- 8
 - (d) The solution to part (b) also applies here.

Section 2.2

- **2.** We are given that the density is of the form $p(x|\omega_i) = ke^{-|x-a_i|/b_i}$.
 - (a) We seek k so that the function is normalized, as required by a true density. We integrate this function, set it to 1.0,

$$k\left[\int\limits_{-\infty}^{a_i} \exp[(x-a_i)/b_i] dx + \int\limits_{a_i}^{\infty} \exp[-(x-a_i)/b_i] dx
ight] = 1,$$

which yields $2b_i k = 1$ or $k = 1/(2b_i)$. Note that the normalization is independent of a_i , which corresponds to a shift along the axis and is hence indeed irrelevant to normalization. The distribution is therefore written

$$p(x|\omega_i) = rac{1}{2b_i}e^{-|x-a_i|/b_i}.$$

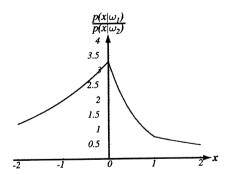
(b) The likelihood ratio can be written directly:

$$rac{p(x|\omega_1)}{p(x|\omega_2)} = rac{b_2}{b_1} \mathrm{exp}\left[-rac{|x-a_1|}{b_1} + rac{|x-a_2|}{b_2}
ight].$$

(c) For the case $a_1=0,\,a_2=1,\,b_1=1$ and $b_2=2,$ we have the likelihood ratio is

$$rac{p(x|\omega_2)}{p(x|\omega_1)} = \left\{egin{array}{cc} 2e^{(x+1)/2} & x \leq 0 \ 2e^{(1-3x)/2} & 0 < x \leq 1 \ 2e^{(-x-1)/2} & x > 1, \end{array}
ight.$$

as shown in the figure.



Section 2.3

3. We are to use the standard zero-one classification cost, that is $\lambda_{11} = \lambda_{22} = 0$ and $\lambda_{12} = \lambda_{21} = 1$.

9

(d) The solution to part (b) also applies here.

Section 2.2

2. We are given that the density is of the form $p(x|\omega_i) = ke^{-|x-a_i|/b_i}$.

(a) We seek k so that the function is normalized, as required by a true density. We integrate this function, set it to 1.0,

$$k\left[\int\limits_{-\infty}^{a_i} \exp[(x-a_i)/b_i]dx + \int\limits_{a_i}^{\infty} \exp[-(x-a_i)/b_i]dx
ight] = 1,$$

which yields $2b_ik = 1$ or $k = 1/(2b_i)$. Note that the normalization is independent of a_i , which corresponds to a shift along the axis and is hence indeed irrelevant to normalization. The distribution is therefore written

$$p(x|\omega_i) = rac{1}{2b_i}e^{-|x-a_i|/b_i}.$$

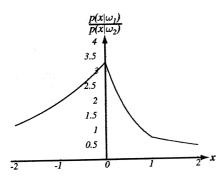
(b) The likelihood ratio can be written directly:

$$rac{p(x|\omega_1)}{p(x|\omega_2)}=rac{b_2}{b_1}\mathrm{exp}\left[-rac{|x-a_1|}{b_1}+rac{|x-a_2|}{b_2}
ight].$$

(c) For the case $a_1 = 0$, $a_2 = 1$, $b_1 = 1$ and $b_2 = 2$, we have the likelihood ratio is

$$rac{p(x|\omega_2)}{p(x|\omega_1)} = \left\{egin{array}{cc} 2e^{(x+1)/2} & x \leq 0 \ 2e^{(1-3x)/2} & 0 < x \leq 1 \ 2e^{(-x-1)/2} & x > 1, \end{array}
ight.$$

as shown in the figure.



Section 2.3

3. We are are to use the standard zero-one classification cost, that is $\lambda_{11} = \lambda_{22} = 0$ and $\lambda_{12} = \lambda_{21} = 1$.

(a) We have the priors $P(\omega_1)$ and $P(\omega_2) = 1 - P(\omega_1)$. The Bayes risk is given by Eqs. 12 and 13 in the text:

$$R(P(\omega_1)) = P(\omega_1) \int\limits_{\mathcal{R}_2} p(x|\omega_1) dx + (1-P(\omega_1)) \int\limits_{\mathcal{R}_1} p(x|\omega_2) dx.$$

To obtain the prior with the minimum risk, we take the derivative with respect to $P(\omega_1)$ and set it to 0, that is

$$rac{d}{dP(\omega_1)}R(P(\omega_1))=\int\limits_{\mathcal{R}_2}p(x|\omega_1)dx-\int\limits_{\mathcal{R}_1}p(x|\omega_2)dx=0,$$

which gives the desired result:

PROBLEM SOLUTIONS

$$\int\limits_{\mathcal{R}_2} p(x|\omega_1) dx = \int\limits_{\mathcal{R}_1} p(x|\omega_2) dx.$$

(b) This solution is not always unique, as shown in this simple counterexample. Let $P(\omega_1) = P(\omega_2) = 0.5$ and

$$p(x|\omega_1) = \left\{ egin{array}{ll} 1 & -0.5 \leq x \leq 0.5 \\ 0 & ext{otherwise} \end{array}
ight. \ p(x|\omega_2) = \left\{ egin{array}{ll} 1 & 0 \leq x \leq 1 \\ 0 & ext{otherwise.} \end{array}
ight.$$

It is easy to verify that the decision regions $\mathcal{R}_1 = [-0.5, 0.25]$ and $\mathcal{R}_1 = [0, 0.5]$ satisfy the equations in part (a); thus the solution is not unique.

- 4. Consider the minimax criterion for a two-category classification problem.
- (a) The total risk is the integral over the two regions \mathcal{R}_i of the posteriors times their costs:

$$egin{array}{ll} R &= \int\limits_{\mathcal{R}_1} \left[\lambda_{11} P(\omega_1) p(\mathbf{x}|\omega_1) + \lambda_{12} P(\omega_2) p(\mathbf{x}|\omega_2)
ight] \, d\mathbf{x} \ &+ \int\limits_{\mathcal{R}} \left[\lambda_{21} P(\omega_1) p(\mathbf{x}|\omega_1) + \lambda_{22} P(\omega_2) p(\mathbf{x}|\omega_2)
ight] \, d\mathbf{x}. \end{array}$$

We use $\int_{\mathcal{R}_2} p(\mathbf{x}|\omega_2) \ d\mathbf{x} = 1 - \int_{\mathcal{R}_1} p(\mathbf{x}|\omega_2) \ d\mathbf{x}$ and $P(\omega_2) = 1 - P(\omega_1)$, regroup to find:

$$R = \lambda_{22} + \lambda_{12} \int_{\mathcal{R}_1} p(\mathbf{x}|\omega_2) \ d\mathbf{x} - \lambda_{22} \int_{\mathcal{R}_1} p(\mathbf{x}|\omega_2) \ d\mathbf{x}$$

$$+ P(\omega_1) \left[(\lambda_{11} - \lambda_{22}) + \lambda_{11} \int_{\mathcal{R}_2} p(\mathbf{x}|\omega_1) \ d\mathbf{x} - \lambda_{12} \int_{\mathcal{R}_1} p(\mathbf{x}|\omega_2) \ d\mathbf{x} \right]$$

$$+ \lambda_{21} \int_{\mathcal{R}_2} p(\mathbf{x}|\omega_1) \ d\mathbf{x} + \lambda_{22} \int_{\mathcal{R}_1} p(\mathbf{x}|\omega_2) \ d\mathbf{x}$$

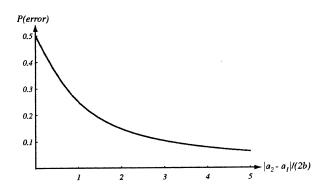
(a) Without loss of generality, we assume that $a_2 > a_1$, note that the decision boundary is at $(a_1 + a_2)/2$. The probability of error is given by

$$egin{aligned} P(error) &= \int\limits_{-\infty}^{(a_1+a_2)/2} p(\omega_2|x) dx + \int\limits_{(a_1+a_2)/2}^{\infty} p(\omega_1|x) dx \ &= rac{1}{\pi b} \int\limits_{-\infty}^{(a_1+a_2)/2} rac{1/2}{1+ig(rac{x-a_2}{b}ig)^2} \, dx + rac{1}{\pi b} \int\limits_{(a_1+a_2)/2}^{\infty} rac{1/2}{1+ig(rac{x-a_1}{b}ig)^2} \, dx \ &= rac{1}{\pi b} \int\limits_{-\infty}^{(a_1-a_2)/2} rac{1}{1+ig(rac{x-a_2}{b}ig)^2} \, dx = rac{1}{\pi} \int\limits_{-\infty}^{(a_1-a_2)/2} rac{1}{1+y^2} \, dy, \end{aligned}$$

where for the last step we have used the trigonometric substitution $y = (x-a_2)/b$ as in Problem 8. The integral is a standard form for $\tan^{-1}y$ and thus our solution is:

$$egin{array}{ll} P(error) & = & rac{1}{\pi} \left[an^{-1} \Big| rac{a_1 - a_2}{2b} \Big| - an^{-1} [-\infty]
ight] \ & = & rac{1}{2} - rac{1}{\pi} an^{-1} \Big| rac{a_2 - a_1}{2b} \Big|. \end{array}$$

(b) SEE FIGURE.



- (c) The maximum value of the probability of error is $P_{max}(\frac{a_2-a_1}{2b})=1/2$, which occurs for $|\frac{a_2-a_1}{2b}|=0$. This occurs when either the two distributions are the same, which can happen because $a_1=a_2$, or even if $a_1 \neq a_2$ because $b=\infty$ and both distributions are flat.
- 10. We use the fact that the conditional error is

$$P(error|x) = \left\{ egin{array}{l} P(\omega_1|x) ext{ if we decide } \omega_2 \ P(\omega_2|x) ext{ if we decide } \omega_1. \end{array}
ight.$$

(a) Thus the decision as stated leads to:

$$P(error) = \int_{-\infty}^{\infty} P(error|x)p(x)dx.$$

(b) The error for the converse case is found similarly:

$$E_{2} = \frac{1}{\pi b} \int_{-\infty}^{x^{*}} \frac{1}{1 + \left(\frac{x - a_{2}}{b}\right)^{2}} P(\omega_{2}) dx$$

$$= \frac{1}{2\pi} \int_{\theta = -\pi}^{\theta = \tilde{\theta}} d\theta$$

$$= \frac{1}{2\pi} \left\{ \sin^{-1} \left[\frac{b}{\sqrt{b^{2} + (x^{*} - a_{2})^{2}}} \right] + \pi \right\}$$

$$= \frac{1}{2} + \frac{1}{\pi} \sin^{-1} \left[\frac{b}{\sqrt{b^{2} + (x^{*} - a_{2})^{2}}} \right],$$

where $\tilde{\theta}$ is defined in part (a).

(c) The total error is merely the sum of the component errors:

$$E = E_1 + E_2 = E_1 + rac{1}{2} + rac{1}{\pi} \sin^{-1} \left[rac{b}{\sqrt{b^2 + (x^* - a_2)^2}}
ight],$$

where the numerical value of the decision point is

$$x^* = a_1 + b/\tan[2\pi E_1] = 0.376$$

(d) We add the errors (for b = 1) and find

$$E = 0.1 + \frac{1}{2} + \frac{1}{\pi} \sin^{-1} \left[\frac{b}{\sqrt{b^2 + (x^* - a_2)^2}} \right] = 0.2607.$$

(e) For the Bayes case, the decision point is midway between the peaks of the two distributions, i.e., at $x^* = 0$ (cf. Problem 6). The Bayes error is then

$$E_B = 2 \int\limits_0^\infty rac{1}{1 + \left(rac{x-a}{b}
ight)^2} P(\omega_2) \; dx = 0.2489.$$

This is indeed lower than for the Neyman-Pearson case, as it must be. Note that if the Bayes error were lower than $2\times0.1=0.2$ in this problem, we would use the Bayes decision point for the Neyman-Pearson case, since it too would ensure that the Neyman-Pearson criteria were obeyed and would give the lowest total error.

- 8. Consider the Cauchy distribution.
- (a) We let k denote the integral of $p(x|\omega_i)$, and check the normalization condition, that is, whether k=1:

$$k = \int\limits_{-\infty}^{\infty} p(x|\omega_i) \; dx = rac{1}{\pi b} \int\limits_{-\infty}^{\infty} rac{1}{1 + \left(rac{x - a_i}{b}
ight)^2} \; dx.$$

We substitute $(x - a_i)/b = y$ into the above and get

PROBLEM SOLUTIONS

$$k = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+y^2} \ dy,$$

and use the trigonometric substition $1/\sqrt{1+y^2}=\sin\theta$, and hence $dy=d\theta/\sin^2\theta$ to find

$$k = \frac{1}{\pi} \int_{0}^{\theta=0} \frac{\sin^2 \theta}{\sin^2 \theta} \ d\theta = 1.$$

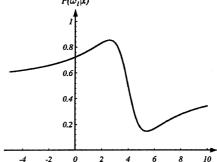
Indeed, k = 1, and the distribution is normalized.

(b) We let x^* denote the decision boundary (a single point) and find its value by setting $p(x^*|\omega_1)P(\omega_1) = p(x^*|\omega_2)P(\omega_2)$. We have then

$$\frac{1}{\pi b} \frac{1}{1 + \left(\frac{x^* - a_1}{b}\right)^2} \frac{1}{2} = \frac{1}{\pi b} \frac{1}{1 + \left(\frac{x^* - a_2}{b}\right)^2} \frac{1}{2},$$

or $(x^* - a_1) = \pm (x^* - a_2)$. For $a_1 \neq a_2$, this implies that $x^* = (a_1 + a_2)/2$, that is, the decision boundary is midway between the means of the two distributions.

(c) For the values $a_1 = 3$, $a_2 = 5$ and b = 1, we get the graph shown in the figure.



(d) We substitute the form of $P(\omega_i|x)$ and $p(x|\omega_i)$ and find

$$\lim_{x \to \infty} P(\omega_i | x) = \lim_{x \to \infty} \frac{\frac{1}{2} \left[\frac{1}{\pi b} \frac{1}{1 + \left(\frac{x - a_i}{b} \right)^2} \right]}{\left[\frac{1}{2} \left[\frac{1}{\pi b} \frac{1}{1 + \left(\frac{x - a_1}{b} \right)^2} \right] + \frac{1}{2} \left[\frac{1}{\pi b} \frac{1}{1 + \left(\frac{x - a_2}{b} \right)^2} \right] \right]}$$

$$= \lim_{x \to \infty} \frac{b^2 + (x - a_i)^2}{b^2 + (x - a_1)^2 + b^2 + (x - a_2)^2} = \frac{1}{2},$$

and likewise, $\lim_{x\to -\infty} P(\omega_i|x) = 1/2$, as can be confirmed in the figure.

9. We follow the terminology in Section 2.3 in the text.

(b) The error for the converse case is found similarly:

$$E_{2} = \frac{1}{\pi b} \int_{-\infty}^{x^{*}} \frac{1}{1 + \left(\frac{x - a_{2}}{b}\right)^{2}} P(\omega_{2}) dx$$

$$= \frac{1}{2\pi} \int_{\theta = -\pi}^{\theta = \bar{\theta}} d\theta$$

$$= \frac{1}{2\pi} \left\{ \sin^{-1} \left[\frac{b}{\sqrt{b^{2} + (x^{*} - a_{2})^{2}}} \right] + \pi \right\}$$

$$= \frac{1}{2} + \frac{1}{\pi} \sin^{-1} \left[\frac{b}{\sqrt{b^{2} + (x^{*} - a_{2})^{2}}} \right],$$

where $\tilde{\theta}$ is defined in part (a).

(c) The total error is merely the sum of the component errors:

$$E=E_1+E_2=E_1+rac{1}{2}+rac{1}{\pi} ext{sin}^{-1} \left[rac{b}{\sqrt{b^2+(x^*-a_2)^2}}
ight],$$

where the numerical value of the decision point is

$$x^* = a_1 + b/\tan[2\pi E_1] = 0.376.$$

(d) We add the errors (for b = 1) and find

$$E = 0.1 + \frac{1}{2} + \frac{1}{\pi} \sin^{-1} \left[\frac{b}{\sqrt{b^2 + (x^* - a_2)^2}} \right] = 0.2607.$$

(e) For the Bayes case, the decision point is midway between the peaks of the two distributions, i.e., at $x^* = 0$ (cf. Problem 6). The Bayes error is then

$$E_B = 2 \int\limits_0^\infty rac{1}{1 + \left(rac{x-a}{b}
ight)^2} P(\omega_2) \,\, dx = 0.2489.$$

This is indeed lower than for the Neyman-Pearson case, as it must be. Note that if the Bayes error were lower than $2 \times 0.1 = 0.2$ in this problem, we would use the Bayes decision point for the Neyman-Pearson case, since it too would ensure that the Neyman-Pearson criteria were obeyed and would give the lowest total error.

- 8. Consider the Cauchy distribution.
 - (a) We let k denote the integral of $p(x|\omega_i)$, and check the normalization condition, that is, whether k=1:

$$k = \int_{-\infty}^{\infty} p(x|\omega_i) \ dx = \frac{1}{\pi b} \int_{-\infty}^{\infty} \frac{1}{1 + \left(\frac{x-a_1}{b}\right)^2} \ dx.$$

(a) Without loss of generality, we assume that $a_2 > a_1$, note that the decision boundary is at $(a_1 + a_2)/2$. The probability of error is given by

$$P(error) = \int_{-\infty}^{(a_1+a_2)/2} p(\omega_2|x) dx + \int_{(a_1+a_2)/2}^{\infty} p(\omega_1|x) dx$$

$$= \frac{1}{\pi b} \int_{-\infty}^{(a_1+a_2)/2} \frac{1/2}{1 + \left(\frac{x-a_2}{b}\right)^2} dx + \frac{1}{\pi b} \int_{(a_1+a_2)/2}^{\infty} \frac{1/2}{1 + \left(\frac{x-a_1}{b}\right)^2} dx$$

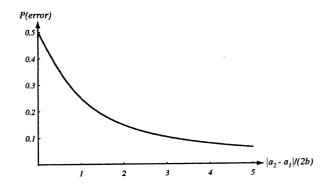
$$= \frac{1}{\pi b} \int_{-\infty}^{(a_1-a_2)/2} \frac{1}{1 + \left(\frac{x-a_2}{b}\right)^2} dx = \frac{1}{\pi} \int_{-\infty}^{(a_1-a_2)/2} \frac{1}{1 + y^2} dy,$$

where for the last step we have used the trigonometric substitution $y = (x-a_2)/b$ as in Problem 8. The integral is a standard form for $\tan^{-1} y$ and thus our solution is:

$$P(error) = \frac{1}{\pi} \left[\tan^{-1} \left| \frac{a_1 - a_2}{2b} \right| - \tan^{-1} [-\infty] \right]$$

 $= \frac{1}{2} - \frac{1}{\pi} \tan^{-1} \left| \frac{a_2 - a_1}{2b} \right|.$

(b) SEE FIGURE.



- (c) The maximum value of the probability of error is $P_{max}(\frac{a_2-a_1}{2b})=1/2$, which occurs for $|\frac{a_2-a_1}{2b}|=0$. This occurs when either the two distributions are the same, which can happen because $a_1=a_2$, or even if $a_1 \neq a_2$ because $b=\infty$ and both distributions are flat.
- 10. We use the fact that the conditional error is

$$P(error|x) = \left\{ egin{array}{l} P(\omega_1|x) ext{ if we decide } \omega_2 \ P(\omega_2|x) ext{ if we decide } \omega_1. \end{array}
ight.$$

(a) Thus the decision as stated leads to:

$$P(error) = \int\limits_{-\infty}^{\infty} P(error|x)p(x)dx.$$

Thus we can write the probability of error as

$$P(error) = P(x < \theta \text{ and } \omega_1 \text{ is the true state}) \ + P(x > \theta \text{ and } \omega_2 \text{ is the true state}) \ = P(x < \theta|\omega_1)P(\omega_1) + P(x > \theta|\omega_2)P(\omega_2) \ = P(\omega_1)\int\limits_{-\infty}^{\theta} p(x|\omega_1) \ dx + P(\omega_2)\int\limits_{\theta}^{\infty} p(x|\omega_2) \ dx.$$

(b) We take a derivative with respect to θ and set it to zero to find an extremum, that is,

$$rac{dP(error)}{d heta} = P(\omega_1)p(heta|\omega_1) - P(\omega_2)p(heta|\omega_2) = 0,$$

which yields the condition

PROBLEM SOLUTIONS

$$P(\omega_1)p(\theta|\omega_1) = P(\omega_2)p(\theta|\omega_2),$$

where we have used the fact that $p(x|\omega_i) = 0$ at $x \to \pm \infty$.

- (c) No, this condition does not uniquely define θ .
 - 1. If $P(\omega_1)p(\theta|\omega_1) = P(\omega_2)p(\theta|\omega_2)$ over a range of θ , then θ would be unspecified throughout such a range.
 - 2. There can easily be multiple values of x for which the condition hold, for instance if the distributions have the appropriate multiple peaks.
- (d) If $p(x|\omega_1) \sim N(1,1)$ and $p(x|\omega_2) \sim N(-1,1)$ with $P(\omega_1) = P(\omega_2) = 1/2$, then we have a maximum for the error at $\theta = 0$.
- 11. The deterministic risk is given by Bayes' Rule and Eq. 20 in the text

$$R = \int R(\alpha_i(\mathbf{x})|\mathbf{x}) \ d\mathbf{x}.$$

(a) In a random decision rule, we have the *probability* $P(\alpha_i|\mathbf{x})$ of deciding to take action α_i . Thus in order to compute the full probabilistic or randomized risk, R_{ran} , we must integrate over all the conditional risks weighted by their probabilities, i.e.,

$$R_{ran} = \int \left[\sum_{i=1}^{a} R(\alpha_i(\mathbf{x})|\mathbf{x}) P(\alpha_i|\mathbf{x}) \right] p(\mathbf{x}) d\mathbf{x}.$$

(b) Consider a fixed point \mathbf{x} and note that the (deterministic) Bayes minimum risk decision at that point obeys

$$R(\alpha_i(\mathbf{x})|\mathbf{x}) \geq R(\alpha_{max}(\mathbf{x})|\mathbf{x})$$