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We interchange the roles of A and B in this equation to get our desired answer:

B(A+B)'A=(A"14+B"1),

(b) Recall Egs. 41 and 42 in the text:

=t = axlyz?
=, = nZ7lp, + 3y,

We have solutions
1 1 1.\t
I‘l’n = Eo E0 + —'2 l‘l'n + —E EO + _2 “l’cn
n n n
and

-1
. =X, (Eo + l‘Z..‘) 12.
n n

Taking the inverse on both sides of Eq. 41 in the text gives
= m2 4307

We use the result from part (a), letting A = 13 and B = X, to get
1.(1 -
2, = —-X (—2 + 20)
n- \n
1 \!
2, = 3, (z,, + —2) >3
n

which proves Eqgs. 41 and 42 in the text. We also compute the mean as

B = Zn(nZ'm, 43,
= E.nE 'm, + 3,37,
1\ 7M1 1 1\ "
= 3, (z,, + -2) ~>n¥ 'm, + =% (z,, + —2) .2,
n n n n
1\ 7! 1 1.\"
= S (B4 -2) m,+=-B(Z,+-%) pn,.
n n n

Section 3.5

17. The Bernoulli distribution is written

d

p(xi6) = [ 67 (1 - 6" =

=1

Let D be a set of n samples x3,. .., X, independently drawn according to p(x|@).
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a) We denote s = (s1,--+,54)" as the sum of the n samples. If we denote xx =
p
(zk1, -, Tra) fork =1,...,n,then s; = 3 xgi,i = 1,...,d, and the likelihood
k=1
is

P(D|8) = P(x1,...,%n|0) = [] P(xkl6)
k=1

N, e’
X are indep.
n d
Thi 1—Tki
- T Tora-ar—=
k=1i=1
d

= 11 (9,.3=1 (] ;) 2anmn (17 OR)
i=1

d
= [I6s:(1—6:)"=.
=1

(b) We assume an (unnormalized) uniform prior for @, that is, p(@) =1 for 0 <
0; <1lfori=1,---,d, and have by Bayes’ Theorem

p(D16)p(6)
p(D)
d
From part (a), we know that p(D|@) = [] 6;*(1 — )%, and therefore the
=1
probability density of obtaining data set D is

p(0|D) =

d
p(D) = / p(D|6)p(6)d0 = / [16s: (-6~ d0
=1

1 d

1
- /~--/Haf"(l—Hi)"_sid(?ldOg-ndOd
0 =1

0
1
= H/ofiu — 6;)"%do;.
0

=1

n
Now s; = 3. T; takes values in the set {0,1,...,n} for i =1,...,d, and if we
k=1
use the identity

1
min!
0m(1-0)"dd = —————
/ ( ) (m+n+1)P
0

and substitute into the above equation, we get

a 1

A 4 sil(n— s;)!
(D) = 05:(1— ;)" "do; Sl s TAN
g H/ e
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We consolidate these partial results and find

p(D|6)p(8)
p(D)

d
{T 21— o=
i=1

p(6|D) =

1 s(n — s)1/(n + 1)

=1
d
(n+1)t .. s
— B S A _ 0{ n—8i_
iI:II sil(n—s)!* (1 )
(c) We have d =1,n =1, and thus
2! 2
— 81 1 _ n—si __ 081 _ 0 1«31.
p(ollp) sl!(n_ Sl)!el ( 91) 51!(1 _ 51)! 1 (1 1)
Note that s; takes the discrete values 0 and 1. Thus the densities are of the

form
s1=0 : p(6:1|D)=2(1-61)
81 = 1 : p(01 |D) = 201,

for 0 < 0; < 1, as shown in the figure.
pleJD)

A
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18. Consider how knowledge of an invariance can guide our choice of priors.

(a) We are given that s is actually the number of times that z = 1in the first n tests.
Consider the (n + 1)st test. If again = = 1, then there are (Zﬂ) permutations
of 0s and 1s in the (n + 1) tests, in which the number of 1s is (s +1). Given the
assumption of invariance of exchangeablility (that is, all permutations have the

same chance to appear), the probability of each permutation is

Pinstance (‘n+1) .
s+1

Therefore, the probability of z = 1 after n tests is the product of two probabil-
ities: one is the probability of having (s + 1) number of 1s, and the other is the
probability for a particular instance with (s + 1) number of 1s, that is,

: +1
Pr[a:n+1 = HDn} = PI'[SL'l +-r T, =5+ 1] ' I)inatcm.ce = p((fH_l) ) .
s+1
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Plxlw)Plw)

p(8]s, D)p(D|s)p(s)
p(8ls)p(s)

p(8ls, D)p(Dls)
p(@ls)

Note that the probability density of the parameter @ is fully specified by the sufficient
statistic; the data gives no further information, and this implies

p(fls, D) = p(fls)-
Since p(8|s) # 0, we can write

p(8]s,D)p(D]s)
p(6s)
p(81s)p(Dls)
p(0s)
= p(Dls),

which does not involve 8. Thus, p(Dls, @) is indeed independent of .

24. To obtain the maximum-likelihood estimate, we must maximize the likelihood
function p(D|@) = p(xXy, .. .,X,|0) with respect to 8. However, by the Factorization
Theorem (Theorem 3.1) in the text, we have

p(DlS, 0) =

p(D|6) = g(s,0)h(D),
where s is a sufficient statistic for 8. Thus, if we maximize g(s, @) or equivalently-
l9(s,8)]*/™, we will have the maximum-likelihoood solution we seek.
For the Rayleigh distribution, we have from Table 3.1 in the text,
[g(s, 0)]1/11. — 06_93

for 6 > 0, where

Then, we take the derivative with respect to ¢ and find

Volg(s, )™ = ¢ 7% — sfe 2.
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Plxkw)P(w)
05 ws

We set this to 0 and solve to get

e = sfe 0,

which gives the maximum-likelihood solution,

-1
.1 1 —
=-=|= 2] .
- (i59)

We next evaluate the second derivative at this value of 6 to see if the solution represents
a maximum, a minimum, or possibly an inflection point:

o= _36“03 _se—es+s20€—-95

0=0 9=>0
= e %(s%0-2s)=—se ' <0.

V3lg(s,0)/"

Thus 6 indeed gives a maximum (and not a minimum or an inflection point).
25. The maximum-likelihood solution is obtained by maximizing [g(s, 6)]'/™. From
Table 3.1 in the text, we have for a Maxwell distribution

lo(s, O/ = 0%/

" .
_1. 2 - - .
where s = = kE ] z;. The derivative is

3
Vg[g(s,O)]l/" — 501/26—93 — 503/2¢7 95

We set this to zero to obtain

3g1/2,-0s _ s6%/2—0%,

and thus the maximum-likelihood solution is
32 3(1¢~ 5\
f="t2=Z 1= 2)

We next evaluate the second derivative at this value of 6 to see if the solution represents
a maximum, a minimum, or possibly an inflection point:

31 3 3
2 1/n — ___01/2 —8s __ “pl/2_ —0s _0]/2.~ l—-Os | <2p3/2,—0s
Vilg(s, 0)] os 550 ¢ 50" se 501/ 7se %t s A
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where u = C;1(Xn41 — my,) is of O(d*) complexity, given that C; 1 Xny1 and
m,, are known. Hence, clearly C,,' can be computed from C; 1, in O(d?) oper-
ations, as uu?, ut(x, 11 —my) is computed in O(d?) operations. The complexity
associated with determining C,,' is O(nd?).

37. We assume the symmetric non-negative covariance matrix is of otherwise general
form:

o011 012 " Oin
091 022 - O2n
Onl On2 " Onn

To employ shrinkage of an assumed common covariance toward the identity matrix,
then Eq. 77 requires

2(B)=(1-BE+pI=1,
and this implies (1 — B)oy; + B-1 =1, and thus
1-p

oii=——=1

1-p
for all 0 < B < 1. Therefore, we must first normalize the data to have unit variance.

Section 3.8
38. Note that in this problem our densities need not be normal.
(a) Here we have the criterion function

(1 — p2)*

Ji(w) =
W) =" 03

We make use of the following facts for i = 1,2:

y = wix
1 1 ¢ "
R e
n; T
y€Ys x€D;
of = S (y-m)?=wh| D (x—p)x— )| W
yeY: €D;
3 = z (x — p)(x — p;)°.
x€D;

We define the within- and between-scatter matrices to be

Sw = DI DI
Sp = (1 — o)1 — ma)"-
Then we can write
o} + o) w'Sww
([,1,1 - [l,g)?‘ WI'SBW.
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The criterion function can be written as

WtSBW
J =—

1(w) wiSww
For the same reason Eq. 103 in the text is maximized, we have that J;(w)
is maximized at WSy} (4, — py). In sum, that Ji(w) is maximized at w =

(B1 4 Z2) M (1y — po)-

(b) Consider the criterion function

_, (11 — p2)?
$2(%) = BT T Pnod

Except for letting Sy = P(w;)X; + P(w2)Xs, we retain all the notations in
part (a). Then we write the criterion function as a Rayleigh quotient
wtSpw

For the same reason Eq. 103 is maximized, we have that Jo(w) is maximized at
w = (P(w1)Z1 + Pw2)Z2) " (1 — o).

(c) Equation 96 of the text is more closely related to the criterion function in part (a)
above. In Eq. 96 in the text, we let 7; = p;, and 32 = o2 and the statistical
meanings are unchanged. Then we see the exact correspondence between J(w)
and J;(w).

39. The expression for the criterion function

1
Jy = E § (vi — y;)°
1N
Yi€V1y;€Y2

clearly measures the total within-group scatter.
(a) We can rewrite J; by expanding
1

Jio= Z Z [(yi - ml) - (y,- — m2) + (ml _ m2)]2
mne Yi€EV1 Y;€EY2
N nllnz Z Z [(5 — m1)? + (y; — m2)? + (my — ma)?

Yi€EV1 Y;€Y2
+2(y; — ma1)(y; — ma) + 2(y; — m1)(m1 — ma) + 2(y; — ma)(m1 — my)]

~ s X, D e 33 ma ram’

YKL
172 Yi €Y1 Y;€Y2 Yi€EV1 ¥5€Y2

1 1
e >N 2(y; — ma)(y; —m2) + —— S 2 — ma)(my — my)
1 2yi€y1yj€y2 1 Y €V1Y;€Y2

1

> > 2(y; — ma)(m1 —m2)
ning
Yi€EY1 Y;€YV2

1 2

1

2 2

= —s]+ —s5+ (m; —my)?,
n T2
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(c) We make the following definitions:
Wt = QDW!
Sw = WISy W = QDW'S; WDQ".

Then we have ISW| = |DJ|? and
Sp — WiSpW = QDW'S;WDQ! = QDS5DQ’,
then lé B| = |D|2)\1/\2 .-+ An. This implies that the criterion function obeys

_ 38l
Sl

and thus J is invariant to this transformation.

41. Our two Gaussian distributions are p(x|w;) ~ N(p;, ) for i = 1,2. We denote
the samples after projection as D; and the distributions

exp—(y — 1)*/(25%)],

~ 1
9;) =
P(yl0:) = =
and 8; = (’15’) for i = 1,2. The log-likelihood ratio is

np(Bley) " LE”"”"”I)]

Inp(D|02) 1, LIi[lp(ykléz)]

[ — Xp[(yk;gi;tl)z]] z:: [ 217r§] + i yk2—§;;n

n
Z
k=1 k=1
- = Yi—fl2 T 1 o~ (g —fiz)?
3 in [ e [ o glﬂ[ |+ X e
ey + Z Ska;;u) + Z yk ;u
. Yy €D1 Yk €D2
- ot (Uk#Z) vy h)? ykuz)
Yy €D1 Yy €D2
-~ ~ ~ 2
C1+:12‘+ Z (yk2 f)? Cl"’%‘i‘ E (yk—uz)';gétz—*ﬂl))
_ yx€D2 _ Yy €D2
Cl+%+ > (yk2—§/-2‘r2!2 Cl+%+ > (yk"‘ﬂz);ééﬂ"#l)_f_
Yy €D2 Yy €D
ctita X (k= )+ (i — i) + 2(yk — i) (fio — )
_ yk€D2
atEtom o ((ge—n)? + (= fi2)? + 2k — ) (fn — fi2))
yr €D,

c1 4+ 1+ shnafis — 1)°  cf naJ(w)
C1 + 1+ 51;—2111 (ﬁl - /],2)2 c | TI,].](W)‘

Thus we can write the criterion function as

J(w) = ———

Ty — TT
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This implies that the Fisher linear discriminant can be derived from the negative of
the log-likelihood ratio.
42. Consider the criterion function J(w) required for the Fisher linear discriminant.

(a) We are given Egs. 96, 97, and 98 in the text:

|1 — 7o
J = ——— (96
1(W) 51 i 53 ( )
Si = Y (x—my)(x—m)" (97)
x€D
Sw = S$1+S, (98)
where y = wtx, m; = 1/n; 3 y = w'm;. From these we can write Eq. 99 in
yeY:
the text, that is,
# o= ) (y-m)
yeEY:
= Z (wtx — wim;)?
x€D
= z wh(x — m;)(x — m;)iw
x€D
= WtSiW.

Therefore, the sum of the scatter matrixes can be written as
574+ 3 =w'Syw (100)
(y — T2)? = (wim; — wimy)? (101)
= w'(m; — my)(m; — my)'w
= WtSBW,

where S = (m; — my)(m; — my)*, as given by Eq. 102 in the text. Putting
these together we get Eq. 103 in the text,

Jw) = —B% (103)

(b) Part (a) gave us Eq. 103. It is easy to see that the w that optimizes Eq. 103
is not unique. Here we optimize J;(w) = w*Spw subject to the constraint
that Jo(w) = w'Sww = 1. We use the method of Lagrange undetermined
multipliers and form the functional

g(w, \) = Ji(w) — A(Ja(w) — 1).

We set its derivative to zero, that is,

0 A
_%-—) = (u:fSBw + WtSBll,;) - A (ufSww -+ thwu,i)
= 2ut(Spw — ASww) =0,
whereu; =(0 0 --- 1 --- 0 0)¢ is the n-dimensional unit vector in the ith

direction. This equation implies

SBW = )\SWw.
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;(t)’s and P(VT| M) are computed by the Forward Algorithm, which requires O(c?T)
operations. The S3;(t)’s can be computed recursively as follows:
For t=T to 1 (by -1)
For i=1toc
Bi(t) = X2, asjbjrv(t +1)B;(t +1)
End

This requires O(c?*T") operations.
Similarly, ij’s can be computed by O(c?T) operations given ;(t)’s, ai;’s, bi;’s,
Bi(t)’s and P(VT|M). So, ;;(t)’s are computed by

O(*T) + O(c*T) + O(c*T) = O(c*T)operations.
Nt N N !
as®)’s  Bi®)’s  yis(t)’s
Then, given 4;;(t)’s, the d;;’s can be computed by O(c*T) operations and l;i,- ’s by
O(cT) operations. Therefore, a single revision requires O(c*T) operations.

50. The standard method for calculating the probability of a sequence in a given
HMM is to use the forward probabilities a;(t).

(a) In the forward algorithm, for t =0,1,...,T, we have

0 t =0 and j # initial status
1 t = 0 and j = initial status
Qj (t) = c
3 ai(t — 1)ai;jbjrv(t) otherwise.
=1
In the backward algorithm, we use for t =T,T - 1,...,0,
0 t =T and j # final status
1 t =T and j = final status

Bj (t) = c
3 Bi(t + 1)a;jbjrv(t + 1)  otherwise.
i=1

Thus in the forward algorithm, if we first reverse the observed sequence vT
(that is, set bjzv(t) = bjx(T + 1 —t) and then set §;(t) = a;(T — t), we can
obtain the backward algorithm.

(b) Consider splitting the sequence V7T into two parts — V; and Vy — before,
during, and after each time step 7’ where T/ < T. We know that a;(T")
represents the probability that the HMM is in hidden state w; at step T’, having
generated the firt 7" elements of VT, that is V,. Likewise, 3;(T”) represents
the probability that the HMM given that it is in w; at step T’ generates the
remaining elements of VT that is, V. Hence, for the complete sequence we
have

c
P(VT) = P(Vi,Va) =) P(Vi,Vy, hidden state w; at step T")
i=1
= ZP(Vl, hidden state w; al step T")P(Va|hidden state w; at step 1")

i=1

= Y a(T)B(T").
=1



PROBLEM SOLUTIONS 129

c

(c) At T’ = 0, the above reduces to P(VT) = 3~ ;(0)8:(0) = B;(0), where j is

=1
the known initial state. This is the same as ltine 5 in Algorithm 3. Likewise, at

c

T' = T, the above reduces to P(VT) = 3 ;(T)Bi(T) = o;(T), where j is the

i=1
known final state. This is the same as line 5 in Algorithm 2.

51. From the learning algorithm in the text, we have for a giveen HMM with model
parameters 0:

it = 1)ai;bikv(t)B;(t)

Yij (t) = P(VTIG) ( )
5 it
Gij = - (#)
> 2 vik(t)
t=1k=1

For a new HMM with a;;; = 0, from (x) we have ;-;; = O for all {. Substituting
~irj#(t) into (#x), we have d;rj; = 0. Therefore, keeping this substitution throughout
the iterations in the learning algorithm, we see that d; ;s = 0 remains unchanged.
52. Consider the decoding algorithm (Algorithm 4).

(a) the algorithm is:

Algorithm 0 (Modified decoding)

1 begin initialize Path « {},t — 0
2 fort—t+1
3 j«—0;,60
4 forj—j+1
5 8;(t) — min [8;(t — 1) — In(as;)] — In[bjxv(?)]
1<i<c
6 until j =¢
7 e argminis;(0)
Append wj: to Path
9 untilt =T
10 return Path
11 end

(b) Taking the logarithm is an O(c*) computation since we only need to calculate
Ina;; for all i,5 = 1,2, ...,c, and In[bjv(t)] for j =1,2,...,c. Then, the whole
complexity of this algorithm is O(c*T).




