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Abstract

This paper describes the technical and system building advances
made to the Google Home multichannel speech recognition sys-
tem, which was launched in November 2016. Technical ad-
vances include an adaptive dereverberation frontend, the use of
neural network models that do multichannel processing jointly
with acoustic modeling, and Grid-LSTMs to model frequency
variations. On the system level, improvements include adapting
the model using Google Home specific data. We present results
on a variety of multichannel sets. The combination of technical
and system advances result in a reduction of WER of 8-28%
relative compared to the current production system.

1. Introduction

Farfield speech recognition has made great strides in the past
few years, from research focused activities such as the CHiME
Challenge [1] to the launch of Amazon Echo and Google Home.
Farfield speech recognition is challenging since the speech sig-
nal can be degraded by reverberation and additive noises, signif-
icantly degrading word error rate (WER). Such systems are not
usable until the WER comes into a manageable range. The pur-
pose of this paper is to detail the technical and system advances
in acoustic modeling that have gone into the Google Home sys-
tem.

A typical approach to farfield recognition is to use multi-
ple microphones to enhance the speech signal and reduce the
impact of reverberation and noise [2, 3, 4]. While multichan-
nel ASR systems often use separate models to perform beam-
forming and acoustic modeling, we recently proposed doing this
jointly in a neural network using raw-waveforms as input [5].
In [5], we explored a variety of architectures in both the time-
domain and frequency domain. Taking into account the trade-
offs between computational complexity and performance, we
propose to use the factored Complex Linear Projection (fCLP)
model [6] in the current work, which has much smaller compu-
tational complexity and similar performance to models trained
in the time domain. We will also show in the current work that
doing multichannel processing jointly with acoustic modeling
is better compared to an acoustic model trained with log-mel
features as the latter has limited ability to do spatial processing.

The fCLP model takes a complex fast Fourier transform
(CFFT) as input, and mimics filter-and-sum operations in the
first layer. To further improve robustness of such models, we ex-
plored a dereverberation feature frontend. Specifically, a mutli-
channel recursive least squares (RLS) adaptive algorithm is ap-
plied [7]. This algorithm is based on the weighted prediction

error (WPE) algorithm [8]. It reduces the effects of revebera-
tion, thereby helping the neural network process multichannel
input more effectively.

We also improve the acoustic model using a Grid-LSTM
[9]. Recently, we have observed that Grid-LSTMs are able to
better model frequency variations, particularly in noisy condi-
tions, compared to a convolutional layer [10]. In this work,
the output of the fCLP layers, which closely resembles a time-
frequency feature in different look directions, is passed to a
Grid-LSTM.

Our experiments to understand the benefit of the different
modules are conducted on a 18,000 hr Voice Search task. We
find that the fCLP layer provides up to 7% relative improvement
in noisy conditions over an acoustic model trained with log-mel
features. Including WPE results in an additional 7% improve-
ment in the noisiest conditions, while the Grid-LSTM improves
performance by 7-11% relative in all conditions. By combin-
ing all of these technical improvements, we obtain an overall
improvement of 16% compared to the existing log-mel pro-
duction system on an evaluation set collected from the Google
Home traffic. Finally, adapting the acoustic model via sequence
training on approximately 4,000 hours of training data collected
from live traffic improves WER by 8-28% relative over the base-
line.

Overall, with both the technical and system advances, we
are able to reduce the WER to 4.9% absolute, a 20% relative
reduction over a log-mel trained LSTM CTC model.

The rest of this paper is as follows. In Section 2 we high-
light the overall architecture explored in this paper, with the
WPE, {fCLP and Grid-LSTM submodules to be discussed in
Sections 3, 4 and 5, respectively. The experimental setup is
described in Section 6, while results are presented in Section
7. Finally, Section 8 concludes the paper and discusses future
work.

2. System Overview

A block diagram of the proposed system is shown in Figure 1.
The CFFT for each channel is first passed to an adaptive WPE
frontend that performs dereverberation. The WPE processed
CFFT features are fed to a fCLP layer, which does multichan-
nel processing and produces a time-frequency representation.
The output of fCLP processing is passed to a GridLSTM to
model time and frequency variations. Finally, the output of the
GridLSTM goes to a standard LDNN acoustic model [11]. The
WPE, fCLP and GridLSTM modules will be discussed in the
next three sections.
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Figure 1: System Overview of Google HOME

3. Dereverberation

Reverberation is often modeled as a convolution of the clean
speech signal with a room impulse response (RIR). This con-
volution introduces correlation in time in the speech that would
not otherwise be present. Dereverberation can be performed by
estimating this additional correlation and filtering to undo it.

The weighted prediction error (WPE) algorithm [8] is one
such technique that has shown promising results [12, 13]. WPE
requires that the entire utterance to be obtained before the filter
taps can be calculated and, consequently, before dereverbera-
tion can be performed. For applications that need streaming
recognition, like Google Home, this latency is not acceptable.
The filter coefficients must be estimated and applied as quickly
as the speech signal arrives. Furthermore, it is desirable for the
tap values to be adaptable because the RIRs will change due to
reasons like speaker motion or because of the nonstationarity of
the speech signal itself.

A single channel RLS-based dereverberation algorithm was
presented in [14]. A variation of this algorithm that extends to
the multi-channel case is presented in [7] and applied here.

The adaptive algorithm is applied in the frequency domain.
The FFT size was selected considering the coherence bandwidth
of typical RIRs such that the channel response of adjacent fre-
quency bins is roughly uncorrelated. The tap values are calcu-
lated independently for each frequency bin.

Let the vector Y;[n]T = [You[n] Yi.[n]] represent
frame n and frequency bin ! of the STFT of the received sig-
nal for each of the two microphones. A vector of N de-
layed STFT frames from each of the 2 microphones is given

by Y;[n]” = [S?OTJ ?1T,z] , where

Y'm,l[n]T = [Y'm,l[n - A} mel[’n —A—N+ 1]] .

ey

This vector of delayed samples is passed through parallel filters
represented by the 2N x 2 matrix W [n]. The filter outputs are
subtracted from the vector of received signals to produce the
dereverberated output Y;[n] as shown below:

Y [n] = Yi[n] — Wi [n]" Y [n]. 2)

Equation (2) is applied at every frame for each frequency bin.
The taps are updated at each time step according to the
Kalman filter update equation:

Wi[n] = Win — 1] + Ky [n] Y/ [n], 3)
where the Kalman gain is given by:

R;;J [n — 1]Y[n]

Kifn] = —— ) “
alAf[n] + Y[n]"Ry; ,[n — 1]Yn]
and:
Rypilnl =3 Ok k" )
77,1 = N i i
" = Az[k]

is the weighted autocorrelation in time of the delayed data in
frequency bin [. « is a forgetting factor (0 < « < 1) that
impacts adaptation speed. f\? [n] is an estimate of the signal
power of frequency bin / and frame n.

4. Multichannel Processing from Complex
Spectra

After WPE is applied to the CFFT, it is passed to a fCLP layer.
The architecture of the fCLP layer that we use follows our ear-
lier work described in [6]: The first layer of the model, also
called the factoring layer, mimics multiple filter-and-sum oper-
ations, and is followed by complex linear projection (CLP). The
system in [6] operates at 100 Hz input frame rate. The input to
the network is the multichannel complex spectra computed for
a window of 32 millisecond with a frame-shift of 10 millisec-
ond. Results in [15] [16] show that for logmel features we can
reduce the frame rate by a factor of 3 to improve both perfor-
mance and decoding speed. We extend this to CFFT models by
reducing the frame rate in two ways: 1) Weight sharing (WS)
or 2) Autoregressive filtering (AR).

In weight sharing, we continue to operate the CFFT layers
at 100 Hz as in [6]:

C
Y?[n] =Y Xc[n]- H?, ©6)
Z%[n] =log |> Y?[n,1] - Gy[l] ™

Here, n indexes frames (at 100 Hz), ¢ indexes microphone chan-
nel, [ indexes FFT bins, and f indexes CLP filters. X is the in-
put frame for channel ¢, H? is one of the P complex filters for
channel ¢ that mimics filter-and-sum operation, and G is one
of the F' CLP filters. In contrast to [6], the output activations,
{Z7[n]forf € 1... F}, are stacked across bothp € {1... P}
and n € {T;...Tx} where, T} and T}, define a local temporal
context. They are set to —3 and 1, respectively, in our experi-
ments. The stacked activations are then subsampled by a factor
of 3 to reduce the frame rate. The LSTMs above the CFFT lay-
ers operate at 33 Hz.



When using autoregressive filtering, we stack input features
and constrain the CFFT layers to learn filters that span a much
wider context. Mathematically, the factoring component of the
CFFT layer is redefined as:

Y*[3n] = Z ZX [3n+1]- HE, ®)
t=—T; c=1
Here,t € Tj ... T, denotes the time index of AR filter, H7,

is the complex filter for the pth look direction of the factoring
layer for channel ¢ and AR filter context ¢t. The advantage of
using an AR formulation is that the network could potentially
learn spatial filters with a longer timespan. The output of the
factoring layer is subsampled to 33 Hz and is passed to the CLP
layer. Unlike the WS approach, the output of the CLP layer
need to be stacked only across the P look directions.

5. Grid-LSTMs

The output of the fCLP layer is passed to a Grid-LSTM [9],
which is a type of two dimensional LSTM that uses separate
LSTMs to model the variations across time and frequency [17].
However, at each time-frequency bin, the grid frequency LSTM
(gF-LSTM) uses the state of the grid time LSTM (gT-LSTM)
from the previous timestep, and similarly the gT-LSTM uses the
state of the gF-LSTM from the previous frequency step. The
motivation for looking at the Grid-LSTM is to explore bene-
fits of having separate LSTMs to model the correlations in time
and frequency. In this work, a bidirectional Grid-LSTM [18] is
adopted. It utilizes a bidirectional LSTM in the frequency di-
rection to mitigate the directional dependency incurred by the
unidirectional LSTM. While for the time direction, we keep the
unidirectional LSTM. This way we can maintain the capability
of processing the speech signal in an online fashion. Further-
more in [18], we have found the use of bidirectional frequency
processing allows us to use non-overlapping filters which actu-
ally reduces the computation costs by a lot.

The bidirectional Grid-LSTM consists of a forward Grid-
LSTM and a backward Grid-LSTM. The forward processing
(‘fwd’) consists of following steps:
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For the backward processing (‘owd’), we have a separate
set of weights parameters W, "***) and 5***). In the above
equations, instead of using the previous frequency block’s, i.e.

(k — 1)-th, LSTM output mif’gf‘lk) and cell state cgb,:d If), the
next frequency block’s, i.e. (k + 1)-th, LSTM output mib;“ flk)

(bwd, k)

i hr1 are used.

and cell state ¢

The final output at each time-frequency block (¢, k) is a
concatenation of the forward and backward activations:

(s) _ (fwd,s)T
t [m

bwd,s)T T
k= My g mgk ) | (16)
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At each time step ¢, we concatenate the Grid-LSTM cell

output mt A ) for all the frequency block & and give them to a
linear dlmenswnallty reduction layer, followed by an LDNN.

6. Experimental Details
6.1. Corpora

We conduct experiments on about 18,000 hours of noisy train-
ing data consisting of 22 million English utterances. This data
set is created by artificially corrupting clean utterances using a
room simulator to add varying degrees of noise and reverbera-
tion. The clean utterances are anonymized and hand-transcribed
voice search queries, and are representative of Google’s voice
search traffic. Noise signals, which include music and ambi-
ent noise sampled from YouTube and recordings of “daily life”
environments, are added to the clean utterances at SNRs rang-
ing from 0 to 30 dB, with an average SNR of 11 dB. Rever-
beration is simulated using the image model [19] — room di-
mensions and microphone array positions are randomly sam-
pled from 3 million possible room configurations with RT50s
ranging from 0 to 900 ms, with an average RTso of 500 ms.
The simulation uses a 2-channel linear microphone array, with
inter-microphone spacing of 71 millimeters. Both noise and tar-
get speaker locations change between utterances; the distance
between the sound source and the microphone array varies be-
tween 1 to 8 meters.

We evaluate our models using simulated, rerecorded and
real noisy farfield data. For the simulated and rerecorded sets,
around 15 hours (13K utterances) of anonymized voicesearch
utterances were used. For the simulated sets, noise is added us-
ing the room simulator with a room configuration distribution
that approximately matches the training configurations. The
noise snippets and room configurations do not overlap with
training. For the rerecorded sets, we played the clean eval set
and noise recordings separately in a living room setting (ap-
proximately 200ms RT§0), and mixed them artificially at SNRs
ranging from 0 dB to 20 dB.

For the real farfield sets, we sample anonymized and hand-
transcribed queries directed towards Google Home. The set
consists of approximately 22,000 utterances, and are typically
at a higher SNR compared to artificially created sets. We also
present WER breakdown under various noise conditions in Sec-
tion 7.

6.2. Architecture

All experiments in this paper use CFFT or log-mel features
computed with a 32-ms window and shifted every 10ms. Low
frame rate (LFR) [16] models are used, where at the current
frame ¢, these features are stacked with 3 frames to the left and
downsampled to a 30ms frame rate. An LDNN architecture [11]
is consistent in all experiments, and consists of 4 LSTM layers
with 1,024 cells/layer unless otherwise indicated, and a DNN
layer with 1,024 hidden units. During training, the network is
unrolled for 20 time steps for training with truncated backprop-
agation through time. In addition, the output state label is de-
layed by 5 frames, as we have observed that information about
future frames improves the prediction of the current frame [16].
All neural networks are trained with the cross-entropy criterion,



using asynchronous stochastic gradient descent (ASGD) opti-
mization [20].

7. Results
7.1. fCLP

Our first set of experiments compare Imel and fCLP methods.
For these experiments, 832 cells/layer were used in the time
LSTM as the experiments ran quicker. First, Table 1 shows that
the fCLP,WS method outperforms the f{CLP,AR method, show-
ing that it is beneficial to give more freedom to each look di-
rection with the WS method. In addition, the factored CLP,WS
layer gives up to 7% relative improvement over the log-mel sys-
tem. While our previous result had shown the benefit of the
fCLP layer over log-mel for simulated data [6], the table con-
firms the benefits on the rerecorded data as well. The remainder
of the experiments will be conduced with the fCLP,WS layer,
and for simplicity it will be referred to as fCLP.

Model clean 51mu.l ated rerecorded rerecgrded
noisy noisy
No Drvb 11.7 18.2 20.5 32.2
With Drvb 11.7 17.5 19.7 30.1

Model clean s1mu'l ated rerecorded rereCQrded
noisy noisy
Imel 12.5 20.0 20.0 32.8
fCLP, AR 12.7 19.1 21.5 329
fCLP, WS 12.3 18.6 20.2 31.6

Table 1: WER of fCLP.

7.2. GridLSTM

We further add in the bidirectional Grid-LSTM layer for better
modeling of the time-frequency correlation of speech signals.
We used 128D LSTM cell states to track the changes across time
and frequency separately. For the frequency processing, filters
of size 16 and stride 16 are used. This configuration was found
to work well. Again, 832 cells/layers are used for the LSTM
and no WPE is used in these experiments. From Table 2, Grid-
LSTM layer consistently improves the recognition performance
across all the test sets. Especially for the noisy sets, a relative
7-11% WER reduction are obtained.

Model || clean 51mu.1 ated rerecorded rerecgrded
noisy noisy
w/o 12.3 18.6 20.2 31.6
w 114 16.6 18.3 28.9

Table 2: WER of the recognition system with (w) and with-
out (w/0) Grid-LSTM layer in between the fCLP layer and the
LDNN stack.

7.3. WPE

Table 3 shows the performance with and without dereverbera-
tion for the fCLP. For speed purposes, these experiments were
conducted without a Grid-LSTM layer, and with 1,024 LSTM
cells states. For both training and evaluation, N = 10 taps have
been applied for each frequency bin. This value proved to be a
good balance between complexity and performance. The delay
A used was 2 frames and the forgetting factor « is set to 0.9999.
The tap values are all initialized to zero at the beginning of each
new utterance.

The largest relative improvement, about 7%, is obtained on
the rerecorded noisy dataset. A possible reason for this is that

Table 3: WER Impact of Derverberation.

not only is there benefit from the dereverberation, but the dere-
verberation allows the implicit beamforming performed by the
neural network to better suppress the noise. Also, examining
the performance in the clean environment shows that there is
no negative impact in the absence of reverberation and noise.

7.4. Adaptation

In this section, we combined WPE, fCLP and Grid-LSTM mod-
ules, and report results after sequence training. Rather than re-
porting results on the “rerecorded” sets, which were more for
our understanding that different modules were working prop-
erly, we now report performance on the Google Home test set,
which is representative of real world traffic. The first two rows
in Table 4 show that the proposed system offers a 16% relative
improvement compared to the existing log-mel LSTM produc-
tion system. The major win comes in noisy environments, es-
pecially in speech background noise (26% WERR) and music
noise (18% WERR) where we would expect beamforming and
the Grid-LSTM to help more.

Next, we further adapt the proposed model by continuing
sequence training with the 4,000 hours real traffic training set.
The third row of Table 4 shows that adaptation gives an addi-
tional 4% relative improvement. Overall, the proposed techni-
cal and system advances provide approximately a 8-28% rela-
tive improvement over the production system.

Model Full ) Clean Speechl\I[OISNfu:iycpe[ Other
| prod H 6.1 H 5.1 [ 8.5 [ 6.2 [ 6.0 ‘
[ home [ 51 49 | 63 | 51 | 50 |
| home(adapt) H 4.9 H 4.7 [ 6.1 [ 49 [ 4.8 ‘

Table 4: WER on Google Home test set.

8. Conclusions

In this paper, we described the various aspects of the Google
Home multichannel speech recognition system. Technical
achievements include a WPE to perform dereverberation, f{CLP
to perform beamforming jointly with acoustic modeling, and a
Grid-LSTM to model frequency variations. In addition, we also
presented results by adapting the model based on data from real
traffic. Overall, we are able to achieve a 8-28% relative reduc-
tion in WER compared to the current production system.



(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

[12]

[13]

(14]

9. References

E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker,
and R. Marxer, “An Analysis of Environment, Micro-
phone and Data Simulation Mismatches in Robust Speech
Recognition,” Computer Speech and Language, 2016.

M. Brandstein and D. Ward, Microphone Arrays: Signal
Processing Techniques and Applications. Springer, 2001.

J. Benesty, J. Chen, and Y. Huang, Microphone Array Sig-
nal Processing. Springer, 2009.

M. Delcroix, T. Yoshioka, A. Ogawa, Y. Kubo, M. Fuji-
moto, N. Ito, K. Kinoshita, M. Espi, T. Hori, T. Nakatani,
and A. Nakamura, “Linear Prediction-based Dereverbera-
tion with Advanced Speech Enhancement and Recogni-
tion Technologies for the REVERB Challenge,” in RE-
VERB Workshop, 2014.

T. N. Sainath, R. J. Weiss, K. W. Wilson, B. Li,
A. Narayanan, E. Variani, M. Bacchiani, I. Shafran, A. Se-
nior, K. Chin, A. Misra, and C. Kim, “Multichannel Sig-
nal Processing with Deep Neural Networks for Automatic
Speech Recognition,” IEEE Transactions on Speech and
Language Processing, 2016.

T. N. Sainath, A. Narayanan, R. J. Weiss, K. W. Wilson,
M. Bacchiani, and I. Shafran, “Improvements to Factor-
ized Neural Network Multichannel Models,” in Proc. In-
terspeech, 2016.

J. Caroselli, 1. Shafran, A. Narayanan, and R. Rose,
“Adaptive multichannel dereverberation for automatic
speech recognition,” in Proc. Interspeech (submitted),
2017.

T. Yoshioka and T. Nakatani, “Generalization of multi-
channel linear prediction methods for blind mimo im-
pulse response shortening,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 20, no. 10, pp.
2707-2720, 2012.

N. Kalchbrenner, I. Danihelka, and A. Graves, “Grid Long
Short-Term Memory,” in Proc. ICLR, 2016.

T. N. Sainath and B. Li, “Modeling Time-Frequency
Patterns with LSTM vs. Convolutional Architectures for
LVCSR Tasks,” in Proc. Interspeech, 2016.

T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Con-
volutional, Long Short-Term Memory, Fully Connected
Deep Neural Networks,” in Proc. ICASSP, 2015.

M. Delcroix, T. Yoshioka, A. Ogawa, Y. Kubo, M. Fuji-
moto, N. Ito, K. Kinoshita, M. Espi, T. Hori, T. Nakatani
et al., “Linear prediction-based dereverberation with ad-
vanced speech enhancement and recognition technologies
for the reverb challenge,” in REVERB Workshop, 2014.

T. Yoshioka, N. Ito, M. Delcroix, A. Ogawa, K. Kinoshita,
M. Fujimoto, C. Yu, W. J. Fabian, M. Espi, T. Higuchi
et al., “The ntt chime-3 system: Advances in speech en-
hancement and recognition for mobile multi-microphone
devices,” in Automatic Speech Recognition and Under-
standing (ASRU), 2015 IEEE Workshop on. 1EEE, 2015,
pp. 436-443.

T. Yoshioka, H. Tachibana, T. Nakatani, and M. Miyoshi,
“Adaptive dereverberation of speech signals with speaker-
position change detection,” in Acoustics, Speech and Sig-
nal Processing, 2009. ICASSP 2009. IEEE International
Conference on. 1EEE, 2009, pp. 3733-3736.

[15]

[16]

(17]

(18]

(19]

[20]

A. Senior, H. Sak, T. N. S. F. de Chaumont Quitry,
and K. Rao, “Acoustic Modelling with CD-CTC-SMBR
LSTM RNNS,” in Proc. ASRU, 2015.

G. Pundak and T. N. Sainath, “Lower Frame Rate Neural
Network Acoustic Models,” in Proc. Interspeech.

T. N. Sainath and B. Li, “Modeling time-frequency pat-
terns with Istm vs. convolutional architectures for lvcsr
tasks,” in Proc. Interspeech, 2016.

B. Li and T. N. Sainath, “Reducing the computational
complexity of two-dimensional Istms,” in Proc. Inter-
speech (submitted), 2017.

J. B. Allen and D. A. Berkley, “Image Method for Ef-
ficiently Simulation Room-Small Acoustics,” Journal of
the Acoustical Society of America, vol. 65, no. 4, pp. 943
—950, April 1979.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,
M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and
A.Ng, “Large Scale Distributed Deep Networks,” in Proc.
NIPS, 2012.



