File: AAREADME.txt Purpose: This program runs PCA algorithm using 2D gaussian data. Files: 03_pca.py - main Python script Requirements: - Python 3.x - NumPy Installation: Install required packages using pip: python -m venv .venv source .venv/bin/activate pip install numpy How to Run: The script supports optional command line arguments. 1) Run with defaults (1000 samples): python 03_pca.py 2) Specify number of samples: python 03_pca.py 5000 Command Line Arguments: argv[1] (optional): Number of samples to generate (integer). If not provided or invalid, DEF_NSAMPLES is used. Default Settings (in the script): DEF_MEAN_0: [0.0, 0.0] DEF_COV_0: [[1.0, 0.0], [0.0, 1.0]] DEF_MEAN_1: [0.0, 0.0] DEF_COV_1: [[1.0, 0.0], [0.0, 1.0]] DEF_NSAMPLES: 1000 DEF_RANDOM_SEED: 27 DEF_PCA_NCOMP: 2 DEF_SYMMETRY_TOL: 1e-12 Notes: 1) The covariance matrix must be symmetric. The script checks symmetry using np.allclose with DEF_SYMMETRY_TOL. 2) To change the distribution parameters, edit DEF_MEAN and DEF_COV at the top of the script. Example: Generate 2000 samples python 03_pca.py 2000