], [168], [176], shown in Figure 18, integrates 
several components to handle different types of data and temporal relationships effectively. The core 
components include Gated Residual Networks (GRN), Variable Selection Networks, LSTM encoders, 
Multi-Head Attention, and Quantile forecasts. This architecture allows TFT to capture complex tem-
poral patterns, handle missing data, and provide uncertainty estimates for forecasts. It is particularly 
effective in multi-horizon forecasting tasks, where predictions are needed over multiple future time 
steps. 

B. Lim et al. [166] introduces an attention-based architecture for multi-horizon forecasting that com-
bines high performance with interpretable insights into temporal dynamics. TFT uses recurrent layers 
for local processing and interpretable self-attention layers for long-term dependencies. The architecture 
includes specialized components to select relevant features and gating layers to suppress unnecessary 
components, enabling high performance in a wide range of scenarios. The architectural innovations 
include gating mechanisms that allow the model to adaptively manage its depth and complexity, 
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enabling efficient information processing across different scenarios without overfitting to less relevant 
data components. 

The variable selection networks play a crucial role in identifying and focusing on the most relevant 
input variables for each forecasting step, thereby enhancing the model's accuracy and interpretability. 
The network first transforms each input variable into a vector of a specific dimension.  The transformed 
input variables, along with a context vector derived from static covariates, are then processed by a GRN. 
The GRN's output is subsequently passed through a softmax layer to generate variable selection 
weights. TFT integrates information from static metadata using GRN encoders to produce four different 
context vectors that are wired into various locations in temporal fusion decoder. TFT integrates vital 
background information into the forecasting process, allowing the model to condition its temporal dy-
namics on these static inputs. The model employs a combination of sequence-to-sequence layers for 
local processing and an interpretable multi-head attention mechanism to capture long-term dependen-
cies, offering a comprehensive understanding of both short and long-term temporal relationships. By 
generating prediction intervals, TFT provides valuable insights into the possible range of future values, 
enhancing decision-making processes with a clearer assessment of risk and uncertainty. 

Behrens et.al. [168] examines the importance of accurate thermal load forecasting for district heating 
and cooling networks and evaluates the performance of the Temporal Fusion Transformer (TFT) in this 
context, presenting its use for producing 72-hour heating load forecasts for three different district heat-
ing grids in the city of ULM. Comparing TFT's performance with other machine learning methods, 
superior forecasting abilities across various scenarios, significantly in the spring and fall seasons, was 
demonstrated. This improvement is attributed to TFT's attention-based mechanism, which excels in 
handling the temporal nature of the data and its ability to generalize across different conditions. The 
research underscores TFT's potential in optimizing the use of renewable energy and reducing reliance 
on fossil fuels in district heating systems. TFT consistently outperformed other methods in terms of 
Mean Absolute Percentage Error (MAPE) across all district heating networks. The study found that, in 
the spring, TFT's MAPE improvement ranged from 2% better for one network to 8% better for another, 
highlighting its robustness even in harder-to-predict seasons. 

Ratchakit et al. [167] applies TFT to forecast vital sign trajectories in intensive care patients, focusing 
on heart rate (HR), respiratory rate (RR), and oxygen saturation (SpO2). The results show that TFT 
could effectively forecast vital sign trajectories, such as heart rate (HR) and respiratory rate (RR), in 
intensive care patients. The model could provide accurate future vital signs predictions, with most un-
seen values falling within the 95% prediction interval. The study highlights TFT's ability to capture 
temporal dynamics and potential in detecting irregular patterns in vital sign time series, suggesting its 
usefulness in clinical settings for early detection of patient deterioration. Liao & Radhakrishnan [176] 
tested the TFT approach for short-term load forecasting in power distribution networks, showing its 
effectiveness over traditional methods. 

4.4.2 CrossFormer 

Transformers' efficacy in natural language processing prompted researchers to explore the potential of 
specialized vision transformer architectures leveraging attention mechanisms for computer vision tasks. 
CrossFormer [165], is an enhanced vision transformer leveraging cross-scale attention for improved 
performance in image classification, object detection, instance segmentation, and semantic segmenta-
tion tasks. It introduces a cross-scale embedding layer (CEL) and long-short distance attention (LSDA) 
for efficient feature processing across scales. Additionally, it addresses issues like self-attention map 
enlargement and amplitude explosion with a progressive group size (PGS) and an amplitude cooling 
layer (ACL), respectively in the improved version named as Crossformer++. Extensive experiments 
demonstrate CrossFormer's superior performance across various tasks compared to existing models. 

CrossFormer employs a pyramid structure that organizes the transformer model into four stages as 
shown in Figure 19. Each stage is designed to progressively refine the features extracted from the input 
image, allowing for a hierarchical representation that captures both local and global contextual 
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information effectively. At the beginning of each stage, a Cross-scale Embedding Layer (CEL) is uti-
lized to generate input tokens. The CEL operates by sampling patches from the input image using four 
different kernel sizes, allowing it to capture features at multiple scales. This multi-scale approach ena-
bles the model to maintain a balance between computational efficiency and the ability to capture de-
tailed feature information from various parts of the image.  

Within each CrossFormer block, the Long Short Distance Attention (LSDA) module is a key compo-
nent. LSDA is divided into Short Distance Attention (SDA) and Long Distance Attention (LDA) mech-
anisms. SDA focuses on building dependencies among neighboring embeddings, capturing local feature 
information efficiently. Conversely, LDA is responsible for establishing connections between embed-
dings that are far apart, enabling the model to integrate global contextual information. This dual atten-
tion mechanism allows CrossFormer to effectively process visual information across different spatial 
ranges.  

To enhance the model's ability to understand the positional relationship between different tokens, Cross-
Former incorporates a Dynamic Position Bias (DPB) module. This module adapts the relative position 
bias to accommodate variable image and group sizes, ensuring that positional information is accurately 
captured regardless of the input dimensions. This flexibility is crucial for tasks like object detection, 
where the input image size can vary significantly. 

Two additional innovations in CrossFormer++ are the Progressive Group Size (PGS) and the Amplitude 
Cooling Layer (ACL). PGS addresses the varying attention needs at different layers of the model by 
adjusting the group size progressively. This ensures that local features are emphasized in early layers, 
while global features are prioritized in deeper layers. ACL is introduced to manage the amplification of 
activation amplitudes across layers, which can destabilize training. By cooling down the amplitude, 
ACL helps maintain training stability and improve model performance. 

On ImageNet data, CrossFormer++ models achieve a noticeable improvement in accuracy over existing 
vision transformers and their predecessors (CrossFormer models), with gains up to 0.8% in average 
accuracy across different model sizes [177]. For instance, CrossFormer++-B achieves 84.2% accuracy. 
CrossFormer++ significantly outperforms most existing vision transformers in object detection and in-
stance segmentation tasks on the COCO 2017 dataset. CrossFormer++ surpasses CrossFormer by at 
least 0.5% average precision (AP). The semantic segmentation task on the ADE20K dataset exhibits 
greater performance gains over other architectures as the model size increases, indicating its effective-
ness in dense prediction tasks.  

4.5 Perspectives on Transformer-based Architectures 

The evolving landscape of transformer architectures for time series analysis showcases a spectrum of 
models, from foundational to specialized. This diversity addresses unique challenges, ranging from 
long-range dependencies (Transformer-XL, Informer) and multi-scale patterns (Autoformer, Pyra-
former) to uncertainty quantification (Probabilistic Transformer) and evolving data (Non-Stationary 
Transformers). Specialized models like LogTrans (long sequences), InParformer (personalized predic-
tions), and Sageformer (external knowledge integration) further demonstrate the adaptability of Trans-
formers. Additionally, multivariate models like Crossformer and TFT excel at capturing complex inter-
dependencies between multiple time series, while W-Transformers and FEDformer focus on specific 
data representations and privacy preservation, respectively.  

Transformer-based architectures have shown great promise for time series analysis, but they also pre-
sent challenges. One major challenge is the interpretability of these models, particularly understanding 
the attention mechanisms that drive their decision-making. While some models like Informer, Auto-
former, and Pyraformer offer insights into feature importance, there is a need for more transparent and 
explainable methods, especially in models like Transformer-XL and the Probabilistic Transformer. An-
other challenge is scalability, as the efficiency of models like Transformer-XL and the Probabilistic 
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Transformer can become a bottleneck when dealing with extremely long time series data. This calls for 
research into more efficient attention mechanisms or model architectures. 

Incorporating domain knowledge is another area for improvement in models like Informer and the Prob-
abilistic Transformer. While some models like Sageformer have started integrating external knowledge, 
there is potential for more sophisticated methods to leverage domain-specific information, such as fea-
tures, constraints, or prior distributions. Additionally, real-world time series data often presents chal-
lenges like missing values and irregular sampling intervals, which most current models like Informer 
and Transformer-XL do not adequately address. Developing robust methods to handle such data is cru-
cial. 

Transfer learning and adaptability are also areas where further research is needed, particularly for spe-
cialized models like InParformer, Sageformer, and W-Transformer. While some models show promise 
in adapting to different domains, enhancing their ability to transfer knowledge and generalize across 
tasks would be valuable. Moreover, many models like Transformer-XL focus on offline forecasting, 
but real-time forecasting is essential in many applications. Adapting transformer architectures for real-
time prediction with low latency and high accuracy is an open challenge. Ensuring the reliability of 
uncertainty estimates in probabilistic models like the Probabilistic Transformer and improving the ro-
bustness of all these models against adversarial attacks and data perturbations are important considera-
tions for their deployment in critical applications. 

5 Conclusion 

In this chapter we covered both classical and modern approaches to modeling long-term context. Char-
acteristics like autocorrelation, trend, and seasonality in time series data across various domains were 
discussed. Classical methods such as autoregressive models, moving averages, and Box-Jenkins meth-
odology, as well as modern techniques like RNNs, CNNs and LSTMs were discussed. 

We have focused on enhanced transformer architectures that can solve important challenges such as 
biomedical image segmentation, time series forecasting, and language modeling. Transformer architec-
tures, from foundational to specialized, are considered in this review. The challenges such as uncer-
tainty, non-stationary behavior, extra-long sequences, need for personalized forecasts, external 
knowledge integration, multivariate data, and specific data representations are addressed in this review.  
Table 6 provides a comparison of key features and advancements of the architectures considered in this 
review. This review underscores the importance of capturing long-term dependencies in time series 
data. It highlights studies demonstrating the effectiveness of capturing these dependencies for accurate 
prediction and classification. Central to these models is the transformer architecture that allows the 
system to focus on relevant parts of the input sequence, effectively capturing long-term dependencies 
without the limitations of recurrent layers.  

The future of attention-based models and transformer architectures are promising due to its emphasis 
on domain-specific adaptations, hybrid model development, and possible improvement in optimiza-
tions. We may expect advancements in transformer encoding techniques to capture temporal relation-
ships more effectively. Authors have proposed such an approach of detecting rare events in extremely 
long time series data. Additionally, research will explore integrating established time series methods 
within transformer frameworks. Another focus will be on quantifying the uncertainty in forecasting 
problems, enabling more reliable decision support systems. Advancements in handling multivariate 
time series with transformers are another area that will unlock the analysis of complex interdependent 
systems. Research on optimizing computational efficiency will be equally important for deploying 
transformer-based models in real-time as well as resource-constrained time series applications. 
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Table 1. Comparison of traditional signal processing methods 

Model Name Description Application Advantages Disadvantages 

Autoregressive (AR) 
Models 

Uses a linear combination of 
past values of the variable. 

Economics, finance, 
weather forecasting. 

Simple and effective for some 
types of time series data. 

Assumes linearity and sta-
tionarity in data. 

Moving Average 
(MA) Models 

Uses past forecast errors in a re-
gression-like model. 

Stock market analy-
sis, sales forecasting. 

Good for smoothing out noise 
and short-term fluctuations. 

Limited to capturing only 
recent past influences. 

ARMA Models Combines AR and MA models. Signal processing, 
econometrics. 

More flexible than pure AR or 
MA models. 

Requires stationary data. 

ARIMA Models Includes differencing to make 
data stationary. 

Financial market pre-
dictions, sales fore-
casting. 

Effective for non-stationary 
data, including data with trends. 

Model identification can be 
complex. 

Seasonal Decompo-
sition 

Decomposes a time series into 
seasonal, trend, and residual 
components. 

Seasonal data analy-
sis in various fields. 

Useful for understanding and 
modeling seasonal variations. 

Assumes a repetitive sea-
sonal pattern. 

Fourier Analysis Transforms time series into fre-
quency components. 

Signal processing, 
climatology. 

Useful for identifying periodici-
ties in data. 

Not suitable for non-peri-
odic or non-linear data. 

Box-Jenkins Meth-
odology 

A systematic method of using 
ARIMA models. 

Broad application in 
various time series 
analyses. 

Provides a comprehensive ap-
proach to model building. 

Requires expertise and can 
be time-consuming. 

Exponential Smooth-
ing 

Weights the historical data, de-
creasing exponentially. 

Inventory control, 
sales forecasting. 

Simple to apply and effective 
for data with no clear trend or 
seasonality. 

Struggles with data showing 
high variability or trends. 

Trend Analysis Identifying and analyzing trends 
in time series data. 

Market analysis, en-
vironmental data 
analysis. 

Useful for forecasting and un-
derstanding long-term trends. 

Can oversimplify data by 
focusing mainly on trends. 

Cross-Correlation 
and Autocorrelation 
Analysis 

Measure the relationship be-
tween time series and their lags. 

Signal processing, 
econometrics. 

Useful for identifying lags of 
importance in time series data. 

Limited in dealing with 
non-linear relationships. 

Spectral Analysis Analyzes the frequency spec-
trum in time series data. 

Seismology, astron-
omy. 

Effective in identifying domi-
nant cycles and periodicities. 

Requires understanding of 
advanced mathematical 
concepts. 

Nonlinear Time Se-
ries Analysis 

Methods to deal with nonlinear 
behaviors in time series. 

Neuroscience, cli-
mate sciences. 

Can capture complex dynamics 
not modeled by linear methods. 

Often complex and require 
large amounts of data for 
modeling. 

Wavelet Analysis Breaking down data into differ-
ent frequency components. 

Signal processing, 
image analysis. 

Good for analyzing data with 
time-varying frequencies. 

Can be mathematically 
complex and computation-
ally intensive. 
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Table 2. Comparison of modern statistical approaches 

Model Name Description Application Examples Advantages Disadvantages 

Long Short-Term Memory 
(LSTM) Networks 

RNNs capable of learning long-term 
dependencies in data. 

Financial forecasting, speech 
recognition. 

Good at capturing long-term 
dependencies in data. 

Computationally intensive, 
prone to overfitting. 

Gated Recurrent Units 
(GRUs) 

Simplified version of LSTMs, also a 
type of RNN. 

Natural language processing, 
music generation. 

Require fewer parameters 
than LSTMs, faster training. 

Less expressive than LSTMs 
for certain complex patterns. 

Convolutional Neural Net-
works (CNNs) for Time Se-
ries 

Utilize convolutional layers for time se-
ries data. 

Image and signal processing, 
anomaly detection. 

Effective in capturing spatial-
temporal patterns. 

Not inherently suited for se-
quence prediction tasks. 

DeepAR Probabilistic forecasting with auto-
regressive recurrent networks. 

Demand forecasting, energy 
load forecasting. 

Good for large datasets with 
multiple related series. 

Requires large amounts of 
data to perform well. 

Prophet Designed for forecasting with daily ob-
servations. 

Business metrics forecasting, 
web traffic. 

Handles outliers, missing 
data, and seasonal effects. 

Less effective for non-daily 
data or non-linear trends. 

Vector Autoregression 
(VAR) 

Captures linear interdependencies 
among multiple time series. 

Econometrics, multivariate 
time series analysis. 

Can model interdependencies 
in multiple time series. 

Assumes linearity, not suita-
ble for non-stationary data. 

Ensemble Methods Combines predictions from multiple 
models. 

Financial time series predic-
tion, weather forecasting. 

Improves accuracy and ro-
bustness. 

Can be complex to imple-
ment and interpret. 

Hybrid Models Combines traditional statistical models 
with machine learning. 

Any application requiring 
both linear and non-linear 
modeling. 

Captures both linear and non-
linear aspects of data. 

Can be complex to imple-
ment and tune. 
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Table 3. Key architectural variations and application areas for selected models 

Model Name Key Architectural Variations from Va-
nilla Transformer 

General Time 
Series Fore-
casting 

Long Term 
Time Series 
Forecasting 

Multivariate 
Time Series 
Forecasting 

Transformer-XL Recurrence mechanism, relative positional 
encoding 

✓   

Informer ProbSparse self-attention, encoder-decoder 
architecture 

✓ ✓ ✓ 

Autoformer Decomposition architecture, auto-correla-
tion mechanism 

✓   

Pyraformer Pyramidal structure, multi-scale attention ✓   

Probabilistic Trans-
former 

Uncertainty estimation, probabilistic mod-
eling 

✓   

Non-Stationar Trans-
formers 

Dynamic attention mechanisms, non-sta-
tionary modeling 

✓   

LogTrans Logarithmic space representation ✓ ✓  

Inparformer Interactive Parallel Attention (InPar Atten-
tion) for time and frequency domain de-
pendencies. 

 ✓ ✓ 

Sageformer Dynamic time warping (DTW) for similar-
ity search, long-term forecasting 

✓ ✓  

Crossformer Encoder-decoder architecture, cross-atten-
tion 

   ✓ 

Temporal Fusion Tran-
formers 

Combination of recurrent layers (LSTMs) 
and self-attention, integration of static co-
variates 

   ✓ 

W-Transformers Wavelet transformations, multi-resolution 
analysis 

  ✓ 

FEDformer Frequency-enhanced blocks, decomposed 
attention 

  ✓ 
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Table 4. Ablation study for the LogTrans framework [162] 

Methods Jaccard Sensitivity mIoU F1-Score 
Backbone (EfficientNet-B6 + Concat + Decoder) 0.7744 0.8135 0.8422 0.8556 
EfficientNet-B6 w/ Swin Transformer + Concat + Decoder 0.7746 0.815 0.8431 0.8552 
EfficientNet-B6 w/ Swin Transformer + SeCo module + Decoder 0.7852 0.8257 0.8498 0.8638 
EfficientNet-B6 w/ Swin Transformer + SeCo module + ReSD block + Decoder 0.7880 0.8343 0.8512 0.8661 
Backbone (EfficientNet-B6 + Concat + Decoder) 0.7386 0.8352 0.8654 0.8297 
EfficientNet-B6 w/ Swin Transformer + Concat + Decoder 0.7454 0.8394 0.8690 0.8346 
EfficientNet-B6 w/ Swin Transformer + SeCo module + Decoder 0.7524 0.8582 0.8726 0.8421 
EfficientNet-B6 w/ Swin Transformer + SeCo module + ReSD block + Decoder 0.7549 0.8450 0.8739 0.8442 
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Table 5. Comparison of W-Transformer with other architectures [169] 

Data Metrics WARIMA ETS SETAR ARNN RNN Deep-AR Trans-
former 

W-Trans. 

Website 

Traffic 

RMSE 1281.64 1192.66 1082.51 1356.29 2593.36 2010.79 2638.05 847.41 

MAE 975.38 864.14 921.82 1065.48 2413.45 1875.34 2470.93 634.74 

sMAPE 39.48 36.31 43.89 41.23 164.07 107.14 180.14 31.02 

MASE 1.10 0.98 1.04 1.21 2.66 2.07 2.73 0.70 

Sunspot RMSE 41.48 37.46 57.06 71.83 74.16 52.50 40.63 30.07 

MAE 33.05 30.72 45.67 56.93 63.75 41.78 32.36 22.63 

sMAPE 41.48 38.21 62.91 97.60 108.69 65.21 40.40 30.09 

MASE 2.80 2.60 3.87 4.82 10.91 7.15 5.54 3.87 

Japan 

Flu 

RMSE 196.65 186.15 297.30 239.31 171.51 179.61 326.55 76.21 

MAE 174.17 171.63 281.93 199.93 114.01 163.67 276.56 58.98 

sMAPE 136.76 134.94 142.31 126.77 130.00 133.18 131.81 103.19 

MASE 4.83 3.95 6.49 4.60 2.27 3.26 5.51 1.17 

Bangkok 

Dengue 

RMSE 1889.92 3454.05 2153.80 819.90 824.70 786.21 767.52 735.00 

MAE 1756.66 3423.33 1486.24 678.36 681.73 634.59 611.18 608.30 

sMAPE 119.20 145.50 114.83 76.91 187.26 151.00 136.43 154.62 

MASE 7.57 14.75 6.40 2.92 2.56 2.38 2.29 2.28 

Network 

Analytics 

RMSE 43.94 23.65 40.58 24.71 43.00 22.51 29.21 19.00 

MAE 39.06 18.31 35.97 21.99 37.98 19.09 25.80 15.96 

sMAPE 94.56 70.46 91.69 75.80 93.34 71.52 80.64 60.31 

MASE 6.49 3.04 5.97 3.66 6.46 3.25 4.39 2.71 
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Table 6. Summary of transformer architectures 

Model Key Features Application Areas Notable Advancements 
LogTrans Dual-branch design with SeCo mod-

ule 
Biomedical image segmentation Enhanced accuracy and robustness 

TFT Gated Residual Networks, LSTM, 
Multi-Head Attention 

Time series forecasting Superior forecasting abilities, han-
dles missing data 

InParformer Interactive Parallel Attention Long-term time series forecasting Efficiency and interpretability in 
forecasting 

Informer ProbSparse self-attention, distilling Long-term series forecasting Reduced computational complexity, 
high performance 

SageFormer Graph structures for inter-series rela-
tionships 

Multivariate time series forecasting Enhanced forecasting performance 

Autoformer Decomposition architecture, Auto-
correlation 

Time series forecasting Improved accuracy on periodicity 
and dependencies 

Pyraformer Pyramidal attention mechanism Time series forecasting Efficient long-range dependency cap-
turing 

W-Transformers Wavelet-based preprocessing Non-stationary time series forecast-
ing 

Effective capture of local and global 
dependencies 

FEDformer Seasonal-trend decomposition, fre-
quency domain analysis 

Long-term series forecasting High efficiency and accuracy 

CrossFormer++ Cross-scale attention mechanisms Image classification and segmenta-
tion 

Efficient processing of features 
across scales 

Transformer-XL Segment-level recurrence, relative 
positional encoding 

Language modeling Capture of longer-term dependen-
cies, improved performance 
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Figure 1. Performance of Dow Jones from Jan 2023 to Feb 2024 
(Source https://www.moneycontrol.com/us-markets/) 
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Figure 2. Norway’s Ålfotbreen glacier has rapidly shrunk from 1985 (top left) to 2021 (bottom 
right) [16] 
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Figure 3. Recording of a 10-second EEG signal 
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Figure 4. The original transformer model proposed in [13] 
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Figure 5. Popular transformer architectures and application areas 
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Figure 6. Informer architecture overview [170] 
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Figure 7. An Autoformer architecture [158] 
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Figure 8. A Pyraformer architecture [159] 
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Figure 9. A Pyramidal graph [159] 
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Figure 10. (a) Graphical model representations of LDS,  (b) a single layer in ProTran, (c) ProTran generation and 
(d) ProTran inference [160] 



50 

 
  

 

Figure 11. A non-stationary transformer architecture [161] 
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Figure 12. A LogTrans architecture [162] 
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Figure 13. The FEDformer structure [170] 
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Figure 14. The InParformer architecture [163] 
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Figure 15. The SageFormer architecture [164] 
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Figure 16. Illustration of the iterative message-passing process in SageFormer [164] 
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Figure 17. A W-Transformer architecture [169] 
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Figure 18. A Temporal Fusion Transformer architecture [166] 
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Figure 19. A Crossformer architecture [165] 

  

 
 
 
 

 
 

 

 
 


