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Introduction: This project addresses the classification problem using a dataset consisting of Discrete 
Cosine Transform (DCT) coefficients extracted from pathology images. The dataset has nine distinct 
classes. Each image is transformed by 3072 features: 1024 coefficients for each RGB channel. For 
experimentation, we applied gaussian normalization across each RGB channel of the DCT coefficients 
which is essential for deep learning-based model convergence and performance. The dataset included a 
total of 10,066 images for training and 5,958 images as development set. An additional evaluation set 
consisting of 6,259 images was used as a blind evaluation to test model generalization. This paper focuses 
on evaluating two machine learning algorithms for classification tasks: the gradient boosting method 
XGBoost and Convolution Neural Network (CNN) integrated with skip connections. To establish a strong 
reference point for evaluating our two primary models, we first explored different baseline algorithms. 
These included both simple non-neural network-based methods, such as Random Forest (RNF), Naïve 
Bayes (NB), K-Nearest Neighbors (KNN), and K-Means clustering, as well as neural network-based 
architectures, such as Multi-Layer Perceptron (MLP), encoder-only Transformer, and a basic CNN with 
five layers. All models, except the CNN variants, were implemented using NEDC Vector Classify library 
with the default parameter file. Among all these models, NB and the 5-layer CNN gave the lowest score on 
the development sets (64.11% and 56.51%, respectively). As a result, these two were selected for 
comparison against the more advanced methods presented later in the paper. 

XGBoost: XGBoost is a widely-used gradient boosting algorithm renowned for its performance in 
classification task specially on tabular datasets. Unlike RNF, which creates multiple decision trees in 
parallel, XGBoost builds trees sequentially, each learning from the mistakes of its predecessor. It initiates 
predictions with an initial model, identifies residuals (difference between predictions and actual values), 
and iteratively constructs new trees focused on correcting these errors. The final prediction aggregates all 
individual tree outputs. In this project, we used multilabel softmax as the objective function, a maximum 
tree depth of 6, and a learning rate of 0.1 to train the XGBoost model. 

CNN with Skip Connections: CNN is a powerful architecture in image-related tasks due to their spatial 
hierarchical feature extraction. We integrate skip connections inspired by ResNet architecture which 
resolves issues such as vanishing gradient and improves information flow across layers. The implemented 
Residual CNN in this project has multiple convolutional layers, each coupled with skip connections. To 
make the data compatible with the CNN-2D architecture, we reshaped the original 1D vector input into 
32×32 matrices for each of the RGB channels, resulting in a three-channel image-like input. Initially, the 
network applies 3x3 convolution operation on the input, enhancing feature extraction through increasing 
the depth as each layer (32, 64, 128, 256, and 512 filters). We created the skip connections through 1x1 
convolutions, which helps to ensure the number of channels matches between the original and shortcut path. 
The final layer uses a fully connected structure, classifying the flattened features into one of the nine classes. 
The architectural overview of the Residual CNN is illustrated in Figure 1. 

Figure 1. Illustration of the CNN with Skip Connections Architecture. 
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We used Optuna library to identify the optimal learning rates, weight decay, and batch sizes for training the 
Residual CNN architecture. The model used Adam optimization and Cross-Entropy loss function during 
the training phase. To prevent overfitting, we leveraged early stopping when the performance on the 
development set stops improving after a few epochs. 

Results: The XGBoost model produced moderate performance, but showed clear sign of overfitting. It 
achieved a very low training error of 2.78% on the unnormalized dataset, indicating that the model fit the 
training data almost perfectly. However, we get higher error rates on the development and evaluation sets, 
suggesting poor generalization. This overfitting arises because, by default, XGBoost builds deep trees that 
can capture relationship including noise. We did not properly regulate the training process which led to the 
overtraining. On the other hand, CNN model with skip connections showed the most promising results for 
DCT coefficient features on the development set. When trained on gaussian-normalized data using both the 
training and development sets, the model achieved a low training score of 2.13% and development score of 
3.93% with corresponding label-specific 
errors of 2.16% and 4.16%, respectively. On 
the blind evaluation set we got 52.81% error 
rate. However, like XGBoost, this 
architecture is also overfitted. Since DCT 
coefficients are already a compressed form of 
the original images, much of the spatial detail 
has been lost. Applying max pooling in every 
CNN layer further reduces spatial resolution, 
potentially worsening this information loss. 
We also experimented with replacing max 
pooling with average pooling to preserve 
more contextual information; however, this 
change did not result in significant 
improvement in dev set performance. So, we stick with the max-pooling implementation. We also explore 
advanced architecture during the experimental phase, including MLP-Mixer, a transformer-inspired 
architecture using only multilayer perceptions; MLP-Mixer with Reinforcement Learning (RL); Vision 
Transformer (ViT), utilizing attention mechanisms for image classification; and EfficientNet, known for 
balancing network depth, width, and resolution. Among these EfficientNet-b0 (EN-b0) delivered the 
strongest performance on the dev set. When trained on gaussian-normalized data from both the train and 
dev sets, it achieved a dev set error rate of 32.55%, with average label error of 35.57% and background 
error of 5.32%. Other architectures like MLP-Mixer variants and ResNet18 also showed moderate success, 
achieving dev set scores between 53.00% to 59.00%. However, ViT (with and without digital pathology 
pretrained weights) performed worst, with error rates between 68.00% to 78.00% on the dev set. The ViT 
model, which is originally optimized for raw pixel-value inputs, was applied here on DCT coefficient 
features and that led to the poor performance on the dev set. 

Conclusions: This paper comprehensively evaluated two distinct ML approaches, XGBoost and CNN with 
skip connection, alongside advanced methods for classifying digital pathology images represented by DCT 
coefficients. Both advanced algorithms showed moderate success, with CNN outperforming XGBoost in 
feature extraction but suffer with overfitting issue. However, this comparative study concludes that DCT 
coefficients are not an ideal choice for digital pathology image classification. The inherent compression in 
DCT discards valuable spatial information, which is crucial for accurately capturing complex pathological 
patterns. For this problem, analyzing pixel-level features is essential for achieving lower error rates, ideally 
in the range of 30% or less. 

 Data Set 

Algorithm 
 

Normalize 
Train 
Data Train Dev Eval 

NB No \train 56.87% 64.11% - 
CNN Yes \train 84.70% 56.51% - 
XGB No \train 2.78% 64.18% 62.18% 

CNN + 
Skip 

Yes \train 
\dev 2.13% 3.93% 52.81% 

EN-b0 Yes \train  
\dev 33.77% 32.55% 52.94% 

Table 1. Comparison of classification error rates for 
XGBoost and CNN with skip connection models across 
training, development, and evaluation sets. 
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