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1. UniTS 
Different from all task-specific or domain-specific models, UniTS is a unified Transformer-based time 
series model that supports a universal task specification as well as domain specification, accommodating 
classification, forecasting, imputation, anomaly detection tasks as well as different domains such as human 
activity, healthcare, mechanical sensors and finance domains, as shown in Figure 1 [1]. Not only that, 
UniTS can accommodate time sequences with different length and variables/sensors. Surprisingly, UniTS 
still demonstrates superior performance compared to task-specific models and repurposed natural language-
based LLMs. It is most like the counterpart of ChatGPT in time series analysis. 

It is not easy to build such a unified model because there are lots of challenges: (1) Cross-domain temporal 
dynamics. Unified models aim to learn general knowledge by co-training on diverse data sources, but time 
series data present wide variability in temporal dynamics across domains, along with heterogeneous data 
representations. This heterogeneity hinders the use of unified models developed for other domains. (2) 
Diverging task specifications. Diverging task specifications in time series data pose another challenge, as 
common tasks like forecasting and classification have fundamentally different objectives and may require 
varying specifications across datasets. (3) Requirement for task-specific time series modules. The 
distinct task-specific modules for each dataset in previous approaches are crucial for ensuring performance. 
However, Unified models employ shared weights across various tasks, hindering rapid adaptation to new 
tasks. 

 

 

Figure 1: UniTS is a unified time series model that can process various tasks across multiple domains 
with shared parameters and does not have any task-specific modules [1]. 



UniTS overcomes above challenges by employing: (1) Unified token representation. UniTS employs a 
prompting-based framework to convert various tasks into a unified token representation, creating a 
universal specification for all tasks. As shown in Figure 2(a), instead of using separate and different tokens 
for each head/task, UniTS adopts unified tokens within a unified token space. Different tokens decide 
different specific tasks, thereby complete each specific task by handling the unified output space, as shown 
in Figure 2(b,c). (2) Flexible structure to accommodate diverse data. UniTS utilizes self-attention across 
both sequence and variable dimensions to accommodate diverse data shapes, with a dynamic linear operator 
introduced to model dense relations between data points in sequences of any length. This approach allows 
UniTS to process multi-domain time series with diverse variables and lengths without requiring 
modification of the network structure, as shown in Figure 2(d). (3) A unified reconstruction pretraining 
scheme. A unified masked reconstruction pretraining scheme is introduced to handle both generative and 
recognition tasks within the unified model. 

As shown in Figure 2(d), UniTS has a typical yet different Transformer architecture. There are three 
important innovations in the architecture of UniTS. First is its unified and extended token space. Each token 
incorporates prompt, sequence and class, and this kind of extended token make it possible to build a unified 
model for time series analysis. Second is the variable Multi-Head Self-Attention (MHSA). The Variable 
MHSA can simultaneously capture global relations along both sequence and variable dimensions in diverse 
data domains. This approach accommodates variations in sequence length and the number of variables 
across different domains. Third is the dynamic MLP, one kind of self-adaptive self-attention mechanism.  
Unlike Sequence MHSA's similarity-based relation modeling, UniTS introduces Dylinear, a dynamic linear 
operator. Dylinear is designed to effectively model dense relations among tokens of varying sequence 
lengths across different data sources. UniTS is open source, please find its code at https://github.com/mims-
harvard/UniTS 
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Figure 2: a) Compares UniTS to existing models, where UniTS model can process diverse inputs and achieve 
multiple time series tasks; previous models require separate modules for different tasks and input datasets. b) 
UniTS for forecasting; input is tokenized as described in-text and mask tokens are un-patchified to infer the 
forecast horizon. c) UniTS for classification; a CLS token is used to represent class information, and then 
compared to category tokens to get prediction class. d) Architecture of UniTS model [1]. 



2. EEG-ConvTransformer and EEGformer 
Both EEG-ConvTransformer and EEGformer are transformer-based architectures designed for EEG data 
analysis. They both utilize a combination of CNNs and self-attention mechanisms to extract local and global 
features efficiently, which is why they are discussed together. Despite their shared conceptual foundation, 
they have distinct structures, each of which is described separately below. 

Figure 3 illustrates the architecture of EEG-ConvTransformer [2]. Initially, the input undergoes processing 
by a Local Feature Extractor (LFE) unit, which conducts initial feature extraction from the raw data. The 
output of the LFE unit is then fed into two consecutive ConvTransformer units, which further extract 
features from both spatial and temporal dimensions. In each ConvTransformer, the MultiHead Attention 
block focuses on extracting spatial features, while the Convolutional Feature Expansion block is responsible 
for extracting temporal features. The architecture of the ConvTransformer differs from that of a traditional 
transformer by replacing the traditional MLP block with the Convolutional Feature Expansion block, as the 
convolution module is more effective in processing EEG data than the MLP block. Subsequently, a 
Convolutional Encoder is used to encode the output of the ConvTransformer further. Finally, the encoder's 
output is flattened and used for classification. The name "EEG-ConvTransformer" reflects the integration 
of numerous convolution modules into its architecture, making it suitable for EEG data analysis. 

 

 

Figure 3: Architecture of EEG-ConvTransformer [2]. 



Figure 4 illustrates the architecture of EEGformer [3]. Similar to EEG-ConvTransformer, the input is first 
processed by a depth-wise CNN (1DCNN) unit to conduct preliminary feature extraction from the raw data. 
The output of the 1DCNN unit then passes through the EEGformer Encoder, which comprises three 
transformer units for feature extraction from different dimensions. One distinction from EEG-
ConvTransformer is that EEGformer uses a traditional transformer architecture without modifications. 
Additionally, EEGformer employs three transformer units, whereas EEG-ConvTransformer uses two. 
Finally, the output of the encoder is passed through a decoder for specific tasks. 

Both EEG-ConvTransformer and EEGformer emphasize the importance of CNNs in compressing EEG 
data, likely due to the low signal-to-noise ratio (SNR) of EEG data. Without compression, the transformer's 
ability to learn may be significantly hindered by noise. Both architectures primarily employ the transformer 
architecture for feature extraction, focusing more on the use of self-attention mechanisms than other 
transformer concepts such as tokenization and position embedding. Both architectures have demonstrated 
good performance in classification tasks across some datasets. 
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Figure 4: Architecture of EEGformer [3]. 



3. Mamba 
 Since 2024, there has been a growing interest in using Mamba for time series analysis. Researchers have 
published around four papers on this topic, including "Is Mamba Effective for Time Series Forecasting?" 
[4], "TimeMachine: A Time Series is Worth 4 Mambas for Long-term Forecasting" [5], "MambaStock: 
Selective State Space Model for Stock Prediction" [6], and "SiMBA: Simplified Mamba-Based 
Architecture for Vision and Multivariate Time Series" [7]. These studies consistently show that Mamba 
surpasses previous models in both accuracy and efficiency for time series analysis. 

Mamba was developed to enhance the efficiency of the Transformer architecture. While the self-attention 
mechanism in Transformers is powerful, it comes with a high computational cost due to its quadratic 
complexity. In contrast, Mamba can model long-sequence dependencies like the Transformer but with a 
near-linear computational complexity, resulting in significantly higher speed and efficiency. 

As a State Space Model (SSM), Mamba's architecture shares some similarities with the Transformer but 
also has distinct differences. For instance, as depicted in Figure 5, Mamba's block resembles that of the 
Transformer, but its underlying mechanism is entirely different. Unlike the Transformer, Mamba does not 
run the same attention mechanism of Transformer. Instead, its core concept is based on compressing 
continuous time series using orthogonal polynomials [8], with the "state space" referring to the space 
constructed from dimensions corresponding to the orthogonal polynomial bases. This approach gives 
Mamba a natural advantage in modeling continuous data like time series, as all orthogonal polynomial bases 
are continuous. For more information, readers are encouraged to consult the following papers [9] [10] [11]. 
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Figure 5: H3 block is the basis of most SSM architectures, with the ubiquitous MLP block of modern neural 
networks. Instead of interleaving these two blocks, we simply repeat the Mamba block homogenously. Compared 
to the H3 block, Mamba replaces the first multiplicative gate with an activation function. Compared to the MLP 
block, Mamba adds an SSM to the main branch. 
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