We interchange the roles of A and B in this equation to get our desired answer:

$$\mathbf{B}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{A} = (\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1}.$$

(b) Recall Eqs. 41 and 42 in the text:

$$egin{array}{lcl} m{\Sigma}_{n}^{-1} & = & n m{\Sigma}^{-1} + m{\Sigma}_{o}^{-1} \ m{\Sigma}_{n}^{-1} m{\mu}_{n} & = & n m{\Sigma}^{-1} m{\mu}_{n} + m{\Sigma}_{o}^{-1} m{\mu}_{o}. \end{array}$$

We have solutions

$$oldsymbol{\mu}_n = oldsymbol{\Sigma}_o \left(oldsymbol{\Sigma}_o + rac{1}{n}oldsymbol{\Sigma}
ight)oldsymbol{\mu}_n + rac{1}{n}oldsymbol{\Sigma} \left(oldsymbol{\Sigma}_o + rac{1}{n}oldsymbol{\Sigma}
ight)^{-1}oldsymbol{\mu}_o,$$

and

$$oldsymbol{\Sigma}_n = oldsymbol{\Sigma}_o \left(oldsymbol{\Sigma}_o + rac{1}{n} oldsymbol{\Sigma}
ight)^{-1} rac{1}{n} oldsymbol{\Sigma}.$$

Taking the inverse on both sides of Eq. 41 in the text gives

$$\Sigma_n = \left(n\Sigma^{-1} + \Sigma_o^{-1}\right)^{-1}$$
.

We use the result from part (a), letting $\mathbf{A} = \frac{1}{n} \mathbf{\Sigma}$ and $\mathbf{B} = \mathbf{\Sigma}_o$ to get

$$egin{array}{lcl} oldsymbol{\Sigma}_n & = & rac{1}{n} oldsymbol{\Sigma} \left(rac{1}{n} oldsymbol{\Sigma} + oldsymbol{\Sigma}_o
ight)^{-1} oldsymbol{\Sigma}_o & = & oldsymbol{\Sigma}_o \left(oldsymbol{\Sigma}_o + rac{1}{n} oldsymbol{\Sigma}
ight)^{-1} oldsymbol{\Sigma}, \end{array}$$

which proves Eqs. 41 and 42 in the text. We also compute the mean as

$$\begin{array}{lcl} \boldsymbol{\mu}_n & = & \boldsymbol{\Sigma}_n(n\boldsymbol{\Sigma}^{-1}\mathbf{m}_n + \boldsymbol{\Sigma}_o^{-1}\boldsymbol{\mu}_o) \\ & = & \boldsymbol{\Sigma}_n n\boldsymbol{\Sigma}^{-1}\mathbf{m}_n + \boldsymbol{\Sigma}_n \boldsymbol{\Sigma}_o^{-1}\boldsymbol{\mu}_o \\ & = & \boldsymbol{\Sigma}_o \left(\boldsymbol{\Sigma}_o + \frac{1}{n}\boldsymbol{\Sigma}\right)^{-1} \frac{1}{n}\boldsymbol{\Sigma} n\boldsymbol{\Sigma}^{-1}\mathbf{m}_n + \frac{1}{n}\boldsymbol{\Sigma} \left(\boldsymbol{\Sigma}_o + \frac{1}{n}\boldsymbol{\Sigma}\right)^{-1} \boldsymbol{\Sigma}_o \boldsymbol{\Sigma}_o^{-1}\boldsymbol{\mu}_o \\ & = & \boldsymbol{\Sigma}_o \left(\boldsymbol{\Sigma}_o + \frac{1}{n}\boldsymbol{\Sigma}\right)^{-1}\mathbf{m}_n + \frac{1}{n}\boldsymbol{\Sigma} \left(\boldsymbol{\Sigma}_o + \frac{1}{n}\boldsymbol{\Sigma}\right)^{-1}\boldsymbol{\mu}_o. \end{array}$$

Section 3.5

17. The Bernoulli distribution is written

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i} (1 - \theta_i)^{1 - x_i}.$$

Let \mathcal{D} be a set of n samples $\mathbf{x}_1, \ldots, \mathbf{x}_n$ independently drawn according to $p(\mathbf{x}|\boldsymbol{\theta})$.

(a) We denote $\mathbf{s}=(s_1,\cdots,s_d)^t$ as the sum of the n samples. If we denote $\mathbf{x}_k=(x_{k1},\cdots,x_{kd})^t$ for $k=1,\ldots,n$, then $s_i=\sum_{k=1}^n x_{ki}, i=1,\ldots,d$, and the likelihood is

$$P(\mathcal{D}|\boldsymbol{\theta}) = P(\mathbf{x}_1, \dots, \mathbf{x}_n|\boldsymbol{\theta}) = \prod_{\substack{k=1 \ \mathbf{x}_k \text{ are indep.}}}^n P(\mathbf{x}_k|\boldsymbol{\theta})$$

$$= \prod_{k=1}^n \prod_{i=1}^d \theta_i^{x_{ki}} (1-\theta_i)^{1-x_{ki}}$$

$$= \prod_{i=1}^d \theta_i^{\sum_{k=1}^n x_{ki}} (1-\theta_i)^{\sum_{k=1}^n (1-x_{ki})}$$

$$= \prod_{i=1}^d \theta_i^{s_i} (1-\theta_i)^{n-s_i}.$$

(b) We assume an (unnormalized) uniform prior for θ , that is, $p(\theta) = 1$ for $0 \le \theta_i \le 1$ for $i = 1, \dots, d$, and have by Bayes' Theorem

$$p(oldsymbol{ heta}|\mathcal{D}) = rac{p(\mathcal{D}|oldsymbol{ heta})p(oldsymbol{ heta})}{p(\mathcal{D})}.$$

From part (a), we know that $p(\mathcal{D}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_{i}^{s_{i}} (1-\theta)^{n-s_{i}}$, and therefore the probability density of obtaining data set \mathcal{D} is

$$egin{aligned} p(\mathcal{D}) &=& \int p(\mathcal{D}|oldsymbol{ heta})p(oldsymbol{ heta})doldsymbol{ heta} = \int \prod_{i=1}^d heta_i^{s_i}(1- heta_i)^{n-s_i}doldsymbol{ heta} \ &=& \int \int \cdots \int \limits_0^1 \prod_{i=1}^d heta_i^{s_i}(1- heta_i)^{n-s_i}d heta_1d heta_2\cdots d heta_d \ &=& \prod_{i=1}^d \int \limits_0^1 heta_i^{s_i}(1- heta_i)^{n-s_i}d heta_i. \end{aligned}$$

Now $s_i = \sum_{k=1}^n x_{ki}$ takes values in the set $\{0, 1, ..., n\}$ for i = 1, ..., d, and if we use the identity

$$\int\limits_0^1 heta^m (1- heta)^n d heta = rac{m!n!}{(m+n+1)!},$$

and substitute into the above equation, we get

$$p(\mathcal{D}) = \prod_{i=1}^d \int\limits_0^1 heta_i^{s_i} (1- heta_i)^{n-s_i} d heta_i = \prod_{i=1}^d rac{s_i! (n-s_i)!}{(n+1)!}.$$

We consolidate these partial results and find

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})}$$

$$= \frac{\prod_{i=1}^{d} \theta_{i}^{s_{i}} (1 - \theta_{i})^{n - s_{i}}}{\prod_{i=1}^{d} s_{i}! (n - s_{i})! / (n + 1)!}$$

$$= \prod_{i=1}^{d} \frac{(n + 1)!}{s_{i}! (n - s_{i})!} \theta_{i}^{s_{i}} (1 - \theta_{i})^{n - s_{i}}.$$

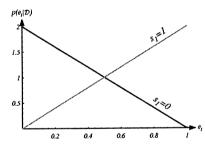
(c) We have d = 1, n = 1, and thus

$$p(\theta_1|\mathcal{D}) = \frac{2!}{s_1!(n-s_1)!}\theta_1^{s_1}(1-\theta_1)^{n-s_1} = \frac{2}{s_1!(1-s_1)!}\theta_1^{s_1}(1-\theta_1)^{1-s_1}.$$

Note that s_1 takes the discrete values 0 and 1. Thus the densities are of the form

$$egin{array}{lll} s_1 = 0 & : & p(heta_1|\mathcal{D}) = 2(1- heta_1) \ s_1 = 1 & : & p(heta_1|\mathcal{D}) = 2 heta_1, \end{array}$$

for $0 \le \theta_1 \le 1$, as shown in the figure.

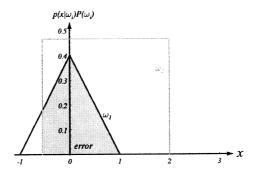


- 18. Consider how knowledge of an invariance can guide our choice of priors.
 - (a) We are given that s is actually the number of times that x = 1 in the first n tests. Consider the (n+1)st test. If again x = 1, then there are $\binom{n+1}{s+1}$ permutations of 0s and 1s in the (n+1) tests, in which the number of 1s is (s+1). Given the assumption of invariance of exchangeability (that is, all permutations have the same chance to appear), the probability of each permutation is

$$P_{instance} = \frac{1}{\binom{n+1}{s+1}}.$$

Therefore, the probability of x = 1 after n tests is the product of two probabilities: one is the probability of having (s+1) number of 1s, and the other is the probability for a particular instance with (s+1) number of 1s, that is,

$$\Pr[x_{n+1} = 1 | \mathcal{D}^n] = \Pr[x_1 + \dots + x_n = s+1] \cdot P_{instance} = \frac{p(s+1)}{\binom{n+1}{s+1}}.$$



$$egin{aligned} &=& rac{p(oldsymbol{ heta}|\mathbf{s}, \mathcal{D})p(\mathcal{D}|\mathbf{s})p(\mathbf{s})}{p(oldsymbol{ heta}|\mathbf{s})p(\mathbf{s})} \ &=& rac{p(oldsymbol{ heta}|\mathbf{s}, \mathcal{D})p(\mathcal{D}|\mathbf{s})}{p(oldsymbol{ heta}|\mathbf{s})}. \end{aligned}$$

Note that the probability density of the parameter θ is fully specified by the sufficient statistic; the data gives no further information, and this implies

$$p(\theta|\mathbf{s}, \mathcal{D}) = p(\theta|\mathbf{s}).$$

Since $p(\theta|\mathbf{s}) \neq 0$, we can write

$$egin{array}{lll} p(\mathcal{D}|\mathbf{s},oldsymbol{ heta}) &=& rac{p(oldsymbol{ heta}|\mathbf{s},\mathcal{D})p(\mathcal{D}|\mathbf{s})}{p(oldsymbol{ heta}|\mathbf{s})} \ &=& rac{p(oldsymbol{ heta}|\mathbf{s})p(\mathcal{D}|\mathbf{s})}{p(oldsymbol{ heta}|\mathbf{s})} \ &=& p(\mathcal{D}|\mathbf{s}), \end{array}$$

which does not involve θ . Thus, $p(\mathcal{D}|\mathbf{s}, \theta)$ is indeed independent of θ .

24. To obtain the maximum-likelihood estimate, we must maximize the likelihood function $p(\mathcal{D}|\boldsymbol{\theta}) = p(\mathbf{x}_1, \dots, \mathbf{x}_n|\boldsymbol{\theta})$ with respect to $\boldsymbol{\theta}$. However, by the Factorization Theorem (Theorem 3.1) in the text, we have

$$p(\mathcal{D}|\boldsymbol{ heta}) = g(\mathbf{s}, oldsymbol{ heta}) h(\mathcal{D}),$$

where **s** is a sufficient statistic for $\boldsymbol{\theta}$. Thus, if we maximize $g(\mathbf{s}, \boldsymbol{\theta})$ or equivalently $[g(\mathbf{s}, \boldsymbol{\theta})]^{1/n}$, we will have the maximum-likelihoood solution we seek.

For the Rayleigh distribution, we have from Table 3.1 in the text,

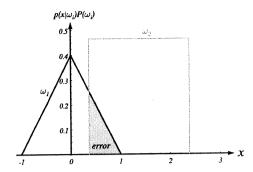
$$[g(s, heta)]^{1/n}= heta e^{- heta s}$$

for $\theta > 0$, where

$$s = \frac{1}{n} \sum_{k=1}^{n} x_k^2.$$

Then, we take the derivative with respect to θ and find

$$\nabla_{\theta}[g(s,\theta)]^{1/n} = e^{-\theta s} - s\theta e^{-\theta s}.$$



We set this to 0 and solve to get

$$e^{-\hat{\theta}s} = s\hat{\theta}e^{-\hat{\theta}s}$$

which gives the maximum-likelihood solution,

$$\hat{ heta} = rac{1}{s} = \left(rac{1}{n}\sum_{k=1}^n x_k^2
ight)^{-1}.$$

We next evaluate the second derivative at this value of $\hat{\theta}$ to see if the solution represents a maximum, a minimum, or possibly an inflection point:

$$\begin{split} \nabla^2_{\theta}[g(s,\theta)]^{1/n}\Big|_{\theta=\hat{\theta}} &= -se^{-\theta s} - se^{-\theta s} + s^2\theta e^{-\theta s}\Big|_{\theta=\hat{\theta}} \\ &= e^{-\hat{\theta} s}(s^2\hat{\theta} - 2s) = -se^{-1} < 0. \end{split}$$

Thus $\hat{\theta}$ indeed gives a maximum (and not a minimum or an inflection point). **25.** The maximum-likelihood solution is obtained by maximizing $[g(\mathbf{s}, \theta)]^{1/n}$. From Table 3.1 in the text, we have for a Maxwell distribution

$$[g(s,\theta)]^{1/n} = \theta^{3/2}e^{-\theta s}$$

where $s = \frac{1}{n} \sum_{k=1}^{n} x_k^2$. The derivative is

$$abla_{ heta}[g(s, heta)]^{1/n}=rac{3}{2} heta^{1/2}e^{- heta s}-s heta^{3/2}e^{- heta s}.$$

We set this to zero to obtain

$$rac{3}{2} heta^{1/2}e^{- heta s}=s heta^{3/2}e^{- heta s},$$

and thus the maximum-likelihood solution is

$$\hat{ heta} = rac{3/2}{s} = rac{3}{2} \left(rac{1}{n} \sum_{k=1}^{n} x_k^2
ight)^{-1}.$$

We next evaluate the second derivative at this value of $\hat{\theta}$ to see if the solution represents a maximum, a minimum, or possibly an inflection point:

$$\nabla_{\theta}^{2}[g(s,\theta)]^{1/n} \, \Big|_{\theta=\hat{\theta}} \ = \ \frac{3}{2} \frac{1}{2} \theta^{1/2} e^{-\theta s} - \frac{3}{2} \theta^{1/2} s e^{-\theta s} - \frac{3}{2} \theta^{1/2} s e^{-\theta s} + s^{2} \theta^{3/2} e^{-\theta s} \, \Big|_{\theta=\hat{\theta}}$$

where $\mathbf{u} = \mathbf{C}_n^{-1}(\mathbf{x}_{n+1} - \mathbf{m}_n)$ is of $O(d^2)$ complexity, given that $\mathbf{C}_n^{-1}, \mathbf{x}_{n+1}$ and \mathbf{m}_n are known. Hence, clearly \mathbf{C}_n^{-1} can be computed from \mathbf{C}_{n-1}^{-1} in $O(d^2)$ operations, as $\mathbf{u}\mathbf{u}^t, \mathbf{u}^t(\mathbf{x}_{n+1} - \mathbf{m}_n)$ is computed in $O(d^2)$ operations. The complexity associated with determining \mathbf{C}_n^{-1} is $O(nd^2)$.

37. We assume the symmetric non-negative covariance matrix is of otherwise general form:

$$oldsymbol{\Sigma} = \left(egin{array}{cccc} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \ dots & dots & \ddots & dots \ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{array}
ight).$$

To employ shrinkage of an assumed common covariance toward the identity matrix, then Eq. 77 requires

$$\Sigma(\beta) = (1 - \beta)\Sigma + \beta I = I,$$

and this implies $(1 - \beta)\sigma_{ii} + \beta \cdot 1 = 1$, and thus

$$\sigma_{ii} = \frac{1 - \beta}{1 - \beta} = 1$$

for all $0 < \beta < 1$. Therefore, we must first normalize the data to have unit variance.

Section 3.8

- 38. Note that in this problem our densities need not be normal.
 - (a) Here we have the criterion function

$$J_1(\mathbf{w}) = rac{(\mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2}.$$

We make use of the following facts for i = 1, 2:

$$y = \mathbf{w}^{t}\mathbf{x}$$

$$\mu_{i} = \frac{1}{n_{i}} \sum_{y \in \mathcal{Y}_{i}} y = \frac{1}{n_{i}} \sum_{\mathbf{x} \in \mathcal{D}_{i}} \mathbf{w}^{t}\mathbf{x} = \mathbf{w}^{t}\mu_{i}$$

$$\sigma_{i}^{2} = \sum_{y \in \mathcal{Y}_{i}} (y - \mu_{i})^{2} = \mathbf{w}^{t} \left[\sum_{\mathbf{x} \in \mathcal{D}_{i}} (\mathbf{x} - \mu_{i})(\mathbf{x} - \mu_{i})^{t} \right] \mathbf{w}$$

$$\Sigma_{i} = \sum_{\mathbf{x} \in \mathcal{D}_{i}} (\mathbf{x} - \mu_{i})(\mathbf{x} - \mu_{i})^{t}.$$

We define the within- and between-scatter matrices to be

$$egin{array}{lll} {f S}_W & = & {f \Sigma}_1 + {f \Sigma}_2 \ {f S}_B & = & ({m \mu}_1 - {m \mu}_2)({m \mu}_1 - {m \mu}_2)^t. \end{array}$$

Then we can write

$$\sigma_1^2 + \sigma_2^2 = \mathbf{w}^t \mathbf{S}_W \mathbf{w}$$

 $(\mu_1 - \mu_2)^2 = \mathbf{w}^t \mathbf{S}_B \mathbf{w}.$

The criterion function can be written as

$$J_1(\mathbf{w}) = rac{\mathbf{w}^t \mathbf{S}_B \mathbf{w}}{\mathbf{w}^t \mathbf{S}_W \mathbf{w}}.$$

For the same reason Eq. 103 in the text is maximized, we have that $J_1(\mathbf{w})$ is maximized at $\mathbf{w}\mathbf{S}_W^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$. In sum, that $J_1(\mathbf{w})$ is maximized at $\mathbf{w} = (\boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2)^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$.

(b) Consider the criterion function

$$J_2(\mathbf{w}) = rac{(\mu_1-\mu_2)^2}{P(\omega_1)\sigma_1^2 + P(\omega_2)\sigma_2^2}.$$

Except for letting $\mathbf{S}_W = P(\omega_1)\mathbf{\Sigma}_1 + P(\omega_2)\mathbf{\Sigma}_2$, we retain all the notations in part (a). Then we write the criterion function as a Rayleigh quotient

$$J_2(\mathbf{w}) = rac{\mathbf{w}^t \mathbf{S}_B \mathbf{w}}{\mathbf{w}^t \mathbf{S}_W \mathbf{w}}.$$

For the same reason Eq. 103 is maximized, we have that $J_2(\mathbf{w})$ is maximized at

$$\mathbf{w} = (P(\omega_1)\mathbf{\Sigma}_1 + P(\omega_2)\mathbf{\Sigma}_2)^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2).$$

(c) Equation 96 of the text is more closely related to the criterion function in part (a) above. In Eq. 96 in the text, we let $\tilde{m}_i = \mu_i$, and $\tilde{s}_i^2 = \sigma_i^2$ and the statistical meanings are unchanged. Then we see the exact correspondence between $J(\mathbf{w})$ and $J_1(\mathbf{w})$.

39. The expression for the criterion function

$$J_1 = rac{1}{n_1 n_2} \sum_{y_i \in \mathcal{Y}_1} \sum_{y_j \in \mathcal{Y}_2} (y_i - y_j)^2$$

clearly measures the total within-group scatter.

(a) We can rewrite J_1 by expanding

$$J_{1} = \frac{1}{n_{1}n_{2}} \sum_{y_{i} \in \mathcal{Y}_{1}} \sum_{y_{j} \in \mathcal{Y}_{2}} [(y_{i} - m_{1}) - (y_{j} - m_{2}) + (m_{1} - m_{2})]^{2}$$

$$= \frac{1}{n_{1}n_{2}} \sum_{y_{i} \in \mathcal{Y}_{1}} \sum_{y_{j} \in \mathcal{Y}_{2}} [(y_{i} - m_{1})^{2} + (y_{j} - m_{2})^{2} + (m_{1} - m_{2})^{2}$$

$$+2(y_{i} - m_{1})(y_{j} - m_{2}) + 2(y_{i} - m_{1})(m_{1} - m_{2}) + 2(y_{j} - m_{2})(m_{1} - m_{2})]$$

$$= \frac{1}{n_{1}n_{2}} \sum_{y_{i} \in \mathcal{Y}_{1}} \sum_{y_{j} \in \mathcal{Y}_{2}} (y_{i} - m_{1})^{2} + \frac{1}{n_{1}n_{2}} \sum_{y_{i} \in \mathcal{Y}_{1}} \sum_{y_{j} \in \mathcal{Y}_{2}} (y_{j} - m_{2})^{2} + (m_{1} - m_{2})^{2}$$

$$+ \frac{1}{n_{1}n_{2}} \sum_{y_{i} \in \mathcal{Y}_{1}} \sum_{y_{j} \in \mathcal{Y}_{2}} 2(y_{i} - m_{1})(y_{j} - m_{2}) + \frac{1}{n_{1}n_{2}} \sum_{y_{i} \in \mathcal{Y}_{1}} \sum_{y_{j} \in \mathcal{Y}_{2}} 2(y_{j} - m_{2})(m_{1} - m_{2})$$

$$+ \frac{1}{n_{1}n_{2}} \sum_{y_{i} \in \mathcal{Y}_{1}} \sum_{y_{j} \in \mathcal{Y}_{2}} 2(y_{j} - m_{2})(m_{1} - m_{2})$$

$$= \frac{1}{n_{1}} s_{1}^{2} + \frac{1}{n_{2}} s_{2}^{2} + (m_{1} - m_{2})^{2},$$

(c) We make the following definitions:

Then we have $ig|\widetilde{\mathbf{\tilde{S}}}_Wig|=|\mathbf{D}|^2$ and

$$\widetilde{\widetilde{\mathbf{S}}}_B = \widetilde{\mathbf{W}}^t \mathbf{S}_B \widetilde{\mathbf{W}} = \mathbf{Q} \mathbf{D} \mathbf{W}^t \mathbf{S}_B \mathbf{W} \mathbf{D} \mathbf{Q}^t = \mathbf{Q} \mathbf{D} \widetilde{\mathbf{S}}_B \mathbf{D} \mathbf{Q}^t,$$

then $|\tilde{\mathbf{S}}_B| = |\mathbf{D}|^2 \lambda_1 \lambda_2 \cdots \lambda_n$. This implies that the criterion function obeys

$$J = rac{ig|\widetilde{ ilde{\mathbf{S}}}_Big|}{ig|\widetilde{ ilde{\mathbf{S}}}_Wig|},$$

and thus J is invariant to this transformation.

41. Our two Gaussian distributions are $p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$ for i = 1, 2. We denote the samples after projection as $\tilde{\mathcal{D}}_i$ and the distributions

$$p(y| ilde{m{ heta}}_i) = rac{1}{\sqrt{2\pi} ilde{s}} ext{exp}[-(y- ilde{\mu})^2/(2 ilde{s}^2)],$$

and $\tilde{\boldsymbol{\theta}}_i = \binom{\tilde{\mu}_i}{\tilde{z}}$ for i = 1, 2. The log-likelihood ratio is

$$\begin{split} r &= \frac{\ln p(\tilde{\mathcal{D}}|\tilde{\boldsymbol{\theta}}_{1})}{\ln p(\tilde{\mathcal{D}}|\tilde{\boldsymbol{\theta}}_{2})} = \frac{\ln \left[\prod\limits_{k=1}^{n} p(y_{k}|\tilde{\boldsymbol{\theta}}_{1})\right]}{\ln \left[\prod\limits_{k=1}^{n} p(y_{k}|\tilde{\boldsymbol{\theta}}_{2})\right]} \\ &= \frac{\sum\limits_{k=1}^{n} \ln \left[\frac{1}{\sqrt{2\pi}\tilde{s}} \exp \left[\frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}}\right]\right]}{\sum\limits_{k=1}^{n} \ln \left[\frac{1}{\sqrt{2\pi}\tilde{s}}\right] \exp \left[\frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}}\right]} = \frac{\sum\limits_{k=1}^{n} \ln \left[\frac{1}{\sqrt{2\pi}\tilde{s}}\right] + \sum\limits_{k=1}^{n} \frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}}}{\sum\limits_{k=1}^{n} \ln \left[\frac{1}{\sqrt{2\pi}\tilde{s}}\right] + \sum\limits_{k=1}^{n} \frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}}} \\ &= \frac{c_{1} + \sum\limits_{y_{k} \in \mathcal{D}_{1}} \frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}} + \sum\limits_{y_{k} \in \mathcal{D}_{2}} \frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}}}{c_{1} + \sum\limits_{y_{k} \in \mathcal{D}_{2}} \frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}}} = \frac{c_{1} + \frac{1}{2} + \sum\limits_{y_{k} \in \mathcal{D}_{2}} \frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}}}{c_{1} + \frac{1}{2} + \sum\limits_{y_{k} \in \mathcal{D}_{2}} \frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}}} = \frac{c_{1} + \frac{1}{2} + \sum\limits_{y_{k} \in \mathcal{D}_{2}} \frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}}}{c_{1} + \frac{1}{2} + \sum\limits_{y_{k} \in \mathcal{D}_{2}} \frac{(y_{k}-\tilde{\mu}_{1})^{2}}{2\tilde{s}^{2}}} = \frac{c_{1} + \frac{1}{2} + \sum\limits_{y_{k} \in \mathcal{D}_{1}} \frac{(y_{k}-\tilde{\mu}_{1})^{2} + (\tilde{\mu}_{2}-\tilde{\mu}_{1}))^{2}}{c_{1} + \frac{1}{2} + \frac{1}{2\tilde{s}^{2}}} \sum\limits_{y_{k} \in \tilde{\mathcal{D}_{1}} ((y_{k}-\tilde{\mu}_{1})^{2} + (\tilde{\mu}_{1}-\tilde{\mu}_{2})^{2} + 2(y_{k}-\tilde{\mu}_{1})(\tilde{\mu}_{1}-\tilde{\mu}_{2}))} \\ = \frac{c_{1} + 1 + \frac{1}{2\tilde{s}^{2}}}{c_{1} + 1 + \frac{1}{2\tilde{s}^{2}}} n_{2}(\tilde{\mu}_{2}-\tilde{\mu}_{1})^{2}} = \frac{c + n_{2}J(\mathbf{w})}{c + n_{1}J(\mathbf{w})}. \end{split}$$

Thus we can write the criterion function as

$$J(\mathbf{w}) = \frac{rc - c}{n_2 - rn_1}.$$

This implies that the Fisher linear discriminant can be derived from the negative of the log-likelihood ratio.

- 42. Consider the criterion function $J(\mathbf{w})$ required for the Fisher linear discriminant.
 - (a) We are given Eqs. 96, 97, and 98 in the text:

$$J_{1}(\mathbf{w}) = \frac{|\tilde{m}_{1} - \tilde{m}_{2}|^{2}}{\tilde{s}_{1}^{2} + \tilde{s}_{2}^{2}} \quad (96)$$

$$\mathbf{S}_{i} = \sum_{\mathbf{x} \in \mathcal{D}} (\mathbf{x} - \mathbf{m}_{i})(\mathbf{x} - \mathbf{m}_{i})^{t} \quad (97)$$

$$\mathbf{S}_{W} = \mathbf{S}_{1} + \mathbf{S}_{2} \quad (98)$$

where $y = \mathbf{w}^t \mathbf{x}$, $\tilde{m}_i = 1/n_i \sum_{i \in \mathcal{V}} y = \mathbf{w}^t \mathbf{m}_i$. From these we can write Eq. 99 in the text, that is,

$$\hat{s}_{i}^{2} = \sum_{y \in \mathcal{Y}_{i}} (y - \tilde{m}_{i})^{2}
= \sum_{\mathbf{x} \in \mathcal{D}} (\mathbf{w}^{t} \mathbf{x} - \mathbf{w}^{t} \mathbf{m}_{i})^{2}
= \sum_{\mathbf{x} \in \mathcal{D}} \mathbf{w}^{t} (\mathbf{x} - \mathbf{m}_{i}) (\mathbf{x} - \mathbf{m}_{i})^{t} \mathbf{w}
= \mathbf{w}^{t} \mathbf{S}_{i} \mathbf{w}.$$

Therefore, the sum of the scatter matrixes can be written as

$$\tilde{s}_1^2 + \tilde{s}_2^2 = \mathbf{w}^t \mathbf{S}_W \mathbf{w}$$

$$(\tilde{m}_1 - \tilde{m}_2)^2 = (\mathbf{w}^t \mathbf{m}_1 - \mathbf{w}^t \mathbf{m}_2)^2$$

$$= \mathbf{w}^t (\mathbf{m}_1 - \mathbf{m}_2) (\mathbf{m}_1 - \mathbf{m}_2)^t \mathbf{w}$$
(100)

 $=\mathbf{w}^{t}\mathbf{S}_{B}\mathbf{w},$

where $\mathbf{S}_B = (\mathbf{m}_1 - \mathbf{m}_2)(\mathbf{m}_1 - \mathbf{m}_2)^t$, as given by Eq. 102 in the text. Putting these together we get Eq. 103 in the text,

$$J(\mathbf{w}) = \frac{\mathbf{w}^t \mathbf{S}_B \mathbf{w}}{\mathbf{w}^t \mathbf{S}_W \mathbf{w}}.$$
 (103)

(b) Part (a) gave us Eq. 103. It is easy to see that the w that optimizes Eq. 103 is not unique. Here we optimize $J_1(\mathbf{w}) = \mathbf{w}^t \mathbf{S}_B \mathbf{w}$ subject to the constraint that $J_2(\mathbf{w}) = \mathbf{w}^t \mathbf{S}_W \mathbf{w} = 1$. We use the method of Lagrange undetermined multipliers and form the functional

$$g(\mathbf{w}, \lambda) = J_1(\mathbf{w}) - \lambda(J_2(\mathbf{w}) - 1).$$

We set its derivative to zero, that is,

$$\begin{split} \frac{\partial g(\mathbf{w}, \lambda)}{\partial w_i} &= \left(\mathbf{u}_i^t \mathbf{S}_B \mathbf{w} + \mathbf{w}^t \mathbf{S}_B \mathbf{u}_i\right) - \lambda \left(\mathbf{u}_i^t \mathbf{S}_W \mathbf{w} + \mathbf{w}^t \mathbf{S}_w \mathbf{u}_i\right) \\ &= 2\mathbf{u}_i^t (\mathbf{S}_B \mathbf{w} - \lambda \mathbf{S}_W \mathbf{w}) = 0, \end{split}$$

where $\mathbf{u}_i = (0 \ 0 \ \cdots \ 1 \ \cdots \ 0 \ 0)^t$ is the *n*-dimensional unit vector in the *i*th direction. This equation implies

$$S_B \mathbf{w} = \lambda S_W \mathbf{w}$$
.

 $\alpha_i(t)$'s and $P(V^T|M)$ are computed by the Forward Algorithm, which requires $O(c^2T)$ operations. The $\beta_i(t)$'s can be computed recursively as follows:

For t=T to 1 (by -1)
For i=1 to c

$$eta_i(t)=\sum_j a_{ij}b_{jk}v(t+1)eta_j(t+1)$$

This requires $O(c^2T)$ operations.

Similarly, γij 's can be computed by $O(c^2T)$ operations given $\alpha_i(t)$'s, a_{ij} 's, b_{ij} 's, $\beta_i(t)$'s and $P(V^T|M)$. So, $\gamma_{ij}(t)$'s are computed by

$$\underbrace{O(c^2T)}_{\alpha_i(t)\text{'s}} + \underbrace{O(c^2T)}_{\beta_i(t)\text{'s}} + \underbrace{O(c^2T)}_{\gamma_{ij}(t)\text{'s}} = O(c^2T) \text{operations}.$$

Then, given $\hat{\gamma}_{ij}(t)$'s, the \hat{a}_{ij} 's can be computed by $O(c^2T)$ operations and \hat{b}_{ij} 's by $O(c^2T)$ operations. Therefore, a single revision requires $O(c^2T)$ operations.

50. The standard method for calculating the probability of a sequence in a given HMM is to use the forward probabilities $\alpha_i(t)$.

(a) In the forward algorithm, for t = 0, 1, ..., T, we have

$$lpha_j(t) = \left\{egin{array}{ll} 0 & t=0 ext{ and } j
eq ext{initial status} \ 1 & t=0 ext{ and } j= ext{initial status} \ \sum\limits_{i=1}^c lpha_i(t-1)a_{ij}b_{jk}v(t) & ext{otherwise.} \end{array}
ight.$$

In the backward algorithm, we use for t = T, T - 1, ..., 0,

$$eta_j(t) = \left\{egin{array}{ll} 0 & t = T ext{ and } j
eq ext{final status} \ 1 & t = T ext{ and } j = ext{final status} \ \sum\limits_{i=1}^c eta_i(t+1)a_{ij}b_{jk}v(t+1) & ext{otherwise.} \end{array}
ight.$$

Thus in the forward algorithm, if we first reverse the observed sequence \mathbf{V}^T (that is, set $b_{jk}v(t) = b_{jk}(T+1-t)$ and then set $\beta_j(t) = \alpha_j(T-t)$, we can obtain the backward algorithm.

(b) Consider splitting the sequence \mathbf{V}^T into two parts — \mathbf{V}_1 and \mathbf{V}_2 — before, during, and after each time step T' where T' < T. We know that $\alpha_i(T')$ represents the probability that the HMM is in hidden state ω_i at step T', having generated the firt T' elements of \mathbf{V}^T , that is \mathbf{V}_1 . Likewise, $\beta_i(T')$ represents the probability that the HMM given that it is in ω_i at step T' generates the remaining elements of \mathbf{V}^T , that is, \mathbf{V}_2 . Hence, for the complete sequence we have

$$egin{aligned} P(\mathbf{V}^T) &=& P(\mathbf{V}_1,\mathbf{V}_2) = \sum_{i=1}^c P(\mathbf{V}_1,\mathbf{V}_2, \mathrm{hidden\ state}\ \omega_i\ \mathrm{at\ step}\ T') \ &=& \sum_{i=1}^c P(\mathbf{V}_1, \mathrm{hidden\ state}\ \omega_i\ \mathrm{at\ step}\ T') P(\mathbf{V}_2|\mathrm{hidden\ state}\ \omega_i\ \mathrm{at\ step}\ T') \ &=& \sum_{i=1}^c lpha_i(T')eta_i(T'). \end{aligned}$$

- (c) At T'=0, the above reduces to $P(\mathbf{V}^T)=\sum_{i=1}^c\alpha_i(0)\beta_i(0)=\beta_j(0)$, where j is the known initial state. This is the same as line 5 in Algorithm 3. Likewise, at T'=T, the above reduces to $P(\mathbf{V}^T)=\sum_{i=1}^c\alpha_i(T)\beta_i(T)=\alpha_j(T)$, where j is the known final state. This is the same as line 5 in Algorithm 2.
- **51.** From the learning algorithm in the text, we have for a giveen HMM with model parameters θ :

$$\gamma_{ij}(t) = rac{lpha_i(t-1)a_{ij}b_{jk}v(t)eta_j(t)}{P(\mathbf{V}^T|m{ heta})} \quad (*)$$
 $\hat{a}_{ij} = rac{\sum\limits_{t=1}^{T}\gamma_{ij}(t)}{\sum\limits_{k=1}^{T}\sum\limits_{k=1}^{c}\gamma_{ik}(t)}. \quad (**)$

For a new HMM with $a_{i'j'} = 0$, from (*) we have $\gamma_{i'j'} = 0$ for all t. Substituting $\gamma_{i'j'}(t)$ into (**), we have $\hat{a}_{i'j'} = 0$. Therefore, keeping this substitution throughout the iterations in the learning algorithm, we see that $\hat{a}_{i'j'} = 0$ remains unchanged. **52.** Consider the decoding algorithm (Algorithm 4).

(a) the algorithm is:

Algorithm 0 (Modified decoding)

```
begin initialize Path \leftarrow \{\}, t \leftarrow 0
 1
                                        for t \leftarrow t + 1
 2
                                                 j \leftarrow 0; \ \delta_0 \leftarrow 0
 3
                                                 \frac{\text{for } j \leftarrow j + 1}{\delta_j(t) \leftarrow \min_{1 \le i \le c} [\delta_i(t-1) - \ln(a_{ij})] - \ln[b_{jk}v(t)]}
\underline{\text{until } j = c}
 5
 6
                                                 \overline{j'} \leftarrow \arg\min_{j} [\delta_{j}(t)]
 7
                                                 Append\ \omega_{j'}^{\ \ j}\ to\ {
m Path}
 8
                                        \underline{\mathbf{until}}\ t = T
 9
                                        return Path
10
                        <u>end</u>
11
```

(b) Taking the logarithm is an $O(c^2)$ computation since we only need to calculate $\ln a_{ij}$ for all i, j = 1, 2, ..., c, and $\ln[b_{jk}v(t)]$ for j = 1, 2, ..., c. Then, the whole complexity of this algorithm is $O(c^2T)$.