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Abstract
Quantum computing is currently at the nexus 

of physics and engineering. Although current gen-
eration quantum processors are small and noisy, 
advancements are happening at an astounding 
rate. In addition, machine learning has played a 
crucial role in many recent advances. The combina-
tion of these two fields, Quantum Machine Learn-
ing, is a small but extremely promising new field 
with the possibility of unlimited abilities. This work 
seeks to provide an introduction to this emerging 
field, along with a discussion of recent advances as 
well as problems that are yet to be solved.

Introduction
Quantum computing is currently at the nexus of 
physics and engineering. This type of computing 
was primarily proposed by the physics community 
and, until recently, remained a vaguely theoretical 
concept. In spite of this, many well-known meth-
ods such as Shor’s factoring, Grover’s Search, and 
Linear Systems algorithms were formulated and 
promised paradigm shifting ability if practically 
realized. Although current generation quantum 
processors are small and noisy, advancements 
are happening at an astounding rate, due largely 
in part to government and private sector funding. 
Recently, the National Quantum Initiative Act was 
passed. This bill provided up to 1.2 billion dollars 
in research grant money to accelerate quantum 
related development. Private sector funding has 
also accelerated to provide startup capital and 
fund a variety of research.

One of the primary motivations for the devel-
opment of quantum computers is the upcoming 
plateau of traditional computers. The exponential 
growth of transistors on a computer chip, as pre-
dicted by Moore’s law, will soon come to a close. 
This is not due to any economic reason, but sim-
ply due to the laws of physics. Current generation 
transistors are roughly ten nanometers. It has been 
shown that transistors under seven nanometers 
begin to experience the effects of quantum tunnel-
ling. This phenomenon is created when barriers in 
the transistor become arbitrarily small, that is, when 
the size of a gate reaches a certain thickness an 
electron can “jump” over the barrier, creating cur-
rent where it should not be. This non-classical effect 
renders the transistors almost useless. Although 
chip manufacturers may be able to overcome this 
effect to some extent, the size of the transistor will 
basically reach its limit soon.

Note that a quantum computer is not made 
of smaller transistors, but rather quantum bits (or 
qubits) that harness the quantum effects that cause 
chaos in a classical system. Due to the effects of 
superposition, each qubit added is equivalent to 
doubling the power of the computer. This stands 
in stark contrast to needing double the number of 
transistors in order to double the processing power 
of a conventional computer.

On the other hand, machine learning has 
played a crucial role in many recent advances (e.g., 
wireless communication and networking systems). 
In particular, deep learning harnesses the power 
of extremely massive amounts of data. To properly 
utilize this information, more computing power is 
constantly necessary. Quantum computing rep-
resents the potential to properly utilize this data. 
The combination of these two fields, Quantum 
Machine Learning, is a promising new field with 
the possibility of extravagant abilities [1]. 

Before jumping into the topic at hand, it is 
helpful to provide a brief background of quan-
tum computing. For the purposes of this article, 
we will define quantum computing as any process 
that utilizes the effects of quantum mechanics for 
improved computing capability. Most large com-
puting corporations such as IBM, Google, and 
Microsoft, as well as smaller start-ups such as D 
Wave, Rigetti, and IonQ, have made great strides 
in developing the quantum hardware. To make 
development even easier, many of the companies 
mentioned provide access to their facility through 
the cloud free of charge. Although the type of 
hardware used varies significantly between dif-
ferent companies, the basic characteristics of the 
systems can be broken down into two separate 
types: Universal Quantum Computing and Quan-
tum Annealing.

Universal Quantum Computing
A universal quantum computer uses three main 
properties to provide a fundamentally different 
type of computation. These three qualities are 
superposition, entanglement, and phase. Superpo-
sition basically means that a qubit can represent 
many more states than a traditional bit. For exam-
ple, when a qubit is in superposition, it can be any 
number of states until made to collapse to either 
a one or a zero. This can be visualized in Fig. 1. 
Entanglement takes into account what Einstein 
called “spooky action at a distance.” It basically 
means that gates can be connected via this prop-
erty. Finally, phase cancellation or interference 
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ACCEPTED FROM OPEN CALL is at the core of many quantum algorithms. This 
makes use of the fact that these qubits have not 
only magnitude, but also phase. 

This type of computation has high potentials in 
machine learning. There is also reason to believe 
that with more research and development, other 
benefi ts may come to light. Currently, one of the 
key limitations is hardware development. Every 
processor in the field has major struggles with 
decoherence, which in essence destroys any infor-
mation encoded in the qubits. This being the case, 
it is diffi  cult to execute complex algorithms on such 
processors.

QuAntum AnneAlIng
Quantum annealing is a more limited type of com-
putation mechanism, but has seen Moore’s law 
type advancements over the past two years. This 
type of system fi nds a minimum of a certain type 
of function. The idea is to map problems onto this 
function and then use the quantum processor to 
solve the respective problem. To visualize this, 
the system can be thought of as a landscape of 
hills and valleys. The solution is tied to the mini-
mum point. Just as water will end up in the lowest 
valleys, so too will the solution be marked by the 
annealer. It has been shown that the D Wave 2x 
system could outperform both simulated anneal-
ing and quantum monte carlo by up to a factor 
of 108 on certain optimization problems. More 
recent works have proved the practical applicabil-
ity of the system [3].

QuAntum mAchIne leArnIng
Once the basic hardware has been introduced, 
it is helpful to take a step back and analyze how 
these systems can be used from a machine learn-
ing perspective. As quantum computing is funda-
mentally diff erent than traditional computing, so 
too can quantum machine learning be used in 
radically diff erent fashions. For example, the fact 
that quantum annealers inherently fi nd the lowest 
energy states means that optimization problems 
can be encoded into these systems. The quan-
tum HHL algorithm — a method of solving linear 
systems of equations — which uses fundamen-
tal quantum effects, can be leveraged in many 
machine learning contexts. Grover’s search algo-
rithm takes advantage of the quantum property 
of amplitude amplification to mark solutions in 
an unsorted database. One of the implications of 
this is that clustering can potentially take place in 
a much faster manner. To summarize, quantum 
computing provides tools for machine learning 
developers that were not previously available. This 
allows for potentially faster processing of data as 
well as the ability to generate new forms of algo-
rithms. With this in mind, it is important that one 
understands both current systems available as well 
as recent advances.

motIvAtIons And chAllenges
As mentioned in the introduction, a major moti-
vation for quantum computers is the impending 
end of Moore’s Law. But even more than that, 
quantum computing promises benefi ts that would 
not be realizable with classical hardware. For 
example, Shor’s factoring algorithm is one of such  
fi rst benefi ts. This particular algorithm will provide 
almost an exponential speedup with regard to fac-

toring. This is proposed as a method for breaking 
RSA (Rivest-Shamir-Adleman) encryption. In addi-
tion, Grover’s algorithm uses phase amplifi cation 
to fi nd items in an unsorted database. This could 
be used in a variety of applications from graph 
theory to machine learning. Finally, the quantum 
linear systems algorithm is particularly well suited 
for machine learning.

Even so, quantum computing faces massive 
engineering and programming issues. On the hard-
ware side, noise plays a major role. Current gener-
ation quantum processors are limited almost solely 
to toy problems since very few operations can take 
place before noise degrades all the computations 
to a meaningless level. To limit this, processors 
must run at almost absolute zero temperature, 
greatly increasing the cost and creating many engi-
neering problems. In addition, it is not clear how 
to fully harness the capabilities of the processor. 
Since it is so diff erent from classical programming, 
algorithm development is slow and plagued with 
questions. These and other mainly engineering and 
programming issues must be addressed before the 
promises of quantum computing can be fully har-
vested.

eXIstIng plAtForms
Since there are a variety of methods to accom-
plish quantum computation, the hardware utilized 
varies greatly between companies. A qualitative 
comparison of the exiting platforms is given in 
Table 1. It is also helpful to note the information 
made available through [4], which is one of the 
few pieces of literature that provides extensive 
benchmarking data on a variety of platforms.

Ibm Q
IBM Q, the quantum branch of IBM, is potential-
ly the most well-known platform. Great care has 
been taken to tailor this system to the general 
public, which is available in an almost seamless 
manner through the cloud. It is not hard for a fi rst 
time user to begin using the circuit composer, 
which allows one to design quantum circuits. Fig-
ure 2 provides a snapshot of Grover’s algorithm 
implemented in the circuit composer.

Currently, a 14-qubit model is available to the 
general public, while their 20-qubit model can be 
used only by IBM Q clients. The hardware utilizes a 
transmon qubit. A microwave resonator is used to 
address and couple the qubits. The idea behind this 
system is to create electrically controlled solid-state 
quantum computers. Development can take place 
through Qiskit, which is an open-source quantum 
programming framework. The advantages of IBM 
Q is that a variety of materials are available intro-
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FIGURE 1. Superposition illustrated [2].
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ducing both the fi eld of quantum computers and 
specifi cally IBM’s version of quantum computers. 
The systems are available immediately for use any-
where, and the circuit composer is very intuitive. 
Furthermore, publications are available that utilized 
this system for research [5].

IonQ
IonQ has produced considerable results over the 
past few years, through the use of Ion trap tech-
nology. The qubits are housed in an ultra high 
vacuum chamber, and then precision lasers are 
used to connect the qubits and perform opera-
tions. The reason this company is unique is due 
to the low error scalability of their systems. See 
[4] for a hard data comparison of Trapped Ion 
technology with other platforms performed at the 
University of Maryland (UMD). Gaining access 
to the system entails an application process; only 
certain users can obtain access to the system. 
Moreover, literature on the software used is not 
readily accessible, especially to individuals new to 
the fi eld, which could make any prospective proj-
ect using this system more diffi  cult.

rIgettI computIng
Rigetti’s approach to the field is to develop a full 
stack solution. They plan to do this through a quan-
tum-classical approach. Rather than viewing the 
quantum processor as a standalone unit, Rigetti 
seems to view it more as a piece of hardware such 
as a GPU. They have also recently released the 
Quantum Cloud Services (QCS). The core advan-
tage of this system is the ability to run algorithms 
remotely through QCS. Both the classical and 
quantum hardware are available through servers. 
Any project done using this system will be easier 
on the software side, but may lack the quantum 
hardware that is available through other platforms. 

d wAve
The D Wave system is highly different from the 
other systems. As mentioned, this particular com-
puter is a type of quantum annealer. A helpful 
way to compare the two systems is to think of 
the annealer as an analog system, while the 
gate model is a digital system. This analogy will 
break down if pushed too far, but it is a helpful 
way to think of the process. This system basically 
finds the lowest energy state. If a problem can 
be mapped to the system, it will fi nd a variety of 
possible optimal solutions. That said, the applica-
tions are still varied and useful. The interface and 
customer service of D Wave are second to none. 

The ability to run problems on the processor can 
be obtained quickly. A variety of functions have 
been made available, and the associated docu-
mentation is superb. In summary, D Wave is an 
excellent platform for more limited applications. 

other plAtForms
Other major players in the field have not been 
mentioned, due to the fact that access to their 
hardware via the cloud is not currently available. 
Even so, some of these platforms provide mean-
ingful resources. Microsoft has developed a lan-
guage specifically for programming a quantum 
computer, referred to as Q#. They also provide 
a quantum development kit, which can integrate 
seamlessly with Azure to simulate 40+ qubits. 
Google’s quantum branch operates under its 
artificial intelligence section. Currently, its quan-
tum processor dubbed “Bristlecone” is extremely 
advanced, housing 72 qubits. One major con-
tribution this team has made is the open source 
framework Cirq.

recent AdvAnces
Most advances in this fi eld are very recent. This is 
true for two reasons: fi rst, hardware and its avail-
ability through the cloud is an extremely recent 
event. Second, most of the research tends to build 
upon itself in a very foundational way. With the 
onset of quantum cloud computer systems, the 
potential for use is available in a way not seen in 
prior decades. Certain computational subroutines 
can be sent to cloud servers where they are pro-
cessed. The information is then returned and can 
be utilized for a variety of applications. Frame-
works should be developed that will be able to 
take full advantage of the system when it reaches 
maturity. If quantum computers hold to a Moore’s 
law scheme, this situation will occur in the very 
near future. One of the ways this can be imme-
diately utilized is in the fi eld of machine learning. 

ArtIFIcIAl QuAntum neurAl networks
A recent publication in the fi eld which drew signif-
icant attention [5] implemented an artifi cial neu-
ron on an actual quantum processor. Tacchino 
et al. [5] demonstrated that a model based upon 
the classical Rosenblatt “perceptron” could be 
implemented on near-term hardware. The beauty 
of this model is that it can be trained by a hybrid 
quantum-classical scheme and shows exponential 
advantage in storage resources. This work puts 
forward that neural networks in particular meld 
almost seamlessly onto quantum hardware. This 

TABLE 1. Comparison of existing platforms.
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is true due to the fact that intrinsically, quantum 
mechanics has the property of representing and 
storing large complex valued vectors and matri-
ces. Linear operations on such vectors can be 
performed as well. For simplistic representation, 
simple McCulloch-Pitts binary neurons were uti-
lized. The model was then tested in a two-qubit 
model on an IBM Q quantum processor. A larger 
version was then implemented on the IBM quan-
tum simulator. The results showed that the net-
work could indeed be implemented, trained, and 
produce significant results. This work represents 
a compelling first step into the field of quantum 
neural networks. 

QuAntum support vector mAchInes
In a recent article produced by a collaboration 
of researchers at MIT and Google, a support 
vector machine was implemented with quantum 
hardware [6]. In this article, a method is given 
for implementing a quantum optimized binary 
classifi er. It is interesting to note that for this sys-
tem, where classical sampling algorithms would 
require polynomial time, exponential speedup 
can be achieved. The improvement was devel-
oped through a non-sparse matrix exponentia-
tion technique, which effi  ciently achieved a matrix 
inversion of the training data inner-product matrix. 
This algorithm was developed specifically with 
Big Data classifi cation in mind and proved that a 
quantum support vector machine (QSVM) could  
indeed be realized on hardware. In [7], a 4-qubit 
nuclear magnetic resonance test bench was used. 
In this study, the system was trained on standard 
character fonts and then used to classify handwrit-
ten characters. Although the test data was simplis-
tic, the scheme performed admirably. The circuit 
utilized in this research can be seen in Fig. 3.  

leArnIng hIdden QuAntum mArkov models
Hidden Markov models (HMMs) are a special 
case of the Bayesian network family. This par-
ticular model is the premier algorithm used for 
speech recognition. It is also utilized in many 
other fields, including reinforced learning. Due 
to its widespread usage, it is important that the 
quantum applications of this algorithm be stud-
ied. This is especially relevant since the format of 
HMMs lends itself to smooth transition into the 
language of open quantum systems [8]. A variety 
of theoretical studies have been based on this 
concept. Monras et al. [9] introduced the idea of 
Hidden Quantum Markov Models (HQMM). This 

study was conducted by an in-depth look at the 
relationship between HMM and HQMM.

Recently, a collaborative group of researchers at 
the Georgia Institute of Technology and Carnegie 
Mellon University published a paper that accom-
plished three diff erent tasks [10]. First, it was proven 
that HMM could be simulated on a quantum circuit. 
Next, the HQMM algorithm was reformulated to 
relax the constraints on quantum circuits. Finally, 
a learning algorithm is presented to estimate the 
parameters of an HQMM from data. This article 
provides many novel ideas that have yet to be imple-
mented. Moreover, this work demonstrates that 
while the proposed HQMMs cannot model data 
any better than a suffi  ciently large HMM, it can bet-
ter model the same data with fewer hidden states. 
An interesting characteristic of research related to 
quantum programming is that many times, advances 
can be made in classical computing through the 
work. The reason for this is the paradigm shift that 
must occur before progress can be made. The way 
quantum programming is done is fundamentally dif-
ferent from classical programming; therefore, ideas 
produced in the fi eld tend to be novel in concept. 
For example, the algorithm produced in [10] can be 
utilized in both classical or quantum hardware.

QuAntum AnneAlIng
Along with the gate model type, annealing pro-
cessors have grown extensively. For example, D 
Wave demonstrated the use of a 28-qubit system 
in 2007. In 2015, they announced that the 1000-
qubit barrier had been broken. Finally, in 2017, a 
two thousand qubit model was released for com-
mercial purchase. With promises for a lower noise 
and more connected 5000-qubit model to be 
released by mid 2020, the scalability is massive.

trAFFIc optImIzAtIon
Although not directly related to machine learning, 
Volkswagen’s paper detailing the use of a quan-
tum annealer provides meaningful insights into 

FIGURE 2. Grover’s algorithm implementation using the circuit composer.

FIGURE 3. The QSVM circuit [7]. 
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high level computations with this system. In this 
paper [3], the team took into account 418 Beijing 
taxis with three possible routes. The target was to 
find the optimal route for each taxi. The problem 
was then mapped to the Quantum Unconstrained 
Binary Optimization problem. At its core, the sys-
tem evolves probabilistically to the lowest energy 
level. This being the case, all problems must be 
formulated in such a way that this minimum ener-
gy state is the solution. Interesting results have 
been demonstrated in this project. 

Restricted Boltzmann Machines
Quantum annealers lend themselves particular-
ly well to probabilistic machine learning models. 
Inherently, quantum machines are probabilistic in 
nature. This is important since many problems are 
probabilistic. To use the forthright words of Richard 
Feynman, “Nature isn’t classical … If you want to 
make a simulation of nature, you’d better make 
it quantum mechanical.” Restricted Boltzmann 
Machines seem to be a good match for these sys-
tems. Reference [11] proposes and implements 
such a scheme on actual hardware. In this paper, 
the results found through quantum annealing 
(QA) were compared with simulated annealing 
(SA). Under certain circumstances, the QA process 
returned the perspective ground state found by SA. 
Other times it returned one of the local minima. 
This seemed to arise from the lack of connectivity 
in the QA hardware. It will be interesting to see 
future results as new hardware becomes available. 
This seems to be one of the first works in machine 
learning based on QA.

Future Perspectives
As quantum machine learning is an emerging 
field, future research opportunities are highly 
evolving and almost endless. Interestingly, since 
theory advances faster than hardware, the most 
intriguing problems tend to be actually imple-
menting the theoretical work on hardware. Before 
jumping into open problems, it would be helpful 
to mention a few papers that provide the back-
ground needed to approach these. Specifically, 
Nielsen and Chuang’s textbook [12] is a very use-
ful reference. In addition, Reference [13] furnishes 
an excellent introduction to the field of quantum 
machine learning. It discusses most of the work 
which had been done to date, as well as open 
problems and possible implementations.

Quantum Feedforward Deep Neural Networks
One interesting development moving forward will 
be the work built upon [5]. Very exciting paths of 
work are proposed in the discussion of this paper. 
The first is encoding continuously valued vectors 
rather than the binary model utilized. This would be 
equivalent to gray scale images rather than black 
and white. Even more interesting is the possibility of 
connecting multiple layers of quantum perceptrons 
together. The model could be fully implemented 
on quantum hardware and would effectively form a 
feedforward deep neural network. 

Quantum Bayesian Networks
As mentioned in the review of [10], many novel 
theoretical ideas have been proposed that have 
yet to be implemented. Research in this area 
would be to provide experimental validation of 

the algorithms in question on a gate model sys-
tem. One option could be based on the super-
conducting technology. Although noise is still a 
factor, a 16-qubit model is available through the 
cloud through IBM Q. This system would allow a 
more in-depth look into the problems in question. 
Also, it is interesting to note that all calculations 
utilized have been either synthetically generat-
ed or handwritten. If the system is implemented, 
the next step would be to utilize real world data. 
This novel research would represent the possibil-
ity for a wide range of wireless communications 
problems. Basically any process that utilizes HMM 
could potentially benefit from HQMM. 

Graph Theory and Clustering
“Unsupervised learning (is) attractive in applica-
tions where data is cheap to obtain, but labels are 
either expensive or not available [14].” With the 
advent of Big Data, a great deal of unlabeled infor-
mation is readily available for a variety of machine 
learning problems. But when the information is 
measured in the order of exabytes, training could 
be computationally expensive. Clustering is one of 
the most important tasks in unsupervised learning. 
To compound this, many clustering problems can 
be inherently represented as graph problems. In 
2004, Durr et al. proposed a solution to the mini-
mum spanning tree problem [15]. This was done 
through the utilization of a quantum enhanced 
version of Boruvka’s algorithm. This specific algo-
rithm was chosen over Kruskal’s, because of its 
highly parallel nature. This work specifically shows 
that “if the connection matrix of the minimum 
spanning tree can be given by a quantum ora-
cle, the computational time on a quantum com-
puter can be reduced using Grover’s algorithm 
to O(N1.5).” Since a minimum spanning tree can 
be easily turned into clusters by subtracting the 
k minus one connections, where k is the number 
of clusters, this algorithm lends itself naturally to 
clustering. The true impedance to this application 
(as well as most algorithms based on Grover’s 
search) is the construction of the oracle. It is a 
problem that seems to defy logic, and is in itself 
an interesting problem to study. 

Models Based on Quantum Annealing
Research in the area of quantum annealing seems 
to have been carried out almost solely by large 
corporations. This is probably due to the prohib-
itive cost of such machines. We predict this will 
change over the course of the next few years as 
cloud models are introduced. Quantum anneal-
ers are especially enticing due to the demonstrat-
ed scalability. Also due to the software utilized, 
they are more simplistic to develop algorithms for 
use. Finally, real world benefits have already been 
proven through traffic routing problems as well as 
satellite routing [15].

Conclusion
To use the words of Chad Rigetti, “Quantum com-
puting is arguably the most sophisticated technol-
ogy that humans have ever developed.” Although 
many would agree with this statement, the field is 
still in its infancy, while the promises of quantum 
computing are almost endless. Therefore, research 
in this field is of the utmost value. This article con-
stitutes a literature review of existing platforms 

As quantum machine 
learning is an emerging 
field, future research 
opportunities are highly 
evolving and almost 
endless. Interestingly, 
since theory advances 
faster than hardware, 
the most intriguing 
problems tend to be 
actually implementing 
the theoretical work on 
hardware.
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and important issues and hopefully will provide 
resources for those interested in pursuing a deep-
er understanding and a desire to apply quantum 
machine learning to their respective fields. 
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To use the words of 
Chad Rigetti, “Quantum 

computing is arguably 
the most sophisticat-

ed technology that 
humans have ever 

developed.” Although 
many would agree with 
this statement, the field 

is still in its infancy, 
while the promises of 
quantum computing 

are almost endless. 
Therefore, research 

in this field is of the 
utmost value.
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