Chapter 3

Maximum likelihood and
Bayesian parameter
estimation

Problem Solutions

Section 3.2

1. Our exponential function is:

fe=f >0
p(zl6) = { 0 otherwise.

(a) SEE F1GURE. Note that p(z = 2|#) is not maximized when 6 = 2 but instead
for a value less than 1.0.

pxif=1) p(x=26)
0.
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(b) The log-likelihood function is

16) = Inp(axld) = [In 0 — Oz = nln 0 - 0 .
k=1 k=1 ko1
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We solve Vyl(6) = 0 to find 0 as

Vol(6) = 0[nln0—02:ck]
k=1

—-Z:Ek =0.

k=1

Thus the maximum-likelihood solution is

Q>|QJ

|3

é:-—"n—
> Tk

k=1

3=

(c) Here we approximate the mean
1 n
- E o
n
k=1

by the integral

7wp(w)dw,
0

which is valid in the large n limit. Noting that

[e o]

/ze“’”dz =1,

0

we put these results together and see that § = 1, as shown on the figure in
part (a).

2. Our (normalized) distribution function is

(1/8 0<z<0
p(zl) = { 0 otherwise.

(a) We will use the notation of an indicator function I(-), whose value is equal to
1.0 if the logical value of its argument is TRUE, and 0.0 otherwise. We can write
the likelihood function using I(-) as

p(D6) = I p(=xl6)
k=1

We note that 1/6" decreases monotonically as @ increases but also that I(6 >
mkax:vk) is 0.0 if @ is less than the maximum value of xx. Therefore, our likelihood

function is maximized at @ = max x.
k
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We solve this equation and find
A= Pw)Y zie = Plwi)d (1 - z),
k=1 k=1

which can be rewritten as

Z Zik = P(wi) Z Zik + nﬁ’(wi) - P(wi) Z Zik-

k=1 k=1 k=1
The final solution is then

1 n
= .T_I, Z Zik -
k=1

That is, the estimate of the probability of category w; is merely the probability
of obtaining its indicatory value in the training data, just as we would expect.

4. We have n samples {X;,...,X,} from the discrete distribution
d
P(x|0) = [ o7 (1 - 6:)' .
i=1

The likelihood for a particular sequence of n samples is

n d
P(x1,...,%,|0) = H Hgfki(l _ oi)l—xk,—’

k=11i=1

and the log-likelihood function is then

n d
S5 2k In 6; + (1 - 2x:) In (1 - 65).

k=11i=1

To find the maximum of 1(), we set Vgl(#) = 0 and evaluate component by compo-
nent (i =1,...,d) and get

[Vel(ﬁ)]i = Vo, l(0)
1 n
= 5: 1 01 Z 1 — :L'h)
k=1 k=1
= 0.

This implies that for any ¢

which can be rewritten as

(]. - éz) f:])ki (;1' (7'!, - ixki) .
k=1 . k=1
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The final solution is then

k=1
Since this result is valid for all i = 1,...,d, we can write this last equation in vector
form as
~ 1
0=— Xk
n k=1

Thus the maximum-likelihood value of @ is merely the sample mean, just as we would
expect.
5. The probability of finding feature z; to be 1.0 in category w; is denoted p:

1
p(z; = 1l|lw1) =1 —p(z; =0lw1) =py =p >

Ea
fori=1,...,d. Moreover, the normalization condition gives p;s = p(z;|ws) = 1 —p:1.
(a) A single observation x = (z1,...,4) is drawn from class w;, and thus have

d d
p(xlw1) = [[ p(zilwr) = [] (1 — p)' =,
=1 =1

and the log-likelihood function for p is

d
Up) = In p(x|w1) = > [mlnp+ (1— ;) In (1-p)].
=1
Thus the derivative is
1 1<
Vl(p) = - Ti — 70— (1-x).
? P Z:; (1-p) ; )
We set this derivative to zero, which gives
d d
1 1
Iy Ti= "> 1—=;),
5 ; =5 ;( )

which after simple rearrangement gives

d d
(1“13)2931‘ = ﬁ(d—ZL).
i=1 i=1

Thus our final solution is

That is, the maximum-likelihood estimate of the probability of obtaining a 1 in
any position is simply the ratio of the number of 1's in a single sample divided
by the total number of features, given that the number of features is large.
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where we have assumed dr/dz # 0 at 6 = 0. In short, then, the maximum-likelihood
value of 7(@) is indeed 6. In practice, however, we must check whether the value of
6 derived this way gives a maximum or a minimum (or possibly inflection point) for
p(716).-

10. Consider the novel method of estimating the mean of a set of points as taking its
first value, which we denote M = x;.

(a) Clearly, this unusual estimator of the mean is unbiased, that is, the expected
value of this statistic is equal to the true value. In other words, if we repeat the
selection of the first point of a data set we have

K
bias = E[M] - p = lim ;{-ZM(k) —p=0,
k=1

where M(k) is the first point in data set k& drawn from the given distribution.

(b) While the unusual method for estimating the mean may indeed be unbiased, it
will generally have large variance, and this is an undesirable property. Note that
&[(z; — p)?] = 02, and the RMS error, 0, is independent of n. This undesirable
behavior is quite different from that of the measurement of

where we see

Thus the RMS error, o/+/n, approches 0 as 1/4/n. Note that there are many
superior methods for estimating the mean, for instance the sample mean. (In
Chapter 9 we shall see other techniques — ones based on resampling — such as
the so-called “bootstrap” and “jackknife” methods.)

11. We assume pa(x) = p(x|ws) ~ N(, E) but that p;(x) = p(x|w1) is arbitrary.
The Kullback-Leibler divergence from p; (x) to pz(x) is

1 _
Dkr(p1,p2) = /pl (x)Inp; (x)dx + 5 /])1()() [dln(27r) +In|X| + (x — n)is Yx - p,)] dx,
where we used the fact that ps is a Gaussian, that is,

1 (x —p)tSHx—p)
p(x) = Gyareyey /s [ 2 ] '

We now seek g and X to minimize this “distance.” We set the derivative to zero and
find

5 .
5[1DKL(P11P2) = —-/ 2 (x - pp(x)dx =0,
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and this implies
51 / p1(%)(x — p)dx = 0.

We assume X is non-singular, and hence this equation implies

[ 10 - wyix = £upe - i =0,

or simply, £1[x] = p. In short, the mean of the second distribution should be the

same as that of the Gaussian.
Now we turn to the covariance of the second distribution. Here for notational
convenience we denote A = X. Again, we take a derivative of the Kullback-Leibler

divergence and find:

%DKL(IJIJQ) =0= /m (x) [-A7! + (x — p)(x — p)t] dx,

and thus
L[E-x-px-p)],

& [(x— w)x—p)t] = 5.

In short, the covariance of the second distribution should indeed match that of the

saussiam.
Note that above, in taking the derivative above,

OA] _ \aia-t
A |AA

we relied on the fact that A = X! is symmetric since I is a covariance matrix. More
generally, for an arbitrary non-singular matrix we would use

M| _ C1n¢
M |M|(M™)".
Section 3.3

12. In the text we saw the following results:

1. The posterior density can be computed as
p() = [ p(x,0ID) do.

2. p(x,8|D) = p(x|68,D)p(@|D)).

3. p(x|@, D) = p(x|8), that is, the distribution of x is known completely once we
know the value of the parameter vector, regardless of the data D.

4. p(x|D) = [ p(x|@)p(6|D) d6.
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These are justified as follows:

1. This statement reflects the conceptual difference between the maximum-likelihood
estimator and Bayesian estimator. The Bayesian learning method considers the
parameter vector @ to be a random variable rather than a fixed value, as in
maximum-likelihood estimation. The posterior density p(x|D) also depends
upon the probability density p(@) distributed over the entire @ space instead of
a single value. Therefore, the p(x|D) is the integration of p(x,8|D) over the
entire parameter space. The maximum-likelihood estimator can be regarded as
a special case of Bayesian estimator, where p(@) is uniformly distributed so that
its effect disappears after the integration.

2. The p(x,8|D) implies two steps in computation. One is the computation of
the probability density @ given the data set D, that is, p(@|D). The other is
the computation of the probability density of x given @, that is, p(x|@, D). The
above two steps are independent of each other, and thus p(x, 8|D) is the product
of the results of the two steps.

3. As mentioned in the text, the selection of x and that of the training samples
D is done independently, that is, the selection of x does not depend upont D.
Therefore we have p(x|0, D) = p(x|@).

4. We substitute the above relations into Eq. 24 in the text and get Eq. 25.

Section 3.4

13. We seek a novel approach for finding the maximum-likelihood estimate for 3.

(a) We first inspect the forms of a general vector a and matrix A:

a

az

A11 Aln
a= . and A = :

Api .. Ann
Consider the scalar

atAa = i i ajA.ijaj.

i=1 j=1

n
The (i,7)th element of this scalar is ) Ajjaja;, and the trace of Aaa' is the
=1
sum of these diagonal elements, that is,

tr (Aaat) = i zn: Aija,jai = atAa.

i=1 -1

(b) We seek to show that the likelihood function can be written as

%t.r (E“l ;(x/c = p)(xx — #)t)

1
XP

P(X1,. . Xn|2) = Wﬁ/:z("




PROBLEM SOLUTIONS 89

We note that p(x|X) ~ N(p, X) where g is known and xi, ..., X, are indepen-
dent observations from p(x|X). Therefore the likelihood is

- 1 1 _
P(X1, .., Xa[2) = H (27r)d/2|2“1|1/20Xp [—E(Xk—ﬂ)tz I(Xk—ﬂ)}

2:|—ﬂ/2
k=1
From the results in part (a), with a = x — p and |A| = |Z7}|, we have

—n/2 n
s, xalB) = e [—%Ztr (5 (k- 1) (e _mt)}

_ =t 1 iy _ ¢
- (27T)"d/2 exp 2 2 kXZ:l(xk “) (Xk ,“') )
where we used i tr (Ax) =tr (f: Ak) and |Z71 = ||~
k=1 k=1

(c) Recall our definition of the sample covariance matrix:
I .
$= 3ok — )0k — )"

k=1

Here we let A = 373, which easily leads to the following equalities

. —1

=t = AZ
_ &1 o
=7 = |AZ | =|Al=TY
L |A
~ Azt = A
%]
Mg
1%
where \1,..., )\, are the eigenvalues of A. We substitute these into our result

in part (b) to get

n/2
s al®) = L xvl——tr< lx(xk— (xk—m)}

(M- )2 1 1e
(27r)nd/2|ﬁ}|n/2€Xp 2tr(n}3 E) '

Note, however, that tr[nX ™3] = nftr (A)] = n(A; + --- | Ag), and thus we
have
(A1 )2 n
ey X = e ————— ——(A b Ag) |-
o, xalB) = Zexp [~ 5 (0 11 )]
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(d) The expression for p(xi,--+,Xn|%) in part (c) depends on 3 only through

AL, -+, g, the eigenvalues of A = >33, We can write our likelihood, then, as
1 2 "
p(X1,. .., Xn|E) = PSS {I}l /\ie”’\‘}
Maximizing p(Xi,...,Xn|X) with respect to X is equivalent to maximizing

e M with respect to \;. We do this by setting the derivative to zero, that is,

8[)\ie')‘f]

—e M 4 N(—e M) =
on e M+ Ni(—e M) =0,

which has solution A; = 1. In short, p(xXi,. . .,Xx|%) is maximized by choosing
A = Ag = --- = A, = 1. This means that A =3~ 12 or 3 = 3, as expected.

14. First we note that p(x|u;, =, w;) ~ N(p;, X). We have also I = i if the state of
nature for x; was w;.

(a) From Bayes’ Rule we can write
P(X1,y ey Xy by ooy gy s ey 2) = (X1 Xn |1y B bty b, Z)P(l, - b

Because the distribution of Iy, ...,l, does not depend on p,..., . or X, we
can write

p(X1,.. ., Xn|ly, - RTINS S ST Ay

z:

xk |IJ'1, cyHes by lk)

n 1 ~
H 27r)d/2|2|1/2 [ 5 Ok = p, )57 (i #zk)] :

The I; are independent, and thus the probability density of the Is is a product,

p(l, .-, ln) = Hp(lk) = Hp(wlk)'
k=1

k=1

We combine the above equations and get

P(xh-- X'nvl . l I/’l'lv . 7“c12)
H P(wlk) 1
tgi—1
= GEES® | g 20 ) B G )

k=1

(b) We sum the result of part (a) over n samples to find

n

>k =, )BT (e — ) Z > (k= ) =T (ke — )

k=1 2 e 1
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Here pi,, is formed by averaging n, fictitious samples zj for k = —n, +1, —n, +
2,...,0. Thus we can write
1O
Ho = — Tk,
n%:—no—)—l
and

n
kz::1 o 02/03 1 4
> o

n+o2/o?  o%/o2+mnmn, i

n
> Tk
k=1

0
ne 1
= + — E Tk.
n+n, N+mn,nN, vt
—41—TNo

We can use the fact that n, = 0%/02 to write

1 n
Hn = E Tk-
n+n
+ Ok=—no+1

Likewise, we have

2 9
2 _ _%99% _
no? + o2

o? a?

n+o%/o2 n4mn,

(b) The result of part (a) can be interpreted as follows: For a suitable choice of
the prior density p(g) ~ N(po,02), maximum-likelihood inference on the “full”
sample on n+n, observations coincides with Bayesian inference on the “second
sample” of n observations. Thus, by suitable choice of prior, Bayesian learning
can be interpreted as maximum-likelihood learning and here the suitable choice
of prior in Bayesian learning is

1
HPo = — E Tk,
n
(’c_—no—i-l
2 o®
00 = -_.
T

Here p, is the sample mean of the first n, observations and o2 is the variance
based on those n, observations.

16. We assume that A and B are non-singular matrices of the same order.
(a) Consider Eq. 44 in the text. We write

Al(A 1 B) '(B )= AB (A +B)"

AB AT ' (AT (BTA+T)!

[(B lA | I)A ll 1 (B—l +A—1)*1_

A(A+B)'B

Il

Il
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We interchange the roles of A and B in this equation to get our desired answer:

B(A+B)lA=(A"1+B L

(b) Recall Egs. 41 and 42 in the text:

.0 = a2zt
i, = nE 7l + 2,

We have solutions

1 1 1.\t
fn = B0 (Zot —2 ) p + ~5 o + Ly,

n
and
.= (Eo + —1-2) - 12.
n n
Taking the inverse on both sides of Eq. 41 in the text gives
= @2 307

We use the result from part (a), letting A = 13 and B = %, to get
1 -1
¥, = X (-1—2 +Za>
n_ \n
1 \!
3, = X, (20 + —Z) 3,
n

which proves Eqs. 41 and 42 in the text. We also compute the mean as

Hn = zn(n2~1mn + 20—1”0)
ZnnE_lmn + an};luo

N D 1 S
= B (Zo4+-2) EZnE lm,4-2(Z,+-%) =,3;'n,
n n n n

1.\! 1 1.\
= B (Zo4+-2) m,+-3(Z,+-%) pu,
n n n

Section 3.5

17. The Bernoulli distribution is written

d

p(x|0) = [ 67 (1 - 6;)" =

i=1

Let D be a set of n samples X1, ..., X, independently drawn according to p(x|@).





