8 CHAPTER 2. BAYESIAN DECISION THEORY

(d) The solution to part (b) also applies here.

Section 2.2

2. We are given that the density is of the form p(z|w;) = ke~ lz—ail/bs,

(a) We seek k so that the function is normalized, as required by a true density. We
integrate this function, set it to 1.0,

k / expl(z — ai)/bild + / exp|— (@ — a:) /b,-]da:} _1,

—00 ai

which yields 2b;k = 1 or k = 1/(2b;). Note that the normalization is independent
of a;, which corresponds to a shift along the axis and is hence indeed irrelevant
to normalization. The distribution is therefore written

1 e—al/bs
p(alwi) = 5-e le—asl/b:,

(b) The likelihood ratio can be written directly:

plalw) _ b2 [_ le—a1| | Jo— azl]
p(zjw2) b1 b by |

(c) For the case a; =0, ag = 1, b; = 1 and by = 2, we have the likelihood ratio is

2¢(z+1)/2 4 <0
palwz) _ ) gpa-s92 g<z<1
p(z|wi) 2e(-2-1/2 > 1,

as shown in the figure.
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Section 2.3

3. We are are to use the standard zero-one classification cost, that is A1 = A2 =0
and /\12 = /\21 = 1.
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(d) The solution to part (b) also applies here.

Section 2.2

—|z—az|/bs:
2. We are given that the density is of the form p(z|w;) = ke lo—asl/be,

(a) We seek k so that the function is normalized, as required by a true density. We
integrate this function, set it to 1.0,

k {/‘ expl(z — ai)/bildz + /exp[—(l‘ - ai)/bi]d?] =1,

—00 ai

which yields 2b;k = 1 or k = 1/(2b;). Note that the normalization is ind.ependent
of a;, which corresponds to a shift along the axis and is hence indeed irrelevant
to normalization. The distribution is therefore written

1 e—asl/bs
p(z‘wi):ﬁe le—a:|/b:

(b) The likelihood ratio can be written directly:

(z|lwr) _ be __lf""‘all L"i’_‘_“_ﬁl.
Z(mlwl)“b’f"p[ o ]

(c) For the case ay =0, a2=1,b1 = 1 and by = 2, we have the likelihood ratio is

2e(m+1)/2 T S 0
plalw2) _ ) 90392 g<z<1
p(z|w1) 2e(—=-1/2 g >1,

as shown in the figure.
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Section 2.3

3. We are are to use the standard zero-one classification cost, that is Aj1 = A2z = 0
and /\12 = /\21 =1.
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(a) We have the priors P(w;) and P(ws) = 1 — P(w;). The Bayes risk is given by
Egs. 12 and 13 in the text:

R(P@1)) = P(w) [ ploln)ds + (1= Plon)) [ plalun)da.
Rz R

To obtain the prior with the minimum risk, we take the derivative with respect
to P(w;) and set it to 0, that is

d
MR(P(M)) = /P(w]wl)dz - /P(xlwg)d:c —0,

Rz Rl

which gives the desired result:

/p(a:lwl)da:: /p(mlwz)d:z.

Rz Rl

(b) This solution is not always unique, as shown in this simple counterexample. Let
P(w;) = P(we) = 0.5 and

(o) = |1 ~05<z<05
p Vo= 0 otherwise

(clws) = 1 0<z<1
pirjwz) = 0 otherwise.

It is easy to verify that the decision regions R; = [—0.5,0.25] and R; = [0, 0.5]
satisfy the equations in part (a); thus the solution is not unique.

4. Consider the minimax criterion for a two-category classification problem.

(a) The total risk is the integral over the two regions R; of the posteriors times
their costs:

R = [ DuaPlon)pxlon) + MaPlon)plxlon)] dx
R

+ / [A21 P(w1)p(x|wr) + Apa P(w2)p(x|ws)] dx.
R2

We use [ p(x|wz) dx =1— [ p(x|ws) dx and P(wz) =1 — P(w), regroup to
Rz Rl
find:

R = )+ )\12/p(x|w2) dx — /\zg/p(xlwg) dx

Rl Rl
+ P(wl) [(/\11 - /\22) + Allfp(x|w1) dx — /\12/p(x|w2) dx
Rz Rl

+ Aoy / p(x|w1) dx + Aag / p(x|ws) dX}

Rz Rl
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(a) Without loss of generality, we assume that ap > a;, note that the decision
boundary is at (a; + a2)/2. The probability of error is given by

(a1+az2)/2 00
P(error) = / p(we|z)dz + / p(w: |z)dz
—oo (a1+a2)/2
(a1+a2)/2 1/2 ) fore) 1/2
) 1+(ﬂ1)2 a:+7l'b 1+(m_a )2 T
—o° b (a1+a2)/2 b
(a1—az)/2 (a1—a2)/2
d ! ! d
_— - ———— xr = — J—
b 14 (z—baz)Z T 1+y2 Ys
oo oo

where for the last step we have used the trigonometric substitution y = (z—az)/b
as in Problem 8. The integral is a standard form for tan~'y and thus our solution
is:

P(error) = 1 [tan'l‘————al ;}c@ ! - ta,n_l[—oo]]
T
1 -1—t _1’a2—a1|
2 0w 2b

(b) SEE FIGURE.
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(c) The maximum value of the probability of error is Pras(*25™) = 1/2, which
occurs for |2252| = 0. This occurs when either the two distributions are the
same, which can happen because a; = ag, or even if a; # a2 because b = co and

both distributions are flat.
10. We use the fact that the conditional error is

P(w|z) if we decide wy
P(wz|z) if we decide w;.

P(error|z) = {

(a) Thus the decision as stated leads to:

P(error) = /P(error[a:)p(a:)d:c.
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(b) The error for the converse case is found similarly:

1 1
By = — | ————P(w) da
Wb_oo ]+ ($~—baz)2 )
=0
_ 1
oo
f=—m

= i sin~? b +7
R V02 + (z* — ag)?

= 1y ln b

2 B2+ (" —a2)? ]’

where @ is defined in part (a).

(c) The total error is merely the sum of the component errors:

E=F —FE'2=E'1+%—1—%sin~1 { b2+(b —a2)2] )
where the numerical value of the decision point is
z* = aj + b/tan[27E;] = 0.376.
(d) We add the errors (for b = 1) and find

b

(e) For the Bayes case, the decision point is midway between the peaks of the two
distributions, i.e., at * = 0 (cf. Problem 6). The Bayes error is then

E=01+ 1 + lsin—l [ } = 0.2607.
2 7

Ep = 2/——1-—2P(w2) dz = 0.2489.
14 (2:2)

This is indeed lower than for the Neyman-Pearson case, as it must be. Note
that if the Bayes error were lower than 2 x 0.1 = 0.2 in this problem, we would
use the Bayes decision point for the Neyman-Pearson case, since it too would
ensure that the Neyman-Pearson criteria were obeyed and would give the lowest
total error.

8. Consider the Cauchy distribution.

(a) We let k denote the integral of p(z|w;), and check the normalization condition,
that is, whether £ = 1:

T 171
k= /p(a:[wi) dz — / b
J, m ) 14 (252)°
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We substitute (x — a;)/b = y into the above and get

[e o]

1 1
k= | ——d
ﬂ/1+y2 v

—00

and use the trigonometric substition 1/4/1+ 32 = sin 0, and hence dy =
df /sin®@ to find

1 6=0 . 20
k== / s di=1.
o sin“@

Indeed, k = 1, and the distribution is normalized.
(b) We let z* denote the decision boundary (a single point) and find its value by
setting p(z*|w; )P(w1) = p(z*|we)P(w2). We have then

1 1 1 1 1 1

L (52 Ty ()2

or (z* —a;) = *(z* — az). For a; # a9, this implies that z* = (a; + a2)/2, that
is, the decision boundary is midway between the means of the two distributions.

(c) For the values a; = 3,a2 =5 and b =1, we get the graph shown in the figure.
Plw,lx)

A
1
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—_—]
04
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(d) We substitute the form of P(w;|z) and p(z|w;) and find

3y
lim P(wilz) = lim b1t I_L;L
L [1 ey ] [wb;(—_lr-z—)z”

lim b% + (z — a;)? 1
o0 b2 + (z — a1)2 + 02 + (z — ag)? 2’

and likewise, EEIPOOP(wa) = 1/2, as can be confirmed in the figure.

9. We follow the terminology in Section 2.3 in the text.
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(b) The error for the converse case is found similarly:

z*

1 1

E2 = —= —————P(wz) dz
w1+ ()
1 0=0
- o / i
0=—m

i sin~! b T
- 3 [WT—J* |

= l+lsin“1 b
T2 T ’

AV b2 + (.’L‘* - a2)2

where 6 is defined in part (a).

(c) The total error is merely the sum of the component errors:

1 1 b
E=F  +Ey=FE; 4+ =+ =sin! )
1 2 1ttt [ /_b2+(w*—a2)2}

where the numerical value of the decision point is
z* = a; + b/tan[27E;] = 0.376.
(d) We add the errors (for b = 1) and find

b
B 1 (@ — az)2

1
E=01+ 1 + =sin~! { } = 0.2607.
2

(e) For the Bayes case, the decision point is midway between the peaks of the two
distributions, i.e., at * = 0 (cf. Problem 6). The Bayes error is then

oo
Egp :2/————%P(u2) dz — 0.2489.
5 1+(55%)

This is indeed lower than for the Neyman-Pearson case, as it must be. Note
that if the Bayes error were lower than 2 x 0.1 - 0.2 in this problem, we would
use the Bayes decision point for the Neyman-Pearson case, since it too would
ensure that the Neyman-Pearson criteria were obeyed and would give the lowest
total error.

8. Consider the Cauchy distribution.

(a) We let k denote the integral of p(z|w;), and check the normalization condition,
that is, whether £ = 1:

[ee] OO

1
k= /P(xlw.i) dx s / - (','ir)“j d.

—00
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(a) Without loss of generality, we assume that as > a1, note that the decision
boundary is at (a1 + a2)/2. The probability of error is given by

(a1+a2)/2 00

P(error) = /p(wzlx)da:+ /p(wﬂx)da:
—00 (a1+az)/2
(a1+a2)/2 o0
RV B 2
= T T o—aa\2 LY T e—ainN2
7b z—az b 1 z—ay
o e )
1('-"1—612)/2 1 (a1~a2)/2
- = - - dz=- dy,
pry 1+(m—baz)2 T T+y2
oo —00

where for the last step we have used the trigonometric substitution y = (z—az)/b
as in Problem 8. The integral is a standard form for tan 'y and thus our solution

18!

1 a;—a
P(error) = - [tan‘l'—lé—b——%l - tan_l[-—oo]]
by
(b) SEE FIGURE.
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(c) The maximum value of the probability of error is Pras(*25>) = 1 /2, which
oceurs for |22221| = 0. This occurs when either the two distributions are the
same, which can happen because a; = az, or even if a; # a because b = oo and
both distributions are flat.

10. We use the fact that the conditional error is

p ) P(wi|z) if we decide wq
(errorjz) = P(ws|z) if we decide w;.

(a) Thus the decision as stated leads to:

P(error) = / P(error|z)p(z)dz.
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Thus we can write the probability of error as

P(error) =  P(z < 6 and w; is the true state)
+P(z > 0 and ws is the true state)
P(:L‘ < 0|w1)P(w1) + P(:L‘ > 0|w2)P(w2)

Il

] (%)
P(w) / plelwr) dz + P(ws) [ plelws) dz.
—00 [’}

(b) We take a derivative with respect to 6 and set it to zero to find an extremum,
that is,

dP(error) P

20 (w1)p(0lw1) — P(wa)p(flw2) =0,

which yields the condition
P(w1)p(0lwr) = P(w2)p(6]ws),
where we have used the fact that p(z|w;) = 0 at £ — oo.
(c) No, this condition does not uniquely define 6.

1. If P(w1)p(0|w:) = P(w2)p(f|lws) over a range of 0, then § would be unspec-
ified throughout such a range.

2. There can easily be multiple values of z for which the condition hold, for
instance if the distributions have the appropriate multiple peaks.

(d) If p(zjw;1) ~ N(1,1) and p(z|ws) ~ N(—1,1) with P(w;) = P(w2) = 1/2, then
we have a mazimum for the error at 8 = 0.

11. The deterministic risk is given by Bayes’ Rule and Eq. 20 in the text

R= /R(ai(x)|x) dx.

(a) In a random decision rule, we have the probability P(a;|x) of deciding to take
action @;. Thus in order to compute the full probabilistic or randomized risk,
R,qn, we must integrate over all the conditional risks weighted by their proba-
bilities, i.e.,

Rran = / {Z R(ai(x)[x)P (Otilx)} p(x) dx.

=1

(b) Consider a fixed point x and note that the (deterministic) Bayes minimum risk
decision at that point obeys

R(Ol,; (X) |X) 2 R(amaz (X)IX)



