
Classifying Digital Pathology Images Using Machine Learning Models

Jouri Ghazi
Department of Electrical and Computer Engineering, Temple University

jouri.ghazi@temple.edu

Introduction: Digital pathology is the process of producing digital images from tissue sections, enabling
efficient analysis and sharing tissue samples among medical professionals. The digitized tissue samples
allows for the automation of the diagnostic process using machine learning applications. In this project, a
dataset of DCT coefficients in the form of three CSV files, train, development and evaluation will be used
to implement non-neural and neural network model to classify the images. The train subset has 10,067
images, development includes 5,959 images, and evaluation has 6,260 images. The first column of these
CSVs contains the class value, there are 9 classes labeled from 0 to 8. The models will be trained on the
train set and evaluated on the development set. The evaluation set will be used as a blind test, with the class
labels set to 0. The non-neural method implemented for this project is Random Forest, and the Neural
Network method is a Feed-Forward Network (FFN).

Before implementing the methods, the DCT data was processed. The CSV contains 3 × 1024 coefficients,
the first 1024 correspond to the red channel, the next 1024 values correspond to the green channel, and the
last 1024 to the blue channel. The values in each channel are reshaped to 32 × 32 matrices, in each matrix
the first row represents the horizontal frequencies, and the column represents the vertical frequencies. The
(1,1) value represents the overall brightness of the image. The intersection of the values correspond to a
combination of the horizontal and vertical frequencies. The top-left corner represents low frequency values,
quantifying smooth color gradients, while the bottom-right contains high frequency value, quantifying
textures and changes in pixel colors. For both models, the top left N × N values of the submatrices were
extracted and flattened into a vector and used for training and evaluation.

Random Forest Description: Random Forest is a non-neural network implemented, this method was
selected due to its performance in capturing non-linear decision boundaries. This model trains M decision
trees random on subsets of the data and classifies based on a majority vote across the trees. First, the top-
left N × N DCT coefficients from the red, green and blue channels were trained on and evaluated separately
to determine if a single color space would provide good performance, potentially cutting the required
computation by one-third. However, training and evaluating on all 3 color spaces consistently yielded
higher accuracy for all N values. As N increased, the accuracy gradually decreased, which is likely caused
by the lower concentration of low frequency values, demonstrating the importance of selecting the most
ideal subset of data. The value of N = 4 was determined to be ideal, next the models hyperparameters were
tuned. These parameters included the number of estimators, maximum tree depth, minimum number of
samples needed to split a node, minimum number of samples per leaf, maximum number of features, and
the usage of bootstrap sampling, these values were varied to observe its impact on the model’s performance.

The number of estimators defines how many individual trees are included within the model. A larger
number of trees would result in a better fitting to the training data set but requires more computation and
increased time to train. Increasing this value generally led to higher accuracy on the development set, which
eventually converged. The maximum depth determines how deep a tree is allowed to grow, limiting the
depth would prevent the model from overfitting, while trees that are too shallow underfitted the data and
resulted in poor performance. The minimum samples split parameter controls the minimum number of
samples required to split an internal node. Higher values would reduce the model’s complexity by requiring
more data to grow and develop more complicated patterns, while a low value would result in overfitting to
the train set dataset, also hindering performance. The minimum samples leaf variable determines the
minimum number of samples needed to be a leaf node, a higher value would ensure that a leaf node would
prevent in overfitting to the data. The maximum features determines the number of features considered

when looking for the best split within each node. Lower values such as ‘sqrt’ and ‘log2’ would increase the
randomness and reduce the correlation between the trees. While
setting it to None would allow all the features to be considered, this
value provided a higher accuracy when evaluating. The Bootstrap
variable determines whether sampling with replacement is used
when creating the trees. The usage of bootstrapping allows the trees
to be more diverse and reduced overfitting. Table 1 shows the values
selected for each of these hyperparameters, the optimized model
yielded an accuracy of 97.51% on the train and 58.67% on the
development.

Feed-Forward Network Description: The FFN was the neural network method implemented for this task.
An FFN processes data in a singular direction without a feedback loop, from the input to output. This model
is made of three layers, the input, hidden and output layers. The input layer receives the feature vector,
while the hidden layer would extract the complex patterns, and the output layer would produce the class
predictions. The size of the input layer corresponds to the number of features, and the output layer has 9
units, corresponding to the possible image classes. The number of hidden layers determines the model’s
capacity to learn more complicated patterns. Deeper models with more hidden layers are more likely to
overfit, whereas a shallow network may not be able to pick up on the patterns as well. It was observed that
the more the model was overfit to the training, the worse it would generalize to the development data.

The parameters tuned for this model include the number of epochs, activation function, optimization
algorithm, learning rate and the dropout rate. Epochs refer to the number of times the training dataset goes
through the model, more epochs can allow the model to better fit the data but lead to overfitting. The
activation function introduces non-linearity to the model and enables it to learn complex patterns. The
GELU activation function provided the best accuracy for both train and development across a variety of
epochs. The optimizer controls how the model’s weight are updated to minimize the loss value. Adaptive
Moment Estimation (ADAM) provided a high level of generalizability to the development and was chosen
for this model. The learning rate determines the step size for
weight updates per iteration. If it is too high, the model may
overshoot the ideal value, and a value that is too low would hinder
the learning progress. The learning rate was varied and the value
of 10−3 resulted in the highest accuracy. The dropout value is used
to prevent overfitting by randomly dropping a portion of the
neurons during the training process, disabling dropout resulted in
the highest accuracy. Table 2 shows the hyperparameter values
used for the FFN. This model achieved 90.94% accuracy on the
training set and 39.87% accuracy on the development set.

Conclusions: This project implemented a neural and non-neural model to classify digital pathology images
using the extracted DCT coefficients. The Random Forest model provided a baseline and generalized better
on unseen data compared to the FFN model, both models achieved an accuracy of at least 35%. Table 3
summarizes the accuracies and error score for the train
and development for each of the methods implemented.
For future work it would be useful to explore the inverse
DCT to reconstruct and analyze the original image
content and implement a Convolutional Neural Network
(CNN). Additionally implementing the CNN on the
DCT data could allow the model to capture the
relationship between the frequencies present within the
dataset.

 Data Set
 Algorithm Train Dev

Accuracies RNF 97.51% 58.67%
FFN 90.94% 39.87%

Error
Score

RNF 2.57% 61.65%
FFN 3.66% 76.64%

Table 3. Accuracies & Error Score of Train and Dev

 Parameters Value chosen
Number of Layers 100

Learning Rate 10−3
Activation Function GELU

Epochs 115
Optimization ADAM

Dropout 0

Table 2. FFN Parameters

 Parameters Value chosen
N Estimators 82
Max Depty None

Min Samples Split None
Max Leaf Nodes 998

Max Features None
Bootstrap TRUE

Table 1. Random Forest Parameters

	Classifying Digital Pathology Images Using Machine Learning Models

