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The ImageNet Challenge Story ...

IMJGENET
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1000 categories

« Training: 1000 images for each category

Matchstick

» Testing: 100k images




The ImageNet Challenge Story ... strong supervision

Classification Results (CLS)
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The ImageNet Challenge Story ... outcomes

Strong supervision:

 Features from networks trained on ImageNet can be used for other visual tasks, e.g.
detection, segmentation, action recognition, fine grained visual classification

* To some extent, any visual task can be solved now by:
1. Construct a large-scale dataset labelled for that task
2. Specify a training loss and neural network architecture
3. Train the network and deploy

* Are there alternatives to strong supervision for training? Self-Supervised learning ....



Why Self-Supervision?

. Expense of producing a new dataset for each new task

. Some areas are supervision-starved, e.g. medical data, where it is hard to obtain
annotation

. Untapped/availability of vast numbers of unlabelled images/videos

— Facebook: one billion images uploaded per day

— 300 hours of video are uploaded to YouTube every minute

. How infants may learn ...



Self-Supervised Learning

The Scientist in the Crib: What Early Learning Tells Us About the Mind
by Alison Gopnik, Andrew N. Meltzoff and Patricia K. Kuhl

The Development of Embodied Cognition: Six Lessons from Babies
by Linda Smith and Michael Gasser



What is Self-Supervision?

A form of unsupervised learning where the data provides the supervision
* In general, withhold some part of the data, and task the network with predicting it

* The task defines a proxy loss, and the network is forced to learn what we really
care about, e.g. a semantic representation, in order to solve it



Example: relative positioning

Train network to predict relative position of two regions in the same image

i ., < 8 possible locations

P 4‘

Classifier

7

CNN

CNN
4‘ Randomly Sample Patch

Sample Second Patch

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



Example: relative positioning

)

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



Semantics from a non-semantic task

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



What is learned?

Input Relative-positioning Random Initialization ImageNet AlexNet

Fj“"ﬁ ‘ﬁ l

CNN




Outline

Self-supervised learning in three parts:

1. from images

2. from videos

3. from videos with sound



Part |

Self-Supervised Learning from Images



Recap: relative positioning

Train network to predict relative position of two regions in the same image

i ., < 8 possible locations

P 4‘

Classifier

Sample Second Patch

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



Evaluation: PASCAL VOC Detection

« 20 object classes (car, bicycle, person, horse ...

* Predict the bounding boxes of all objects of a given class in an image

Horse Motorbike Person

personFrontaiTruncsee
personFrentalTruncooe

+Facel 2T e A0l 2#T
s o 6 o e TruncOse.

harzPersonRearTruncOce




Evaluation: PASCAL VOC Detection

 Pre-train CNN using self-supervision (no labels)

* Train CNN for detection in R-CNN object category detection pipeline

warped region

aeroplane? no.

R-CNN

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
image proposals (~2k) CNN features regions

!

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]



Average Precision

Evaluation: PASCAL VOC Detection

56.8%

51.1%

45.6%

ImageNet Labels Relative No Pretraining
positioning



Avoiding Trivial Shortcuts

Include a
gap

Jitter the patch
locations




A Not-So “Trivial” Shortcut
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Chromatic Aberration




A Not-So “Trivial” Shortcut
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Solution?

Only use one of the colour channels

Position in Image



Image example ll: colourization

Train network to predict pixel colour from a monochrome input

Grayscale image: L channel Concatenate (L,ab)

X € R (X,Y)

“Free”
L =) Fﬁﬁﬁﬁ% =) ab <«— | supervisory
signal




Image example |l colourization

Train network to predict pixel colour from a monochrome input

Colorful Image Colorization, Zhang et al., ECCV 2016



Image example lll: exemplar networks

Exemplar Networks (Dosovitskiy et al., 2014)
Perturb/distort image patches, e.g. by cropping and affine transformations

Train to classify these exemplars as same class




Autoencoders Denoising Autoencoders | [ Exemplar networks

Hinton & SalakhutdinO\;.i

Science 2006. Vincent et al. ICML 2008.

Co-Occurrence P Egomotion

Stream1 ;

-
iR

Isola et al. ICLR Workshop 2016. Agrawal et al. ICCV 2015 Jayaraman et al. ICCV 2015

Context Split-brain auto-encoders

81

___________________________

>

Noroozi et al 2016 Pathak et al. CVPR 2016 Zhang et al. CVPR 2017




Multi-Task Self-Supervised Learning

Procedure: Self-supervision task ImageNet | PASCAL VOC
Classification Detection
- ImageNet-frozen: self-supervised training, top-5 accuracy mAP
network fixed, classifier trained on features | Rel. Pos 59.21 66.75
_ o Colour 62.48 65.47
. PA.SCAL: self-supervised pre-training, then Exemplar 53 08 60.94
train Faster-RCNN

Rel. Pos + colour 66.64 68.75
« ImageNet labels: strong supervision Rel. Pos + Exemplar 65.24 69.44
Rel. Pos + colour + Exemplar 68.65 69.48
NB: all methods re-implemented on ImageNet labels 85.10 7417

same backbone network (ResNet-101)

Multi-task self-supervised visual learning, C Doersch, A Zisserman, ICCV 2017



Multi-Task Self-Supervised Learning

Findings: Self-supervision task ImageNet PASCAL VOC
Classification Detection
« Deeper network improves performance top-5 accuracy mAP
(ResNet vs AlexNet) Rel. Pos 59.21 66.75
Colour 62.48 65.47
« Colour and Rel-Pos superior to Exemplar Exemplar 5308 60.94
. Rel. Pos + colour 66.64 68.75
» Gap between self-supervision and strong

supervision closing Rel. Pos + Exemplar 65.24 69.44
Rel. Pos + colour + Exemplar 68.65 69.48
Procedure: ImageNet labels 85.10 7417

» ImageNet-frozen: self-supervised training, network fixed, classifier trained on features
 PASCAL.: self-supervised pre-training, then train Faster-RCNN

» ImageNet labels: strong supervision
Multi-task self-supervised visual learning, C Doersch, A Zisserman, ICCV 2017



Image Transformations — 2018

Unsupervised representation learning by predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018

Which image has the correct rotation?




Image Transformations — 2018

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Figure 1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The
core intuition of our self-supervised feature learning approach is that if someone is not aware of the

concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to
them.

Unsupervised representation learning by predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018



Image Transformations — 2018

‘_Objegves;_ R
ne— ‘
ConvNet Maximize prob.
—» (X, y=0] model F(.) FY(x) |
Rotate 0 degrees il ‘ Predict 0 degrees rotation (y=0)
Rotated image: X~ ‘ ‘
_i__\_\_\ﬂ ‘ ‘
) x ConvNet Maximize prob.
glx,y=1) model F(.) ‘ Fl[){l) ‘
Rotate 90 degrees Predict 90 degrees rotation (y=1) |
Rotated image: X" ‘
. ConvNet | Maximize prob. |
> g(X, y—2) model F(.) | ‘ FZ(X])
___._'_'__'_,_'—'—'_’
Rotate 180 degrees o — g ‘ Predict 180 degrees rotation (y=2)
S Maximize prob |
¥ OnviNg (imize prob.
e model F() e | |

Rotate 270 degrees ‘ IS ; - =
R TE—— ¥ Predict 270 degrees rotation 2—3) |

Unsupervised representatio; Ie;rnin_g b; predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018



Image Transformations — 2018

PASCAL VOC

* Uses AlexNet Detection mAP
« Closes gap between ImageNet and Random 43.4
self-supervision Rel. Pos. 51.1
Colour 46.9
Rotation 54.4
ImageNet Labels 956.8

Unsupervised representation learning by predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018



Summary Point

« Self-Supervision:
— A form of unsupervised learning where the data provides the supervision
— In general, withhold some information about the data, and task the network with predicting it

— The task defines a proxy loss, and the network is forced to learn what we really care about,
e.g. a semantic representation, in order to solve it

* Many self-supervised tasks for images

« Often complementary, and combining improves performance

* Closing gap with strong supervision from ImageNet label training
— ImageNet image classification, PASCAL VOC detection

» Deeper networks improve performance



Part i

Self-Supervised Learning from Videos



Video

A temporal sequence of frames

What can we use to define a proxy loss?
* Nearby (in time) frames are strongly correlated, further away may not be

* Temporal order of the frames

* Motion of objects (via optical flow)



Outline

Three example tasks:
— Video sequence order
— Video direction

— Video tracking



Temporal structure in videos

Time

Shuffle and Learn: Unsupervised Learning
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick and Martial Hebert
ECCV 2016

“Sequence” of data

Slide credit: Ishan Misra



Sequential Verification

* |s this a valid sequence?

Sun and Giles, 2001; Sun et al., 2001; Cleermans 1993: Reber 1989
Arrow of Time - Pickup et al., 2014

Slide credit: Ishan Misra



Original video

Slide credit: Ishan Misra



Original video

Temporally Correct order

Slide credit: Ishan Misra



Original video

Temporally Correct order

Temporally Incorrect order

Slide credit: Ishan Misra



Geometric View

Images

Given a start and an end, can this point lie in between?

Shuffle and Learn —|. Misra, L. Zitnick, M. Hebert — ECCV 2016 Slide credit: Ishan Misra



Dataset: UCF-101 Action Recognition

h e .-‘ : I cazndR

| Apply Eye I‘*.I"il\f:llp Bmdunv Teeth

- !
'] Nun Chucks

Writing On Board| Yo Yo Baby Crawling || Blowing Candles |Body Weight SquatsjHandstand Pushups

UCF101 - Soomro et al., 2012



Positive Tuples Negative Tuples

s —-—

IIIIIIIIIII 1 e (LTI

~900k tu ples from UCF-1 O1Adataset (Soo_mro et al,, 2012)

Slide credit: Ishan Misra



Informative training tuples

Original video

Frame Motion
A

\4

Time

Slide credit: Ishan Misra



Input Tuple

fc8

Tuple
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Slide credit: Ishan Misra



Nearest Neighbors of Query Frame (fc7 features)
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Finetuning setup

Self-supervised Pre-train Test -> Finetune

Input Tuple

Action Labels

Correct/Incorrect
Tuple

concatenation

Slide credit: Ishan Misra



Results: Finetune on Action Recognition

Dataset Initialization Mean Classification
Accuracy
UCF101 Random 38.6
Shuffle & Learn 50.2
ImageNet pre-trained 67.1

Setup from - Simonyan & Zisserman, 2014

Slide credit: Ishan Misra



What does the network learn?

Images

Given a start and an end, can this point lie in between?

Shuffle and Learn —|. Misra, L. Zitnick, M. Hebert — ECCV 2016 Slide credit: Ishan Misra



Human Pose Estimation

« Keypoint estimation using FLIC and MPII Datasets

Slide credit: Ishan Misra



Human Pose Estimation

« Keypoint estimation using FLIC and MPII Datasets

FLIC Dataset MPII Dataset
Initialization Mean PCK  AUC PCK Mean AUC
PCKh@0.5 PCKh@0.5
Shuffle & Learn 84.9 49.6 87.7 47.6
ImageNet pre-train 85.8 51.3 35.1 47.2

FLIC - Sapp & Taskar, 2013
MPII - Andriluka et al,, 2014
Setup fom — Toshev et al., 2013
Slide credit: Ishan Misra



More temporal structure in videos

Self-Supervised Video Representation Learning With Odd-One-Out Networks

Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould, ICCV 2017

Predicted odd {"f Y=2 \
element \ /
-
| fc8 |
\ fc7 \
| Fusion Layer |

[ fc6 | [ fc6 | fc6 |

Video-clip Encoder Video-clip Encoder Video-clip Encoder

~ Correct order x Wrong order v Correct order



More temporal structure in videos

Self-Supervised Video Representation Learning With Odd-One-Out Networks

Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould, ICCV 2017

Predicted odd

( v=2 )
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fc8
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Fusion Layer

[ fc6 |

Cconvl ]
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Cconv |

[ fc6 |

convl ]

Video-clip Encoder

Video-clip Encoder

Video-clip Encoder

Correct order

Vg o e Yo
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x Wrong order

Correct order

Initialization Mean
Classification
Accuracy
Random 38.6
Shuffle and Learn 50.2
Odd-One-Out 60.3
ImageNet pre- 67.1

- trained




Summary: lessons so far

 Important to select informative data in training
— Hard negatives and positives
— Otherwise, most data is too easy or has no information and the network will not learn
— Often use heuristics for this, e.g. motion energy

» Consider how the network can possibly solve the task (without cheating)
— This determines what it must learn, e.g. human keypoints in “shuffle and learn’

« Choose the proxy task to encourage learning the features of interest



Self-Supervision using the Arrow of Time

Donglai Wei, Joseph Lim, Bill Freeman, Andrew Zisserman CVPR 2018



Learning the arrow of time

Task: predict if video playing forwards or backwards

Supervision:
Positive training samples: video clips playing forwards

Negative training samples: video clips playing backwards



Strong cues

o
Semantic, face motion direction, ordering R

Donglai Wei, Joseph Lim, Bill Freeman, Andrew Zisserman CVPR 2018



Strong cues

Slmple physics:
gravity
* entropy
 friction
« causality

Donglai Wei, Joseph Lim, Bill Freeman, Andrew Zisserman CVPR 2018



Weak or no cues

Symmetric in time, constant motion, repetitions

Donglai Wei, Joseph Lim, Bill Freeman, Andrew Zisserman CVPR 2018



Temporal Class-Activation Map Network

forwards

m Com, GAP backwards
‘ E | i +Logistic ’)

input motion

T-CAM Model:

Input: optical flow in two chunks

Final layer: global average pooling to allow class activation map (CAM)



The Inevitable cheating ...

Cautionary tale:
Chromatic aberration used as shortcut in Doersch C, Gupta A, Efros AA,
Unsupervised visual representation learning by context prediction.
ICCV 2015

Dataset: UCF-101 actions
Train/Test: 70%/30%
AoT Test accuracy: 98%

Chance accuracy: 50%

Donglai Wei, Joseph Lim, Bill Freeman, Andrew Zisserman CVPR 2018



Cue I: black framing

?

Test -
_ original | zero-out
Train B

original 98.1% 87.9%

Mln
-
/
/

time

black stripes are not “purely black” when black stripe signals are zeroed-out,
test accuracy drops ~10%

46% of videos have black framing

Donglai Wei, Joseph Lim, Bill Freeman, Andrew Zisserman CVPR 2018



Cue ll: cinematic conventions

K-means clustering on test clips with top scores

cluster A
(camera zoom-in)

cluster B
(camera tilt-down)

73% of videos have camera motion



Stabilize to remove camera motion/zoom

b *;’.ua F r w ki '*,"* L
\ I

original camera stabilized

(black stripe removed)

Test
original | stabilization

Train
original 88.3% 75.2%

when camera motion is stabilized, test accuracy drops ~10%



Datasets and Performance

Flickr 150K shots

» Obtained from 1.74M shots used in Thomee et al (2016) &
Vondrick et al (2016), after black stripe removal and stabilization

« Split 70:30 for train:test

Model accuracy on test set: 81%
Human accuracy on test set: 81%

Chance: 50%

Donglai Wei, Joseph Lim, Bill Freeman, Andrew Zisserman CVPR 2018
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Evaluation: Action Classification

Procedure:

* Pre-train network

* Fine tune & test network on UCF101 human action classification benchmark

[

A

Pre-train Performance L
T-CAM on AoT on Flickr 150k shots 84 .1 ~
Baby Crawling
T-CAM on AoT on UCF-101 86.3 e :
Flow network on ImageNet* 85.7 3% & e '

Haircut Sky Diving | Surfing
« *=Wang et al, Temporal Segment Networks, 2016 (also VGG-16 and flow, pre-trained on ImageNet)

Donglai Wei, Joseph Lim, Bill Freeman, Andrew Zisserman CVPR 2018



Tracking Emerges by Colorizing Videos

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy, ECCV 2018






emporal Coherence of Color

RGB

Color
Channels

Quantized
Color




Self-supervised Tracking

Task: given a color video ...
Colorize all frames of a gray scale version using a reference frame

. "f‘-‘-'&—;—;.
.f, ;e'-y’f':ﬂ;’" ’

Reference Frame Gray-scale Video

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



What color is this?




Where to copy
color from?




Semantic
correspondence




Input Frame

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



Colorize by Pointing

Reference Frame Input Frame

Reference Colors Target Colors

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



Reference Frame Input Frame

Reference Colors Target Colors

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



exp (ff;)

B D _k €XP (fgfj)

Reference Frame Input Frame

Reference Colors Target Colors

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



exp (ff;)

éj = E Aijcz- where Az‘j =
7

D _k €XP (fgfj)

Reference Frame Input Frame

Reference Colors Target Colors

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



exp (fi f;)

m;n L cj,g Aijc; | where A;; =
i

D €XP (fgfj)

Reference Frame Input Frame

Reference Colors Target Colors

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



Video Colorization

Reference Frame Gray-scale Video Predicted Color

Train: Kinetics

Evaluate: DAVIS

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



Visualizing Embeddings

Project embedding to 3 dimensions and visualize as RGB

Train: Kinetics

Evaluate: DAVIS .

o~
Q)

7., &
%O /)(9/

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



Tracking Emerges!

Reference Frame Input Frame
! g { k : II 1 II' |

Reference Mask Predicted Mask

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



Segment Tracking Results

Only the first frame is given. Colors indicate different instances.

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. ECCV 2018.



Pose Tracking Results

Only the skeleton in the first frame is given.
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Vondrick, Shrivastava, Fathi, Guadarrama, Murphy. _ECCV 2018.



Part lli

Self-Supervised Learning from Videos
with Sound



Audio-Visual Co-supervision

Sound and frames are:
« Semantically consistent

« Synchronized



Audio-Visual Co-supervision

Objective: use vision and sound to learn from each other

* Two types of proxy task:
1. Predict audio-visual correspondence
2. Predict audio-visual synchronization



Audio-Visual Co-supervision

Train a network to predict if image and audio clip correspond

Correspond? -WVW

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Audio-Visual Correspondence

drum =<

guitar —




Audio-Visual Correspondence

positive

drum =<

guitar —




Audio-Visual Correspondence

positive

drum =<

guitar —




Audio-Visual Correspondence

drum =<

guitar —




Audio-Visual Embedding (AVE-Net)

single frame ___visual subnetwork

- pe =
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-~ CONV3512
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audio subnetwork

NN

Correspond?
yes/no
Contrastive
loss based
on distance
between
vectors

N—

g
a\ﬁ
N
NN
g
&
h_
.:\\\
it

Distance between audio and visual vectors:

« Small: AV from the same place in a video (Positives)
« Large: AV from different videos (Negatives)

Train network from scratch



Overview

What can be learnt by watching and listening to videos?

» Good representations
— Visual features
— Audio features

 Intra- and cross-modal retrieval
— Aligned audio and visual embeddings

* “What is making the sound?”
— Learn to localize objects that sound

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Background: Audio-Visual

« Andrew Owens ....

— Owens, A., Jiajun, W., McDermott, J., Freeman, W., Torralba, A.: Ambient sound provides
supervision for visual learning. ECCV 2016

— Owens, A,, Isola, P., McDermott, J., Torralba, A., Adelson, E., Freeman,W.: Visually
indicated sounds. CVPR 2016

e Other MIT work:

— Auytar, Y., Vondrick, C., Torralba, A.: SoundNet: Learning sound representations from
unlabeled video. NIPS 2016

* From the past:
— Kidron, E., Schechner, Y.Y., Elad, M.: Pixels that sound. CVPR 2005

— De Sa, V.: Learning classification from unlabelled data, NIPS 1994



Dataset

- AudioSet (from YouTube), has labels

- 200k x 10s clips

- use musical instruments classes

- Correspondence accuracy on test set: 82% (chance: 50%)

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Use audio and visual features

What can be learnt by watching and listening to videos?

» Good representations

visual
— Visual features .. subnetwork
— Audio features - (( (FFF 4 (s -[EI
. audio
* Intra- and cross-modal retrieval subnetwork
— Aligned audio and visual embeddings Y 47 =, =
e i |-

[ ]

* “What is making the sound?”
— Learn to localize objects that sound

correspond
? yes/no

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Results: Audio features

Sound classification
« ESC-50 dataset
— Environmental sound classification

— Use the net to extract features
— Train linear SVM

Sound classification on ESC-50

SVM-MFCC Convolutional Random Forest ConvNet SoundNet Human Qurs
autoencoder (supervised) (supervised by
vision)

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Results: Vision features

ImageNet classification

« Standard evaluation procedure for unsupervised / self-supervised setting
— Use the net to extract visual features
— Linear classification on ImageNet

Method Top 1 accuracy
Random 18.3%
Pathak er al. [ ] 22.3%
Krihenbiihl ef al. [ 1 4] 24.5%
Donahue et al. [ 7] 31.0%
Doersch et al. [0] 31.7%
Zhang et al. [34] (init: [14]) 32.6%
Noroozi and Favaro [ ¥] 34.7%
Ours random 12.9%
Ours 32.3%

» On par with state-of-the-art self-supervised approaches

» The only method whose features haven’t seen ImageNet images
— Probably never seen ‘Tibetan terrier’
— Video frames are quite different from images



Use audio and visual features

What can be learnt by watching and listening to videos?

» Good representations
— Visual features
— Audio features

visual
subnetwork

audio

* Intra- and cross-modal retrieval —a_ subnetwork

— Aligned audio and visual embeddings

s
/

=
2

(i o wir | = H

* “What is making the sound?”
— Learn to localize objects that sound

correspond
? yes/no

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Query on image, retrieve audio

Search in 200k video clips of AudioSet

Query
frame

Top 10 ranked audio clips

I TTIIT ]!
860600
0000660

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Use audio and visual features

What can be learnt by watching and listening to videos?

» Good representations

visual )
— Visual features == subnetwork

— Audio features ( /ff(y ([ g ||| mmp EI
correspond
. audio = 9 Ino

* Intra- and cross-modal retrieval - subnetwork | ? yes
— Aligned audio and visual embeddings 4 /4 =
J 7 M-({ ffffﬂ‘il

r- S e

— e T

* “What is making the sound?”
— Learn to localize objects that sound

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Objects that Sound

Corresponds: yes/no?

AVE-Net Corresponds: yes/no? i AVOL-Net
maxpoozl 1l4ax1l4a

Corresponds: where?

B ————
Euclidean distance n
f i 1 i . convolutional softmax 1x1
Visual embedding A 14x14x2
conv7 1x1x2
L2 normalization L2 normalization 14x14x2

14x14x1 per-lacation
scores

128

128

all pairwise scalar products

14x14
o ~ 7 %
S S ‘a_/]
= = 14x14 spatial grid of A Single audio
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o] poold 16x12 |’ Apply Visual ConvNet 128-D visual N representation
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“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Localizing objects with sound

Input: audio and video frame
Output: localization heatmap on frame

What would make this sound?

Note, no video (motion) information is used

“Objects that Sound”, Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018



Vision subnetwork

To embed or not to embed?

Concatenation

Corresponds: yes/no?

concat
1024

pool4 14x14
1x1x512

pool4 16x12
1x1x512

Audio subnetwork

257x200x1

224x224x3
W

t log-spectrogram

4 %

1 second 48kHz audio

Visual embedding

Corresponds: yes/no?
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softmax
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Euclidean distance
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Embedding

Features
available

Audio embedding

L2 normalization

Vision subnetwork

pool4 14x14
1x1x512

128 128

257x200x1

poold 16x12
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L2 normalization

Cross-modal
alignment in
embedding

Audio subnetwork

1 second 48kHz audio



Specialize to talking heads ...

Objective: use faces and voice to learn from each other
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* Two types of proxy task:
1. Predict audio-visual correspondence
2. Predict audio-visual synchronization



Specialize to talking heads ...

Objective: use faces and voice to learn from each other

* Two types of proxy task:
1. Predict audio-visual
2. Predict audio-visual synchronization



Lip-sync problem on TV
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Face-Speech Synchronization

 Positive samples: in sync
* Negative samples: out of sync (introduce temporal offset)

% Positive pair % Negative pair

RO E R SR

Chung, Zisserman (2016) “Out of time: Automatic lip sync in the wild”



Sequence-sequence face-speech network

 The network is trained with contrastive loss to:

— Minimise distance between positive pairs

— Maximise distance between negative pairs

13x20x1 AV YV ooz
PUARY | rooL2 |

Chung, Zisserman (2016) “Out of time: Automatic lip sync in the wild”



Face-Speech Synchronization

= Averaged sliding windows

= The predicted offset value is >99% accurate, averaged over 100 frames.

Conf: 6.9 3 Conf: 7.5 - Conf: 0.7

Distance

‘Offset = Offset  Offset
In-sync Off-sync Non-speaker

Chung, Zisserman (2016) “Out of time: Automatic lip sync in the wild”



Application: Lip Synchronization




Application: Active speaker detection
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Blue: speaker Red: non-speaker



Face-Speech Synchronization - summary

The network can be used for:
— Audio-to-video synchronisation
— Active speaker detection
— Voice-over rejection

— Visual features for lip reading



Audio-Visual Synchronization

Learning by Misaligned Audio

“Aligned”

4

A

( 3D Convolution )
( 3D Convolution )

L
( 3D Convolution )
*

( 3D Convolution ) ( 1D Convolution )
4

[ 1D Convolution ]
A @

1D Convolution ) %
s

Audio-Visual Scene Analysis with Self-Supervised Multisensory Features
Andrew Owens, Alyosha Efros



Self-supervised Training

Audio-Visual Scene Analysis with Self-Supervised Multisensory Features,
Andrew Owens, Alyosha Efros, 2018



Misaligned Audio

LN N
S\ Ve

Shifted audio track

Audio-Visual Scene Analysis with Self-Supervised Multisensory Features,
Andrew Owens, Alyosha Efros, 2018



Visualizing the location of sound sources

3D class
activation map
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3D Convolution j

A

A

[
[ 3D Convolution j
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3D Convolution j
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E 3D Convolution ] [ 1D Convolution j
A
[ 1D Convolution J
A
[ 1D Convolution j

A

Audio-Visual Scene Analysis with Self-Supervised Multisensory Features,
Andrew Owens, Alyosha Efros, 2018



Localizing sound sources: top responses per category
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Summary: Audio-Visual Co-supervision

Objective: use vision and sound to learn from each other

* Two types of proxy task:
1. Predict audio-visual correspondence -> semantics
2. Predict audio-visual synchronization -> attention

» Lessons are applicable to any two related sequences, e.g. stereo video,
RGB/D video streams, visual/infrared cameras ...



Summary

« Self-Supervised Learning from images/video
— Enables learning without explicit supervision
— Learns visual representations — on par with ImageNet training

* Self-Supervised Learning from videos with sound
— Intra- and cross-modal retrieval
— Learn to localize sounds
— Tasks not just a proxy, e.g. synchronization, attention, applicable directly

 Applicable to other domains with paired signals, e.qg.
— face and voice
— Infrared/visible
— RGB/D
— Stereo streams ...



