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¢ — 1 them the unknown P(w;) reduced by the single constraint 3 Plw;) =1
j=1

Thus, the problem is not identifiable if 2c — 1 > m.
2. PROBLEM NOT YET SOLVED
3. We are given the mixture density

1 2 2 1 2 2
—z?/(207) 4 i Plw e*"’ /(2‘72).
V2mo ¢ ( (1)) V27as

(a) When o) = o3, then P(w;) can take any value in the range [0, 1], leaving the
same mixture density. Thus the density is completely unidentifiable.

P(z|0) = Pw1)

(b) If P(w,) is fixed (and known) but not P(w;) = 0,0.5, or 1.0, then the model
is identifiable. For those three values of P(w;), we cannot recover parameters
for the first distribution. If P(w;,) = 1, we cannot recover parameters for the
second distribution. If P(w;) = 0.5, the parameters of the two distributions are
interchangeable.

(c) If 0y = o9, then P(w;) cannot be identified because P(w;) and P{ws) are
interchangeable. If o1 # o3, then P(w;) can be determined uniquely.

Section 10.3

4. We are given that x is a binary vector and that P(x|6) is a mixture of c multivariate
Bernoulli distributions:

P{x|8) = i P(x|w;, 8) P{w;),

i=1

where
d
P(x|w.i, 9{) = H 9;-1;3(1 — H{j)l—w”.
i=1

(a) We consider the log-likelihood

d
In P(x|w;,8;) = [miln 6 + (1 - zy;)n (1-635)],
j=1
and take the derivative
Oln P(x]w.i, 31') T 1— &
B
ozl = 6y5) — 0i5(1 — xi5)
a 0:;(1 — ;)
Ti; — :Eijﬂ,'j —0;; + Ozi245
0:5(1 — 0i5)
0;;(1 — 035)
We set this to zero, which can be expressed in a more compact form as
e T — 9,;

Zp(wiiﬂ'}k,éi)-,———r = u.
i 8:(1— ;)
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(b) Equation 7 in the text shows that the maximum-likelihood estimate @; must
satisfy

Y Plwilx, 8:)V g In Paxlos, 8:) = 0.

k=1

We can write the equation from part (a) in component form as

A sck@z-
V ].IlPi: wi,ai ==
o.ln Pleekn 00) = 50 6y
and therefore we have

n

; 2 =B
Zp(wilxk,ei),\x—k-—f— =0
k=i 6:(1-6;)

We assume 8; € (0,1), and thus we have

L
> Plwilx, 8:)(xx — 8;) =0,
k=1

which gives the solution

S Plwilxk, 8;)7x
6,—_ _ k=1

S Pwilze, 05)
k=1

(c)

Thus éi, the maximum-likelihood estimate of 8;, is a weighted average of the

Xx's, with the weights being the posteriori probabilities of the mixing weights
P(w;|xx,8;) for k=1,...,n.

5. We have a c-component mixture of Gaussians with each component of the form

p(x|wi, 8;) ~ N(p;, 071),

or more explicitly,

1 1
p(x|w;, 8;) = We}q} _@(X—.ﬂi)t(x“#i) .

2

We take the logarithm and find

d d 1
In p(x|w;, 8;) = _5111 (2m) — ‘2‘111 of — @(X — pa)t(x — ),
k3

and the derivative with respect to the variance is

Oln p(x|w;, 8:) d 1 ¢
80’112 20_2.2 + 20::1 (x l-l'i) (X p'-i)

1
g (—do? + [x = pll®):

T
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The maximum-likelihood estimate @; must satisfy Eq. 12 in the text, that is,

ZP w1|xk, VG In p(xkiwu 1) =0.
k=1

We set the derivative with respect to o? to zero, that is,

ol i, 8
Z o) ﬂ(jﬂu

n
> P wzlxk,9)2n4( do? + i — fll”) = 0,
k=1

rearrange, and find

k3 n

4633 Plwilxe, 0:) = Y Plwilxr, 0:)lxx — il

=1 k=1

The solution is

L3 Plwilxe, 8:)lx — B:1°
~ 2 k=1
o = 3§

3 Plwilxz, 8:)
k=1

where fi; and P(w,-|xk, éi), the maximum-likelihood estimates of p; and P(w;|xx, 8;),
are given by Egs. 11-13 in the fext.
6. Our c-component normal mixture is

p(xla) = ZP x|w;, @) P(w;),
g=1
and the sample log-likelihood function is
b= Zln p(xela).
k=1

We take the derivative with respect to o and find

ol i Oln p(xkle) _ i 1 Bp(xi,a)

Ba e da - p(xg, @) Oa

= 1
= ; e a) Ba Zp k|, @) P(w;)

- ZZ P(xkk&ak - wj) o 5 —In p(xg|w;, @)

k=tg=]

n c al "
= 33 Pwjlxx, a)n_p(z_‘;'fﬂ_i),

k=14=1
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—% S>> %(wk = ;)

J=lkizeeQy

= —Zij)nj ln (2mo? --Z Z (z — p5)%,

j=l ki €95

where n; = 3. 1is the number of points in the interval €;. The result above implies

ki €025
1
max —Inp(zy,...,Ze|p1, ... fe)
Pelyeeafte TR
o = Ec n;ln P(w-)—lln (2ma?) E mex E [—(zx — p)?].
n 4 7 ) 2 vl
F=1 j*l k z-keﬂ,

However, we note the fact that

maxz (zx — p5)?]

k :rkEQ
occurs at
Tr
% iz €825
M= T
ki, €02y
> Tk
k::ckEQj
4
yo—1 $j1
for some interval, 7 say, and thus we have
1
max #p(rrl, v NP gevsvn i)
H1y-0le TR
o 2 -
~ - E njlnij)ﬁ—ln(Qﬁa)—-—— E E (zk a:_,
J =1 j=1 ki eQy

I 1 11
- EanlnP(wj)—Eln (2mo?) — 53T Z Z (zx — %;)?

j=1 i= g, zrEQ;

Thus if n — oo (i.e., the number of independently drawn samples is very large), we
have n;/n = the proportion of total samples which fall in Q;, and this implies (by
the law of large numbers) that we obtain P(w;).

14. We let the mean value be denoted

X = —:{*ZX}Q.

Then we have

T 1 n
L E (xp —x)!E (xe—x) = — E (xp — %+ % —x)'T 7 Hxp — X +X—x)
n T
k=1 k=1
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= [ixk—x)ﬂ (xp — %)

+2(x — x)t2 ! Z(xk — %) +n(X — x)'S
k=1

_ %i(xkﬁ)tz*(xki) +

k=1

v

where we used

(x—x)!'=Hx-

%Z(X}c — i)tzil(xk — }TC),
k=1

n n
E (xk—i):g X —nX =nX —nx =0.
k=1 k=1

Since 3 is positive definite, we have
(x-x)t='(x-x) >0,

with strict inequality holding if and only if x # X. Thus

fZ(xk——x xk—x)

is minimized at x = X, that is, at

15. PROBLEM NOT YET SOLVED

)x-x)]

X)

16. The basic operation of the algorithm is the computation of the distance between
a sample and the center of a cluster which takes O(d) time since each dimension needs
to be compared seperately. During each iteration of the algorithm, we have to classify
each sample with respect to each cluster center, which amounts to a total number of
O(nc) distance computations for a total complexity O(ncd). Each cluster center than
needs to be updated, which takes O(ed) time for each cluster, therefore the update
step takes O(cd) time. Since we have T iterations of the classification and update
step, the total time complexity of the algorithm is O(T'ncd).

17. We derive the equations as follows.
(a) From Eq. 14 in the text, we have

Ezj'lll/Z 1

e N—1n 1L C(x — )P (x —
]np(xklwhez)_ln (27[_)&/2 Q(Xk “1) 23 (Xk ""‘i)'

It was shown in Problem 11 that

Ol p(xx|wi, 0:) (1 4
B0pq(1)

%22 opa() = (5 (4) = @) () )
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