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	Problem
	Points
	Score

	1(a)
	20
	

	1(b)
	10
	

	1(c)
	10
	

	1(d)
	10
	

	2(a)
	20
	

	2(b)
	10
	

	2(c)
	10
	

	2(d)
	10
	

	Total
	100
	



Notes:
(1) The exam is closed books and notes except for one double-sided sheet of notes.
(2) Please indicate clearly your answer to the problem.
(3) If I can’t read or follow your solution, it is wrong and no partial credit will be awarded.
Problem No. 1: Consider 5 data points: (0,1), (-1,0), which belong to class 1, and (1,0), (0, -1), and (-1/2, 1/2), which belong to class 2. In this problem we are going to walk through the K-MEANS clustering process.
(a)	Assume your initial guesses for two cluster centers are (0,0) and (1/2,1/2). Execute an iteration of K-MEANS by computing the new cluster centers and assigning the data points to the correct cluster. Use averaging to compute the new cluster center.
	
	Solution-The pseudo code for the K-MEANS clustering algorithm is given below.  The algorithm begins with an initial guess of the number of clusters and the means of those clusters.
		Begin initialize n, c, , , … , 
			Do classify n samples according to nearest 
				Recompute 
			Until no changes in 
		     Return , , … , 
		end
	Each data point is assigned a cluster based of the shortest squared Euclidean distance to each cluster mean.  After all data points are assigned a cluster, a new cluster mean is computed using the data points that were assigned to that cluster.  This process repeats until the cluster means converge to a constant mean.  The algorithm is implemented in Matlab using the built in function kmeans and in the following:

[image: ][image: ]
Figure 1.  (Left)  Plot of data and cluster centers before clustering.  (Right) Plot of data and cluster centers after K-MEANS clustering.
	
After a single iteration, the K-MEANS clustering algorithm moves the cluster centers to a point such that the squared Euclidean distances from each point to the cluster center are minimized.  The new cluster centers are computed to be (-1/2, -1/6) and (1/2, 1/2).
(b)	Assign an identity to each cluster based on a majority-voting scheme and draw the maximum likelihood decision surface.
Solution - After the data has been clustered, each cluster is assigned a class identity using a majority voting scheme.  Referring to Figure 2, the cluster with center (-1/2, 1-/6) is identified (or labeled) as class 2 since the number of data points originally pooled from class 2 out numbers the data points originally from class 1 by a 2:1 vote.  As result, the cluster with center (1/2, 1/2) is identified as class 1 by default even though the vote is split 1:1.  The ML decision surface is determined by first finding the midpoint on a line between the cluster centers and then plotting the perpendicular bisector through that midpoint.  The decision surface can then be used for ML classification.  

[image: ]
Figure 2.  Class identification using a majority voting scheme after clustering the data

 (c)	Consider two test data points: (-3/4, 3/4), which belongs to class 1, and (1/2, 1/2), which belongs to class 2. Compute the probability of error based on your K-MEANS clustering.

Solution - Having found the decision surface, the probability of error for the test points (-3/4, 3/4) and (1/2, 1/2) is determined by inspection of Figure 2.  The test point (-3/4, 3/4) falls in Class 1’s region and was known to belong to Class 1.  Thus the test point (-3/4, 3/4) is classified correctly.  Applying the same analysis to the second test point, one finds the test point (1/2, 1/2) is misclassified.  Thus one of the two test points are misclassified and the probability of error is 1 / 2 = 0.5

(d) Compute the probability of error based on a k-nearest neighbor rule. How different should this result be from (c) for large k?

Solution – Using the test points from part (c), the k-nearest neighbor rule classifies a test point by first finding the k nearest data points and computing the Euclidean distance to each of the data points.  Then After the nearest “neighbors” are identified, the test points are classified according to a majority vote.  For the simple case when k = 1, the nearest data point to the test point (-3/4, 3/4) is (-1/2, 1/2).  Then since the data point (-1/2, 1/2) is known to belong to class 2 and it is the only data point, the test point (-3/4, 3/4) is assigned to class 2.  The result is a misclassification of the test point (-3/4, 3/4) since it was known to belong to class 1.  Similarly, the test point (-1/2, 1/2) is also misclassified when k = 1.  The result is a probability of error equal to 0.5.
Tables 1 and 2 on the following page summarize the nearest neighbors and their distances for each of the test points for k = 1, 3, 5.

                      
                          Table I                                                                             Table II.
	TEST POINT: (-0.75, 0.75)
	
	TEST POINT: (-0.5, 0.5)

	
	
	

	Nearest Neighbors (k=1)
	Distance
	Neighbors Class
	
	Nearest Neighbors (k=1)
	Distance
	Neighbors Class

	(-0.5, 0.5)
	0.3536
	2
	
	(0, 1)
	0.7071
	1

	

	
	

	
	
	

	Nearest Neighbors (k=3)
	Distance
	Neighbors Class
	
	Nearest Neighbors (k=3)
	Distance
	Neighbors Class

	(-0.5, 0.5)
	0.3536
	2
	
	(0, 1)
	0.7071
	1

	(0, 1)
	0.7906
	1
	
	(1, 0)
	0.7071
	2

	(-1, 0)
	0.7906
	1
	
	(-0.5, 0.5)
	1
	2

	

	
	
	
	
	
	

	Nearest Neighbors (k=5)
	Distance
	Neighbors Class
	
	Nearest Neighbors (k=5)
	Distance
	Neighbors Class

	(-0.5, 0.5)
	0.3536
	2
	
	(0, 1)
	0.7071
	1

	(0, 1)
	0.7906
	1
	
	(1, 0)
	0.7071
	2

	(-1, 0)
	0.7906
	1
	
	(-0.5, 0.5)
	1
	2

	(1, 0)
	1.9039
	2
	
	(-1, 0)
	1.5811
	1

	(0,-1)
	1.9039
	2
	
	(0,-1)
	1.5811
	2




For k = 3, the test point (-3/4, 3/4) is assigned to class 1 while the test point (1/2, 1/2) is assigned to class 2.  The class assignment is determined by a majority vote.  Since 2 out of the 3 nearest neighbors to (-3/4, 3/4) belonged to class 1, the test point also gets assigned to class 1.  Thus for k = 3, each test point is correctly classified and the probability of error is 0/2 = 0.0.  Finally, for k = 5, the majority vote misclassifies test point (-3/4, 3/4), but correctly classifies test point (1/2, 1/2) resulting in a probability of error equal to 1/2 = 0.5.  
Compared to part (c), the error for a k-nearest neighbor rule will approach the Bayes error rate at infinity.  For small k, the k-nearest neighbor rule is suboptimal and is illustrated by the case when k = 1.  Figure 3 graphically illustrates the k-nearest neighbor rule.  The test points are shown in green and the nearest neighbors to the test points are circled in blue.  Note that for k = 5, all test points are enclosed since only 5 training points are considered.

[image: ][image: ] 
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Figure 3.  Graphical representation of the k-nearest neighbor rule.


Problem No. 2: Consider the same 5 data points above.
(a) Construct a dendogram for the data.

A dendrogram for the 5 data points is constructed using Agglomerative hierarchical clustering.  The Euclidean distance from each data point to every other point is computed.  The results are summarized in a matrix, D whose columns represent the data points and whose rows represent the distances between the data points.  





A spanning tree is then formed by stepping through each data point and finding the shortest unused distance to a data point that isn’t in the same cluster.  This process repeats until the desired number of clusters is achieved.  Figure (4) illustrates the dendrogram for the 5 data points in problem 1 using the distance matrix, D.
	Index
	Data Point

	1
	(0,1)

	2
	(-1,0)

	3
	(1,0)

	4
	(0,-1)

	5
	(-1/2,1/2) 


[image: ]

Figure 4.  Dendrogram for the 5 training points in problem 1.  Data points are referenced by their indices.

(b) Construct a top-down clustering (e.g., LBG) clustering (you can also think of this as a crude decision tree).

Solution – Unlike part (a) where the 5 data points were clustered using Agglomerative Hierarchical Clustering, the data can also be clustered using a top-down approach.  Top down clustering can be conceptualized by considering it as a continuation of k-means clustering.  In problem 1(a), it was shown that the 5 data points could be partitioned into two clusters using k-means.  What’s to say that we don’t continue partitioning each of the new clusters?  For instance, referring to figure 1 (right), each new cluster could be further divided into two additional clusters resulting in a total of four clusters.  This is like performing k-means on each of the clusters resulting from k-means.  

[image: ]
Figure 5.  Cluster centers after performing a second iteration of k-means clustering

Figure 5 illustrates the results after performing k-means clustering on the results from problem 1(a).  When a second iteration of k-means clustering is performed, each of the orginal two clusters is further divided into two more clusters.  The result is 3 of the 5 data points being in there own classs.  If a third iteration of k-means clustering were performed, the remaining two data points would each become their own cluster.

(c) If you were to use your dendogram to do unsupervised clustering of the data, what clusters would you create (specify them by the mean and the elements associated with the cluster).

Solution – Unlike problem 1 where the data was labeled, unsupervised clustering implies that we are unaware of their labels.  However we can use the dendrogram in problem 2(a) along with a similarity measure to two choose which clusters most appropriately model the data.







(d)	Suppose (0, 1) and (1, 0) occur 5 times more often than the rest of the data points. How would you adjust your strategy for clustering the data? How would that impact your decision regions?
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