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the Kolmogorov complexity will be less than K (z;) + K(z2), since some information
from one of the strings can be used in the generatation of the other string.

16. PROBLEM NOT YET SOLVED

17. The definition “the least number that cannot be defined in less than twenty words”
is already a definition of less than twenty words. The definition of the Kolmogorov
complexity is the length of the shortest program to describe a string. From the above
paradoxical statement, we can see that it is possible that we are not “clever” enough
to determine the shortest program length for a string, and thus we will not be able
to determine easily the complexity.

Section 9.3

18. The mean-square error is
Epllglx; D) - F(x)?] = Eplg*(x; D) —2g(x; D)F(x) + F*(x)]
= &Epld*(x; D] — Ep|2¢(x; DF(x)] + Ep|F* (%))
= Eplg*(x; D)) - 2F(x)Eplg(x; D))+ F*(x).

Note, however, that

Epl(g(x; D) — Eplolx; D)2 = Enlg(x; D) — 2g(x; D)épla(x; D)] + [Enla(x; D))
= &plg*(x; D) - Enl29(x; D)epla(x; D]+ Enl(Enlalx; D))’
— £plg?(x; D)) - 2Epla(x; D)lEplg(x; D)] + (Enlalx; D)))?
= &ple*(x; D)) - (nlg(x; D).

We put these two results together and find

Eplg?(x; D) = Ep|(g(x; D) — Enla(x; D)])*] + (Enlg(x: D).
We now apply this result to the function g(x) — F(x) and obtain

Eplla(x; D) — F(x))?] = &plo’(x; D) - 2F(x)éplg(x; D)] + F2(x)
= &pl(g(x; D - Eplg(x; D)+ (Enla(x; D))
~2F(x)Epg(x; D)] + F*(x)
= &Ep[(g(x; D) — Enlg(x; D)) + (Enlalx; D) — F(x)])*
= (Eple(x; D) = F(x)))*+Enl(g(x; D) — Enlglx; D)))’].

e
bias? variance

Since the estimate can be more or less than the function F'(x), the bias can be negative.
The variance cannot be negative, as it is the expected value of a squared number.
19. For a given data set D, if g(x; D) agrees with the Bayes classifier, the expected
error rate will be Min[F(x, 1 — F(x)]; otherwise it will be Max[F'(x,1 — F(x)]. Thus
we have

Prlg(x; D) #y| = Min[F(x),1— F(x)|Pr[g(x; D) = ys]
+Max[F(x), 1 — F(x)|Pr{g(x; D) # ys]-

However, under these conditions we can write

Max|F(x), 1 — F(x)] = Min[F(x), 1 — F(x)] + Max[F(x),1 — F(x)] — Min[F(x),1 — F(x)].
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Thus we conclude

Prig(x; D) #y = [2F(x)—1|Prlg(x; D) # yz]
+Min[F(x),1 — F(x)](Pr[g(x; D) # yg] + Prlg(x; D) = yz])
— [2P() - 1Prlg(x; D) # yp] + MinfF(x), 1 - F(x)]

20. If we make the convenient assumption that p(g(x; D)) is a Gaussian, that is,

1
: D)) = ——exp[—(g — p)*/(20>
plg(x; D)) \/ﬂaexp[ (g — 1)/ (207)]
where p = Eplg(x; D)] and o? = Var[g(x; D)]. From Eq. 19 in the text, then, for
F(x) < 1/2 we have

oo

Prlo(x; D) £ys] = / p(g(x; D))dg
1/2

= |7

1/2

expl—(g — p)*/(207)dg

= 712—7; / exp|—u?/2]du,

(1/2—p)/a

where © = (g— p)/o and du = dg/o. For the other case, that is, F'(x) > 1/2, we have

1/2
Prlg(x; D) £ys] = ] plg(x; D))dg
- |
— [ erl-lo— w?/ ("N
= J% [ elut 2
—(1/2—p)/e

where v = —(g — p) /o and du = —dg/o. Therefore, we have

ﬁ exp[—u?/2]du if F(x) < 1/2
Prlg(x; D)] = ) (1/2—p)fa 5 _
= i exp|—u?/2|du if F(x) > 1/2
_(/3-w)e

3

exp[—u?/2]du = % [1 — erf[t/\/i]] = (),

1
5~
T —3

where

o 122k i P(x) < 1/2
e i p(x) > 1/2.
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Thus, we can write

Prig(x; D)] = sgn[F(x)-1/2]

= sgn[F(x) —1/2]

n—1/2
o

Eplg(x; D) —1/2]
Var[g(x; D)

= f,gll[F(x) —1/2|[Eple(x; D)] - 1/2] Var[g(xﬁ)]—”%_

—~—
boundary bias variance

21. PROBLEM NOT YET SOLVED
22, PROBLEM NOT YET SOLVED

Section 9.4

23. The jackknife estimate of the mean is given by Eq. 25 in the text:

H()

1 ki3
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24. PROBLEM NOT YET SOLVED
25. PROBLEM NOT YET SOLVED
26. We must verify that Eq. 26 in the text for the jackknife estimate of the variance
of the mean is formally equivalent to the variance estimate given by Fq. 23 in the

text. From Eq. 26 we have

Varl[ji]
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n—1e= (% —x; 2
~ 2 ]
T

1 2
mZ(iﬂi —-z)°,

i=1

which is Eq. 23 in the text.
27. Consider the computational complexity of different statistics based on resampling.

(a) The jackknife estimate of the mean is

which requires n summations, and thus has a complexity O(n).

(b) The jackknife estimate of the median has complexity just that required for the
sorting operation, which is O(nlogn).

(c) The jackknife estimate of the standard deviation is

: o 2 g
Varld] = |— Bl D5}

ar \ ;(() )
\ n =1 e ni:l “ ’

which requires 2n summations, and thus has a complexity O(n).

(d) The bootstrap estimate of the mean is
1 B
() — 2 N7 g
g*¢) = 5 521:9 ;

which requires B summations, and thus has a complexity O(B).

{e) The bootstrap estimate of the medium has complexity the same as that as the
sorting operation, which is O(BlogB).

(f) The bootstrap estimate of the standard deviation is

VVargonll] = \%g(é*m_é*(-))g
2

1}
_ = (é*(b))Q_(__ gt(b’)) ;

which requires 2B summations, and thus has a complexity O(B).






