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&{x)

(c) If A\./Xs = O, there is no cost in rejecting as unrecognizable. Furthermore,
P(w;|x) > 1— )\./), is never satisfied if A./A; = 0. In that case, the decision
rule will always reject as unrecognizable. On the other hand, as A./As —
1, P(w;|x) > 1—\,/), is always satisfied (there is a high cost of not recognizing)
and hence the decision rule is the Bayes decision rule of choosing the class w;
that maximizes the posterior probability P(w;|x).

(d) Consider the case p(z|w;) ~ N(1,1), p(z|wz) ~ N(0,1/4), P(w1) = 1/3, P(w2) =
2/3 and )\, /), = 1/2. In this case, the discriminant functions of part (a) give

9 e~ (=12
gl(a’) = P(xlwl)P(wl)—_—g———m——

12¢-2%°
ale) = ekn)Plon) = 5~

ni@) = (1= 3) lakon) Plon) + plolun)Ploa)]
1 e—(z—1)2/2 —2z2
2 [ Var m}

1

= 37 [e_("“l)z/z + 6_2$2:| = %[91(:1:) + g2(z)]-

Note from the figure that for this problem we should never reject.

8(x)
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Section 2.5

15. We consider the volume of a d-dimensional hypersphere of radius 1.0, and more
generally radius z, as shown in the figure.

(a)

(b)

(c)

(d)

(e)

We use Eq. 47 in the text for d = odd, that is, V; = 2¢x(4-1/2(2z1)1/d!. When
applied to d = 1 (a line) we have V; = 2!7%1 = 2. Indeed, a line segment
—1 < z < +1 has generalized volume (length) of 2. More generally, a line of
“radius” z has volume of 2z.

We use Eq. 47 in the text for d = even, that is, V; = (/2 /(d/2)!. When
applied to d = 2 (a disk), we have Vo = 7!/1! = 7. Indeed, a disk of radius
1 has generalized volume (area) of m. More generally, a disk of radius z has
volume of 7z2.

Given the volume of a line in d = 1, we can derive the volume of a disk by
straightforward integration. As shown in the figure, we have

1
V2=2/\/1—z2 dz =,
0

as we saw in part (a).

As can be seen in the figure, to find the volume of a generalized hypersphere in
d + 1 dimensions, we merely integrate along the z (new) dimension the volume
of a generalized hypersphere in the d-dimensional space, with proper factors and
limits. Thus we have:

1
)  Va/al(d/2+1)
Vors =2 [t = )%= S

where for integer k the gamma function obeys
[(k+1) = k! and T'(k + 1/2) = 2721 /m(2k — 1)!/(k — 1)

Using this formula for d = 2k even, and Vj given for even dimensions, we get
that for the next higher (odd) dimension d*:

2md/2 {\/7? (d/2)! }

Ve = Vd+1=(d/2)! 2 T(d/2+3/2)
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72 [ 92k+1
(2 + 1)!
W(d‘~1)/2(d*2—1)! 9d*

(d)! ’

where we have used 2k = d for some integer k and d* = d + 1. This confirms
Eq. 47 for odd dimension given in the text.

(f) We repeat the above steps, but now use Vy for d odd, in order to derive the
volume of the hypersphere in an even dimension:

Vﬁr(§+1)

Virn = Va0
2 (5+3)
222 (B D((k+1) + 3)
d! 2 (k + 1)!
adt /2
T @/r

where we have used that for odd dimension d = 2k + 1 for some integer k, and
d* = d+1 is the (even) dimension of the higher space. This confirms Eq. 47 for
even dimension given in the text.

16. We approach the problem analogously to problem 15, and use the same figure.
Z

1
dz
2\
1o

X X

d
V,x

Ix

(a) The “volume” of a line from —1 < z < 1 is indeed V; = 2.
(b) Integrating once for the general case (according to the figure) gives

Vy/al(d/2 + 1)

1
Vi, =2 [ Vy(1 = 22424z =
d+1 / (1 —2°)%%dz 21 3/2)
0

where for integer k the gamma function obeys
D(k+1) =kl and T(k+1/2) 2 **"'/r(2k — D/ (k- 1)L
Integrating again thus gives:

V' (d/2 1 1)
(d/2 1 3/2)

Vi

l Vrl'((d+1)/2 + 1)}

Vige = Vd{ U((d 1 1)/2 + 3/2)
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The three eigenvalues are then A = 1,3,7 can be read immediately from the
factors. The (diagonal) A matrix of eigenvalues is thus

1 0 0
A=]103 0].
0 07

To find the eigenvectors, we solve Zx = A;x for (i=1,2,3):

1 00 z T )
Sx=[ 0 5 2 |x=]| Bza+2z3 | =N| 72 1=1,2,3.
0 25 2x9 + 53 T3

The three eigenvectors are given by:

i) (3)-+- ()
A = 1: 5xq + 223 =| =z ¢, =] 0],
( 2x9 + dx3 ) T3 0
1 3z, 0
Ay = 3 5og+2zs | =| 332 | =>da=| 1/V2 |,
2z5 + 53 33 -1/V2

T 7:51 0
7: 5ze42z3 | =| Tra | = @3 = 1/vV2 |.
2x9 + bx3 Tx3 1 / \/5

Thus our final ® and A, matrices are:

A3

I

1 0 0
o= ( 0 1/V2 12 )
0 -1/vV2 1/V2

and

o wo

1 0 0 1
A, =®A7Y2 = | 0 1/V2 1/\/'2) (0
0 -1/v2 1/v2 0

N o O
SNS—

1 0 0
= 0 1/v6 1/V14 |.
0 -1/v6 1/V14
We have then, Y = Af,(x — p) ~ N(0,I).
(c) The transformed point is found by applying A, that is,

Xw — A:”(XO—IJ:)

1 0 0 -0.5 -0.5
= |0 1/V6 1/\/12)( -2 ):( -1/v6 |.
0 -1/v6 1/V14 -1 -3/4/14
(d) From part (a), we have that the squared Mahalanobis distance from x, to p i-n
the original coordinates is 7 = (X, — p)tS " (x, — p) = 1.06. The Mahalanobis
distance from X,, to 0 in the transformed coordinates is xt x,, = (0.5)2+1/6 +

3/14 = 1.06. The two distances are the same, as they must be under any linear
transformation.
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(e) A Gaussian distribution is written as

1 1 ta—1
p(x) = WGXP I:_'Z'(x-“') X (x_”')] :

Under a general linear transformation T, we have that x’ = T*x. The trans-
formed mean is

Likewise, the transformed covariance matrix is

T o= Y- ) w)
k=

-

= T (e —p)(xx—p)| T
k=1
= T!XZT.
We note that |¥'| = |T*ET| = |X| for transformations such as translation and

rotation, and thus
P(%,|N (1, B)) = p(T*x,|N(T*ps, T'ET)).

The volume element is proportial to |T| and for transformations such as scaling,
the transformed covariance is proportional to |T|2, so the transformed normal-

ization contant contains 1/|T|, which exactly compensates for the change in
volume.

(f) Recall the definition of a whitening transformation given by Eq. 44 in the text:
A, = ®A /2. In this case we have

y=Alx~ N(ALu Al ZA,),
and this implies that

Var(y) = AlL(x—p)(x—p)'A,
AL ZA
(BPAT/2) AR (@A /P
A2 BABIBA /2
_ A—1'/2AA—1/2

I,

Il

I

I

the identity matrix.

24. Recall that the general multivariate normal density in d-dimensions is:

1 1 R
p(x) = Wl—iﬂl—/g exp [‘5(" - p)’E T (x— I‘)] :



34

()

()

CHAPTER 2. BAYESIAN DECISION THEORY

The three eigenvalues are then A = 1,3,7 can be read immediately from the
factors. The (diagonal) A matrix of eigenvalues is thus

1 00
A=]103 0].
0 0 7

To find the eigenvectors, we solve £x = \;x for (i = 1,2, 3):

1 00 T T
Ix = 0 5 2 |x= 5z9 + 2x3 =\ Ta 1=1,2,3.
0 2 5 2x9 + bxg T3

The three eigenvectors are given by:

Ty Ty 1
A = 1: (5x2+2$3)=<m2)¢¢1:(0),
2x9 + Sx3 T3 0
T 3:171 0
Ae = 3: 5ra+2rs | =| 3z | == 1/V2 |,
2z + 5x3 3z3 —1/\/5

T Tz 0
7: 5ro+2zs | =| Tza | =>¢s=1| 1/V2 |.
2z9 + 53 Txs 1/v2

Thus our final ® and A,, matrices are:

I

A3

1 0 0
® = ( 0 1/vV2 1/V/2 )
0 -1/vV2 1/V2

and

o wo

1 0 0 1
A, =®A7? = (0 1/v2 1N§> (o
0 -1/v2 1/v2 0

O O
SNS——

0 -1/v6 1/V14
We have then, Y = A! (x — p) ~ N(0,I).

1 0 0
= (0 1/v/6 1/@).

The transformed point is found by applying A, that is,

Xw = Afu(xo_li)

1 0 0 —-0.5 -0.5
= (o 1/V6 1/@)( -2 ):( -1/V6 )
0 -1/v/6 1/V/14 -1 -3/V/14
From part (a), we have that the squared Mahalanobis distance from x, to p in
the original coordinates is r* = (x, — p)'S "' (x, — p) = 1.06. The Mahalanobis
distance from x,, to 0 in the transformed coordinates is x¢,x,, = (0.5)2 +1/6 +

3/14 = 1.06. The two distances are the same, as they must be under any linear
transformation.
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The entropy of the triangle distribution is then

Hipz) = - ]D “’;2’“111 [w;zl‘”]dz

—w

w 0
w—T w—x w+x w+T
= / "> ln[ wz}da:—-/ - ln[ wz]dm
0 w

= Inw+1/2 = In[v6o] + 1/2 = In[v/6ea],

where we used the result w = v/60 from the variance condition.
Thus, in order of decreasing entropy, these equal-variance distributions are Gaus-

sian, uniform then triangle, as illustrated in the figure, where each has the same

variance o2.

p(x)
0.4) \
03/
0.2/0 \
/ oleo
\\ﬁ .
-3o -20 - 4 20 3o

'22. As usual, we denote our multidimensional Gaussian distribution by p(x) ~
N(p,X), or

1 1 tg—1
p(x) = CnEfR P [—§(x— BB (x IL)] :
According to Eq. 37 in the text, the entropy is

Hp(x)) = — / p(x)Inp(x)dx

= - /p(x) —%(x— ”)tz—l(x —p -l [(271.)4:1/2'2'1/2] dx

~ J/
o

indep. of x

d d

- 3/ [ZZ — )= U(wj—u»] dx -+ 5nf(2m)? =)

i=1 j=1
d d

1 / . . ,
= 3 Z Z —pi)(@i — ps) [B77); dx+ 5In[(27)%|3)]
2 i=1 j=1 \d—\,—-/ 2
indep. of x
d d

= I SISlE s + hnlen)? R

i=1 j=1

18
= 52 i+ 5 ln{(27r)d|2|]
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d
Z (X +5 ln[ 27") =]
g

d
d 1
= 5+ ‘2‘1H[(27T)d|21]

1
= —2-ln[(27re)d|2”a

1
2

where we used our common notation of I for the d-by-d identity matrix.
23. We have p(x|w) ~ N (i, X), where

1 100
p=|2 ]| and==|0 5 2 ).
2 025

(a) The density at a test point x, is

1 1 PR
P(Xo|w) = We@ [-§(x° - )BT (%, — ﬂ)] :

For this case we have

= = =1‘

O O =
N otOo
or N O

2—1

and the squared Mahalanobis distance from the mean to x, = (.5,0, 1) is

(%0 — l"')tz_l(xo - p)

-GG ) 1))

- t
-0.5 -0.5 16 1
= -8/21 -2 —025+§T+ 51 = 1.06.
| —-1/21 -1

We substitute these values to find that the density at x, is:

p(Xo|w) = W exp [—%(1.06)} =8.16 x 1073,

(b) Recall from Eq. 44 in the text that A, = ®A /2, where ® contains the
normalized eigenvectors of ¥ and A is the diagonal matrix of eigenvalues. The
characteristic equation, |X — AI| = 0, in this case is

1-A 0 0
0 5—2A 2
0 2 5—2A

(1=X)[(5-X)?—4]

A=-NB=-MNT-N)=

Il

10o0\" 1 0 0 1 0 0
05 2 =1 o 5 2\ ' |=[0 521 —2/21
025 0 2 5 0 -2/21 5/21

)
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The entropy of the triangle distribution is then

H(p(z)) = —]H“’“J‘”‘ln [’”""’"]dw

w w?

—w

w 0
w— w— w+x w+x
= /w2 ln[ wz}d:c—/ - ln[ wz]da:
0

—w

= Inw+1/2 = In[V6o] + 1/2 = In[v6ed],

where we used the result w = /60 from the variance condition.
Thus, in order of decreasing entropy, these equal-variance distributions are Gaus-

sian, uniform then triangle, as illustrated in the figure, where each has the same

variance o2.

P(T)
0.4) \
037
R

0.2/ \

/ 0.l/o
\\‘V x

-0 20 -0 o 20 3o

22. As usual, we denote our multidimensional Gaussian distribution by p(x) ~
N(p, ), or

B 1 1 a1
p(x) = @nysiE P [_i(x— w)ET(x - IL)] :
According to Eq. 37 in the text, the entropy is

Hp(x)) = - / p()Inp(x)dx

= —/P(x) ‘%(x—u)tz—l(x—p)——ln [(27‘,)0'/2'2]1/2] dx

-~
indep. of x

- : ) ! dx + SIn[(2n)?|S
= 3 [Nl e ) | gy
144 » )
-2y ey == (2l de gl
1 d d 1 "
= = jil2 i + = In|(27
5 0 D [Blial= i + 5 n((2m) )
i=1 j=1

DO =

d
SIm 4 ginl(2n) 3]
j=1
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Likewise, the mean constraint gives

Hence A\; = —1/p and Ao = 1 — Inp, and the density is

(1/p)e/* 20
plz) = { 0 otherwise.

(c) Here the density has three free parameters, and is of the general form
p(z) = explho — 1 + A1z + Aoz?],

and the constraint equations are

710(-'5)613C =1

/ zp(z)de = p
—o0
/ z?p(z)de = o*.
We first substitute the general form of p(z) into (*) and find
1 VT e 13/ @) grf | /g — — ] v
=g 2 e AW v I

Since Ay < 0, erf(co) = 1 and erf(—c0) = —1, we have

ﬁeXp[/\O —-1- /\%/(4)‘2)] =1.
W

Likewise, next substitute the general form of p(x) into (+*) and find

1 1)\2
_Mﬁe@{;\;m/i_gl/ Do)l ere [V 2w — 2o/ 2V =22)]

which can be simplified to yield

oo
—00

VT 12 - —p
me@[)\o 1 /\1/(4/\2)] H

Finally, we substitute the general form of p(z) into (x * *) and find

VT —1-\? = —o°.
me@[)\o 1 )\1/(4)\2)]

=t

(%)

(% * %)
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We combine these three results to find the constants:

p Vor
Ao = 1—'2724—111[1/( 27’(‘0)]
M = pfo?
Ay = —1/(202).

We substitute these values back into the general form of the density and find

—(w—#)z] ’

1
T) = e
o) = e [
that is, a Gaussian.

21. A Gaussian centered at z = 0 is of the form

p(z) = \/%Eoexp[—zz/(%rz)].

The entropy for this distribution is given by Eq. 37 in the text:

[o.0]

Hipl)) = - / p(e)lnp(z)dz

= - / \/21_7mexp[——a:2/(202)]1n [\/-21—7‘:08@[—12/(2‘72)]]@

= In[v2ro]+1/2 = In[v2reo].

For the uniform distribution, the entropy is

|z — @1 | — @i

H(p(z)) = — / = L o [ ! } do = —In [——1———] — In[zy — 2],

Since we are given that the mean of the distribution is 0, we know that =, = —z;.
Further, we are told that the variance is 02, that is

Th

/ z?p(x)dz = o

T
which, after integration, implies
z2 + z 3 + 2P = 30°.

We put these results together and find for the uniform distribution H(p(z)) = In[2v/30].
We are told that the variance of the triangle distribution centered on 0 having
half-width w is 62, and this implies

w w 0
/a:2w—Imlda:=/x2w—;mdw+/:1:2w+2xda::w2/6=02.
w
0

w? w

—w —w
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(a) Thus we have if 0;; = 0 and 03;
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o2, then
b3 diag(o?,...,03)
012 . 0
o --- 05
Thus the determinant and inverse matrix are particularly simple:
d
= = [l
i=1
=1 = diag(1/6?,...,1/a3).
This leads to the density being expressed as:
I E—
p (2r)dr2[51/2
B 1

d
H AV 27I'Ui
=1

oxp [~ 36— ' [dig1/oF .-, 1/3)] =)
o |33 (2

2
T — ui)
i=1 i
(b) The contours of constant density are concentric ellipses in d dimensions whose

length 20;+/c for the density p(x) held constant at
e—c/ 2

P .
H Vv 27!'02'
i=1

centers are at (p1,...,1d)" = p, and whose axes in the ith direction are of
dimensions (d = 2) is shown:

The axes of the ellipses are parallel to the coordinate axes.
X

The plot in 2

205cl2

20 cl?

(x—p)'=" (x-p)

> X,

(c) The squared Mahalanobis distance from x to p is:

1/0f
(X _ I")L .

l/og

(x—p)



