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(e) For non-pathological distributions, Py o< e %(!/?) goes to zero as d — co. This
is because k(1/2) — oo for d — co.

(f) No. First note that
Pilerror) < Py = +/P(w1)P(wz)e *1/2
Pan(error) < Py = /Pl Plag)e 5012,

But, there is no clear relation between Py (error) and Py = /P(w1)(P(ws)e*(1/2).
So, even if k(1/2) > k(1/2), it is not guaranteed that Py.1(error) < Py(error).

36. First note the definition of k() given by Eq. 75 in the text:

k) = 2Dy ) (69 + (- %) iy — )

1822 + (1 — ﬁ)zll]
[ZalP|Z A |

(a) Recall from Eq. 74 we have
e kB = /pﬁ(xlwl)pl‘ﬁ(xlwg) dx
[exp [~mtsrtm - 2T |
/ izllﬂ/2|22|ﬁ/2

+%ln [

(2P AR + (1-B)Z )x = 2K(BE T+ (1= BZ Y |

@m)72

(b) Again from Eq. 74 we have

ke _ OP[=B2 BT — (1-B)/2 pZy ]
- ANl

5 / exp [—%{th:)f/; 2xA 16}
where
A= (= + (1-8)5Y)
and

AT =BE py + (1- )3 ' pa.
Thus we conclude that the vector @ is

0 = A(BET py + (1— B3 ' y).

(c) For the conditions given, we have

/ exp B-(xtA'lx - 2x‘A"10)} dx — e30°aT0 / exp [—-;—(x -0 A (x— 0)] dx

_ (2W)d/261/20‘A-10!A|1/2
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since
‘_,'—-%(:IC—O)tA_1 (x—0)

where g(x) has the form of a d-dimensional Gaussian density. So it follows that

1 _ -
e *B) = exp [—'2'{“0A_19 +BuiST i+ (1 - BpsE, 1#2}] X

|A]1/2
[B1[P72]35 [P

PROBLEM NOT YET SOLVED

37. We are given that P(w;) = P(ws) = 0.5 and

p(xlw;) ~ N(0,I)
p(xlwz) ~ N(LT)

where 1 is a two-component vector of 1s.

(a)

The inverse matrices are simple in this case:

- _ 10

We substitute these into Egs. 53-55 in the text and find
a(x) = wix+wipo
ot (‘”1) +0+1n(1/2)
zg
= In(1/2)
and

gg(x) = w§x+w20

- (1,1)(2) ~ 51D G) +in(1/2)
— oz 4@ —1+In(1/2).

We set g1(x) = g2(x) and find the decision boundardy is z; + zo = 1, which
passes through the midpoint of the two means, that is, at

( + 2= (7).

This result makes sense because these two categories have the same prior and
conditional distributions except for their means.

We use Egs. 76 in the text and substitute the values given to find

am = 3(0)-O) [F542] (- O) iy
GO0

= 1/4.

1.1
“ln=
27
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Equation 77 in the text gives the Bhatacharyya bound as

P(error) < /P(w)P(wz)e ¥/ = /0.5 0.5¢7/* = 0.3894.

Here we have P(w;) = P(wz) = 0.5 and
0 2 05
“1:(0) ’ El:(O.E} 2)
1 5 4
o) =)

The inverse matrices are

5t - (8/5 —2/15>

~2/15  8/15
_ 5/9 —4/9
5= (e o)

We use Egs. 6669 and find

weo = 3(0) (o U@ (o ) 6) ()

_1/0\'/ 8/5 —2/15) (0 L2 05y 1
2\0/ \-2/15  8/15)\0/ 2 |\05 2 2
4,2 4, 1
=~ + 55102 ~ 757 0.66 + lnﬁ,

and
w0 = 3(2) (e o) (e ) 0) )
S0CR RO 2)
5 1

= ——;z;2+—8-a::r:—ia:2+1 +1.’E—l——11+ln—
= TR T Tt T gt gttt gt T g T 2

I

The Bayes decision boundary is the solution to g;(x) = ga(x) or
z? + 3 — 28z @9 — 10x; — 10z + 50 = 0,

which consists of two hyperbolas, as shown in the figure.

We use Egs. 76 and 77 in the text and find

m = (-6 55 (0)-6) e

O 1(1\*/35 225\ /1 , 1),71875
= s\ \225 35/ \1) ' 2758005

= 0.1499.
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The simplest way to prove that b (p) is a lower bound for p in the range 0 <
p < 1/2 is to note that b;(0) = 0, and the derivative is always less than the
derivative of min[p, 1 — p]. Indeed, at p = 0 we have

1 1+e? 1
0 = — — | T 1 B 0.
br(0) ﬂln [1 +e‘ﬁ] ﬂln[ ]
Moreover the derivative is
0 ef — e2Pr
-é;bL(p) T Pt ePr
Io)
< = —min|p,1 —
5 [p,1-p]

in the range 0 < p < 1/2 for 3 < co.

(b) To show that b (p) is an arbitrarily tight bound, we need show only that in the
limit 8 — oo, the derivative, 8br(p)/0p approaches 1, the same as

%min[p, 1-p]
in this range. Using the results from part (a) we find
A B%b"(p) = g 251{;—:’
in the range 0 < p < 1/2.
(c) Our candidate upper bound is specified by
bu (p) = br(p) + [1 — 2b(0.5)]bc(p),

where gy (p) obeys several simple conditions, restated in part (d) below. We let
br(p) = p— 0(p), where from part (a) we know that 6(p) is non-negative and in
fact is at least linear in p. By the conditions given, we can write bg(p) = p+4(p),
where ¢(p) is non-negative and ¢(0) = ¢(1/2) = 0. Then our candidate upper
limit obeys

bu(p) = p—0(p)+[1-2(1/2—06(1/2)l(p+ 6(p))
= p—0(p)+0(1/2)(p+ 4(p))-
We show that this is an upper bound by calculating the difference between this
bound and the Bayes limit (which is min[p, 1 — p] = p in the range 0 < p < 1/2).
Thus we have
bu(p)—p = —6(p)+po(1/2)+6(1/2)6(p)
> 0.

(d) We seek to confirm that bg(p) = 1/2sin[np] has the following four properties:

e bg(p) > min[p, 1-p|: Indeed, 1/2sin[rp] > pfor 0 < p < 1/2, with equality
holding at the extremes of the interval (that is, at p = 0 and p = 1/2). By
symmetry (see below), the relation holds for the interval 1/2<p < 1.
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¢ bg(p) = bg(1 — p): Indeed, the sine function is symmetric about the point
7/2, that is, 1/2 sin[r/2 + 6] = 1/2 sin[x/2 — 6]. Hence by a simple
substitution we see that 1/2 sin[np] = 1/2 sin[x(1 — p)].

e bg(0) = bg(1) = 0: Indeed, 1/2 sin[m - 0] = 1/2 sin[nr - 1] = 0 — a special
case of the fact bg(p) = be(1 — p), as shown immediately above.

o b(0.5) = 0.5: Indeed, 1/2 sin[r0.5] = 1/2-1 = 0.5.

(e) SEE FIGURE.

05 minfp,1-p] 0s bufp:B=1) .
04 byp:B=50) a4 BuPB=10)~¢ N,
by(p:B=10 min{p,1-p] \
03 03 N,
/ bylp:p=50) \\
02 oz} / A
byp:B=1) / O
o1}l S e N o1} ; \
T
e e
/L N
02 04 06 0.8 v 02 04 06 08 ks

Section 2.9

43. Here the components of the vector x = (z1,...,74)" are binary-valued (0 or 1),
and

i=1,...,d

py=Prla= ] 270

(a) Thus p;; is simply the probability we get a 1 in feature z; given that the category
is w;. This is the kind of probability structure we find when each category has
a set of independent binary features (or even real-valued features, thresholded
in the form “y; > yi0?”).

(b) The discriminant functions are then
9 (%) = In p(x|w;) + In P(w;).

The components of x are statistically independent for all x in w;, then we can
write the density as a product:

p(xle) = p((zli Y} wd)t|wj)

d d
HP(fCi ;) =[] P (1 = i)' =
=1 i=1

Thus, we have the discriminant function

d

gi(x) = Y [zilnpi+(1—x) In(1-p;j)]+In Plw;)
i=1

= Zm, In —— 1 - +Zln (1= pi;) + In P(w;).

=1
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We can express the probability of a Gaussian distribution in terms of the error
function as:

P(z>z*)=1/2—erf [””; "]

and thus

:v*

—-::—ﬂ —erf~1[1/2 - P(z > a*)].

We let Phiz = P(z > z*|t € wa) and Prase = P(z > z*|lz € w;). The
discriminability can be written as

¢ =t _E B TP e 1/2 - Pratse] —erf (/2= Pha)

We substitute the values for this problem and find

d, = erf'[0.2] — erf '[—0.3] = 0.52+0.84 = 1.36
d, = erf '[0.1]—erf '[-0.2] = 0.26 + 0.52 = 0.78.

According to Eq. 70 in the text, we have
Case1: P(error)= %[0.3 +(1-0.8)] =0.25

Case2: P(error)= %[0.4+ (1-0.7)}=0.35.

Because of the symmetry property of the ROC curve, the point (Phit, Pja1se) and
the point (1 — Prit, 1 — Pfaise) Will go through the same curve corresponding to
some fixed d’. For case B, (0.1, 0.3) is also a point on ROC curve that (0.9, 0.7)
lies. We can compare this point with case A, going through (0.8, 0.3) and the
help of Fig. 2.20 in the text, we can see that case A has a higher discriminability
d.

40. We are to assume that the two Gaussians underlying the ROC curve have different
variances.

(a)

(b)

From the hit rate Phi; = P(z > z*|z € wp) we can calculate (z* — p2)/02. From
the false alarm rate Pyas = P(z > z*|z € w1) we can calculate (z* — p1)/01.
Let us denote the ratio of the standard deviations as 01/02 = K. Then we can
write the discriminability in this case as

d = #2—#1l= p2 — " _95*—#1':{1‘*—#2 -
e V0102 VO102 VO102 0'2/K K0'1

Because we cannot determine K from (us —z*) /02 and (z* — pi1)/01, we cannot
determine d’ uniquely with only Pris = P(z > z*|z € wz) and Pratse = P(z >
z* |z € wy).

Suppose we are given the following four experimental rates:

P_fa.lsel = P(:’E > ‘T;le)
Pjolsea = Pz > z5|wr).

Phiyy = P(z > z7|wa)
Prit2 = P(z > x3|ws)
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Then we can calculate the four quantities

Ty —
ay = —1-52—‘2 = erf"1[1/2 — Phi] -
1

m* — _ * __
ag = 20—2“2 = erf~1[1/2 — Phiso] by = 2 —EL = erf[1/2 — Pyatsen] for a.
1

Then we have the following relations:

* *
a)—ag = Ty — T2
o2
by —by — 1%
o1
ap—az 01
K = = —.
bi—by o2
Thus, with K we can calculate d), as
d = #2—M1|___ p2 — T} __951"‘#1|
e 0103 o2/K Ko
_ ’ _ (a1 —ag)a; (b1 — b2)b1|
b1 — b2 a1 —ag I’
For all those =7 and z3 that satisfy
- _ -
(o)) g9
or
T - __TZ—m
g1 g1 )

That is, the two different thresholds do not provide any additional information
and conveys the same information as only one observation. As explained in
part (a), this kind of result would not allow us to determine d,.

SEE FIGURE.

P(x|w)

S
Oo

13
X

P(x<x¥x € w,)
S

02 04 06 0.8 1
P(x<x¥|x € w,)

41. We use the notation shown in the figure.

zy —
b1 =1 1 = erf_1[1/2 - Pfalsel] for .’.B:{
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We can express the probability of a Gaussian distribution in terms of the error
function as:

P(z>z*) = 1/2—ef [””; “]

and thus

T* —

P erf! [1/2 - P(z > z")].

We let Phiy = P(z > z*|z € ws) and Piase = Pz > z*|z € wy1). The
discriminability can be written as

— * — T* - _ _
d =2 0“1 = U“l - 0“2 — erf[1/2 — Pjatse] — erf 1[1/2 — Phit).

We substitute the values for this problem and find

d, = erf ![0.2] —erf'[-0.3] = 0.52+0.84 = 1.36
d, = erf '[0.1] - erf '[~0.2] = 0.26 + 0.52 = 0.78.

According to Eq. 70 in the text, we have
1

5{0.3 +(1-0.8)]=0.25
Case 2: P(error) = %[0.4 +(1-0.7)] =0.35.

Case 1: P(error) =

Because of the symmetry property of the ROC curve, the point (Prit, Pfaise) and
the point (1 — Phit, 1 — Pfaise) will go through the same curve corresponding to
some fixed d’. For case B, (0.1, 0.3) is also a point on ROC curve that (0.9, 0.7)
lies. We can compare this point with case A, going through (0.8, 0.3) and the
help of Fig. 2.20 in the text, we can see that case A has a higher discriminability
d.

40. We are to assume that the two Gaussians underlying the ROC curve have different
variances.

(a)

(b)

From the hit rate Py = P(x > x*|z € we) we can calculate (z* — p2)/02. From
the false alarm rate Pyqse = P(z > o*|r € w;) we can calculate (z* — p1)/o1.
Let us denote the ratio of the standard deviations as 0;/02 = K. Then we can
write the discriminability in this case as

e R
o9 /K Ko

d — #2‘#1[_'#2—35 _56 -
@ 4/0102

Vo102 /0102

Because we cannot determine K from (up —z*) /o3 and (z* — p1)/01, we cannot
determine d’ uniquely with only Pt = P(z > z*|z € ws) and Pyarse = Pz >
z*|T € wy).

Suppose we are given the following four experimental rates:

Phitl = P(:E > :c‘{|w2) Pfalsel = P(:L‘ > a:’{|w1)
Prito = P(z > z3|wa) Praise2 = Pz > x3|w).
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Equation 77 in the text gives the Bhatacharyya bound as

P(error) < \/P(w;)P(wz)e */

2) — 0.5-0.5e1/% = 0.3894.

Here we have P(w;) = P(ws) = 0.5 and

0
“"1 = 0 )
1
“‘2 = 1 ]
The inverse matrices are
5t o= (_
= = (_

We use Egs. 6669 and find

Il

n = () (8 () (L,

1/0\*/ 8/5 —2/15
“2\0/) \-2/15 * 8/15
4 5 2

15 15

and

w0 = =) (G T (G )G
0GR R0

8 5 1 1 1 1
= ——z7+ —=T1T2 — —z2+ -z + =72 — i 1.1 +1n§.

18 18

The Bayes decision boundary is the solution to gi(x) = g2(x) or
z? + z2 — 28z 79 — 1021 — 1025 + 50 =0,

which consists of two hyperbolas, as shown in the figure.

We use Egs. 76 and 77 in the text and find
am - 3((1)- () [(3.50.3);(:2 ‘;)r (()- () \l -
-3 G5 ()

Il

= 0.1499.

2 05
%= (0.5 2 )

5 4
5= (39

8/5 — 2/15)
2/15  8/15
5/9 - 4/9)
4/9  5/9)

1

+ ln—2—

2 05
05 2

)0)-

4 1
_Tgml -+ —T1T9 — ——-—(D% - 0.66 -+ ln—z-,

1
ln=
—f—n2

(3

9 9

1, 7.1875
2 5.8005

) (
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x2

X1

Equation 77 in the text gives the Bhatacharyya bound as

P(error) < /P(w1)P(ws)e */P = /0.5 05¢ 1543 = 0.4304.

38. We derive the Bhattacharyya error bound without first examining the Chernoff
bound as follows.

(a) We wish to show that min[a,b] < v/ab. We suppose without loss of generality
that a < b, or equivalently b < a+4 for § > 0. Thus vVab = \/a(a + 8) > VaZ =
a = min|a, b].

(b) Using the above result and the formula for the probability of error given by
Eq. 7 in the text, we have:

Plerror) — / min [P(wy )p(x|wr), P(wn)p(x|wn)] dx

< VPP [ Vrempees) dx
\e—— —— ,

<1/2 e
<1/ ~

< p/2,

where for the last step we have used the fact that min[P(w;), P(w2)] < 1/2,
which follows from the normalization condition P(w;) + P(ws) = 1.

39. We assume the underlying distributions are Gaussian.

(a) Based on the Gaussian assumption, we can calculate (z* — p2)/02 from the hit
rate Pyt = P(z > z*|z € wy). We can also calculate (z* — p11) /07 from the false
alarm rate Pfqse = P(z > z*|z € wy). Since 01 = 03 = 0, the discriminability
is simply

- Ty
(25} g2 )

g

(b) Recall the error function from Eq. 96 in the Appendix of the text:

u
erflu] = %/e“”zdx.
0
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44. The minimum probability of error is achieved by the following decision rule:
Choose wy, if gx(x) > g;(x) for all j # k,
where here we will use the discriminant function
9i(x) = In p(x|w;) +In P(w;).

The components of x are statistically independent for all x in w;, and therefore,

d
p(x|w;) = p((z1, . . ., Ta) lw;) = HP(-’B:‘M),

where
pi; = Prlzi= 1w,
gi; = Prlzi= 0w,
Tij = Pr[:c,-=-—1 ij].

As in Sect. 2.9.1 in the text, we use exponents to “select” the proper probability,
that is, exponents that have value 1.0 when z; has the value corresponding to the
particular probability and value 0.0 for the other values of x;. For instance, for the
pij term, we seek an exponent that has value 1.0 when T; = +1 but is 0.0 when z; =0
and when z; = —1. The sunplest such exponent is 29:1 + z?. For the g;; term, the
simplest exponent is 1 —z?, and so on. Thus we write the class—condltlonal probability
for a single component z; as

_ loitie? 1-a? —laitiel i=1,...,d
plzilw;) = 2 q; T i1 ¢
i=1,...,

and thus for the full vector x the conditional probability is
4 l$i+-1—a:? 1—-2? —Lzi+ia?
p(x|w;) = Hpizj g tryt T P
i=1

Thus the discriminant functions can be written as

9i(x) = Inp(x|w;)+In P(w))

S/ 1 11
= Z [(23:, + 3%i ) In pi; + (1 —z3)ln gij + (—-2-:1:,- -+ Ea:fln rij)] +1n P(wj)

i=1
. Z 21 leTlJ pz]
= x + = z +Zln gij +1n P(w;),
Tij i+1

which are quadratic functions of the components ;.
45. We are given that P(w;) = P(w2) = 1/2 and

Pi1 = p>1/2
P2 = 1—p Z'=1,,..,d,

where d is the dimension, or number of features.



