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We note that Sup(y) < co and that in the limit » — oo we have pn, (x) — p(x) and ®
nV, — co. We put these results together to conclude that
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2. Our normal distribution is p(z) ~ N(g,0?) and our Parzen window is o(z) ~ ®
N(0,1), or more explicitly,
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We perform the integration and find
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The argument of the exponentiation can be expressed as follows
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We substitute this back to find

) 1 y [ 1($#)2]
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2 V2m\/h2 + o2 P 2 h2 + o2

which is the form of a Gaussian, denoted

Pn(z) ~ N{p, h'EL 7 ‘72)-

(b) We calculate the variance as follows:

Var[p.(z)] = Var

T — T
-z v (5]
7 =1 ™
1 T—v
= —=V
arv [ (5°).
1 £—v r—v :
5 =
= — -1 &
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where in the first step we used the fact that x1, ..., X, are independent samples

drawn according to p(x). We thus now need to calculate the expected value of
the square of the kernel function
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From part (a) by a similar argument with h,,/ /2 replacing hy,, we have

= ] e[ | (52 |
1 1 (z—p)?
NN {uih_%m?] '

We make the substitution and find

o[ ()] s i

and thus conclude
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For small k., v/h2/2 + 0% ~ o, and thus the above equation can be approxi-

mated as
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Similarly, we have
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valid for small h,,. From (#) and () we have, (still for small k)
_p(@)
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{c) We write the bias as
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For small h, we expand to second order:
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We ignore terms of order higher than k2 and find
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8. Our (normalized) distribution is

p(m):{ l/a 0<z<a

0 otherwise,

and our Parzen window is

e >0
Ple) = 0 x < 0.

(a) The expected value of the Parzen window estimate is

me) = e[S (5] -5 o (B o
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0 if z<0
= 11— e=/Pn) if 0<z<a
%(e“/h” — e %/t if z>a,

where in the first step we used the fact that =1, ..., z, are independent samples
drawn according to p(v).

(b) For the case a = 1, we have

0 <0
pn(z) =4 1—e /P 0<z<1
(el/hn — 1) 2/hn £>1,

as shown in the figure.
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(c) The bias is

0 if z<0
p(z) — pn(z) = L_l(1—e/tn) if 0<z<a
0— L(ea/mn —Ne==/"~ if z2>a
0 if <0
= %e*I/h“ if 0<z<a

Liea/fn — De2/m if x> 4.
Formally, a bias lower than 1% over 99% of the range 0 < & < a, means that
M < 0.01
p(z)
over 99% of the range 0 < = < a. This, in turn, implies
. —z/hn
_/“—‘;/—50.01 over 9% of 0 <z < @ or
a

b, < 0.01e .
~ In (100)
For the case a = 1, we have that h, < 0.01/(In100) = 0.0022, as shown in
the figure. Notice that the estimate is within 1% of p(z) = 1/a = 1.0 above
z ~ 0.01, fulfilling the conditions of the problem.
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4. We have from Algorithm 2 in the text that the discriminant functions of the PNN
classifier are given by

i b
g,-(x):Zexp [“‘WL—] Ak, izl,...,c
k=T a2

where ||wg|| = ||x|| = 1, n; is the number of training patterns belonging to w; and

e = 1 if we €uwy
ks 0 otherwise.

{a) Since |[wk]| = ||x]| = 1, g:(x) can be written as

Z Xp[ lIx — Wkliz]aki_

Note that gi(x)/n; is a radial Gaussian based kernel estimate, pn(x|w;), of
p(x|w;). If we use n;/n as the estimate of the prior class probability P(w;),
then g;(x) can be rewritten as

i(x) = nPp (Wi )p(x|w:).
Thus g;(x) properly accounts for the class priors.
(b) The optimal classification rule for unequal costs is given by
Choose wy if gy = 131(11;1 g7,

where the \;; represent the costs and

c

200 = Y Py ) = 3 LB,

7=1 g=1

This discriminant function can be written simply as
g5 (x) - Z Aij P(w;)p(xw;).

Consequently, the PNIN classifier must estimate g} (x). From part (a) we have
that g; = nPy,(w;)p(x|w;). Thus the new discriminant functions are simply

gi(x) = Z Aijg;(x
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erf(e—1)
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0
erf(e—1)

WIG S

0

Thus we have demonstrated that P* = P = r in this nontrivial case.

9. Our data are given in the table.

w1 Wa wg
10,00 | (5,10) | (2,8)
(01'10) (015) ("552)
(51“2) (515) (10:'4)

Throughout the figures below, we let dark gray represent category w;, white represent
category ws and light gray represent category ws. The data points are labeled by their
category numbers, the means are shown as small black dots, and the dashed straight
lines separate the means.

a)

10. The Voronoi diagram of n points in d-dimensional space is the same as the
convex hull of those same points projected orthogonally to a hyperboloid in (d + 1)-
dimensional space. So the editing algorithm can be solved either with a Voronoi
diagram algorithm in d-space or a convex hull algorithm in (d+ 1)-dimensional space.
Now there are scores of algorithms available for both problems all with different
complexities.

A theorem in the book by Preparata and Shamos refers to the complexity of
the Voronoi diagram itself, which is of course a lower bound on the complexity of
computing it. This complexity was solved by Victor Klee, “On the complexity of
d-dimensional Voronoi diagrams,” Archiv. de Mathematik., vol. 34, 1980, pp. 75-
80. The complexity formula given in this problem is the complexity of the convex
hull algorithm of Raimund Seidel, “Constructing higher dimensional convex hulls at
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logarithmic cost per face,” Proc. 18th ACM Conf. on the Theory of Computing, 1986,
pp. 404-413.

So here d is one bigger than for Voronoi diagrams. If we substitute d in the
formula in this problem with (d — 1) we get the complexity of Seidel’s algorithm
for Voronoi diagrams, as discussed in A. Okabe, B. Boots and K. Sugihara, Spatial
Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley,
1992.

11. Consider the “curse of dimensionality” and its relation to the separation of points
randomly selected in a high-dimensional space.

(a) The sampling density goes as nl/4 and thus if we need n; samples in d =1
dimensions, an “equivalent” number samples in d dimensions is ng. Thus if we
needed 100 points in a line (i.e.,, n; = 100), then for d = 20, we would need
12 = (100)%° = 10%° points — roughly the number of atoms in the universe.

(b) We assume roughly uniform distribution, and thus the typical inter-point Eu-
clidean (i.e., La) distance 4 goes as 5% ~ volume, or & ~ (volume)'/2.

(¢) Consider points uniformly distributed in the unit interval 0 < z < 1. The length
containing fraction p of all the points is of course p. In d dimensions, the width
of a hypercube containing fraction p of points is l4(p) = p/%. Thus we have

15(0.01) = (0.01)Y/° =0.3910
5(01)= (0.1)}/5 =0.7248
130(0.01) = (0.01)}/2° =0.8609
lo(0.1) = (0.1)Y/20  =0.8609.

(d) The L distance between two points in d-dimensional space is given by Eq. 57
in the text, with & — oc:

Lm(xa Y) =
= max|jz1 — w1, w2 —y2l, -, 172 — yal]
= max|z; — wil
z
In other words, consider each axis separately, i = 1,...,d. Thereisa separation

between two points x and y along each individual direction ¢, that is, s — vl
One of these distances is the greatest. The L., distance between two points is
merely this maximum distance.

Informally we can see that for two points randomly selected in the unit d-
dimensional hypercube [0, 1]%, this Lo, distance approaches 1.0 as we can nearly
always find an axis i for which the separation is large. In contrast, the L
distance to the closest of the faces of the hypercube approaches 0.0, because
we can nearly always find an axis for which the distance to a face is small.
Thus, nearly every point is closer to a face than to another randomly selected
point. In short, nearly every point is on the “outside” (that is, on the “convex
hull”) of the set of points in a high-dimensional space — nearly every point is
an “outlier.”

We now demonstrate this result formally. Of course, x is always closer to a
wall than 0.5 — even for d = 1 — and thus we consider distances I* in the
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d
(b) We follow the logic of part {a). Now our target function is f (x) = 3 a;Bi(x)
i=1l
where each member in the basis set of M basis functions B;(x) is a function of
the d-component vector x. The approximation function is

N M
f(x)= Z B (%),

and, as before, the coefficients are least-squares estimates

2
n q
d; = arg minz [yi — Z amBm(x)}
ai
i=1 m=1

and y; = f(x;)+N(0,02). Now y will be approximated by Ba, the projection of
y onto the column space of B;, that is, the subspace spanned by the M vectors

Bi(x1)

B; (Xg)

B‘i (xn)
As in part (a), we have

i 02
£l - Fx) = 2,

bi

which is independent of d, the dimensionality of the original space.

13. We assume P(w;) = P(w2) = 0.5 and the distributions are as given in the figure.

plxfey)
2 -

(a) Clearly, by the symmetry of the problem, the Bayes decision boundary is z* =
0.5. The error is then the area of the dark shading in the figure, divided by the
total possible area, that is

1

P* = fMH[P(wl)p($1w1),P(‘*’Z)'P(ﬂ‘”ﬂ] dr
0
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0.5 1
= Bla) f % dz + P(ws) [ (2 - 2) da
0 .5

0

1 1
= 0.5- 5— = 0.25.
054+054

(b) Suppose a point is randomly selected from w; according to p{z|w;) and another
point from wy according to p(z|ws). We have that the error is

1 i i (z1—z2)/2
/ iy (o) f dy plaalws) / da plz|ws) f dw p(lwr).
0 0 (71-72)/2 0

(¢) From part (d), below, we have for the special case n =2,

1 1 51
= —— = (.425.
2+ <3)  22ro@+s) 120

1
Pz(e):‘g-l-

(d) By symmetry, we may assume that the test point belongs to category ws. Then
the chance of error is the chance that the nearest sample point ot the test point
is in w;. Thus the probability of error is

1

P.le) = fP(:c |wa )Pr[nearest y; to x is in w|dx

(=]
—

= fP(a:]wg) ZPr[yi € wy and y; is closer to = than y;,Vj # i|dz.
0 i=1

By symmetry the summands are the same for all 7, and thus we can write

P.(le) = P(z|ws)nPrly; € wy and |y — z| > |y — z|, Vi > 1]dz

i3
P($|w2)“-/P(w1!yl)Pr[|yi —z| > |y1 — =|,Yi > l]dy; d=z

I
O O O _

0
1

P(alwz)n f Plwrlyn)Prllyz — 2l > o — 2" dy de,
0

where the last step again relies on the symmetry of the problem.

To evalute Pr[|yz — z| > |y; — z||, we divide the integral into six cases, as shown
in the figure.

We substitute these values into the above integral, and break the integral into
the six cases as

1/2

Eid = /P(“’W?)”{/P(tﬂl!yl)(i +2y1 —22)" ldy
0 0
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denotes possible locarions
of yywith |yx|>[y,=x|

Case 1.1: x€[012] O0<Yy;<x

Yi

2x-y;

0 2 1
Prly,x| >y, x|1 =1 + 2y, 2«

Case 1.2: x€[01R2] x<y;<2x
2y XY
=

0 12 1
Pr,f|y2-x|>[y,x|}= I+2x-2y,

Cose 1.3:  x€[0,12] Zx<y,;<1l

x Y1

B e S

0 2 1
erf|y, x| >y x|1 = 1-3,

Case2.1: xe€fl2,1] O<y;<2x-1
Y1 x

B e -

0 12 1
Pl |yz-x| > [y x| = ¥y

Case2.2: x€[1/2]] 2xI<y;<x
Yr 2x-y,

[ IR

=it

0 1/'2 1
Prf|y,x| >y x|l =1+ 2y, - 2

Case2.3: x€[l2,1] a<y;<l

2x-y; x N
ey D
4] 12 I

Prf|yy-x|> |y x|p =1 + 2x- 2y,

2z
+ /P(wl ly ) (1 + 2z — 2y1)“'1dy1

1

+fP(w11y1)(1#y1)nwldyl dz

2
1 2z—1
+/P($|W2)n[ / P(wily)yr ™ dy
172 0

xT

4 jf Plwowlys)(1 + 291 — 22)" s
2r—1

1
+/P(w1|y1)(1+2:c72y1)"-1dy1 dzx.

Our density and posterior are given as p(z|ws) = 2(1 — x) and P(wi|y) = y for

z € [0,1] and y € [0,1]. We substitute these forms into the above large integral
and find

1/2 i
m@-:f%wﬂﬂﬁm+%—mnwl
4] 4]

T

/yl(l + 2z — 2y1)" ldyy

T

1

fyl(l = yl)“ldw} dz

2z



PROBLEM SOLUTIONS

+
1

1
£

2n(l1 — ) [

151

2z—1

/

/ yi(1+ 2y — 22)" 'dy
2z—1
1

o
fyl (1 + 2z — 2y1)n1dy}_J dz.

€T

y?d%

There are two integrals we must do twice with different bounds. The first is:

b

/yl(l + 2y1 — Qm)nildyl.

a

We define the function u(y;) = 1+ 2y — 2z, and thus y; = (u+ 2z — 1)/2 and

dy: = du/2. Then the integral is

b
/y(l + 2y — 2z)" ldy,

a

The second general integral is:

b

i u(b)
i /(u+2$—1)u"_1du
u(a)
u(b)
1 20— 1 n 1 4l
[ T +n+1u

Il

4

u(a)

/yl (1 + 2% — 2y1)nﬁ1dy1.

a

We define the function u(y;) = 1+ 2z — 2y;, and thus y; = (1 + 2z — »)/2 and

dy

b
/yl(l + 2z — 2y1)"_1dy1

—du/2. Then the integral is

u(b)
f (1+ 2z + w)u™tdu
u(a)
1 [2m+1 1

T n+1
w - U
n+1 ]

1

u(b)

4

n u(a)

We use these general forms to evaluate three of the six components of our full

integral for P,(e):

T

fyl(l + 241 — 2:1:)”"1013;1
0

1
4

1
4

Dt 1—2z=u(0)
[ T 1?_.!.”'— 1 uﬂ+1:|
) n+1 T
2z +1 1 1 Ji 1
- - 1_2 n+1 Bl T
( n +n+]>+4( z) (n n+1

)
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2z
9 1 1 1—-2z=u(2z)
/yl(l e Dy — zyl)nfldyl _ [ T + u” — un+l}
J n n+1 1=u(z)
1/2z+1 1 1 1
= = = (=2 +-(1—2z)"" = +-
4( n+1> Qn(l %) +4( %) (n+'r.
1-2z

1 1 1 1--2x
o n——ld v 1-— n— 1d N el n+1
[nt-wrtan = [ a-uwridus | 2o ]
2z 0

1 1
= Sl 2~ — [l B
(- 22" - —(1-22)
We add these three integrals together and find, after a straightforward calcula-
tion that the sum is
:c 1 n 1 1 syl
i (1—2z)" + (271 n+1) (1—2z)". (%)

We next turn to the three remaining three of the six components of our full
integral for Py (e):

2z—1

1
1 — Qe — n+l
[ vt = —=-1)
0
f 121 L
f n(1+2 —20)" dyn = < T u“*l]
4 (L n+1 2z—1=u(2z—1)

2x—1

1f2-1_ 1 1 a1 1
- 4( n *m&) riiat U by
1 [2x+1 o1 er“"l—”(”

__Z u ¥

1
1+2 —92 n—ld == o
fyl( 28 Y1) Y1 5 U B

1=u(z)
1/2xz+1 1 1 1 1
= = - 2z -1 - (21" [ =
4( n n—i—l) 2n(:r ) 4(E ) (n
The sum of these latter three terms is
T 1 1 1
B S P n __ = D — 'n.+ll

Thus the sum of the three Case 1 terms is

1/2

/ 2n(l — z)

0

T

fyl(l + 21 — 2m)”_ldy1

0
2z

+ ]yl(l + 2z — 2y1)”*1dy1

&

2 ¢
4—/;;1(14,1;1)”1@1} dx

2z
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1/2

= fzn(1_$) {i+§%(1—2z;)”+(1—2z)““ (2—173 - nil)] dx

0

1
_/ 14+u 1—u+1 n 1 1 | g
Y e W | on m n+l ’

0

where we used the substitution u = 1 — 2z, and thus = = (1 — u)/2, and
de = —du/2and 1 —z = (1 +u)/2.

Likewise, we have for the three Case 2 terms

al 2z-1

[ - :c)[ [ vraw

1/2 0
T

+ -/ yi(1+ 2y, — 2:1:)"_1dy1
2x—1

1
+ fyl(]. + 2z — 2y1)”_1dy1} dx

T

(1 — ) E - %(21-— 3% (B 1y (% - ni1)] dx

1—w) |14z 1 o 1 1 st
n( 2 )[ 2n 2n (271 n+1) }du

where we used the substitution u = 2z—1, and thus z = (1+u)/2 and dz = du/2
and 1 — == (1 —u)/2.

Now we are ready to put all these results together:
1 1 1 1 1
14w - U
Pn - ST I D2 I n+1 d
(c) /”( ) )[Qn o +(2n n.+1)“ } &
i}
1—u\[14+u 1 1 1 41
oy S0 o N T n d
n( ){ 2n o (211 n—l—l)u ] “
1 1 1
ity () O n—+1 42
{ (1—u? + 5 4 (Qn 1) ] du

ey
a n%%( )2n(ri+2 n+3(_lﬁ_ ) nLgl

12 1 1—-mn
__+2n(n+2)+n+3 (211 n+1 )]
n+1)(n+3)—(n—1)(n+2)
2(n+1)(n+2)(n+3)

o ‘Sx\_ﬁﬂ
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1 3n+5

37t 2(n+1){n+2)(n+3)

1 1 1

3P T DmTd)  2mtmts)

which decays as 1/n%, as shown in the figure.

Pe)
0.5
0.4 \\‘
0.2
3 7 6 3 0"

We may check this result for the case n = 1 where there is only one sample. Of
course, the error in that case is Py(e) = 1/2, since the true label on the test
point may either match or mismatch that of the single sample point with equal
probability. The above formula above confirms this

Bl = St :
3 1+1)(1+3)  21+2)(1+3)
1.1 L &
= 3tgtu~y

The limit for infinite data is simply

1
lim P-_.—,_{E) = §,

n—od

which is larger than the Bayes error, as indeed it must be. In fact, this solution
also illustrates the bounds of Eq. 52 in the text:

P* < P<P*(2-2P%)
1 1.3
2 2 G
1 = §—8

14. We assume P(w;) = P(wy) = 0.5 and the distributions are as given in the figure.

plxlay)

W

T e i i

(a) This is a somewhat unusual problem in that the Bayes decision can be any point

1/3 < z* < 2/3. For simplicity, we can take z* = 1/3. Then the Bayes error is
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then simply

1
Pt= [ minlPonpleiu:), Purpele)ds
0

2/3

f P(w)plz|w: )dx
173

0.5(1/3)(3/2) = 0.25.

(b) The shaded area in the figure shows the possible (and equally likely) values of
a point #; chosen from p(z|w;) and a point x5 chosen from p(z|ws).
4

14

23

L

0

I I
0 1/3 2/3 1

There are two functionally separate cases, as numbered, corresponding to the
position of the decision boundary z* = (z1 + z2)/2. (Note that we will also
have to consider which is larger, z; or xo. We now turn to the decision rule and
probability of error in the single nearest-neighbor classifier in these two cases:

case 1 : =3 > x; and 1/3 < (z; + 72)/2 < 2/3: Here the decision point z*
is between 1/3 and 2/3, with Ry at large values of x. This is just the
Bayes case described in part (a) and the error rate is thus 0.25, as we saw.
The relative probability of case 2 occuring is the relative area of the gray
region, that is, 7/8.

case 2 : 7 > oo and 1/3 < (21 +z2)/2 < 2/3: Here the decision boundary
is between 1/3 and 2/3 (in the Bayes region) but note especially that R,
is for large values of z, that is, the decision is the opposite of the Bayes
decision. Thus the error is 1.0 minus the Bayes error, or 0.75. The relative
probability of case 2 occuring is the relative area of the gray region, that
is, 1/8.

We calculate the average error rate in the case of one point from each category
by merely adding the probability of occurrence of each of the three cases (pro-
portional to the area in the figure), times the expected error given that case,
that is,

1 5

i
Py =-0. -0.75 = — =0.3125
1 8025+8075 6 0 ;

which is of course greater than the Bayes error.
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(c) PROBLEM NOT YET SOLVED
(d) PROBLEM NOT YET SOLVED

(e) In the limit 7 — oo, every test point z in the range 0 < = < 1/3 will be properly
classified as w; and every point in the range 2/3 < z < 1 will be properly
classified as ws. Test points in the range 1/3 < = < 2/3 will be misclassified
half of the time, of course. Thus the expected error in the n — co case is

Py = P(w)Prl0<z<1/3lw] -0+ P(w1)Pr[1/3 <z < 2/3|wy]-0.5
+P(wy)Pr(1/3 < x < 2/3|wa] - 0.5 + Pwo)Pr2/3 <z < 1|ua] -0
= 050.505+050505=025.

Note that this is the same as the Bayes rate. This problem is closely related to
the “zero information” case, where the posterior probabilities of the two cate-
gories are equal over a range of . If the problem specified that the distributions
were equal throughout the full range of z, then the Bayes error and the P, errors
would equal 0.5.

15. An faster version of Algorithm 3 in the text deletes prototypes as follows:
Algorithm 0 (Faster nearest-neighbor)

begin initialize j «— 0,D,n = number of prototypes
Construct the full Voronoi diagram of D

do j +— j + 1 (for each prototype x7})

if x/; is not marked then find the Voronoi neighbors of x/
if any neighbor is not from thex;class then mark xg and its neighbors in other classes
until j =n

Discard all unmarked prototypes

returnVoronoi diagram of the remaining (marked) prototypes

end

© o ;oA e b~

If we have k Voronoi neighbors on average of any point x}, then the probability that
i out of these k neighbors are not from the same class as X’ is given by the binomial
law:

P(i) = (’“) (1—1/e)*(1/0)* 7,

where we have assumed that all the classes have the same prior probability. Then the
expected number of neighbors of any point x; belonging to different class is

E(i) = k(1 — 1/c).

Since each time we find a prototype to delete we will remove k(1—1/c) more prototypes
on average, we will be able to speed up the search by a factor k(1 —1/c).
16. Consider Algorithm 3 in the text.

(a) In the figure, the training points (black for wy, white for wa) are constrained
to the intersections of a two-dimensional grid. Note that prototype f does not
contribute to the class boundary due to the existence of points e and d. Hence
f should be removed from the set of prototypes by the editing algorithm (Al-
gorithm 3 in the text). However, this algorithm detects that f has a prototype
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