278 CHAPTER 8. NONMETRIC METHODS

B =k > 3 We can keep replacing each root of the subtree as follows: the first
{R,(a1,as,...,0r)} becomes {R,(ai,R»)}, with subtree {R2, (as, R3)},
<+ {Rr_1,(ax—1,ax)}. By induction, then, any tree can be replaced by
an equivalent binary tree.

While the above shows that any node with B > 2 can be replaced by a node
with binary decisions, we can apply this to all nodes in the expanded tree, and
thereby make the entire tree binary.

(b) The number of levels depends on the number of classes. If the number of classes
is 2, then the functionally equivalent tree is of course 2 levels in depth. If the
number of categories is ¢, we can create a tree with c levels though this is not
needed. Instead we can split the root node sending c/2 categories to the left,
and ¢/2 categories to the right. Likewise, each of these can send ¢/4 to the left
and ¢/4 to the right. Thus a fight upper bound is [logc].

(¢) The lower bound is 3 and the upper bound is 2B — 1.

3. PROBLEM NOT YET SOLVED
4. PROBLEM NOT YET SOLVED
5. We use the entropy impurity given in Eq. 1,

i(N) = =D P(wi)logy (Plw:)) = H(w).

(a) After splitting on a binary feature F' € {R, L}, the weighted impurity at the
two child nodes is

P(L)i(L) + P(RY(R) = —P(L)}_ Plwill)log, (P(wilL))

~P(R) Y, Plwi|B) logs (P()

=3 Pl Fyogy (P—fa%z)ﬂ)

= —ZP(wi,F)logg (P(th))

i F
+P(L)logy (P(L)) + P(R) logy (P(R))
= H(w,F)— H(F).

Therefore, the drop in impurity is
Ai(N) = H(w) — H(w, F) + H(F).
But H(w) < H(w,F) < H(w) + H(F), and therefore we have

0 < Ai(N) < H(F) < 1 bit.

(b) At each node, the weighted impurity at the child nodes will be less than that at
the parent, even though individual descendandant may have a greater impurity

PROBLEM SOLUTIONS 279

than their parent. For example at the (zo < 0.61) node in the upper tree of
example 1, the impurity is 0.65, while that at the left child is 0.0, and that at
the right is 1.0. The left branch is taken % of the time, however, so the weighted
impurity at the children is 2 x 0+ % x 1 = 0.33. Similarly, at the (z; < 0.6)
node of the lower tree, the right child has higher impurity (0.92) than the parent
(0.76), but the weighted average at the children is % x 0+ % x 0.92 = 0.304. In
each case, the reduction in impurity is between 0 and 1 bit, as required.

(c) For B-way branches, we have 0 < Ai(N) < logy(B) bits.

6. PROBLEM NOT YET SOLVED
7. PROBLEM NOT YET SOLVED
8. There are four attributes, {a1, a2, as,as} to be used in our decision tree.

(a) To select the query at the root node, we investigate queries on each of the four
attributes. The following shows the number of patterns sent to the “left” and
“right” for each value, and the entropy at the resulting children nodes:

query || sent left | left entropy | sent right | right entropy
ay 2(.:.?1, 2&)2 1 2(..-.)1 i ZWQ 1
as 2&)1, 2w2 1 Zwl, 2&)2 1
as Owl 5 2(4)2 0 4&)1) 2(4)2 0.9183
a4 2&)1, 3(.02 09710 2(4)1, 1&)2 0.9183

Because query ag leads to the greatest weighted reduction in impurity, a3 should
be the query at the root node. We continue and grow the tree shown in the
figure.

(b) We can expand the tree into rules as

wy = (a3 AND NOTa,) OR (ag AND a; AND NOT a; AND NOT aq)
OR (az AND ay AND ay AND ay4)
— a3 AND (NOT a, OR a; AND (NOT ay AND NOT ay) OR (az AND ag)).
ws = NOT a3z OR (a3AND a; AND NOT ay AND ay)
OR (a3 AND a; AND as AND NOT ay)
_ NOT asOR(as AND a;) AND ((NOT a3y AND as) OR (a3 AND NOT ay)).

9. PROBLEM NOT YET SOLVED
10. PROBLEM NOT YET SOLVED
11. PROBLEM NOT YET SOLVED

PROBLEM SOLUTIONS 281

18. PROBLEM NOT YET SOLVED
19. Here our strings are composed of letters in the alphabet A = {a, b, c}.

(a) Consider the following string (and shift positions)

()

“4a ¢ a ¢ c a ¢ b a c”
1 2 3 4 5 6 7 8 9 10
The last-occurence function gives F(a) =9, F(b) = 8, F(c) = 10, and 0 other-

wise. Likewise, the good-suffix function gives G(c) = 7, G(ac) = 6, G(bac) =0,
and 0 otherwise.

Consider the following string (and shift positions)

”

b ¢ be¢c b a a a b ¢ b a a

“a b a b a
1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18

The last-occurence function gives F(a) = 18, F(b) = 16, F(c) = 15 and 0
otherwise. Likewise, the good-suffix function gives G(a) = 17, G(aa) = 12,
G(baa) = 10, G(cbaa) = 9, G(bcbaa) = 8, G(abcbaa) = 0, and 0 otherwise.

Consider the following string (and shift positions)

bab a ¢ ¢ c”

¢ ¢ ¢ 4 a a
1 2 3 4 5 6 7 8 9 10 11 12 13

The last-occurence function gives F(a) = 10, F(b) = 9, F(c) = 13, and 0
otherwise. Likewise, G(c) = 12, G(cc) = 11, G(ccc) = 1, G(accc) = 0, and 0
otherwise.

Consider the following string (and shift positions)

“2 b b abbabb c b b a b b ¢ b b a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

The last-occurence function gives F(a) = 19, F(b) = 18, F(c) = 16, and 0
otherwise. Likewise, G(a) = 13, G(ba) = 12, G(bba) = 11, G(cbba) = 10,

G(bebba) = 9, G(bbcbba) = &, G(abbcbba) = 7, G(babbcbba) = 6, G(bbabbcbba) =

5, and 0 otherwise.

20. We use the information from Fig. 8.8 in the text.

(a)
‘P
i

The string and the number of comparisons at each shift are:

b a b i 1 % f o r _ e s t i
1 1 1 1 1 1 11 1 1 111

— H
—

r o i i e s _
1 1 ! 1 3 1 1

The sum is the total number of character comparisons: 28,

-t ot

= @

won

