Chapter 6

Multilayer neural networks

Problem Solutions

Section 6.2

1. Consider a three-layer network with linear units throughout, having input vector
x, vector at the hidden units y, and output vector z. For such a linear system we
have y = Wx and z = Way for two matrices W; and W,. Thus we can write the
output as

z = Wyy=WyW;x
ng

for some matrix W3 = Wy W, . But this equation is the same as that of a two-layer
network having connection matrix W3. Thus a three-layer network with linear units
throughout can be implemented by a two-layer network with appropriately chosen
connections.

Clearly, a non-linearly separable problem cannot be solved by a three-layer neu-
ral network with linear hidden units. To see this, suppose a non-linearly separable
problem can be solved by a three-layer neural network with hidden units. Then, equiv-
alently, it can be solved by a two-layer neural network. Then clearly the problem is
linearly separable. But, by assumption the problem is only non-linearly separable.
Hence there is a contradiction and the above conclusion holds true.

2. Fourier’s theorem shows that a three-layer neural network with sigmoidal hidden
units can act as a universal approximator. Consider a two-dimensional input and a
single output z(z;,) = z(x). Fourier’s theorem states

z(x) ~ Z Z A, g.c08(fizr)cos(faza).

i fz

(a) Fourier’s theorem, as stated above, can be rewritten with the trigonometric
identity:

cos(a)cos(3) = %cos(a + B) + %COS(CE -),

219

220

(b)

CHAPTER 6. MULTILAYER NEURAL NETWORKS

to give

z(zi,T0) Z Z % [cos(fiz1 + faza) + cos(fiz1 — fama)].
1 f2

We want to show that cos(z), or indeed any continuous function, can be ap-
proximated by the following linear combination

F(z) = Flzo) + 3 [fl@ipr — flz:)] [Sg[%ﬁ_mq |
i=0

The Fourier series of a function f(z) at a point zo converges to f(zo) if f (z)
is of bounded variation in some interval (zo — h,zo + h) centered on zo. A
function of bounded variation is a follows, given a partition on the interval
a=120< T < Ty < ... < Tp_1 < T = b form the sum

S 1 f@e) — flae-a)l-

The least upper bound of these sums is called the total variation. For a point
f(z) in the neighborhood of f(xo), we can rewrite the variation as

Sgn|z — zi}]

> If(@igr — flz)] [3
i=1
which sets the interval to be (z,z + 2h). Note the function has to be either

continuous at f(xp) or have a discontinuity of the first kind.

flx)
4

“~.) approximation

T T r T T T T T T T - X
X) Xy X3 Xg X5 Xg X7 Xg Xo XjoX)rX12%13% 14

As the effective width of the sigmoid vanishes, ie., as ¢ — 0, the sigmoids
become step functions. Then the functions cos(fiz:+ fax2) and cos(fizy— faza)
can be approximated as

cos(fizy1 + fawa) = cos(fizy, + foza,)

+ (Z[COS(‘TI‘-Q-Ifl -+ I25+1 fz) - COS(II.;fl = 32‘—_{2)]

i=0

§ {Sgn[:gl — @1:]Sgnfzs — -"«‘zt'l}) :

2

and similarly for cos[fiz; — fazal.

PROBLEM SOLUTIONS 221

(d) The construction does not necessarily guarantee that the derivative is approx-
imated, since there might be discontinuities of the first order, that is, non-
continuous first derivative. Nevertheless, the one-sided limits of f(zg + 0) and
f(zo — 0) will exdst.

Section 6.3

3. Consider a d — ny — ¢ network trained with n patterns for m, epochs.

(a) Consider the space complexity of this problem. The total number of adjustable
weights is dng + ngc. The amount of storage for the n patterns is nd.

(b) In stochastic mode we choose pattern randomly and compute
w(t+1) = w(t) + Aw(t).

until stopping criterion is met. Each iteration involves computing Aw(t) and
then adding it to w(t). From Eq. 17 in the text, for hidden-to-output unit
weights we have

Awjr = n(te — zx) f'(netr)y;,

nH
where nety = 5, w;zy; is computed by ny multiplications and ny additions.
i=1
So, Awj is computed with ¢(2ng + 1) operations.

From Eq. 17 in the text, for input-to-hidden unit weights we have
c
ij.i = T]:l:z-f’ (netk) Z wkjék
k=1
where, net; is computed in 2d operations. Moreover,) w;,dk is computed in
k

2¢ operations. Thus we have w;;’s are computed in [2d + 2¢|ng time.

Thus, the time for one iteration is the time to compute Aw plus the time to
add w to Aw, that is,

T = c(2ng+10+2(d+c+ 1)ny + (dng + nyc)
= 3dnyg +Sngc+c 2ng.
In summary, the time complexity is (3dng +5ngc+ ¢+ 2nyg)m..

(c) Here, the number of iterations = nm, and thus the time complexity is (3dng +
Snpgc+c+2ng)n me.

4. Equation 20 in the text gives the sensitivity at a hidden unit

5j = f’(netj) Z wkjék.

k=1

For a four-layer or higher-layer neural network, the sensitivity of a hidden unit is
likewise given by

oE OE 00;
- Ho; Onet; |

224 CHAPTER 6. MULTILAYER NEURAL NETWORKS

10. We express the derivative of a sigmoid in terms of the sigmoid itself for positive
constants a and b for the following cases.

(a) For f(net) = 1/(1 + e* ™), the derivative is

df(net) g (1)2 e? net

dnet 1+ go net
= —af(net)(1 — f(net)).

(b) For f(net) = atanh(b net), the derivative is

df (net) —9b2atanh(b net)(1 — tanh®(b net)).

d net
11. We use the following notation: The activations at the first (input), second, third,
and fourth (output) layers are z;, y;, v, and zx, respectively, and the indexes are
clear from usage. The number of units in the first hidden layer is nq, and the number
in the second hidden layer is ng,. output

A
NS
24

7
2

70\
78\
28
s g
I
\7

&,
‘@
3
N
N\

$
S
K
2%
S

NS7AN
AN &%
N LS
57 b

//’I

70
!

©
W

Y,
L]

</
4

0
3
0
V!
+%

X
8
[73

&5
<X
685

;?

Algorithm 0 (Four-layer backpropagation)
1 begin initialize zzx

2 TITT
3 TTT
4 return rrr
5 end

Section 6.4

12. Suppose the input to hidden weights are set equal to the same value, say w,,
then w;; = w,. Then we have

d
nel; = f(netj) = Zmﬁmi = w, Z T; = WyX.

i=1 i

228 CHAPTER 6. MULTILAYER NEURAL NETWORKS

(b) Already shown above.

19. The assumption that the network can represent the underlying true distribution is
not used before Eq. 28 in the text. For Eq. 29, however, we invoke gi (x; w) = pwelx),
which is used for

3 [fantoss w) = Pl =0
k=1

This is true only when the above assumption is met. If the assumption is not met, the
gradient descent procedure yields the closest projection to the posterior probability
in the class spanned by the network.

20. Recall the equation

p(y|we) = AT +B(y $)+%'y

() Given p(y|wy), we use Bayes’ Theorem to write the posterior as

p(yln)P(wr)

plwrly) = ==

(b) We interpret A(-), W and ¢ as follows:
Plwy) = e A0V
exp [A(Wi) + B(y, ¢) + W;y] P(w)
. exp [A(Wr) + B(y, ¢) + Wi,y] Plwm)

m=1

netg

c bl
Z enetm
m=1

plwily)

where net, = b(y, $) + w'y. Thus, B(y, ¢) is the bias, W is the weight vector
describing the separating plane, and e AWK is P(wy).

21. Backpropagation with softmax is done in the usual manner; all that must be
evaluated differently are the sensitivities at the output and hidden layer units, that
is,

eneth Bzh
Zh = ———— and = zp(1 — zp).
B 5 enetn Onetp, a v)
h
(a) We are given the following terms:
d
net; = Zwﬁmi
=¥
nH
nety = Z WY
e
y; = f(net;)
nety

e
e = —4/

zc: enetm
m=1

PROBLEM SOLUTIONS 229

and the error function

c

Z(tk — Zk)z.

k=1

‘]:

B2 =

To derive the learning rule we have to compute 8J/0wy; and 8J/0w;;. We start
with the former:

aJ - 8J Onety
Bwy; nety Owg;

We next compute

Z 3.] azs
3netk 833 B’Ilﬁtk

We also have
SN en TSk
(9233 (E f‘-n“m)
= ty 71?:; nets .
Bnety (—j F(-1) R = -2 i s=k
z E._n.etm (E enetm)
m=1 m=1
and finally
aJ
T (—1)(ts — 2s)-
8

Putting these together we get

= Z(D)(ts — 25)(—zs2x) + (1) (tx — zi) (2 — 23).

8netk

We use Onety/Owy; = y; and obtain

= gy Z — 2z5)(zs2k) — yilte — 2) (2 — zf)

3w3. o

Now we have to find input-to-hidden weight contribution to J. By the chain
rule we have

0J 08J 0Oy; Onet;

&uﬁ N Byj 3netj 310;,-1- '

We can at once find out the last two partial derivatives.

Byj e aﬂ.et]‘ =
Tnet; f'(net;) and =

81‘.1);,‘{

Now we also have

Z oJ 8213
Bz, Byj

230

c dz
D T e
; dy;
c [& Oz, Onet.,
= - i, — 25 —
;() = Onet, Oy;

i(t —2) 8z, Onet, " °. 8z, Onet,
s~ %) | Bnet, Oy; Onet, Oy;
g=1 N, -

I

TS N e e
| zs—22 Waj —~ZsZr Wy
[+ c]
= - Z(ts — z5)(2s — 22)w,; + ZZzszrwrj(ts — Zg)-
a=1 s=1 r#s

We put all this together and find

= z;f (net;) z:(t3 — z5) Z WriZsZr

s=1 T#8

aJ
a’l.Uj?;

—z,f'(net;) Z(t*‘ — 2z)wg;(zs — 22).
s=1

Of course, the learning rule is then

oJ
ij,; i s
i)
aJ
Awy; N
4]

where the derivatives are as given above.

(b) We are given the cross-entropy criterion function

CHAPTER 6. MULTILAYER NEURAL NETWORKS

The learning rule derivation is the same as in part (a) except that we need to
replace 8.J/8z with 8J../8z. Note that for the cross-entropy criterion we have

8Je/Ozx = —ti[zk. Then, following the steps in part (a), we have

e

aJce tk tk 2
= I —ZgZE —Yij—\Zk — 2
B j gék 5 Y5 ” (i)

c
- yjzikzk — yiti(l = zx).
s#k

Similarly, we have

aJ, e o
&U? = mfl(nets) Y) weizsns

s=1 "% r#z

[o3
i
—z;f(net;) Z z—st.us;,-(z8 —z2).
s=1 "%

PROBLEM SOLUTIONS 231

Thus we find

Il

6J c c
= :L‘if'(netj)zts Zwrjzr

Ousas
7 8=l r#s

—xz;f'(net;) Z bl —2;).

s=1

Of course, the learning rule is then

aJ.
By B 3w-e~
3i
e
Awkj = = 8’!1}2 il
¥

where the derivatives are as given above.

22. In the two-category case, if g1 ~ P(wi|z), then 1 — g ~ P(ws|z), since we
can assume the categories are mutually exclusive and exhaustive. But 1 — g; can
be computed by a network with input-to-hidden weights identical to those used to
compute ¢g;. From Eq. 27 in the text, we know

S [loes,w) = Pl b dx+ 3 lawa () = Pl)]
ki k2
is a minimum. this implies that every term in the above equation is minimized.

Section 6.7

23. Consider the weight update rules given by Eqs. 12 and 23 in the text.

(a) The weight updates are have the factor nf’(net). If we take the sigmoid fi(h) =
tanh(bh), we have

—bh 1
'(h inJ——lz%———wl:QbD:l.
fb() (1+e*bh)2 ethre—bh +2
N m— o
D

Clearly, 0 < D < 0.25 for all b and h. If we assume D is constant, then clearly
the product n/vf/,(h) will be equal to nfi(h), which tells us the increment
in the weight values will be the same, preserving the convergence time. The
assumption will be approximately true as long as |bh| is very small or kept
constant in spite of the change in b.

(b) If the input data is scaled by 1/, then the increment of weights at each step
will be exactly the same. That is,

gf;bm/w) —nf'(h).

Therefore the convergence time will be kept the same. (However, if the network
is a multi-layer one, the input scaling should be applied to the hidden units’
outputs as well.)

