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Abstract
Quantum information technologies, on the one hand, and intelligent learning systems, on 
the other, are both emergent technologies that are likely to have a transformative impact 
on our society in the future. The respective underlying fields of basic research—quantum 
information versus machine learning (ML) and artificial intelligence (AI)—have their own 
specific questions and challenges, which have hitherto been investigated largely independently. 
However, in a growing body of recent work, researchers have been probing the question of 
the extent to which these fields can indeed learn and benefit from each other. Quantum ML 
explores the interaction between quantum computing and ML, investigating how results and 
techniques from one field can be used to solve the problems of the other. Recently we have 
witnessed significant breakthroughs in both directions of influence. For instance, quantum 
computing is finding a vital application in providing speed-ups for ML problems, critical 
in our ‘big data’ world. Conversely, ML already permeates many cutting-edge technologies 
and may become instrumental in advanced quantum technologies. Aside from quantum 
speed-up in data analysis, or classical ML optimization used in quantum experiments, 
quantum enhancements have also been (theoretically) demonstrated for interactive learning 
tasks, highlighting the potential of quantum-enhanced learning agents. Finally, works 
exploring the use of AI for the very design of quantum experiments and for performing parts 
of genuine research autonomously, have reported their first successes. Beyond the topics of 
mutual enhancement—exploring what ML/AI can do for quantum physics and vice versa—
researchers have also broached the fundamental issue of quantum generalizations of learning 
and AI concepts. This deals with questions of the very meaning of learning and intelligence 
in a world that is fully described by quantum mechanics. In this review, we describe the main 
ideas, recent developments and progress in a broad spectrum of research investigating ML and 
AI in the quantum domain.

Keywords: quantum computing, artificial intelligence, machine learning, quantum information 
processing
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1. Introduction

Quantum theory has influenced most branches of the physi-
cal sciences. This influence ranges from minor corrections to 
profound overhauls, particularly in fields dealing with suf-
ficiently small scales. In the second half of the last century, 
it became apparent that genuine quantum effects can also be 
exploited in engineering-type tasks, where such effects enable 
features which are superior to those achievable using purely 
classical systems. The first wave of such engineering gave 
us, for example, the laser, transistors and nuclear magnetic 
resonance devices. The second wave, which gained momen-
tum in the 1980s, constitutes a broad-scale, albeit not fully 
systematic, investigation of the potential of utilizing quant um 
effects for various types of tasks which, at a fundamental 
level, deal with the processing of information. This includes 
the research areas of cryptography, computing, sensing and 
metrology, all of which now share the common language of 
quantum information science. Often, the research into such 
interdisciplinary programs was exceptionally fruitful. For 
instance, quantum computation, communication, cryptog-
raphy and metrology are now mature, well-established and 
impactful research fields which have, arguably, revolution-
ized the way we think about information and its processing. 
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In recent years, it has become apparent that the exchange 
of ideas between quantum information processing and the 
fields of artificial intelligence and machine learning has its 
own genuine questions and promises. Although such lines 
of research are only now receiving a broader recognition, 
the very first ideas were present already at the early days of 
quantum computing, and we have made an effort to fairly 
acknowledge such visionary works.

In this review we aim to capture research at the interplay 
between machine learning, artificial intelligence and quantum 
mechanics in its broad scope, with a reader with a physics 
background in mind. To this end, we dedicate a comparatively 
large amount of space to classical machine learning and artifi-
cial intelligence topics, which are often sacrificed in physics-
oriented literature, while keeping the quantum information 
aspects concise.

The structure of the paper is as follows. In the remainder of 
this introductory section 1, we give quick overviews of the rel-
evant basic concepts of the fields of quantum information pro-
cessing, machine learning and artificial intelligence. We finish 
the introduction with a list of abbreviations and a comment 
on notation. Subsequently, in section 2 we delve deeper into 
chosen methods, technical details and the theoretical back-
ground of the classical theories. The selection of topics here 
is not necessarily balanced, from a classical perspective. We 
place an emphasis on elements which either appear in subse-
quent quantum proposals, which can sometimes be somewhat 
exotic, or on aspects which can help put the relevance of the 
quantum results into proper context. Section  3 briefly sum-
marizes the topics that will be covered in the quantum part of 
the review. Sections 4–7 cover the four main topics we survey 
and constitute the central body of the paper. We finish with an 
outlook section 8.

Remark. The overall objective of this survey is to give 
a broad, ‘bird’s-eye’ account of the topics which contrib-
ute to the development of various aspects of the interplay 
between quantum information sciences and machine learn-
ing and artificial intelligence. Consequently, this survey 
does not necessarily present all the developments in a fully 
balanced fashion. Certain topics, which are in their very 
early stages of investigation, yet important to the nascent 
research area, have been given what is perhaps a dispro-
portionate level of attention, compared to more developed 
themes. This is, for instance, particularly evident in sec-
tion 7, which aims to address the topics of quantum arti-
ficial intelligence beyond mainstream data analysis appli-
cations of machine learning. While this topic is relevant 
for a broad perspective on the emerging field, it has only 
been broached by very few authors, including the authors 
of this review and their collaborators. The more extensively 
explored topics of, e.g., quantum algorithms for machine 
learning and data mining, quantum computational learning 
theory or quantum neural networks have been addressed in 
more focused recent reviews (Wittek 2014a, Schuld et  al 
2014b, Biamonte et  al 2016, Arunachalam and de Wolf 
2017, Ciliberto et al 2017).

1.1. Quantum mechanics, computation and information  
processing

Quantum mechanics, as commonly presented in quantum 
information, is based on few simple postulates: (1) the pure 
state of a quantum system is given by a unit vector |ψ〉4 in 
a complex Hilbert space, (2) closed system pure state evo-
lution is generated by a Hamiltonian H, specified by the lin-

ear Schrödinger equation i� ∂
∂t |ψ〉 = H |ψ〉, (3) the structure 

of composite systems is given by the tensor product and 4) 
projective measurements (observables) are specified by, ide-
ally, non-degenerate Hermitian operators, and the measure-
ment process changes the description of the observed system 
from state |ψ〉 to an eigenstate |φ〉, with probability given by 
the Born rule p(φ) = |〈ψ |φ〉 |2 (Nielsen and Chuang 2011). 
While the full theory still requires the handling of subsys-
tems and classical ignorance5, the few mathematical axi-
oms of pure-state closed-system theory already give rise to 
quintessentially quantum phenomena, like superpositions, 
no-cloning, entanglement and others, most of which stem 
from just the linearity of the theory. Many of these properties 
re-define how researchers in quantum information perceive 
what information is, but also have a critical functional role 
in, say, quantum enhanced-cryptography, communication, 
sensing and other applications. Some of the most fascinat-
ing consequences of quantum theory are, arguably, captured 
by the field of quantum information processing (QIP), and in 
particular quantum computation (QC), which is most relevant 
to our purposes.

4 More precisely, a ray, or a one-dimensional projector onto |ψ〉 in the same 
Hilbert space.
5 This requires the more general and richer formalism of density operators, 
and leads to generalized measurements, completely positive evolutions, etc.

Executive summary: Quantum theory leads to many 
counterintuitive and fascinating phenomena, includ-
ing the results of the field of quantum information 
processing and, in particular, quantum computation. 
This field studies the intricacies of quantum informa-
tion, its communication, processing and use. Quantum 
information admits a plethora of phenomena which do 
not occur in classical physics. For instance, quantum 

information cannot be cloned—this restricts the types 
of processing that are possible for general quantum 
information. Other aspects lead to advantages, as has 
been shown for various communication and computa-
tion tasks: for solving algebraic problems, reduction 
of sample complexity in black-box settings, sampling 
problems and optimization. Even restricted models 
of quantum computation, amenable for near-term 
implementations, can solve interesting tasks. Machine 
learning and artificial intelligence tasks can, as comp-
onents, rely on the solving of such problems, leading 
to an advantage.

Rep. Prog. Phys. 81 (2018) 074001
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QC has revolutionized the theory and implementation of 
computation. This field originated from the observations by 
Manin (1980) and Feynman (1982) that the calculation of cer-
tain properties of quantum systems, as they evolve in time, 
may be intractable, while the quantum systems themselves, 
in a manner of speaking, do perform that hard computation 
by merely evolving. From these early ideas QC has prolifer-
ated and, indeed, the existence of quantum advantages which 
are offered by scalable universal quantum computers have 
been demonstrated in many settings. Perhaps most famously, 
quantum computers have been shown to have the capacity 
to efficiently solve algebraic computational problems which 
are believed to be intractable for classical computers. This 
includes the well known problems of factoring large integers 
and computing the discrete logarithms (Shor 1997), but also 
many others such as Pell equation solving, some non-Abelian 
hidden subgroup problems and others; see e.g. Childs and van 
Dam (2010) and Montanaro (2016) for a review. Related to 
this, nowadays we also have access to a growing collection of 
quantum algorithms6 for various linear algebra tasks, as given 
in e.g. Harrow et al (2009), Childs et al (2015) and Rebentrost 
et al (2016b), which may offer speed-ups.

Quantum computers can also offer improvements in many 
optimization and simulation tasks, for instance, computing 
certain properties of partition functions (Poulin and Wocjan 
2009), simulated annealing (Crosson and Harrow 2016), 
solving semidefinite programs (Brandão and Svore 2017), 
performing approximate optimization (Farhi et  al 2014) 
and, naturally, in the tasks of simulating quantum systems 
(Georgescu et al 2014).

Advantages can also be achieved in terms of the efficient 
use of sub-routines and databases. This is studied using orac-
ular models of computation, where the quantity of interest is 
the number of calls to an oracle, a black-box object with a 
well-defined set of input–output relations which, abstractly, 
stands in for a database, sub-routine, or any other informa-
tion processing resource (see figure 1). The canonical exam-
ple of a quant um advantage in this setting is the Grover’s 
search algorithm (Grover 1996) which achieves a prov-
ably optimal quadratic improvement in unordered search 
(where the oracle is the database). Similar results have been 
achieved in a plethora of other scenarios, such as spatial 
search (Childs and Goldstone 2004), search over structures 
(including various quantum-walk-based algorithms (Kempe 
2003, Childs et  al 2003, Reitzner et  al 2012)), NAND 
(Childs et  al 2009) and more general boolean tree evalu-
ation problems (Zhan et  al 2012), as well as more recent 

‘cheat sheet’ technique results (Aaronson et al 2016) lead-
ing to better-than-quadratic improvements. Taken a bit more 
broadly, oracular models of computation can also be used 
to model communication tasks, where the goal is to reduce 
communication complexity (i.e. the number of communica-
tion rounds) for some information exchange protocols (de 
Wolf 2002). Quantum computers can also be used for solv-
ing sampling problems. In sampling problems the task is to 
produce a sample according to an (implicitly) defined dis-
tribution, and they are important for both optimization and 
(certain instances of) algebraic tasks7.

For instance, Markov Chain Monte Carlo methods, argu-
ably the most prolific set of computational methods in natu-
ral sciences, are designed to solve sampling tasks, which in 
turn, can often be used to solve other types of problems. For 
instance, in statistical physics, the capacity to sample from 
Gibbs distributions is often the key tool to compute prop-
erties of the partition function. A broad class of quant um 
approaches to sampling problems focuses on quantum 
enhancements of such Markov Chain methods (Temme et al 
2011, Yung and Aspuru-Guzik 2012). Sampling tasks have 
been receiving an ever increasing amount of attention in the 
QIP community, as we will comment on shortly. Quantum 
computers are typically formalized in one of a few stand-
ard models of computation, many of which are, computa-
tionally speaking, equally powerful8. Even if the models are 
computationally equivalent, they are conceptually different. 
Consequently, some are better suited, or more natural, for 
a given class of applications. Historically, the first formal 
model, the quantum Turing machine (Deutsch 1985), was 
preferred for theoretical and computability-related consid-
erations. The quantum circuit model (Nielsen and Chuang 
2011) is standard for algebraic problems. The measurement-
based QC (MBQC) model (Raussendorf and Briegel 2001, 
Briegel et al 2009) is, arguably, best-suited for graph-related 
problems (Zhao et  al 2016), multi-party tasks, distrib-
uted computation (Kashefi and Pappa 2016) and blind QC 
(Broadbent et  al 2009). Topological QC (Freedman et  al 
2002) was an inspiration for certain knot-theoretic algo-
rithms (Aharonov et al 2006), and is closely related to algo-
rithms for topological error-correction and fault tolerance. 

6 In this review it makes sense to point out that the term ‘quantum algorithm’ 
is a bit of a misnomer, as what we really mean is ‘an algorithm for a quant-
um computer’. An algorithm—an abstraction—cannot per se be ‘quantum’, 
and the term quantum algorithm could also have meant e.g. ‘algorithm for 
describing or simulating quantum processes’. Nonetheless, this term, in the 
sense of ‘algorithm for a quantum computer’ is commonplace in QIP, and 
we use it in this sense as well. The concept of ‘quantum machine learning’ 
is, however, still ambiguous in this sense and, depending on the authors, can 
easily mean ‘quantum algorithm for machine learning‘, or ‘machine learning 
applied to QIP’.

7 Optimization and computation tasks can be trivially regarded as special 
cases of sampling tasks, where the target distribution is (sufficiently)  
localized at the solution.
8 Various notions of ‘equally powerful’ are usually expressed in terms of 
algorithmic reductions. In QIP, typically, the computational model B is said 
to be at least as powerful as the computational model A if any algorithm of 
complexity O( f (n)) (where f (n) is some scaling function, e.g. ‘polynomial’ 
or ‘exponential’) defined for model A can be efficiently (usually this means 
in polynomial time) translated to an algorithm for B which solves the same 
problem and whose computational complexity is O(poly( f (n))). Two mod-
els are then equivalent if A is as powerful as B and B is as powerful as A. 
Which specific reduction complexity we care about (polynomial, linear, etc) 
depends on the setting: e.g. for factoring polynomial reductions are interest-
ing, since there seems to be an exponential separation between classical and 
quantum computation. In contrast, for search, the reductions need to be  
sub-quadratic to maintain a quantum speed-up, since only a quadratic 
 improvement is achievable.
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The adiabatic QC model (Farhi et  al 2000) is constructed 
with the task of ground-state preparation in mind, and is thus 
well-suited to optimization problems (Heim et al 2017).

Research into QIP also produced examples of interesting 
restricted models of computation: models which are in all 
likelihood not universal for efficient QC but can still solve 
tasks which seem hard for classical machines. Recently, 
there has been an increasing interest in such models, spe-
cifically in the linear optics model, the so-called low-depth 
random circuits model and the commuting quantum circuits 
model9. In Aaronson and Arkhipov (2011) it was shown 
that the linear optics model can efficiently produce samples 
from a distribution specified by the permanents of certain 
matrices, and it was proven (barring certain mathematical 
conjectures, which are, however, plausible) that classical 

comp uters cannot reproduce the samples from the same 
distribution in polynomial time. Similar claims have been 
made for low-depth random circuits (Boixo et  al 2016, 
Bravyi et al 2017) and commuting quantum circuits, which 
comprise only commuting gates (Shepherd and Bremner 
2009, Bremner et al 2017). Critically, these restricted mod-
els can be realized to sufficient size to allow for a demon-
stration of computations which the most powerful classical 
computers currently available cannot achieve, with near-
term technologies. This milestone, referred to as quant um 
supremacy (Preskill 2012, Lund et  al 2017) has been 
receiving a significant amount of attention in recent times. 
A lively class of research here focuses on the computational 
capacity of quantum devices with a restricted architecture, 
often restricted depth. Here much of the computational 
work is delegated to the classical machine, which optim-
izes the parameters of the (shallow) circuit. Two related 
and prominent examples in this direction are the quantum 
approximate optimization algorithm (Farhi et al 2014) and 
the Quantum Variational Eigensolver (Peruzzo et al 2014, 
McClean et al 2016). A table listing some of the more com-
mon restricted and universal models of quantum computa-
tion, with typical applications is given in figure 2.

Another highly active field in QIP concentrates on (analog) 
quantum simulations, with applications in quantum optics, 
condensed-matter systems and quantum many-body physics 
(Georgescu et al 2014). Many, if not most, of the above men-
tioned aspects of QC are finding a role in quantum machine 
learning applications.

Next, we briefly review basic concepts from the classical 
theories of artificial intelligence and machine learning.

9 Other restricted models exist, such as the one-clean-qubit model (DQC1) 
where the input comprises only one qubit in a pure state and others are 
maximally mixed. This model can be used to compute a function—the 
normalized trace of a unitary specified by a quantum circuit—which seems 
to be hard for classical devices.

Figure 1. Oracular computation and query complexity: a (quantum) 
algorithm solves a problem by intermittently calling a black-box 
subroutine, defined only via its input–output relations. Query 
complexity of an algorithm is the number of calls to the oracle 
which the algorithm will perform.

Executive summary: The field of artificial intelligence 
(AI) incorporates various methods, which are predomi-
nantly focused on solving problems which are hard for 
computers, yet seemingly easy for humans. Perhaps 
the most important class of such tasks pertain to learn-
ing problems. Various algorithmic aspects of learning 
problems are tackled by the field of machine learning, 
which evolved from the study of pattern  recognition in 
the context of AI. Modern machine learning addresses 
a variety of learning scenarios, dealing with learn-
ing from data, e.g. supervised (data classification), 
and unsupervised (data clustering) learning, or from 
interaction, e.g. reinforcement learning. Modern AI 
states, as its ultimate goal, the design of an intelligent 
agent which learns and thrives in unknown environ-
ments. Artificial agents that are intelligent in a gen-
eral, human sense must have the capacity to tackle all 
the individual problems addressed by machine learn-
ing and other more specialized branches of AI. They 
will, presumably, require a complex combination of 
techniques.

Rep. Prog. Phys. 81 (2018) 074001
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1.2. Artificial intelligence and machine learning

In its broadest scope, the modern field of AI encompasses 
a wide variety of sub-fields. Most of these sub-fields deal 
with the understanding and abstracting of aspects of various 
human capacities which we would describe as intelligent, 
and attempt to realize the same capacities in machines. The 
term ‘AI’ was coined at Dartmouth College conferences in 
the 1956 (Russell and Norvig 2009), which were organized to 
develop ideas about machines that can think, and the confer-
ences are often cited as the birthplace of the field. The con-
ferences aimed to ‘find how to make machines use language, 
form abstractions and concepts, solve kinds of problems now 
reserved for humans, and improve themselves’10. The history 
of the field has been turbulent, with strong opinions on how 
AI should be achieved. For instance, over the course of its 
first 30 years, the field has crystallized into two main compet-
ing and opposite viewpoints (Eliasmith and Bechtel 2006) on 
how AI may be realized: computationalism—holding that that 
the mind functions by performing purely formal operations on 
symbols, in the manner of a Turing machine; see e.g. Newell 
and Simon (1976)), and connectionism—which models men-
tal and behavioral phenomena as the emergent processes of 
interconnected networks of simple units, mimicking the bio-
logical brain; see e.g. Medler (1998)). Aspects of these two 
viewpoints still influence approaches to AI. Irrespective of the 
underlying philosophy, for the larger part of the history of AI 
the realization of ‘genuine AI’ was, purportedly, perpetually 
‘a few years away’—a feature often attributed also to quantum 
computers by critics of the field. In the case of AI, such run-
away optimism had a severe calamitous effect on the field, in 
multiple instances, especially in the context of funding (lead-
ing to periods now dubbed ‘winters of AI’). By the late 90s the 
reputation of the field was low and, even in hindsight, there 
was no consensus on the reasons why AI failed to produce 
human-level intelligence. Such factors played a vital role in 
the fragmentation of the field into various sub-fields which 
focused on specialized tasks, often appearing under different 
names.

A particularly influential perspective of AI, often called 
nouvelle or embodied AI, was advocated by Brooks, which 
posited that intelligence emerges from (simple) embodied 
systems which learn through interaction with their environ-
ments (Brooks 1990). In contrast to standard approaches of 
the time, Nouvelle AI insists on learning, rather than hav-
ing properties pre-programmed, and on the embodiment of 
AI entities, as opposed to abstract entities like chess playing 
programs. To a physicist, this perspective that intelligence is 
embodied is reminiscent of the viewpoint that information is 
physical, which had been ‘the rallying cry of quantum infor-
mation theory’ (Steane 1998). Such embodied approaches are 
particularly relevant in robotics where the key issues involve 
perception (the capacity of the machine to interpret the exter-
nal world using its sensors, which includes computer vision, 
machine hearing and touch), motion and navigation (critical 
in, e.g., automated cars). Related to human-computer inter-
faces, AI also incorporates the field of natural language pro-
cessing which includes language understanding—the capacity 
of the machine to derive meaning from natural language—and 
language generation—the ability of the machine to convey 
information in a natural language.

Other general aspects of AI pertain to a few well-studied 
capacities of intelligent entities (Russell and Norvig 2009). 
For instance, automated planning is related to decision the-
ory11 and, broadly speaking, addresses the task of identifying 
strategies (i.e. sequences of actions) which need to be per-
formed in order to achieve a goal, while minimizing (a speci-
fied) cost.

Already the simple class of so-called off-line planning tasks, 
where the task, cost function and the set of possible actions 
are known beforehand, contains genuinely hard problems, 
e.g. it includes, as a special case, the NP-complete12 traveling 
salesman problem (TSP); for illustration see figure 313.

In modern times, TSP itself would no longer be consid-
ered a genuine AI problem, but it is serves to illustrate how 
already very specialized, simple sub-sub-tasks of AI may be 
hard. More general planning problems also include on-line 
variants, where not everything is known beforehand (e.g. 
TSP but where the ‘map’ may fail to include all the avail-
able roads—or roads may effectively disappear due to traffic 
jams or rerouting—and one simply has to actually travel to 
find good strategies). On-line planning overlaps with rein-
forcement learning, discussed later in this section. Closely 
related to planning is the capacity of intelligent entities for 
problem solving. In technical literature, problem solving is 
distinguished from planning by a lack of additional struc-
ture in the problem, usually assumed in planning—in other 
words, problem solving is more general and typically more 

List of models applications
(BQP-complete) (not exlusive)

yroehtMTQ
QCircuits algorithms

gnitupmocdetubirtsidCQBM
Topological knot-theoretic problems
Adiabatic optimization problems

List of models applications
(restricted)

yratinufoecartgnitupmoc1CQD
Linear Optics sampling
Shallow Random Q. Circuits sampling
Commuting Q. Circuits sampling
RestrictedAdiabatic optimization tasks

Figure 2. Computational models.

11 Not to be confused with decision problems, studied in algorithmic com-
plexity.
12 Roughly speaking, NP is the class of decision (yes, no) problems whose 
solutions can be efficiently verified by a classical computer in polynomial 
time. NP-complete problems are the hardest problems in NP in the sense 
that any other NP problem can be reduced to an NP complete problem via 
polynomial-time reductions. Note that the exact solutions to NP-compete 
problems are believed to be intractable even for quantum computers.
13 Figure 3 has been modified from https://commons.wikimedia.org/wiki/
File:TSP_Deutschland_3.png.10 Paraphrased from McCarthy et al (1955).
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broadly defined than planning. The lack of structure in gen-
eral problem solving establishes a clear connection to (also 
unstructured) searching and optimization: in the setting of no 
additional information or structure, problem solving is the 
search for the solution to a precisely specified problem. While 
general problem solving can be, theoretically, achieved by a 
general search algorithm (which can still be subdivided into 
classes such as depth-first, breath-first, depth-limited search 
etc), more often there is structure to the problem, in which 
case informed search strategies—often called heuristic search 
strategies—will be more efficient (Russell and Norvig 2009). 
Human intelligence, to no small extent, relies on knowledge. 
We can accumulate knowledge, reason over it and use it to 
come to the best decisions, for instance in the context of prob-
lem solving and planning. An aspect of AI tries to formalize 
such logical reasoning, knowledge accumulation and knowl-
edge representation, often relying on formal logic, most often 
first-order logic.

A particularly important class of problems central to AI, 
and related to knowledge acquisition, involves the capacity 
of the machine to learn through experience. This feature was 
emphasized already in the early days of AI, and the derived 
field of machine learning (ML) now stands as arguably the 
most successful aspect (or spin-off) of AI, which we will 
address in more detail.

1.2.1. Learning from data: machine learning.
Stemming from the traditions of pattern recognition, such 
as recognizing handwritten text, and statistical learning 
theory (which places ML ideas in a rigorous mathematical 
framework), ML, broadly speaking, explores the construc-
tion of algorithms that can learn from and make predictions 
about data. Traditionally, ML deals with two main learning 
settings: supervised and unsupervised learning, which are 
closely related to data analysis and data mining-type tasks 

(Shalev-Shwartz and Ben-David 2014), see figure 4. A broader 
perspective (Alpaydin 2010) on the field also includes rein-
forcement learning (Sutton and Barto 1998), which is closely 
related to learning as is realized by biological intelligent enti-
ties. We shall discuss reinforcement learning separately.

In broad terms, supervised learning deals with learning-
by-example: given a certain number of labeled points (so-
called training set) {(xi, yi)}i where xi denote data points, e.g. 
N  −  dimensional vectors, and yi denote labels (e.g. binary 
variables, or real values), the task is to infer a ‘labeling rule’ 
xi �→ yi which allows us to guess the labels of previously 
unseen data, that is, beyond the training set. Formally speak-
ing, we deal with the task of inferring the conditional probabil-
ity distribution P(Y = y|X = x) (more specifically, generating 
a labeling function which, perhaps probabilistically, assigns 
labels to points) based on a certain number of samples from the 
joint distribution P(X, Y). For example, we could be inferring 
whether a particular DNA sequence belongs to an individual 
who is likely to develop diabetes. Such an inference can be 
based on the datasets of patients whose DNA sequences had 
been recorded, along with the information on whether they 
actually developed diabetes. In this example, the variable Y 
(diabetes status) is binary and the assignment of labels is not 
deterministic, as diabetes also depends on environmental fac-
tors. Another example could include two real variables, where 
x is the height from which an object is dropped and y the dura-
tion of the fall. In this example, both variables are real-valued 
and (in vacuum) the labeling relation will be essentially deter-
ministic. In unsupervised learning, the algorithm is provided 
just with the data points without labels. Broadly speaking, the 
goal here is to identify the underlying distribution, or structure, 
and other informative features in the dataset. In other words, 
the task is to infer properties of the distribution P(X = x), 
based on a certain number of samples, relative to a user-spec-
ified guideline or rule. Standard examples of unsuper vised 
learning are clustering tasks, where data-points are supposed to 
be grouped in a manner which minimizes within-group mean-
distance, while maximizing the distance between the groups. 
Note that the group membership can be thought of as a label, 
and so this also corresponds to a labeling task, but lacks ‘super-
vision’: examples of correct labelings. In basic examples of 
such tasks the number of expected clusters is given by the user, 
but this too can be automatically optimized.

Another class of unsupervised learning tasks includes 
feature extraction and dimensionality reduction, critical in 
combating the so-called curse of dimensionality. The curse of 
dimensionality refers to problems which stem from the fact 
that the raw representations of real-life data often occupy very 
high dimensional spaces. For instance, a standard resolution 
one-second video-clip at standard refresh frequency, capturing 
events which are extended in time, maps to a vector in  ∼108 
dimensional space14, even though the relevant information it 
carries (say a license-plate number of a speeding car filmed) 
may be significantly smaller. More generally, intuitively it 
is clear that, since geometric volume scales exponentially 

14 Each frame is approximately. 106 dimensional, as each pixel constitutes 
one dimension, multiplied by 30 frames required for the one-second clip.

Figure 3. TSP example: finding the shortest route visiting the 
largest cities in Germany.
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with the dimension of the space it is in, the number of points 
needed to capture (or learn) general features of an n  −  dimen-
sional object will also scale exponentially. In other words, 
learning in high dimensional spaces is exponentially difficult. 
However, very often, the data-points which we can observe in 
reality (i.e. the effective support of the distribution P(X)) lie 
in a sub-manifold of a substantially lower dimension. Hence, 
a means of dimensionality reduction from raw representation 
space (e.g. moving car clips) to the relevant feature space (e.g. 
license-plate numbers) is a necessity in any real-life scenario.

These approaches map the data-points to a space of sig-
nificantly reduced dimension, while attempting to maintain 
the main features—the relevant information—of the structure 
of the data. Feature extraction can also be understood as a 
labeling process, where the points in the reduced space corre-
spond to labels15. A typical example of a linear dimensionality 
example technique is, e.g., principal component analysis. In 
practice, such algorithms also constitute an important step in 
data pre-processing for other types of learning and analysis.

Furthermore, unsupervised learning also includes genera-
tive models. In this flavor of learning, the effective task is to 
specify a model, in this case a specification of a probability 
distribution, which best matches the observed data-points 
drawn from P(X). Ideally, such a model well-approximates 
P(X) itself and can be used to generate new samples. As a 
comment on the nomenclature, it should be pointed out that 
the relationship between various flavors of learning is often a 
matter of perspective. For instance, generative models stand 
in contrast to discriminative models, which, as the name sug-
gests, discriminate, i.e. they associate labels to points. From 
this perspective, most of supervised learning neatly fits in the 
discriminative paradigm, whereas unsupervised learning con-
tains both discriminative (clustering) and generative aspects. 
On the other hand, both supervised discriminative and 
unsuper vised generative models can be understood as data-
fitting problems: in supervised settings, the goal is to identify 
the best classifying function with respect to how the labels in 
Y are correlated to the data-points in X, in the labeled train-
ing set (or the distribution P(X, Y)). Thus, the problem is to 

identify the best approximation of the conditional distribution 
P(Y|X). Generative models aim to capture the whole distribu-
tion (which may be multivariate or not). In both approaches, 
the actual task, in operational terms, boils down to identifying 
which element from the model set best fits the observed data. 
The model set is known as the set of hypotheses, and may 
consist of functions (e.g. neural networks, or hyperplanes in 
support vector machines) or parametrizations of distributions 
(e.g. Boltzmann machines, or more general graphical models), 
depending on whether the setting is discriminative or genera-
tive, respectively. For more details on the various models for 
ML, see section 2.1.

ML provides a plethora of methods which help us to under-
stand data better, and in an automated fashion. As humanity is 
amassing data at an exponential rate (insideBIGDATA 2017) 
such methods may offer the only sustainable route to gaining 
new knowledge about the world we live in—as long as we 
can provide the computing power to match the growth of the 
datasets.

1.2.2. Learning from interaction: reinforcement learning.  
Reinforcement learning (RL) (Sutton and Barto 1998, Russell 
and Norvig 2009) is, traditionally, the third canonical category 
of ML. Partially due to the relatively recent prevalence of (un)
supervised methods in the contexts of the pervasive data mining 
and big data analysis topics, many modern textbooks on ML 
focus on these methods. RL strategies have mostly remained 
reserved to the robotics and AI communities. Lately, however, 
the surge of interest in adaptive and autonomous devices, robot-
ics and AI have increased the prominence of RL methods.

One recent celebrated result which relies on the extensive 
use of standard ML and RL techniques in conjunction is that 
of AlphaGo (Silver et al 2016), a learning system which mas-
tered the game of Go, and achieved, arguably, superhuman 
performance, easily defeating the best human players. This 
result is notable for multiple reasons, including the fact that it 
illustrates the potential of learning machines over special-pur-
pose solvers in the context of AI problems: while specialized 
devices which relied on programming over learning (such as 
Deep Blue) could surpass human performance in chess, they 
failed to do the same for the more complicated game of Go, 
which has a notably larger space of strategies. The learning 

Label 0

Label 1

Linear classifier

Unknown

Supervised learning Unsupervised learning

Figure 4. Supervised (in this case, best linear classifier) and unsupervised learning (here clustering into two most likely groups and 
outliers) illustrated.

15 Similarly, clustering can also be understood as feature extraction where 
the target feature is the specification of the cluster a given data-point  
belongs to.
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system AlphaGo achieved this many years ahead of typical 
predictions.

In subsequent recent works, it was further demonstrated 
that superhuman performance in Go can be achieved without 
relying on human-generated data, or supervised learning. In 
particular, the system relied on self-play and predominantly 
on RL methods (Silver et  al 2017b). Such a more general 
RL approach lead to high flexibility and resulted in a system 
which simultaneously plays Go, chess and shogi (also known 
as Japanese chess) (Silver et al 2017a) at superhuman level. 
Such recent results have prompted a noticeable increase of 
interest in RL techniques, e.g. RL was listed as one of the ten 
breakthrough technologies of 2017 by MIT technology review 
(Review 2017).

The distinction between RL and other data-learning ML 
methods is particularly relevant from a quantum information per-
spective, which will be addressed in more detail in section 7.2.

RL constitutes a broad learning setting, formulated within 
the general agent–environment paradigm (AE paradigm) of 
AI (Russell and Norvig 2009). Here, we do not deal with a 
static database, but rather an interactive task environment. The 
learning agent (or, a learning algorithm) learns through the 
interaction with the task environment.

As an illustration, one can imagine a robot acting on its 
environment and perceiving it via its sensors—the percepts 
being, say, snapshots made by its visual system and actions 
being, say, movements of the robot—as depicted in figure 5. 
The AE formalism is, however, more general and abstract. 
It is also unrestrictive as it can also express supervised and 
unsuper vised settings.

In RL, it is typically assumed that the goal of the process 
is manifest in a reward function, which, roughly speaking, 
rewards the agent whenever the agent’s behavior is correct 
(in which case we are dealing with positive reinforcement, 
but other variants of operant conditioning are also used16). 

This model of learning seems to cover pretty well how most 
biological agents (i.e. animals) learn: one can illustrate this 
through the process of training a dog to do a trick by giving 
it treats whenever it performs well. As mentioned earlier, RL 
is all about learning how to perform the ‘correct’ sequence 
of actions given the received percepts, which is an aspect of 
planning, in a setting which is fully on-line: the only way to 
learn about the environment is by interacting with it.

1.2.3. Intermediary learning settings. While supervised, 
unsupervised and RL constitute the three broad categories of 
learning, there are many variations and intermediary settings. 
For instance, semi-supervised learning interpolates between 
unsupervised and supervised settings, where the number of 
labeled instances is very small compared to the total avail-
able training set. Nonetheless, even a small number of labeled 
examples have been shown to improve the bare unsupervised 
performance (Chapelle et al 2010), or, from an opposite per-
spective, unlabeled data can help with classification when fac-
ing a small quantity of labeled examples. In active supervised 
learning, the learning algorithm can further query the human 
user, or supervisor, for the labels of particular points which 
would improve the algorithm’s performance. This setting can 
only be realized when it is operatively possible for the user to 
correctly label all the points and may yield advantages when 
this exact labeling process is expensive. Further, in super-
vised settings, one can consider so-called inductive learning 
algorithms which output a classifier function, based on the 
training data, which can be used to label all possible points. 
A classifier is simply a function which assigns labels to the 
points in the domain of the data. In contrast, in transductive 
learning (Chapelle et al 2010) settings, the points that need to 
be labeled later are known beforehand—in other words, the 
classifier function is only required to be defined on a priori 
known points. Next, a supervised algorithm can perform lazy 
learning, meaning that the whole labeled dataset is kept in 
memory in order to label unknown points (which can then be 
added), or eager learning, in which case, the (total) classifier 
function is output (and the training set is no longer explicitly 
required) (Alpaydin 2010). Typical examples of eager learning 
are linear classifiers, such as basic support vector machines, 
described in the next section, whereas lazy learning is exem-
plified by, e.g., nearest-neighbor methods17. Our last example, 
online learning (Alpaydin 2010), can be understood as either 
an extension of eager supervised learning, or a special case of 
RL. Online learning generalizes standard supervised learning, 
in the sense that the training data is provided sequentially to 
the learner and used to incrementally update the classifying 
function. In some variants, the algorithm is asked to classify 
each point and is given the correct response afterward, and 
the performance is based on the guesses. The match/mismatch 
of the guess and the actual label can also be understood as 

Reward

Agent Environment

Learning 
model

s
a

Figure 5. An agent interacts with an environment by exchanging 
percepts and actions. In RL rewards can be issued. Basic 
environments are formalized by Markov decision processes (inset 
in Environment). Environments are reminiscent of oracles, see 
figure 1, in that the agent only has access to the input–output 
relations. Further, figures of merit for learning often count the 
number of interaction steps, which is analogous to the concept of 
query complexity.

16 More generally, we can distinguish four modes of such operant condition-
ing: positive reinforcement (reward when correct), negative reinforcement 
(removal of negative reward when correct), positive punishment (negative 
reward when incorrect) and negative punishment (removal of reward when 
incorrect).

17 For example, in k  −  nearest neighbor classification, the training set is split 
into disjoint subsets specified by the shared labels. Given a new point which 
is to be classified, the algorithm identifies k nearest neighbor points from the 
dataset to the new point. The label of the new point is decided by the major-
ity label of these neighbors. The labeling process thus needs to refer to the 
entire training set.
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a reward, in which case online learning becomes a restricted 
case of RL.

1.2.4. Putting it all together: the agent–environment para-
digm. The aforementioned specialized learning scenarios 
can be phrased in a unifying language, which also enables us 
to discuss how specialized tasks fit in the objective of realizing 
true AI. In the modern take on AI (Russell and Norvig 2009), 
the central concept of the theory is that of an agent. An agent 
is an entity which is defined relative to its environment and 
which has the capacity to act, that is, do something.

In computer science terminology the requirements for 
something to be an agent (or for something to act) are minimal 
and essentially everything can be considered an agent—for 
instance, all non-trivial computer programs are also agents.

AI concerns itself with agents which do more—for instance 
they also perceive their environment, interact with it and learn 
from experience. AI is nowadays defined18 as the field which 
is aimed at designing intelligent agents (Russell and Norvig 
2009), which are autonomous, perceive their world using sen-
sors, act on it using actuators and choose their activities so 
as to achieve certain goals—a property which is also called 
rationality in literature.

Agents only exist relative to an environment (more specifi-
cally a task environment) with which they interact, constitut-
ing the overall AE paradigm, illustrated in figure 6. While it 
is convenient to picture robots when thinking about agents, 
they can also be more abstract and virtual, as is the case with 
computer programs ‘living’ in the internet19. In this sense, 
any learning algorithm for any of the more specialized learn-
ing settings can also be viewed as a restricted learning agent, 
operating in a special type of environment, e.g. a supervised 
learning environment may be defined by a training phase, 

where the environment produces examples for the learning 
agent, followed by a testing phase, where the environment 
evaluates the agent, and finally the application phase, where 
the trained and verified model is actually used. The same 
also obviously holds for more interactive learning scenarios 
such as the reinforcement-driven mode of learning—RL, we 
briefly illustrated in section 1.2.2, is natively phrased in the 
AE paradigm. In other words, all ML models and settings can 
be phrased within the broad AE paradigm.

Although the field of AI is fragmented into research 
branches with focus on isolated, specific goals, the ultimate 
motivation of the field remains the same: the design of true, 
general AI, sometimes referred to as artificial general intel-
ligence (AGI)20, that is, the design of a ‘truly intelligent’ agent 
(Russell and Norvig 2009).

The topic of what ingredients are needed to build AGI is 
difficult, and there is no consensus.

One perspective focuses on the behavioral aspects of agents. 
In literature, many features of intelligent behavior are captured 
by characterizing more specific types of agents: simple reflex 
agents, model-based reflex agents, goal-based agents, utility-
based agents, etc. Each type captures an aspect of intelligent 
behavior, much like the fragments of the field of ML, understood 
as a subfield of AI, capture specific types of problems intelli-
gent agents should handle. For our purposes, the most important, 
overarching aspect of intelligent agents is the capacity to learn21 
and we will emphasize learning agents in particular.

The AE paradigm is particularly well suited for such an oper-
ational perspective, as it abstracts from the internal structure of 
agents and focuses on behavior and input–output relations.

More precisely, the perspective on AI presented in this 
review is relatively simple: (a) AI pertains to agents which 
behave intelligently in their environments and (b) the central 
aspect of intelligent behavior is that of learning. While we, 
unsurprisingly, do not more precisely specify what intelli-
gent behavior entails, this simple perspective on AI already 
has non-trivial consequences. The first is that intelligence 
can be ascertained from the interaction history between the 
agent and its environment alone. Such a viewpoint on AI is 
also closely related to behavior-based AI and the ideas behind 
the Turing test (Turing 1950); it is in line with an embodied 
viewpoint on AI (see embodied AI in section 1.2) and it has 
influenced certain approaches towards quantum AI, touched 
on in section 7.3. The second is that the development of bet-
ter ML and other types of relevant algorithms does constitute 
genuine progress towards AI, conditioned only on the fact 
that such algorithms can be coherently combined into a whole 
agent. It is, however, important to note that actually achieving 
this integration may be far from trivial. In contrast to such 
strictly behavioral and operational points of view, an alterna-
tive approach towards whole agents (or complete intelligent 
agents) focuses on agent architectures and cognitive architec-
tures (Russell and Norvig 2009). In this approach to AI the 

20 The field of AGI, under this label, emerged in the mid-2000s and the term 
is used to distinguish the objective of realizing intelligent agents from the 
research focusing on more specialized tasks, which are nowadays all labeled 
AI. AGI is also referred to as strong AI or, sometimes, full AI.
21 A similar viewpoint, that essentially all AI problems/features map to a 
learning scenario, is also advocated in Hutter (2005).

Agent Environment

sensory 
input

action 
output

Figure 6. Basic AE paradigm.

18 Over the course of its history, AI had many definitions, many of which 
invoke the notion of an agent, while some older, definitions talk about 
machines, or programs which ‘think’, ‘have minds’ and so on (Russell and 
Norvig 2009).
As clarified, the field of AI has fragmented, and many of the sub-fields deal 
with specific computational problems and the development of computational 
methodologies useful in AI related problems, for instance ML (i.e. its super-
vised and unsupervised variants). In such sub-fields with a more pragmatic 
computational perspective, the notion of agents is not used as often.
19 The subtle topics of such virtual, yet embodied, agents is touched again 
later in section 7.1.
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emphasis is equally placed not only on intelligent behavior, 
but also on forming a theory about the structure of the (human) 
mind. One of the main goals of a cognitive architecture is to 
design a comprehensive computational model which encap-
sulates various results stemming from research in cognitive 
psychology. The aspects which are predominantly focused on 
understanding human cognition are, however, not central for 
our take on AI. We discuss this further in section 7.3.

1.3. Miscellanea.

Abbreviations and acronyms.

Acronym Meaning First occurrence

AE paradigm Agent–environment paradigm section 1.2.2
AGI Artificial general intelligence section 1.2.4
AI Artificial intelligence section 1.2
ANN Artificial neural network section 2.1.1
BED Bayesian experimental design section 4.1.3
BM Boltzmann machine section 2.1.1
BQP Bounded-error quantum  

polynomial time
section 7.1

CAM Content-addressable memory section 2.1.1
CNN Convolutional neural network section 2.1.1
COLT Computational learning theory section 2.2
DME Density matrix exponentiation section 6.3.2
HN Hopfield network section 2.1.1
LSTM Long short-term memory section 2.1.1
MBQC Measurement-based quantum 

computation
section 1.1

MDP Markov decision process section 2.3
ML Machine learning section 1.2
NN Neural network section 2.1.1
NP Non-deterministic polynomial 

time
section 1.2

PAC learning Probably approximately correct 
learning

section 2.2.1

PCA Principal component analysis section 6.3.2
POMDP Partially observable Markov  

decision process
section 2.3

PS Projective simulation section 2.3
QC Quantum computation section 1.1
QIP Quantum information processing section 1.1
QUBO Quadratic unconstrained binary 

optimization
section 6.3.1

RL Reinforcement learning section 1.2.2
rPS Reflective PS section 7.1
SVM Support vector machine section 2.1.2
VA Variational autoencoders section 2.1.1

Notation. Throughout this review paper, we have striven to use 
the notation specified in the reviewed works. To avoid notational 
chaos, however, we keep the notation consistent within subsec-
tions—this means that, within one subsection, we adhere to the 
notation used in the majority of works if inconsistencies arise.

2. Classical background

The main purpose of this section is to provide the background 
regarding classical ML and AI techniques and concepts which 

are either addressed in quantum proposals we discuss in the fol-
lowing sections or are important for the proper positioning of 
the quantum proposal in the broader learning context. The con-
cepts and models of this section include common models found 
in classical literature, but also certain more exotic models, which 
have been addressed in modern quantum ML literature. While 
this section contains most of the classical background needed 
to understand the basic ideas of the quantum ML literature, to 
tame the length of this section certain very specialized classical 
ML ideas are presented on-the-fly during the upcoming reviews.

We first provide the basics concepts related to common 
ML models, emphasizing neural networks in section 2.1.1 and 
support vector machines in section  2.1.2. Following this, in 
section  2.1.3, we also briefly describe a larger collection of 
algorithmic methods and ideas arising in the context of ML, 
including regression models, k-means/medians and decision 
trees, but also more general optimization and linear algebra 
methods which are now commonplace in ML. Beyond the 
more pragmatic aspects of model design for learning problems, 
in section 2.2 we provide the main ideas of the mathematical 
foundations of computational learning theory, which discuss 
learnability—i.e. the conditions under which learning is pos-
sible at all—computational learning theory and the theory of 
Vapnik and Chervonenkis, which rigorously investigates the 
bounds on learning efficiency for various supervised settings. 
Section 2.3 covers the basic concepts and methods of RL.

2.1. Methods of machine learning

Executive summary: Two particularly famous models in 
ML are artificial neural networks, inspired by biological 
brains, and support vector machines, arguably the best 
understood supervised learning model. Neural networks 
come in many flavors, all of which model parallel infor-
mation processing of a network of simple computational 
units, neurons. Feed-forward networks (without loops) 
are typically used for supervised learning. Most of the 
popular deep learning approaches fit in this paradigm. 
Recurrent networks have loops; this allows, e.g., feeding 
information from outputs of a (sub)-network back to its 
own input. Examples include Hopfield networks, which 
can be used as content-addressable memories, and 
Boltzmann machines, typically used as generative mod-
els in unsupervised learning. These networks are related 
to Ising-type models, at zero, or finite temperatures, 

respectively—this sets the grounds for some of the pro-
posals for quantization. Support vector machines classify 
data in a Euclidean space by identifying best separating 
hyperplanes, which allows for a comparatively simple 
theory. The linearity of this model is a feature making it 
amenable to quantum processing. The power of hyper-
plane classification can be improved by using kernels 
which, intuitively, map the data to higher dimensional 
spaces in a non-linear way. ML naturally goes beyond 
these two models and includes regression (data-fitting) 
methods and many other specialized algorithms.
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Since the early days of the fields of AI and ML, there have 
been many proposals on how to achieve the flavors of learn-
ing we described above. In what follows we will describe two 
popular models for ML, specifically artificial neural networks 
and support vector machines. We highlight that many other 
models exist and, indeed, in many fields other learning meth-
ods (e.g. regression methods) are more commonly used. A 
selection of such other models is briefly mentioned thereafter, 
along with examples of techniques which overlap with ML 
topics in a broader sense, such as matrix decomposition tech-
niques, and which can be used for, e.g., unsupervised learning.

Our choice of emphasis is, in part, again motivated by later 
quantum approaches and by features of the models which are 
particularly well-suited for cross-overs with QC.

2.1.1. Artificial neural networks for supervised and unsuper-
vised learning. Artificial neural networks (ANNs, or just 
NNs) are a biologically inspired approach to tackling learn-
ing problems. Originating in 1943 (McCulloch and Pitts 
1943), the basic component of NNs is the artificial neuron 
(AN), which is, abstractly speaking, a real-valued function 
AN : k →  parametrized by a vector of real, non-neg-
ative weights (wi)i = w ∈ k and the activation function 
φ : → , given by

AN(x) = φ

(∑
i

xiwi

)
, with x = (xi)i ∈ k. (1)

For the particular choice when the activation function is the 
threshold function, given by φθ(x) = 1 if x > θ ∈ + and 
φθ(x) = 0 otherwise, the AN is called a perceptron (Rosenblatt 
1957), and has been studied extensively. Already such simple 
perceptrons perform classification into subspaces specified by 
the hyperplane with the normal vector w  and offset θ (see sup-
port vector machines later in this section).

Note that in ML terminology a distinction should be made 
between artificial neurons (ANs) and perceptrons—percep-
trons are special cases of ANs, with a fixed activation function, 
the step function, and a specified update or training rule. ANs 
in modern times use various activation functions (often the 
differentiable sigmoid functions) and can use different learn-
ing rules. For our purposes, this distinction will not matter. 
The training of such a classifier or AN for supervised learning 
purposes consists in optimizing the parameters w  and θ so as 
to correctly label the training set—there are various figures of 
merit particular approaches care about and various algorithms 
that perform such an optimization, which are not relevant at 
this point. By combining ANs in a network we obtain NNs 
(if ANs are perceptrons, we usually talk about multi-layered 
perceptrons). While single perceptrons, or single-layered per-
ceptrons, can realize only linear classification, a three-layered 
network already suffices to approximate any continuous real-
valued function (with precision depending on the number of 
neurons in the inner, so-called hidden, layer). Cybenko (1989) 
was the first to prove this for sigmoid activation functions, 
whereas Hornik generalized this to show that the same holds 
for all non-constant, monotonically increasing and bounded 
activation functions (Hornik 1991) soon thereafter. This 

shows that if sufficiently many neurons are available, a three-
layered ANN can be trained to learn any dataset, in princi-
ple22. Although this result seems very positive, it comes with 
the price of a large model complexity, which we discuss in 
section 2.2.223.

In recent years, it has become apparent that using multi-
ple, sequential, hidden feed-forward layers (instead of one 
large layer), i.e. deep NNs, may have additional benefits. In 
particular, convolutional NNs (CNNs) have achieved stellar 
successes, especially in the fields of vision and pattern rec-
ognition. CNNs are, in essence, deep NNs of a particular 
structure (e.g. the connections between neighboring layers 
maintain a notion of locality), which is inspired by the bio-
logical visual cortex of certain animals (see e.g. Rawat and 
Wang (2017) and references therein for more information). 
CNNs have a reduced number of parameters (Poggio et  al 
2017) compared to unrestricted deep NNs. Furthermore, the 
sequential nature of processing of information from layer to 
layer can be understood as a feature abstraction mechanism 
(the layers process the data sequentially, highlighting relevant 
features at each step) and the analyses of the outputs of the 
trained layers of the CNN can shed light on the relevant fea-
tures of the task at hand.

While deep NNs are extremely successful in practice, they 
also suffer from short-comings. Perhaps the central issue of 
deep networks follows from the complex nature of the func-
tions they can realize and the convoluted relationship between 
the network parameters and the realized functions. The high 
expressivity—their capacity to represent many involved func-
tions—is responsible for their outstanding performance, but 
also limits what can theoretically be said about generaliza-
tion performance. Indeed, our lack of understanding of why 
such networks generalize well is a matter of ongoing debate 
(Zhang et al 2017a). Further, the complex structure of func-
tions realized by deep networks (even CNNs) dramatically 
limits the interpretability of the model, which is, intuitively, 
the possibility for high level explanations of the model’s out-
puts. The relevance of interpretability of learning models is 
becoming more important as we delegate ever more impor-
tant decisions to automated systems. For this reason, NNs 
are often not considered as the go-to approaches in critical 
systems, where failures may have catastrophic consequences 
(e.g. automated cars), or when it is simply required to produce 
a qualified explanation for any given decision. However, the 
question of what interpretability should entail, and how it can 
be enforced, is still a matter of cutting-edge research (Lipton 
2016, Zhang et al 2017b).

One of the main practical disadvantages of such deep net-
works is the computational cost and computational instabili-
ties in training (see the vanishing gradient problem (Hochreiter 
et al 2001)) and also the size of the dataset, which has to be 
large (Larochelle et  al 2009). With modern technology and 

22 More specifically, there exists a set of weights doing the job, even though 
standard training algorithms may fail to converge to that point.
23 Roughly speaking, models with high model complexity are more likely 
to ‘overfit’ and it is more difficult to provide guarantees they will generalize 
well, i.e. perform well beyond the training set.
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datasets, both obstacles are becoming less prohibitive, which 
has lead to a minor revolution in the field of ML.

Not all ANNs are feed-forward: recurrent NNs allow for 
the backpropagation of signals. Particular examples of such 
networks are so-called Hopfield networks (HNs), Boltzmann 
machines (BMs) and long short-term memory (LSTM) net-
works, which are often used for different purposes than feed-
forward networks.

In HNs, we deal with one layer, where the outputs of all 
the neurons serve as inputs to the same layer. The network is 
initialized by assigning binary values (traditionally  −1 and 1 
are used, for reasons of convenience) to the neurons (more 
precisely, some neurons are set to fire, and some not), which 
are then processed by the network, leading to a new configu-
ration. This update can be synchronous (the output values are 
‘frozen’ and all the second-round values are computed simul-
taneously) or asynchronous (the update is done one neuron 
at a time in a random order). The connections in the network 
are represented by a matrix of weights (wij)ij, specifying the 
connection strength between the ith and the jth neuron. The 
neurons are perceptrons, with a threshold activation function, 
given by the local threshold vector (θi)i. Such a dynamical 
system, under a few mild assumptions (Hopfield 1982), conv-
erges to a configuration (i.e. a bit-string) which (locally) mini-
mizes the energy functional

E(s) = −1
2

∑
ij

wijsisj +
∑

i

θisi, (2)

with s = (si)i, si ∈ {−1, 1}, that is, the Ising model. In gen-
eral, this model has many local minima, which depend on the 
weights wij and the thresholds, which are often set to zero. 
Hopfield provided a simple algorithm (called Hebbian learn-
ing, after D. Hebb for historical reasons (Hopfield 1982)), 
which enables one to ‘program’ the minima—in other 
words, given a set of bit-strings S (more precisely, strings of 
signs  +1/−1), one can find the matrix wij such that exactly 
those strings S are local minima of the resulting functional 
E. Such programmed minima are then called stored patterns. 
Furthermore, Hopfield’s algorithm achieved this in a manner 
which is local (the weights wij depend only on the ith and jth 
bits of the targeted strings, allowing parallelizability), incre-
mental (one can modify the matrix wij to add a new string with-
out having to keep the old strings in memory) and immediate. 
Immediateness means that the computation of the weight 
matrix is not a limiting, but finite process. Violating incre-
mentality would lead to a lazy algorithm (see section 1.2.3), 
which can be sub-optimal in terms of memory requirements, 
but often also computational complexity24. It was shown that 
the minima of such a trained network are also attractive fixed-
points, with a finite basin of attraction. This means that if a 
trained network is fed a new string and let run, it will (even-
tually) converge to a pattern which is closest to it (the dis-
tance measure that is used depends on the learning rule, but 
typically it is the Hamming distance, i.e. the number of entries 
where the strings disagree). Such a system then forms an 

associative memory, also called a content-addressable mem-
ory (CAM). CAMs can be used for supervised learning (the 
‘labels’ are the stored patterns) and, conversely, supervised 
learning machinery can be used for CAM25. An important fea-
ture of HNs is their capacity: how many distinct patterns it 
can store26. For the Hebbian update rule this number scales 
as O(n/ log(n)), where n is the number of neurons, which 
Storkey (1997) improved to O(n/

√
log(n)). In the meanti me, 

more efficient learning algorithms have been invented (Hillar 
and Tran 2014). Aside from applications as CAMs, due to the 
representation in terms of the energy functional in equation (2) 
and the fact that the running of HNs minimize it, early on they 
were also considered for tasks of optimization (Hopfield and 
Tank 1985). The operative isomorphism between HNs and 
the Ising model, technically, holds only in the case of a zero-
temper ature system. BMs generalize this. Here, the value of 
the ith neuron is set to  −1 or 1 (called ‘off’ and ‘on’ in litera-
ture, respectively) with probability

p(i = −1) = (1 + exp (−β∆Ei))
−1 , with ∆Ei =

∑
j

wij sj + θi,

 (3)
where ∆Ei is the energy difference between the configura-
tions with the ith neuron being on or off, assuming the con-
nections w  are symmetric and β is the inverse temperature of 
the system. In the limit of infinite running time, the network’s 
configuration is given by the (input-state invariant) Boltzmann 
distribution over the configurations, which depends on the 
weights w , local thresholds (weights) θ and the temperature. 
BMs are typically used in a generative fashion, to model 
and sample from (conditional) probability distributions. In 
the simplest variant, the training of the network attempts to 
ensure that the limiting distribution of the network matches 
the observed frequencies in the dataset. This is achieved by 
the tuning of the parameters w  and θ. The structure of the 
network dictates how complicated a distribution can be repre-
sented. To capture more complicated distributions, over, say, 
k-dimensional data, the BMs have N  >  k neurons. k of them 
will be denoted as visible units and the remainder are called 
hidden units, and they capture latent, not directly observable, 
variables of the system which generated the dataset and which 
we are in fact modeling. Training such networks consists in a 
gradient ascent of the log-likelihood of observing the train-
ing data in the parameter space. While this seems conceptu-
ally simple, it is computationally intractable, in part because 
it requires accurate estimates of probabilities of equilibrium 
distributions, which are hard to obtain. In practice, this is 
mitigated by using restricted BMs, where the hidden and vis-
ible units form the partition of a bipartite graph (so only con-
nections between hidden and visible units exist). (Restricted) 

24 The lazy algorithm may have to process all the patterns/data-points, the 
number of which may be large and/or growing.

25 For this, one simply needs to add a look-up table connecting labels to 
fixed patterns.
26 Reliable storage entails that previously stored patterns will also be recov-
ered without change (i.e. they are energetic local minima of equation (2)), 
but also that there is a basin of attraction—a ball around the stored patterns 
with respect to a distance measure (most commonly the Hamming distance) 
for which the dynamical process of the network converges to the stored 
pattern. An issue with capacities is the occurrence of spurious patterns: local 
minima with a non-trivial basin of attraction which were not stored.
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BMs have a large spectrum of applications including provid-
ing generative models, producing new samples from the esti-
mated distribution; as classifiers, via conditioned generation; 
as feature extractors, a form of unsupervised clustering; and as 
building blocks of deep architectures (Larochelle et al 2009). 
BMs can be ‘stacked’ in multiple layers, in analogy to deep 
NNs to form deep BMs27.

The utility of BM-based architectures is mostly limited by 
the cost of training—for instance, the cost of obtaining equilib-
rium Gibbs distributions, or by the errors stemming from heuris-
tic training methods such as contrastive divergence (Larochelle 
et al 2009, Bengio and Delalleau 2009, Wiebe et al 2014c).

The back-propagating nature of information flow in recur-
rent NNs can also be used as a means to affect the action of the 
network on the current data input, depending on the previous 
input(s). This memory effect was shown to be useful in the pro-
cessing of time-series, such as natural language processing. For 
a review of recurrent NNs applied to the learning of sequential 
data we refer the reader to Lipton et al (2015). Arguably the 
most successful models in this domain comprise LSTM net-
works (Hochreiter and Schmidhuber 1997). The simplest recur-
rent networks already have short-term memory capacities: e.g. 
an ‘identity’ neuron with a back-propagating connection can 
forward information from a previous step to the subsequent 
step, as part of input to another neuron (or itself). However, 
LSTMs are constructed so that the network can be trained to 
preserve signals (i.e. data points at a given instance in time) for 
arbitrarily long intervals. Similar results have recently also been 
obtained by a slightly simpler model of gated recurrent units 
(Chung et al 2014). LSTM and closely related models are cur-
rently the go-to methods behind many cutting edge technolo-
gies, specifically those pertaining to speech recognition (Wired 
2017) and machine translation (Wu et al 2016).

Modern advances in NN approaches to ML also involve 
various combined architectures which are targeted to vari-
ous shortcomings of the more standard methods. We will just 
briefly mention a few such approaches relevant for this review. 
In domain-adversarial NN training (Ganin et  al 2016), one 
performs supervised learning, while ensuring that the result-
ing classifier will also perform well on similar domains. This 
is achieved by using two datasets, called the source domain (a 
labeled set) and the target domain (which may be unlabeled), 
and by training a feature extracting NN such that two competing 
properties are maintained: from the extracted features, distinc-
tion between the domains should be impossible, while correct 
prediction of the data labelings from the source set should be 
possible. This is achieved by using two NNs (a domain predic-
tor, which should ultimately fail; and a label classifier, which 
should not fail). Conceptually related pairings of unsupervised 
and supervised methods also occur in generative scenarios. In 
the highly successful generative adversarial nets (Goodfellow 

et al 2014) approach, a generative model is trained to generate 
new samples based on a input dataset. The generative model 
is put in opposition to a discriminative model (often a con-
volutional network), which is trained to distinguish between 
true examples from the input dataset and the outputs of the 
generative model. Finally, we mention variational autoencod-
ers (VAs) as one of the most successful approaches for gen-
erative models (Kingma and Welling 2013, Doersch 2016). 
In VAs, very roughly, one combines a compressing encoder 
(e.g. a feed-forward NN with significantly fewer output than 
input neurons) with a decoding network, which aims to recover 
the whole input. Such a structure is often called an autoen-
coder. In VAs, it is additionally enforced that the distribution 
output by the encoder (given the dataset), approximately fol-
lows the standard normal distribution. If the network is trained 
to decode correctly while the distribution of the ‘bottleneck 
layer’ (connecting the encoder and decoder) approximately 
follows a known easy-to-generate distribution P, this offers a 
direct means of using the VA as a generative model—one sim-
ply samples from P and applies the decoder. The performance 
of VAs is often compared to that of (restricted) BMs. Often 
mentioned advantages of the VA approach include the fact that 
they are applicable to models beyond NNs and that the train-
ing may be more efficient. For instance, if a VA is built from 
feed-forward NNs, it can be trained essentially using just the 
standard and efficient NN machinery.

Novel NN-based architectures have been emerging at an 
accelerated rate in recent years, in part motivated by the avail-
able computing power which allows such complex models to 
be trained. However, while such more complex models may 
offer record-setting performances, they certainly lead us fur-
ther away from interpretable scenarios, where we can under-
stand how and why the system works, in a clean formal way28. 
One model which does allow such a clean treatment is the 
support vector machine, which we describe next.

2.1.2. Support vector machines for supervised learn-
ing. Support vector machines (SVMs) form a family of per-
haps best understood approaches for solving classification 
problems. The basic idea behind SVMs is that a natural way 
to classify points based on a dataset {xi, yi}i, for binary labels 
yi ∈ {−1, 1}, is to generate a hyperplane separating the nega-
tive instances from the positive ones. Such observations are 
not new and, indeed, perceptrons, briefly discussed in the pre-
vious section, perform the same function.

Such a hyperplane can then be used to classify all points. 
Naturally, not all sets of points allow this (those that do are 
called linearly separable), but SVMs are further generalized to 
deal with sets which are not linearly separable using so-called 
kernels. Kernels, effectively, realize non-linear mappings of 
the original dataset to higher dimensions where they may 
become separable, depending on a few technical conditions29, 

28 Furthermore, to what extent such very complex models overfit—that is, 
perform near-perfectly on seemingly arbitrary training sets, but then fail to 
generalize beyond the training set—remains a vital and mostly unresolved 
question in the field.
29 Indeed, this can be supported by hard theory; see Cover’s theorem (Cover 
1965).

27 The graphical representation of deep BMs is similar to that of another 
well-studied generative model called deep belief networks. These networks 
originated from the study of deep BMs. Technically, they are directed 
graphical models, which capture dependencies (denoted by edge directional-
ity) between various variables they represent. The effective directedness of 
the edges stems from a particular training process of the deep BM structure 
to form this hybrid model. For a comparison and more details on these two 
related models, we refer the reader to Salakhutdinov and Hinton (2009).
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and by allowing a certain degree of misclassification, which 
leads to so-called ‘soft-margin’ SVMs.

Even in the case where the dataset is linearly separable, 
there will still be many hyperplanes doing the job. This leads 
to various variants of SVMs, but the basic variant identifies a 
hyperplane which: (a) correctly splits the training points and 
(b) maximizes the so-called margin: the distance of the hyper-
plane to the nearest point (see figure 7).

The distance of choice is most often the geometric 
Euclidean distance, which leads to so-called maximum margin 
classifiers. In high-dimensional spaces, in general the max-
imization of the margin ends in a situation where there are 
multiple  +1 and  −1 instances of training data points which 
are equally far from the hyperplane. These points are called 
support vectors. The finding of a maximum margin classifier 
corresponds to finding a normal vector w  and offset b of the 
separating hyperplane, which corresponds to the optimization 
problem

w∗ = argminw,b
1
2
‖w‖2 (4)

such that yi(w · xi + b) � 1. (5)

The formulation above is actually derived from the basic 
problem by noting that we may arbitrarily and simultane-
ously scale the pair (w, b) without changing the hyperplane. 
Therefore, we may always choose a scaling such that the real-
ized margin is 1, in which case, the margin corresponds to 
‖w‖−1, which simply maps a maximization problem to a mini-
mization problem as above. The square ensures the problem 
is stated as a standard quadratic programming problem. This 
problem is often expressed in its Lagrange dual form, which 
reduces to

(α∗
1 , . . . α∗

N) = argminα1...αN


∑

i

αi −
1
2

∑
i,j

αiαjyiyjxi · xj




 (6)

such that αi � 0 and
∑

i

αiyi = 0, (7)

where the solution of the original problem is given by

w∗ =
∑

i

yiαixi. (8)

In other words, we have expressed w∗ in the basis of the data 
vectors, and the data vectors xi for which the corresponding 
coefficient αi is non-zero are precisely the support vectors. 
The offset b∗ is easily computed having access to one sup-
port vector of, say, an instance  +1, denoted x+, by solving 
w∗ · x+ + b∗ = 1.

The class of a new point z can also be computed directly 
using the support vectors via the following expression

z �→ sign

(∑
i

yiαixi · z + b∗

)
. (9)

The dual representation of the optimization problem 
is convenient when dealing with kernels. As mentioned, a 
way of dealing with data which is not linearly separable is 
to first map all the points into a higher-dimensional space 
via a non-linear function φ : m → n, where m  <  n is 
the dimensionality of the data points. As we can see, in the 
dual formulation, the data points only appear in terms of 
inner products xi · xj. This leads to the notion of the ker-
nel function k which, intuitively, measures the similar-
ity of the points in the larger space, typically defined by 
k(xi, xj) = φ(xi)

τφ(xj). In other words, to train the SVM accord-
ing to a non-trivial kernel k, induced by the non-linear mapping 
φ, the optimization line in equation (6) will be replaced with 

argminα1...αN

(∑
i αi − 1

2

∑
i,j αiαjyiyjk(xi, xj)

)
. The offset  

is computed analogously, using just one application of φ. 
The evaluation of a new point is given in the same way with 
z �→ sign

(∑
i yiαik(xi, z) + b∗

)
. In other words, the data 

points need not be explicitly mapped via φ, as long as the 
map-inducing inner product k(·, ·) can be computed more 
effectively. The choice of the kernel is critical in the perfor-
mance of the classifier, and the finding of good kernels is non-
trivial and often solved by trial and error.

While increasing the dimension of the extended space (co-
domain of φ) may make data points more linearly separable 
(i.e. fewer mismatches for the optimal classifier), in practice 
they will not be fully separable (and furthermore, increasing 
the kernel dimension comes with a cost which we elaborate on 
later). To resolve this, SVMs allow for misclassification, with 
various options for measuring the ‘amount’ of misclassifica-
tion, inducing a penalty function. A typical approach to this is 
to introduce so-called ‘slack variables’ ξi � 0 to the original 
optimization task, so:

w∗ = argminw,b

(
1
2
‖w‖2 + C

∑
i

ξi

)
 (10)

such that yi(w · xi + b) � 1 − ξi. (11)

If the value ξi of the optimal solution is between 0 and 1, the 
point i is correctly classified, but is within the margin, and 
ξi > 1 denotes a misclassification. The (hyper)parameter C 
controls the relative importance we place on minimizing the 

Label -1

Label 1

Maximum margin 

Maximum margin 
hyperplane

Figure 7. Basic example of an SVM, trained on a linearly separable 
dataset.
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margin norm, versus the importance we place on misclassifi-
cation. Interestingly, the dual formulation of the above prob-
lem is near identical to the hard-margin setting discussed thus 
far, with the small difference that the parameters αi are now 
additionally constrained with αi � C in equation (7). SVMs, 
as described above, have been extensively studied from the 
perspective of computational learning theory and have been 
connected to other learning models. In particular, their gener-
alization performance, which, roughly speaking, characterizes 
how well a trained model30 will perform beyond the training 
set can be analyzed. This is the most important feature of a 
classifying algorithm. We will briefly discuss generalization 
performance in section  2.2.2. We end this short review of 
SVMs by considering a non-standard variant, which is inter-
esting for our purposes as it has been beneficially quantized. 
SVMs as described are trained by finding the maximal mar-
gin hyperplane. Another model, called least-squares SVM 
(LS-SVM), takes a regression (i.e. data-fitting) approach to 
the problem, and finds a hyperplane which, essentially, mini-
mizes the least square distance of the vector of labels, and the 
vector of distances from the hyperplane, where the ith entry 
of the vector is given with (w · xi + b). This is effected by a 
small modification of the soft-margin formulation:

w∗
LS = argminw,b

1
2
‖w‖2 + C

∑
i

ξ2
i (12)

such that yi(w · xi + b) = 1 − ξi, (13)

where the only two differences are that the constraints are now 
equalities and the slack variables are squared in the optim-
ization expression. This seemingly innocuous change causes 
differences in performance, but also in the training. The dual 
formulation of the latter optimization problem reduces to a 
linear system of equations:

[
0 1T

1N Ω+ γ−1I

] [
b
α

]
=

[
0
Y

]
, (14)

where 1 is an ‘all ones’ vector, Y is the vector of labels yi, b 
is the offset and γ is a parameter depending on C. α is the 
vector of the Lagrange multipliers yielding the solution. This 
vector again stems from the dual problem which we omitted 
due to space constraints, and which can be found in Suykens 
and Vandewalle (1999). Finally, Ω is the matrix collect-
ing the (mapped) ‘inner products’ of the training vectors so 
Ωi,j = k(xi, xj), where k is a kernel function, in the simplest 
case, just the inner product. The training of LS-SVMs is thus 
simpler (and particularly convenient from a quantum algo-
rithms perspective), but the theoretical understanding of the 
model, and its relationship to the well-understood SVMs, is 
still a matter of study, with few known results (see e.g. Ye and 
Xiong (2007)).

2.1.3. Other models. While NNs and SVMs constitute two 
popular approaches for ML tasks (in particular, supervised 
learning), many other models exist, suitable for a variety of 
ML problems. Here we very briefly list and describe some 
such models which have also appeared in the context of 
quantum ML. While classification typically assigns discrete 
labels to points, in the case where the labeling function has 
a continuous domain (say the segment [0, 1]) we are dealing 
with function approximation tasks, often dealt with by using 
regression techniques. Typical examples here include linear 
regression, which approximates the relationship of points 
and labels with a linear function, most often minimizing the 
least-squares error. More broadly, such techniques are closely 
related to data-fitting, that is, fitting the parameters of a 
parametrized function so as to best fit observed (training) data. 
The k-nearest neighbor algorithm is an intuitive classification 
algorithm which, given a new point, considers the k nearest 
training points (with respect to a metric of choice) and assigns 
the label by a majority vote (if used for classification), or by 
averaging (in the case of regression, i.e. continuous label val-
ues). The mutually related k-means and k-medians algorithms 
are typically used for clustering: the k specifies the number of 
clusters, and the algorithm defines them in a manner which 
minimizes the within-cluster distance to the mean (or median) 
point.

Another method for classification and regression optimizes 
decision trees, where each dimension or entry (or more gen-
erally a feature31) of the new data point influences a move 
on a decision tree. The depth of the tree is the length of the 
vector (or number of features) and the degree of each node 
depends on the possible number of distinct features/levels per 
entry32. The vertices of the tree specify an arbitrary feature of 
interest, which can influence the classification result, but most 
often they consider the overlaps with geometrical regions of 
the data point space. Decision trees are in principle maximally 
expressive (can represent any labeling function), but very dif-
ficult to train without constraints.

More generally, classification tasks can be treated as the 
problem of finding a hypothesis h : Data → Labels (in ML, 
the term hypothesis is essentially synonymous with the term 
classifier, also called a learner) which is from some family H, 
which minimizes error (or loss) under some loss function. For 
instance, the hypotheses realized by SVMs are given by the 
hyperplanes (in the kernel space), and in neural nets they are 
parametrized by the parameters of the nets: geometry, thresh-
olds, activation functions, etc. In addition to loss terms, the 

30 In ML, the term model is often overloaded. Most often it refers to a clas-
sification system which has been trained on a dataset, and in that sense it 
‘models’ the actual labeling function. Often, however, it will also refer to a 
class of learning algorithms (e.g. the SVM learning model).

31 Features, however, have a more generic meaning in the context of ML. A 
data vector is a vector of features, where what a feature is depends on the 
context. For instance, features can be simply values at particular positions, 
or more global properties: e.g. a feature of data vectors depicting an image 
may be ‘contains a circle’, and all vectors corresponding to pictures with 
circles have it. Even more generically, features pertain to observable proper-
ties of the objects the data points represent (‘observable’ here simply means 
that the property can be manifested in the data vector).
32 For instance, we can classify humans, parrots, bats and turtles by binary 
features can_fly and is_mammal. E.g. choosing the root can_fly leads to 
the branch can_fly = no with two leaves decided by is_mammal = yes 
pinpointing the human, whereas is_mammal = no would specify the 
turtle. Parrots and bats would be distinguished by the same feature in the 
can_fly = yes subtree.
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minimization of which is called empirical risk minimization, 
ML applications benefit from adding an additional component 
to the objective function: the regularization term, the pur-
pose of which is to penalize complex functions which could 
otherwise lead to poor generalization performance; see sec-
tion 2.2.2. The choices of loss functions, regularization terms 
and classes of hypotheses lead to different particular models, 
and training corresponds to optimization problems given by 
the choice of the loss function and the hypothesis (function) 
family. Furthermore, it has been shown that essentially any 
learning algorithm which requires only convex optimization 
for training leads to poor performance under noise. Thus non-
convex optimization is necessary for optimal learning (see e.g. 
Long and Servedio (2010) and Manwani and Sastry (2011)).

An important class of meta-algorithms for classification prob-
lems are boosting algorithms. The basic idea behind boosting 
algorithms is the highly non-trivial observation, first proven via 
the seminal AdaBoost algorithm (Freund and Schapire 1997), 
that multiple weak classifiers, which perform better than random 
on distinct parts of the input space, can be combined into an over-
all better classifier. More precisely, given a set of (weak) hypoth-
eses/classifiers {hj}, hj : n → {−1, 1}, under certain technical 
conditions, there exists a set of weights {wi}, wi ∈ , such that 
the composite classifier of the form hcw(x) = sign(

∑
i wihi(x)) 

performs better. Interestingly, a single (weak) learning model 
can be used to generate the weak hypotheses needed for the 
construction of a better composite classifier—one which, in 
principle, can achieve arbitrarily high success probabilities, i.e. 
a strong learner. The first step of this process is achieved by 
altering the frequencies at which the training labeled data points 
appear—one can effectively alter the distributions over the data 
(in a black-box setting, these can be obtained by, e.g., rejection 
sampling methods). The training of one and the same model 
on such differentially distributed datasets can generate distinct 
weak learners, which emphasize distinct parts of the input space. 
Once such distinct hypotheses are generated, optimization of the 
weight wi of the composite model is performed. In other words, 
weak learning models can be boosted33.

Aside from the broad classes of approaches to solve vari-
ous ML tasks, ML is also often conflated with specific com-
putational tools which are used to solve them. A prominent 
example of this is the development of algorithms for optim-
ization problems, especially those arising in the training of 
standard learning models. This includes, e.g., particle swarm 
optimization, genetic and evolutionary algorithms and even 
variants of stochastic gradient descent.

ML also relies on other methods including linear algebra 
tools, e.g. matrix decomposition methods, such as singular 
value decomposition, QR-, LU- and other decompositions, 
derived methods such as principal component analysis and 
various techniques from the field of signal analysis (Fourier, 
Wavelet, Cosine and other transforms). The latter set of tech-
niques serves to reduce the effective dimension of the dataset 

and helps combat the curse of dimensionality. The optim-
ization, linear algebra and signal processing techniques and 
their interplay with quantum information is an independent 
body of research with enough material to deserve a separate 
review, and we will only reflect on these methods when needed.

2.2. Mathematical theories of supervised and inductive 
learning

33 It should be mentioned that the above description only serves to illustrate 
the intuition behind boosting ideas. In practice, various boosting methods 
have distinct steps, e.g. they may perform the required optimizations in 
differing orders, using training phases in parallel, etc, which is beyond the 
needs of this review.

Executive summary: Aside from proposing learning 
models, such as NNs or SVMs, learning theory also pro-
vides formal tools to identify the limits of learnability. 
No Free Lunch theorems provide sobering arguments 

that naïve notions of ‘optimal’ learning models cannot 
be obtained, and that all learning must rely on some prior 
assumptions. Computational learning theory relies on 
ideas from computational complexity theory to formal-
ize many settings of supervised learning, such as the task 
of approximating or identifying an unknown (boolean) 

function—a concept—which is just the binary labeling 
function. The main question of the theory is the quantifi-

cation of the number of invocations of the black box—i.e. 
of the function (or of the oracle providing examples of 

the function’s values on selected inputs)—needed to reli-
ably approximate the (partially) unknown concept to the 
desired accuracy. In other words, computational learning 
theory considers the sample complexity bounds for vari-
ous learning settings, specifying the concept families and 
type of access. The theory of Vapnik and Chervonenkis, 
or simply VC theory, stems from the tradition of statis-
tical learning. One of the key goals of the theory is to 
provide theoretical guarantees on generalization perfor-
mance. This is what is asked for in the following ques-
tion: given a learning machine trained on a dataset of size 
N, stemming from some process, with a measured empir-
ical risk (error on the training set) of some value R, what 
can be said about its future performance on other data 
points which may stem from the same process? One of 
the key results of VC theory is that this can be answered 

with the help of a third parameter—the model complexity 
of the learning machine. Model complexity, intuitively, 
captures how complicated the functions are which the 
learner can learn: the more complicated the model, the 

higher the chance of ‘overfitting’ and, consequently, the 
weaker the guarantees on performance beyond the train-
ing set. Good learning models can control their model 
complexity, leading to a learning principle of structural 
risk minimization. The art of ML is a juggling act, bal-
ancing sample complexity, model complexity and the 

computational complexity of the learning algorithm.34

34 While the dichotomies between sample complexity and computational 
complexity are often considered in the literature, the authors first learned 
of the trichotomic setting, including model complexity, from Wittek 
(2014b). Examples of such balancing and its failures can be observed in 
 sections 5.1.2 and 6.1.1.
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Although the modern increased interest in ML and AI is 
mostly due to applications, aspects of ML and AI do have 
strong theoretical backgrounds. Here we focus on such foun-
dational results, which clarify what learning is and which 
investigate the questions of what learning limits are. We will 
very briefly sketch some of the basic ideas.

The first collection of results, called No Free Lunch theo-
rems, place seemingly pessimistic bounds on the conditions 
under which learning is at all possible (Wolpert 1996). No 
Free Lunch theorems are, essentially, a mathematical formali-
zation of Hume’s famous problem of induction (Hume 1739, 
Vickers 2016), which deals with the justification of inductive 
reasoning. One example of inductive reasoning occurs dur-
ing generalization. Hume points out that, without a priori 
assumptions, concluding any property concerning a class of 
objects based on any number of observations35 is not justified.

In a similar vein, learning based on experience cannot be jus-
tified without further assumptions: expecting that a sequence 
of events leads to the same outcome as it did in the past is only 
justified if we assume a uniformity of nature. The problems 
of generalization and of uniformity can be form ulated in the 
context of supervised learning and RL, with (not uncontrover-
sial) consequences (see NFL (2018)). For instance, one of the 
implications is that the expected performance of any two learn-
ing algorithms beyond the training set must be equal if one 
uniformly averages over all possible labeling functions, and 
analogous statements hold for RL settings—in other words, 
without assumptions on environments/datasets, the expected 
performance of any two learning models will be essentially 
the same, and two learning models cannot be meaningfully 
compared in terms of performance without making statements 
about the task environments in question. In practice, however, 
we always have some assumptions on the dataset and environ-
ment: for instance the principle of parsimony (i.e. Occam’s 
razor), asserting that simpler explanations tend to be correct, 
prevalent in science, suffices to break the symmetries required 
for NFLs to hold in their strongest form; see Lattimore and 
Hutter (2011), Hutter (2010) and Ben-David et al (2011).

No review of theoretical foundations of learning theory 
should circumvent the works of Valiant and the general 
computational learning theory (COLT), which stems from a 
computer science tradition, initiated by Valiant (1984), and 
the related VC theory of Vapnik and Chervonenkis, devel-
oped from a statistical viewpoint (Vapnik 1995). Roughly 
speaking, COLT investigates the theoretical limits of learn-
ing algorithms for various classes of learning scenarios. 
Thus, in a typical COLT scenario, one fixes and precisely 
mathematically specifies an environment or problem class, 
and characterizes the performance of an optimal learning 
algorithm. In contrast, VC theory focuses more on settings 
where the class of learning models (algorithms) is fixed 
whereas the problem classes are mostly uncharacterized, 
barring the training samples. The statements of efficiency 
or quality of performance are then attributed to the speci-
fied class of learning models (e.g. a choice of NNs, or some 

choice of SVMs), based on empirical data—the perfor-
mance on the samples. This corresponds to the settings one 
encounters when ML, in the sense of a data analysis tool, is 
applied in practice. The two theories thus offer complemen-
tary perspectives on learning.

We present the basic ideas of these theories in no particular 
order.

2.2.1. Computational learning theory. COLT can be under-
stood as a rigorous formalization of supervised learning which 
stems from a computational complexity theory tradition. The 
most famous model in COLT is that of probably approximately 
correct (PAC) learning. We will explain the basic notions of 
PAC learning on a simple example: optical character recog-
nition. Consider the task of training an algorithm to decide 
whether a given image (given as a black and white bitmap) 
of a letter corresponds to the letter ‘A’, by supplying a set of 
examples and counterexamples: a collection of images. Each 
image x can be encoded as a binary vector in {0,1}n (where 
n  =  height  ×  width of the image).

Assuming that there exists an univocally correct assignment 
of label 0 (not ‘A’) and 1 to each image implies there exists 
a characteristic function f : {0, 1}n → {0, 1} which discerns 
letters A from other images. Such an underlying characteristic 
function (or, equivalently, the subset of bit-strings for which 
it attains value ‘1’) is, in COLT, called a concept. Any (super-
vised) learning algorithm will first be supplied with a col-
lection of N examples (xi), f ((xi))i. In some variants of PAC 
learning, it is assumed that the data points (x) are drawn from 
some distribution D attaining values in {0,1}n. Intuitively, this 
distribution can model the fact that, in practice, the examples 
that are given to the learner stem from its interaction with the 
world, which specifies what kinds of ‘A’s we are more likely 
to see36. PAC learning typically assumes inductive settings, 
meaning that the learning algorithm, given a sample set SN 
(comprising N identically independently distributed samples 
from D) outputs a hypothesis h : {0, 1}n → {0, 1} which is, 
intuitively, the algorithms ‘best guess’ for the actual concept 
f. The quality of the guess is measured by the total error (also 
known as loss, or regret),

errD(hSN ) =
∑

x

P(D = x)|hSN (x)− f (x)|, 
(15)

averaged according to the same (training) distribution D, 
where hSN  is the hypothesis the (deterministic) learning algo-
rithm outputs given the training set SN. Intuitively, the larger 
the training set is (N), the smaller the error will be, but this 
also depends on the actual examples (and thus SN and D). PAC 
theory concerns itself with probably (δ), approximately (ε) 
correct learning, i.e. with the following expression:

PSN∼DN [errD(hSN ) � ε] � 1 − δ, (16)

where S ∼ D means S was drawn according to the distribu-
tion D. The above expression is a statement certifying that 

35 An exception to this would be the uninteresting case when the class was 
finite and all instances had been observed.

36 For instance, in modern devices, the devices are (mostly) trained for the 
handwriting of the owner, which will most of the time be distinct from other 
people’s handwriting, although the device should in principle handle any 
(reasonable) handwriting.
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the learning algorithm, having been trained on the dataset 
sampled from D, will, except with probability δ, have a 
total error below ε. We say a concept f is (ε, δ)-learnable 
under distribution D if there exist a learning algorithm and 
an N such that equation (16) holds, and simply learnable if 
it is (ε, δ)-learnable for all choices of (ε, δ). The functional 
dependence of N on (ε, δ) (and on the concept and distribu-
tion D) is called the sample complexity. In PAC learning, 
we are predominantly concerned with identifying tracta-
ble problems, so a concept/distribution pair f , D is PAC-
learnable if there exists an algorithm for which the sample 
complexity is polynomial in ε−1 and δ−1. These basic ideas 
are generalized in many ways. First, in the case where the 
algorithm cannot output all possible hypotheses, but only a 
restricted set H (e.g. the hypothesis space is smaller than the 
total concept space), we can look for the best case solution 
by substituting the actual concept f with the optimal choice 
h∗ ∈ H  which minimizes the error in (15) in all the expres-
sions above. Second, we are typically not interested in just 
distinguishing the letter ‘A’ from all other letters, but rather 
recognizing all letters. In this sense, we typically deal with 
a concept class (e.g. ‘letters’), which is a set of concepts, 
and it is (PAC) learnable if there exists an algorithm for 
which each of the concepts in the class are (PAC) learnable. 
If, furthermore, the same algorithm also learns for all dis-
tributions D, then the class is said to be (distribution-free) 
learnable.

COLT contains other models, generalizing PAC. For 
instance, concepts may be noisy or stochastic. In the agnos-
tic learning model, the labeled examples (x, y) are sampled 
from a distribution D over {0, 1}n × {0, 1}, which also mod-
els probabilistic concepts37. Furthermore, in agnostic learning 
we define a set of concepts C ⊆ {c|c : {0, 1}n → {0, 1}} and, 
given D, we can identify the best deterministic approximation 
of D in the set C, given with optC = minc∈C errD(c). The goal 
of learning is to produce a hypothesis h ∈ C  which performs 
not much worse than the best approximation optC, in the PAC 
sense—the algorithm is a (ε, δ)− agnostic learner for D and 
C if, given access to samples from D, it outputs a hypothesis 
h ∈ C  such that errD(c) � ε+ optC, except with probability δ.

Another common model in COLT is the exact learning 
from membership queries model (Angluin 1988), which is, 
intuitively, related to active supervised learning (see sec-
tion 1.2.3). Here, we have access to an oracle, a black box, 
which outputs the concept value f (x) when queried with an 
example x. The basic setting is exact, meaning we are required 
to output a hypothesis which, with a bounded probability (say 
3/4), makes no errors whatsoever. In other words, this is PAC 
learning where ε = 0, but we get to choose which examples 
we are given, adaptively, and δ is bounded away from 1/2. The 
figure of merit usually considered in this setting is query com-
plexity, which denotes the number of calls to the oracle the 
learning algorithm uses, and is for most intents and purposes 

synonymous with sample complexity38. This, in spirit, corre-
sponds to an active supervised learning setting.

Much of PAC learning deals with identifying examples of 
interesting concept classes which are learnable (or proving 
that relevant classes are not), but other more general results 
exist connecting this learning framework. For instance, we 
can ask whether we can achieve a finite-sampling universal 
learning algorithm: that is, an algorithm that can learn any 
concept, under any distribution, using some fixed number 
of samples N. The No Free Lunch theorems we mentioned 
previously imply that this is not possible: for each learning 
algorithm (and ε, δ) and any N there is a setting (concept/
distribution) which requires more than N samples to achieve 
(ε, δ)-learning.

Typically, the criterion for a problem to be learnable assumes 
that there exists a classifier whose performance is essentially 
arbitrarily good—that is, it assumes the classifier is strong. The 
boosting result in ML, already touched upon in section 2.1.3, 
shows that settling on weak classifiers, which perform only 
slightly better than random classification, does not generate a 
different concept of learnability (Schapire 1990).

Classical COLT has also been generalized to deal with con-
cepts with continuous ranges. In particular, so called p-con-
cepts have range in [0, 1] (Kearns and Schapire 1994). The 
generalization of the entire COLT to deal with such continu-
ous-valued concepts is not without problems, but nonetheless 
some of the central results, for instance quantities which are 
analogs of the VC dimension, and analogous theorems relat-
ing this to generalization performance, can still be provided 
(see Aaronson (2007) for an overview given in the context of 
the learning of quantum states discussed in section 5.1.1).

COLT is closely related to the statistical learning theory 
of Vapnik and Chervonenkis (VC theory) which we discuss 
next.

2.2.2. Vapnik–Chervonenkis theory. The statistical learning 
formalism of Vapnik and Chervonenkis was developed over the 
course of more than 30 years and in this review we are forced 
to present just a chosen aspect of the total theory, which deals 
with generalization performance guarantees. In the previous 
paragraph on PAC learning, we have introduced the concept of 
total error, which we will refer to as (total) risk. It is defined as 
the average over all the data points, which is, for a hypothesis 
h, given by R(h) = error(h) =

∑
x P(D = x)|h(x)− f (x)| 

(we are switching notation to maintain consistency with the 
literature of differing communities). However, this quantity 
cannot be evaluated in practice, as in practice we only have 
access to the training data. This leads us to the notion of the 
empirical risk given by

R̂(h) =
1
N

∑
x∈SN

|h(x)− f (x)|, (17)

37 Note that we recover the standard PAC setting once the conditional 
probability distribution of PD(y|x) where the values of the first n bits (data 
points) are fixed is Kronecker-delta, i.e. the label is deterministic.

38 When the oracle allows non-trivial inputs, one typically talks about query 
complexity. Sample complexity deals with the question of ‘how many 
samples’ which suggest the setting where the oracle only produces outputs, 
without taking inputs. The distinction is not relevant for our purposes and is 
more often a matter of convention of the research line.
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where SN is the training set drawn independently from the 
underlying distribution D.

The quantity R̂(h) is intuitive and directly measurable. 
However, the problem of finding learning models which optim-
ize empirical risk alone is not in itself interesting as it is trivi-
ally resolved with a look-up table. From a learning  perspective, 
the more interesting and relevant quantity is the performance 
beyond the training set, which is contained in the unmeasur-
able R(h), and indeed the task of inductive supervised learning 
is identifying h which minimizes R(h), given only the finite 
training set SN. Intuitively, the hypothesis h which minimizes 
the empirical risk should also be our best bet for the hypothesis 
which minimizes R(h), but this can only make sense if our 
hypothesis family is somehow constrained, at least to a family 
of total functions: again, a look-up table  has zero empirical 
risk, yet says nothing about what to do beyond. One of the key 
contributions of VC theory is to establish a rigorous relation-
ship between the observable quanti ty R̂(h), the empirical risk; 
the quantity we actually wish to bound R(h), the total risk; and 
the family of hypotheses our learning  algorithm can realize. 
Intuitively, if the function  family is too flexible (as is the case 
with just look-up tables) a perfect fit on the examples says lit-
tle. In contrast, having a very restrictive set of hypotheses, say 
just one (which is  independent from the dataset/concept and 
the generating distribution), suggests that the empirical risk is a 
fair estimate of the total risk (however bad it may be), as noth-
ing has been tailored for the training set. This brings us to the 
notion of the model complexity of the learning model, which 
has a few formalizations, and here we focus on the Vapnik–
Chervonenkis dimension of the model (VC dimension)39.

The VC dimension is an integer number assigned to a set of 
hypotheses H ⊆ {h|h : S → {0, 1}}, (e.g. the possible clas-
sification functions our learning algorithm can even in prin-
ciple be trained to realize), where S can be, for instance, the 
set of bit-strings {0,1}n, or, more generally, say, real vectors 
in n. In the context of basic SVMs, the set of hypotheses is 
‘all hyperplanes’40. Consider now a subset Ck of k points in 

n in general position41. These points can attain binary labels 
in 2k different ways. The hypothesis family H is said to shat-
ter the set C if for any labeling � of the set Ck there exists a 
hypothesis h ∈ H which correctly labels the set Ck according 
to �. In other words, using functions from H we can learn any 
labeling function on the set Ck of k points in general posi-
tion perfectly. The VC dimension of H is then the largest kmax 
such that there exists a set Ckmax of points in general position 
which is shattered (perfectly ‘labelable’ for any labeling) by 
H. For instance, for n  =  2, ‘rays’ shatter three points but not 4 
(imagine vertices of a square where diagonally opposite verti-
ces share the same label), and in n  =  N, ‘hyperplanes’ shatter 
N  +  1 points. While it is beguiling to think that the VC dimen-
sion corresponds to the number of free parameters specifying 

the hypothesis family, this is not the case42. The VC theorem 
(in one of its variants) (Devroye et al 1996) then states that 
the empirical risk matches total risk up to a deviation which 
decays in the number of samples, but grows in the VC dimen-
sion of the model, more formally:

P
(

R̂(hSN )− R(hSN ) � ε
)
= 1 − δ (18)

ε =

√
d (log(2N/d) + 1)

N
− log(δ/4)

N
, (19)

where d is the VC dimension of the model, N the number of 
samples and hSN  is the hypothesis output by the model given 
the training set SN, which is sampled from the underlying dis-
tribution D. The underlying distribution D implicitly appears 
also in the total risk R. Note that the chosen acceptable prob-
ability of incorrectly bounding the true error, δ, contributes 
only logarithmically to the misestimation bound ε, whereas 
the VC dimension and the number of samples contribute 
(mutually inversely) linearly to the square of ε.

The VC theorem suggests that the ideal learning algorithm 
would have a low VC dimension (allowing a good estimate of 
the relationship between the empirical and total risk), while at 
the same time performing well on the training set. This leads 
to a learning principle called structural risk minimization. 
Consider a parametrized learning model (say parametrized by 
an integer l ∈ ) such that each l induces a hypothesis fam-
ily Hl, each more expressive then the previous, so Hl ⊆ Hl+1. 
Structural risk minimization (contrasted to empirical risk min-
imization which just minimizes empirical risk) takes into 
account that in order to have (a guarantee on) good gener-
alization performance we need to have both good observed 
performance (i.e. low empirical risk) and low model complex-
ity. High model complexity induces risk stemming from the 
structure of the problem, manifested in common issues such 
as data overfitting. In practice, this is achieved by considering 
(meta-)parametrized models, like {Hl}, where we minimize 
a combination of l (influencing the VC dimension) and the 
empirical risk associated to Hl. In practice, this is realized by 
adding a regularization term to the training optimization, so 
generically the (unregularized) learning process resulting in 

argminh∈HR̂(h) is updated to argminhl∈Hl

(
R̂(h) + reg(l)

)
, 

where reg(·) penalizes the complexity of the hypothesis fam-
ily, or just the given hypothesis.

VC dimension is also a vital concept in PAC learning, con-
necting the two frameworks. Note first that a concept class C, 
which is a set of concepts, is also a legitimate set of hypoth-
eses and thus has a well-defined VC dimension dC. Then the 
sample complexity of (ε, δ)−(PAC)-learning of C is given by 
O
(
(dC + log 1/δ)ε−1

)
.

39 Another popular measure of model complexity is e.g. Rademacher com-
plexity (Bartlett and Mendelson 2003).
40 Naturally, a non-trivial kernel function enriches the set of hypotheses real-
ized by SVMs.
41 General position implies that no sub-set of points is co-planar beyond 
what is necessary, i.e. points in S ⊂ n are in general position if no hyper-
plane in n contains more than n points in S.

42 The canonical counterexample is the family specified by the parti-
tion of the real plane halved by the graph of the two-parametric function 
hα,β(x) = α sin(βx), which can be proven to shatter any finite number of 
points in n  =  2. The fact that the number of parameters of a function does 
not fully capture the complexity of the function should not be surprising as 
any (continuous) function over k  +  n variables (parameters  +  dimension) 
can be encoded as a function over 1  +  n variables.
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Some of the approaches developed for supervised learning 
and discriminative models have, to some extent, been extended 
to the domain of unsupervised learning as well. Such results 
are much rarer and more specialized and beyond the scope of 
this review. However, for an example of the types of results 
that have been established, we refer the interested reader to the 
following work of Seldin and Tishby (2010).

2.3. Basic methods and theory of reinforcement learning

Broadly speaking, RL deals with the problem of learning how 
to optimally behave in unknown environments. In the basic 
textbook formalism we deal with a task environment, which is 
specified by a Markov decision process (MDP).

MDPs are labeled, directed graphs with additional struc-
tures, comprising a discrete and finite set of states S = {si} 
and of actions A = {ai}, which denote the possible states of 
the environment and the actions the learning agent can per-
form on it, respectively. A simple three state MDP is illus-
trated in Figure 8.

The choice of the actions of the agent changes the state of 
the environment in a manner which is specific to the environ-
ment (MDP) and which may be probabilistic. This is captured 
by a transition rule P(s|s′, a), denoting the probability of the 
environment ending up in the state s, if the action a had been 
performed in the state s′ . Technically, this can be viewed as 
a collection of action-specific Markov transition matrices 
{Pa}a∈A that the learner can apply on the environment by 
performing an action.

These describe the dynamics of the environment conditioned 
on the actions of the agent. The final component specifying the 
environment is a reward function R : S ×A× S → Λ, where 
Λ is a set of rewards, often binary. In other words, the environ-
ment rewards certain transitions43. At each time instance, the 
action of the learner is specified by a policy: a conditional 
probability distribution π(a|s) specifying the probability of 
the agent outputting the action a provided it is in the state s. 
Given an MDP, intuitively the goal is finding good policies, 
i.e. those which yield high rewards. This can be formalized 
in many non-equivalent ways. Given a policy π and some ini-
tial state s we can, e.g. define a finite-horizon expected total 
reward after N interaction steps with Rs

N(π) =
∑N

i=1 ri, where 
ri is the expected reward under policy π at time-step i in the 
given environ ment and assuming we started from the state s. If 
the environment is finite and strongly connected44, the finite-
horizon rewards diverge as the horizon N grows. However, 
by adding a geometrically depreciating factor (rate γ) we 
obtain an always bounded expression Rγ(π) =

∑∞
i=1 γ

iri, 
called the infinite horizon expected reward (parametrized 
by γ), which is more commonly studied in literature. The 
expected rewards in finite or infinite horizons form the typical 
 figures of merit in solving MDP problems, which come in two 
flavors. First, in decision theory, or planning (in the context 
of AI), the typical goal is finding the policy πopt which optim-
izes the (in)finite horizon reward in a given MDP, formally: 
given the (full or partial) specification of the MDP M, solve 
πopt = argmaxπRN/γ(π), where R is the expected reward in 
the finite (for N steps) or infinite horizon (for a given depre-
ciation γ) setting, respectively. Such problems can be solved 
by dynamic and linear programming. In RL (Sutton and Barto 
1998), the specification of the environment (the MDP), in 
contrast, is not given, but rather can be explored by interact-
ing with it dynamically. The agent can perform an action and 
receive the subsequent state (and perhaps a reward). The ulti-
mate goal here comes in two related (but conceptually differ-
ent) flavors. One is to design an agent which will over time 
learn the optimal policy πopt, meaning the policy can be read 
out from the memory of the agent/program. Slightly differ-
ently, we seek an agent which will, over time gradually alter 
its policy so as to act according to the optimal policy. While in 

Executive summary: While RL, in full generality, stud-
ies learning in and from interactive task environ ments, 
perhaps the best understood models consider more 
restricted settings. Environments can often be character-
ized by Markov Decision Processes. Such environments 
are characterized by states which can be observed by 
the agent. The agent can cause transitions from states to 
states by its actions but the rules of trans itions are not 
known beforehand. Some of the trans itions are rewarded. 
The agent learns which actions to perform, given that 
the environment is in some state, so that it receives the 
highest value of rewards (expected return), either in a 
fixed time frame (finite-horizon) or over (asymptoti-
cally) long time periods, where future rewards are geo-
metrically depreciated (infinite-horizon). Such models 
can be solved by estimating action-value functions, 
which assign expected return to actions given states, for 
which the agent must explore the space of strategies, but 
other methods exist. In more general models, the state 
of the environment need not be fully observable and 
such settings are significantly harder to solve. RL set-
tings can also be tackled by models from the so-called 
Projective Simulation framework for the design of learn-
ing agents, which exploits physical stochastic processes 
and a notion of episodic memory. While comparatively 
new, this model is of particular interest because it offers 
a natural route for beneficial quantization. Interactive 
learning methods include models beyond textbook RL, 
including partially observable settings, which require 
generalization and more. Such extensions, e.g. gener-
alization, typically require techniques from non-inter-
active learning scenarios, but also lead to agents with 
an ever-increasing level of autonomy. In this sense, RL 
forms a bridge between ML and general AI models.

43 Rewards can also be probabilistic. This can be modeled by explicitly al-
lowing stochastic reward functions or by extending the state space to include 
rewarding and non-rewarding instances of states (note the reward depends 
on current state, action and the reached state) in which case the probability 
of the reward is encoded in the transition probabilities.
44 In this context this means that the underlying MDP has finite return times 
for all states, that is, there is a finite probability of going back to the initial 
state from any state for some sequence of actions.
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theory these two are closely related, in robotics, for example, 
these are quite different as the reward rate before convergence 
(perfect learning) also matters45. First of all, we point out that 
RL problems as given above can be solved reliably whenever 
the MDP is finite and strongly connected: a trivial solution is 
to stick to a random policy until a reliable tomography of the 
environment can be done, after which the problem is resolved 
via dynamic programming46. Often, environments actually 
have additional structure, so-called initial and terminal states: 
if the agent reaches the terminal state, it is ‘teleported’ to the 
fixed initial state. Such structure is called episodic and can 
be used as a means of ensuring the strong connectivity of the 
MDP.

One way of obtaining solutions is by tracking so-called 
value functions Vπ(s) : S →  which assign the expected 
reward under policy π assuming we start from state s; this is 
done recursively: the value of the current state is the current 
reward plus the averaged value of the subsequent state (aver-
aged under the stochastic transition rule of the environment 
P(s|a, s′)). Optimal policies optimize these functions and this, 
too, is achieved sequentially by modifying the policy so as 
to maximize the value functions. This, however, assumes the 
knowledge of the transition rule P(s|a, s′). In further develop-
ment of the theory, it was shown that tracking action-value 
functions Qπ(s, a), given by

Qπ(s, a) =
∑

s′
P(s′|a, s)(Λ(s, a, s′) + γVπ(s′)) (20)

assigning the value not only to the state, but to the subsequent 
action as well, can be modified into an online learning algo-
rithm47. In particular, the Q-values can be continuously esti-
mated by weighted averaging the current reward (at time step 
t) for an action-value and the estimate of the highest possible 
Q-value of the subsequent action-value:

Qt+1(st, at) = Qt(st, at)︸ ︷︷ ︸
old value

+ αt︸︷︷︸
learning rate

·




learned value︷ ︸︸ ︷
rt+1︸︷︷︸
reward

+ γ︸︷︷︸
discount

·max
a

Qt(st+1, a)
︸ ︷︷ ︸

estimate of optimal
future value

−Qt(st, at)︸ ︷︷ ︸
old value


 .

 
(21)

Note that having access to the optimal Q-values suffices to 
find the optimal policy—given a state, simply pick an action 
with the highest Q-value—but the algorithm above says 
nothing about which policy the agent should employ while 
learning. In Watkins and Dayan (1992) it was shown that the 
algorithm specified by the update rule of equation (21), called 
Q-learning, indeed converges to optimal Q values as long as 
the agent employs any fixed policy which has non-zero proba-
bilities for all actions given any state (the parameter αt, which 
is a function of time, has to satisfy certain conditions and γ 
should be the γ of the targeted figure of merit Rγ)48.

In essence, this result suffices for solving the first flavor 
of RL, where the optimal policy is ‘learned’ by the agent in 
the limit, but, in principle, never actually used. The conv-
ergence of the Q-learning update to the optimal Q-values and 
consequently to the optimal behavior has been proven for all 
learning agents using greedy-in-the-limit, infinite explora-
tion (GLIE) policies. As the name suggests, such policies in 
the asymptotic limit perform actions with the highest value 
estimated49.

At the same time, infinite exploration means that, in the 
limit, all state/action combinations will be tried out infinitely 
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Figure 8. A three state, two-action MDP.

45 These two flavors are closely related to the notions of on-policy and 
off-policy learning. These labels typically pertain to how the estimates of 
the optimal policy are internally updated, which may be in accordance with 
the actual current policy and actions of the agent or independently from the 
executed action, respectively. For more details see e.g. Sutton and Barto 
(1998).
46 If the environment is not strongly connected this is not possible: for 
instance the first move of the learner may lead to ‘good’ or ‘bad’ regions 
from which there is no way out, in which case optimal behavior cannot be 
obtained with certainty.

47 This rule is inspired by the Bellman optimality equation, 
Q∗(s, a) := [R(s, a)] + γ [maxa′ Q ∗ (s′, a′)]. The expected values appear 
as R(s, a) can be stochastic and can be modeled as a random variable, and 
maxa′ Q ∗ (s′, a′) is a random variable as well as it is, implicitly, a function 
of the stochastic MDP transition rule. This equation has as a solution a fixed 
point, which is an optimal Q-value function. This equation can be used when 
the specification of the environment is fully known. Note that the optimal Q-
values can be found without actually explicitly identifying an optimal policy.
48 Q-learning is an example of an off-policy algorithm as the estimate of the 
future value in equation (21) is not evaluated relative to the actual policy of 
the agent (indeed, it is not necessarily even defined), but rather relative to 
the so-called ‘greedy policy’, which takes the action with the maximal value 
estimate (note the estimate appears with a maximization term).
49 To avoid any confusion, we have introduced the concept policy to refer to 
the conditional probability distributions specifying what the agent will do 
given a state. However, the same term is often overloaded to also refer to the 
specification of the effective policy an agent will use given some state/time-
step. For instance, ‘ε-greedy policies’ refer to behavior in which, given a 
state, the agent outputs the action with the highest corresponding Q  −  val-
ue—i.e. acts greedily—with probability 1 − ε and produces a random action 
otherwise. Clearly, this rule specifies a policy at any given time step, given 
the current Q-value table of the agent. One can also think of time-dependent 
policies, which mean that the policy also explicitly depends on the time-
step. An example of a such a time-dependent and a (slowly converging) 
GLIE policy is an ε-greedy policy, where ε = ε(t) = 1/t  is a function of the 
time-step, converging to zero.
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many times, ensuring that the true optimal action values are 
found and that the local minima are avoided. In general, the 
optimal trade off between these two competing properties, 
the exploration of the learning space and the exploitation of 
obtained knowledge, is quintessential to RL. There are many 
other RL algorithms which are based on state-value or action-
value optimizations, such as SARSA50, various value iteration 
methods, temporal difference methods, etc (Sutton and Barto 
1998). More recently, progress has been achieved by using 
parametrized approximations of state-action-value-func-
tions—a cross-breed between function approximation and 
RL—which reduces the search space of available Q-functions.

Here the results which use deep learning methods for RL 
based on value function approximation, leading to the system 
dubbed deep Q-networks, have been particularly success-
ful (Mnih et  al 2015). Deep Q-networks also underpin the 
AlphaGo (Silver et al 2016, 2017a, 2017b) system. Utilizing 
parametric (action-)value functions becomes necessary when 
the percept/action spaces become large or continuous51.

This brings us to a different class of methods which do 
not optimize (action-)value functions, but rather directly learn 
complete policies, often by performing an estimate of gradi-
ent descent, or other means of optimization in policy space. 
In such approaches, the policies are often specified indirectly 
by a comparably small number of parameters. The expected 
rewards which a given policy yields are evaluated by interact-
ing with the environment, and this empirical objective function 
can be used to optimize the parameters, and thus the policy. 
Such policy search methods with parametrization can in some 
cases lead to faster learning (Peshkin 2001), but may also be a 
necessity, if the state/action spaces are large. In recent times, 
the parametrizations of both policies and action-value func-
tions are often NNs. For a survey of methods which combine 
deep networks with RL machinery, we refer the reader to 
Arulkumaran et al (2017).

Value function and policy search methods can also be com-
bined. A standard example is the so-called actor–critic frame-
work, in which the critic—often an action-value function—is 
used to optimize an actor—a (parametrized) policy. The critic 
is updated via the interaction with the environment. For exam-
ple, actor–critic methods are sometimes used to combat the 
problems which arise with action-value function approx-
imation approaches where the action space is continuous. In 
this case, computing the action which maximizes the state-
action value may be intractable, so the parametrized policy is 
used as an ansatz. For further details on actor–critic methods 
we refer the reader to Grondman et al (2012).

The theory of RL most often considers scenarios where the 
environment is Markovian, or, related to this, fully observable. 
The most common generalization of MDP environments are 
so-called partially observable MDPs (POMDP), where the 
underlying MDP structure is extended to include a set of obser-
vations O and a stochastic function defined with the conditional 
probability distribution PPOMDP(o ∈ O|s ∈ S, a ∈ A). The set 

of states of the environment are no longer directly accessible 
to the agent but rather the agent perceives the observations 
from the set O, which indirectly and, in general, stochasti-
cally depends on the actual unobservable environmental state, 
as given by the distribution PPOMDP and the action the agent 
took last. POMDPs are expressive enough to capture many 
real world problems, and are thus a common world model in 
AI, but are significantly more difficult to deal with compared 
to MDPs52.

As mentioned, the setting of POMDPs moves us one step 
closer to arbitrary environment settings, which is the domain 
of artificial (general) intelligence53.

The context of AGI is often closely related to modern view 
on robotics, where the structure of what can be observed and 
what actions are possible stems not only from the nature of the 
environment, but also (bodily) constraints of the agent: e.g. a 
robot is equipped with sensors, specifying and limiting what 
the robot can observe or perceive, and actuators, constraining 
the possible actions. In such an agent-centric viewpoint, we 
typically talk about the set of percepts—signals that the agent 
can perceive—which may correspond to full states, or partial 
observations, depending on the agent-environment setting—
and the set of actions54.

This latter viewpoint, that the percept/action structure 
stems from the physical constitution of the agent and the 
environ ment, which we will refer to as an embodied perspec-
tive, was one of the starting points of the development of the 

Figure 9. Illustration of the structure of the episodic and 
compositional memory in PS, comprising clips (episodes) and 
probabilistic transitions. The actuator of the agent performs the 
action. Adapted from Briegel and De las Cuevas (2012).

50 SARSA is the acronym for state-action-reward-state-action.
51 We note that even coarse-graining of the action spaces, or the discretiza-
tion of the state spaces also constitutes a parametrization of the (otherwise) 
potentially much larger policy space.

52 For instance, the problem of finding optimal infinite-horizon policies, 
which was solvable via dynamical programming in the fully observable 
(MDP) case becomes, in general, uncomputable.
53 To comment a bit on how RL methods and tasks may be generalized 
towards general AI, one can consider learning scenarios where one has to 
combine standard data-learning ML to handle the realistic percept space 
(which is effectively infinite) with RL techniques. An example of such a 
successful combination of various ML/RL methods is the famous AlphaGo 
system (Silver et al 2016). Further, one could also consider more general 
types of interaction, beyond the strict turn-based metronomic model. For 
instance in active RL, the interaction occurs relative to an external clock, 
which intertwines computational complexity and learning efficiency of the 
agent (see section 7.1). Further, the interaction may occur in fully continu-
ous time. This setting is also not typically studied in the basic theory of AI, 
but occurs in the closely related problem of control theory (Wiseman and 
Milburn 2010), which may be more familiar to physicists. Such generaliza-
tions are at the cutting edge of research, including in the classical realm, and 
are also beyond the scope of this paper.
54 In this sense, a particular agent/robot may perceive the full state of the 
environment in some environments (making the percepts identical to states), 
whereas in other environments the sensors fail to observe everything, in 
which case the percepts correspond to observations.
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projective simulation (PS) model for AI. PS is a physics-
inspired model for AI and agency which can be used for solv-
ing RL tasks. The centerpiece of the model is the so-called 
Episodic and Compositional Memory (ECM), which is a sto-
chastic network of clips; see figure 9. Clips are representations 
of short autobiographical episodes, i.e. the agent’s memories. 
Using the compositional aspects of the memory, which allows 
for a rudimentary notion of creativity, the agent can also 
combine actual memories to generate fictitious clips, which 
need not correspond to things that have actually occurred, 
but which are conceivable on the basis of the agent’s previ-
ous experience (Briegel 2012). More formally, clips can be 
defined recursively as either memorized percepts or actions, 
or otherwise structures (e.g. sequences) of clips. Given a cur-
rent percept, the PS agent calls its ECM network to perform 
a stochastic random walk over its clip space (the structure of 
which depends on the history of the agent) projecting itself 
into conceivable situations, before committing to an action. 
Aspects of this model have been beneficially quantized, and 
also used both in quantum experiments and in robotics, and 
we will focus more on this model in section 7.1.

Learning efficiency and learnability for reinforcement learn-
ing. As mentioned in the introduction to this section, No Free 
Lunch theorems also apply to RL, and any statement about 
learning requires us to restrict the space of possible environ-
ments. For instance, ‘finite-space, time-independent MDPs’ 
is a restriction which allows perfect learning relative to some 
of the standard figures  of merit, as was first proven by the 
Q-learning algorithm. Beyond learnability, in more recent 
times, notions of sample complexity for RL tasks have also 
been explored, addressing the problem from different per-
spectives. The theory of sample complexity for RL settings 
is significantly more involved than for supervised learning, 
although the very basic desiderata remain the same: how many 
interaction steps are needed before the agent learns. Learn-
ing can naturally mean many things, but most often what is 
meant is that the agent learns the optimal policy. Unlike super-
vised learning, RL has an additional temporal dimension in 

the definitions of optimality (e.g. finite or infinite horizons), 
leading to an even broader space of options one can explore. 
Further details on this important field of research are beyond 
the scope of this review and we refer the interested reader to 
e.g. the thesis of Kakade (2003) which also does a good job of 
reviewing some of the early works and finds sample complex-
ity bounds for RL for many basic settings, or e.g. Lattimore 
et al (2013) and Dann and Brunskill (2015) for some of the 
newer results.

3. Quantum mechanics, learning and artificial 
intelligence

Quantum mechanics has already had a profound effect on the 
fields of computation and information processing. However, 
its impact on AI and learning has, up until very recently, been 
modest. Although the fields of ML and AI have a strong con-
nection to the theory of computation, these fields are still dif-
ferent, and not all progress in (quantum) computation implies 
qualitative progress in AI. For instance, although it has been 
more than 20 years, still the arguably most celebrated result in 
QC is that of Shor’s factoring algorithm (Shor 1997), which, 
on the face of it, has no impact on AI55. Nonetheless, other, 
less famous, results may have application to various aspects 
of AI and learning. The fields of QIP, AI and machine learning 
have thus, from their early stages, had a careful and tentative 
interplay, although it is only recently that this line of research 
has received broader attention. Roughly speaking, we can 
identify four main directions covering the interplay between 
ML/AI summarized in figure 10.

Historically speaking, the first contacts between aspects of 
QIP and learning theory occurred in terms of the direct appli-
cation of statistics and statistical learning in light of quantum 
theory, which forms the first line: classical ML applied in 

55 In fact, this is not entirely true—certain proofs of separation between PAC 
learnability in the quantum and classical model assume hardness of factoring 
of certain integers (see section 6.1.2).

Applications of ML in quantum physics

(1) Estimation and metrology

(2) Quantum control and gate design

(3) Controlling quantum experiments, and
machine-assisted research

(4) Condensed matter and many body physics

Quantum enhancements for ML

(1) Quantum perceptrons and neural networks

(2) Quantum computational learning theory

(3) Quantum enhancement of learning capacity

(4) Quantum computational algorithmic speed-
ups for learning

Quantum generalizations of ML-type tasks

(1) Quantum generalizations: machine
learning of quantum data

(2) (Quantum) learning of quantum pro-
cesses

Quantum learning agents and elements of quan-
tum AI

(1) Quantum-enhanced learning through
interaction

(2) Quantum agent-environment paradigm

(3) Towards quantum AI

Figure 10. Table of topics investigating the overlaps between quantum physics, ML and AI.
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quantum theory and experiment, reviewed in section 4. In this 
first topic, ML techniques are applied to classical data (such as 
the results of measurements) stemming from quantum experi-
ments. The second topic, in contrast, deals with ML over 
genuinely quantum data: quantum generalization of machine-
learning-type tasks, discussed in section  5. This brings us 
to the topic which has been receiving substantial interest in 
recent times: whether quantum computers can genuinely help 
in ML problems, addressed in section 6. The final topic we 
will investigate considers aspects of QIP which extend beyond 
ML (taken in a narrow sense), such as generalizations of RL, 
and which can be understood as stepping-stones towards 
quantum AI. This is reflected upon in section 7.3.

It is worthwhile to note that there are many possible natural 
classifications of the comprehensive field we discuss in this 
review. Our chosen classification is motivated by two subtly 
differing perspectives on the classification of quantum ML, 
discussed further in section 7.2.1.

4. Machine learning applied to (quantum) physics

In this section we review works and ideas where ML meth-
ods have been either directly utilized, or have otherwise been 
instrumental, for QIP results. To do so, we are, however, fac-
ing the thankless task of specifying the boundaries of what is 
considered an ML method. In recent times, in part due to its 
successes, ML has become a desirable key word, and conse-
quently an umbrella term for a broad spectrum of techniques. 
This includes algorithms for solving genuine learning prob-
lems, but also methods and techniques designed for indirectly 
related problems. From such an all-encompassing viewpoint, 
ML also includes aspects of (parametric) statistical learning, 
the solving of black-box (or derivative-free) optimization 
problems, but also the solving of hard optimization problems 
in general56.

As we do not presume to establish hard boundaries, we 
adopt a more inclusive perspective. The collection of all 
works that utilize methods which could conceivably fit in 
broad-scope ML for QIP applications cannot be covered in 
one review. Consequently, we place emphasis on pioneering 
works and works where the authors themselves advertise the 
ML flavor of used methodologies, thereby emphasizing the 
potential of such ML/QIP interdisciplinary endeavors.

The use of ML in the context of QIP, understood as above, 
has been considerable, with an effective explosion of related 
works in the last few years. ML has been shown to be effective 
in a great variety of QIP related problems: in quantum signal 
processing, quantum metrology, Hamiltonian estimation and 
in problems of quantum control. In recent times, the scope of 
applications has been significantly extended. ML and involved 
techniques have also been applied to combating noise in the 
process of performing quantum computations, problems in 
condensed-matter and many-body physics and in the design 

of novel quantum optical experiments. Such results suggest 
that advanced ML/AI techniques will play an integral role in 
quantum labs of the future and, in particular, in the construc-
tion of advanced quantum devices and, eventually, quantum 
computers. In a complementary direction, QIP applications 
have also engaged many of the methods of ML, showing that 
QIP may also become a promising proving ground for cutting 
edge ML research.

Contacts between statistical learning theory (as a part 
of the theoretical foundations of ML) and quantum the-
ory come naturally due to the statistical foundations of 
quant um theory. Already the very early theories of quantum 
signal processing (Helstrom 1969), probabilistic aspects 
of quant um theory and quantum state estimation (Holevo 
1982) and early works (Braunstein and Caves 1994) which 
would lead to modern quantum metrology (Giovannetti et al 
2011) included statistical analyses which establish tenta-
tive grounds for more advanced ML/QIP interplay. Related 
early works further emphasize the applicability of statisti-
cal methods, in particular maximum likelihood estimation, 
to quantum tomographic scenarios, such as the tasks of 
state estimation (Hradil 1997), the estimation of quant um 
processes (Fiurášek and Hradil 2001) and measurements 
(Fiurášek 2001) and the reconstruction of quantum pro-
cesses from incomplete tomographic data (Ziman et  al 
2005)57. The works of this type generally focus on physi-
cal scenarios where clean analytic theory can be applied. 
However, in particular in experimental or noisy (thus, real-
istic) settings, many of the assumptions which are crucial 
for the pure analytic treatment fail. This leads to the first 
category of ML applications to QIP which we consider.

4.1. Hamiltonian estimation and metrology

The identifying of properties of physical systems, be they 
dynamic properties of evolutions (e.g. process tomography) 
or properties of the states of given systems (e.g. state tomogra-
phy), is a fundamental task. Such tasks are resolved by various 
(classical) metrological theories and methods, which can iden-
tify optimal strategies, characterize error bounds and which 
have also been quite generally exported to the quantum realm. 
For instance, quantum metrology studies the estimation of 

56 Certain optimization problems, such as online optimization problems 
where information is revealed incrementally and decisions are made before 
all information is available, are more clearly related to ‘quintessential’ ML 
problems such as supervised, unsupervised, or reinforcement learning.

Executive summary: Metrological scenarios can 
involve complex measurement strategies, where e.g. 
the measurements which need to be performed may 
depend on previous outcomes. Further, the physical 
system under analysis may be controlled with the help 

of additional parameters—so-called controls—which 
can be sequentially modified, leading to a more compli-
cated space of possibilities. ML techniques can help us 
find optima in such a complex space of strategies under 
various constraints, which are often pragmatically and 
experimentally motivated constraints.

57 Interestingly, such techniques allow for the identification of optimal 
approx imations of unphysical processes which can be used to shed light on 
the properties of quantum operations.
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the parameters of quantum systems and, generally, identifies 
optimal measurement strategies for their estimation. Further, 
quantum metrology places particular emphasis on scenarios 
where genuine quantum phenomena yield an advantage over 
simpler, classical strategies. In the context of quantum metrol-
ogy, typically, quantum scenarios are characterized by the 
need for complex and difficult-to-implement quantum devices 
for their realization.

The specification of optimal strategies, in general, con-
stitutes a problem of planning58, for which various ML 
techniques can be employed. The first examples of ML 
applications for finding measurement strategies origi-
nate from the problem of phase estimation, a special case 
of Hamiltonian estimation. Interestingly, this simple case 
already provides a fruitful playground for ML techniques: 
optimal measurement strategies are relatively easy to find 
analytically, but are experimentally unfeasible. In turn, if 
we limit ourselves to a set of ‘simple measurements’, near-
optimal results are possible but they require difficult-to-
optimize adaptive strategies—the type of problem ML is 
good for. Hamiltonian estimation problems have also been 
tackled in more general settings, invoking more complex 
machinery. We first briefly describe basic Hamiltonian esti-
mation settings and metrological concepts. Then we will 
delve deeper into these results combining ML with metrol-
ogy problems.

4.1.1. Hamiltonian estimation. The generic scenarios of Ham-
iltonian estimation, a common instance of metrology in the 
quantum domain, consider a quantum system governed by a 
(partially unknown) Hamiltonian within a specified family 
H(θ), where θ = (θ1, . . . , θn), is a set of parameters. Roughly 
speaking, Hamiltonian estimation deals with the task of iden-
tifying the optimal methods (and the performance thereof) for 
estimating the Hamiltonian parameters.

This amounts to optimizing the choice of initial states 
(probe states) which will evolve under the Hamiltonian and 
the choice of the subsequent measurements, which uncover 
the effect the Hamiltonian had, and thus, indirectly, the 
parameter values59. This prolific research area considers 
many restrictions, variations and generalizations of this task. 
For instance, one may assume settings in which we either 
have control over the Hamiltonian evolution time t or it is 
fixed so that t  =  t0, which are typically referred to as fre-
quency and phase estimation, respectively. Further, the effi-
ciency of the process can be measured in multiple ways. In 
a frequentist approach, one is predominantly interested in 
estimation strategies which, roughly speaking, allow for the 
best scaling of precision of the estimate, as a function of 
the number of measurements. The quantity of interest is the 

so-called quantum Fisher information, which bounds and 
quantifies the scaling. Intuitively, in this setting, also called 
the local regime, many repetitions of measurements are typi-
cally assumed. Alternatively, in the Bayesian, or single-shot, 
regime the prior information, which is given as a distribu-
tion over the parameter to be estimated, and its update to 
the posterior distribution given a measurement strategy 
and outcome are central objects (Jarzyna and Demkowicz-
Dobrzański 2015). The objective here is the identification of 
preparation/measurement strategies which optimally reduce 
the average variance of the posterior distribution, which is 
computed via Bayes’ theorem.

One of the key interests in this problem is that the utiliza-
tion of arguably genuine quantum features such as entangle-
ment, squeezing etc in the structure of the probe states and 
measurements may lead to provably more efficient estima-
tion than is possible by so-called classical strategies for many 
natural estimation problems. Such quantum enhancements 
are potentially of immense practical relevance (Giovannetti 
et al 2011). The identification of optimal scenarios has been 
achieved in certain ‘clean’ theoretical scenarios, which are, 
however, often unrealistic or impractical. It is in this context 
that ML-flavored optimization and other ML approaches can 
help.

4.1.2. Phase estimation settings. Interesting estimation 
problems, from an ML perspective, can already be found in 
the simple examples of a phase shift in an optical interferom-
eter, where one of the arms of an otherwise balanced inter-
ferometer contains a phase shift of θ. Early on, it was shown 
that given an optimal probe state with mean photon number 
N and an optimal (so-called canonical) measurement, the 
asymptotic phase uncertainty can decay as N−1 (Sanders and 
Milburn 1995)60, known as the Heisenberg limit. In contrast, 
the restriction to ‘simple measurement strategies’ (as charac-
terized by the authors), involving only photon number mea-
surements in the two output arms, achieves a quadratically 
weaker scaling of 

√
N−1, referred to as the standard quantum 

limit. This was proven in more general terms: the optimal 
measurements cannot be achieved by the classical post-pro-
cessing of photon number measurements of the output arms 
but constitute an involved, experimentally unfeasible POVM 
(Berry and Wiseman 2000). However, in Berry and Wise-
man (2000) it was shown how this can be circumvented by 
using ‘simple measurements’, provided they can be altered 
in run-time. Each measurement consists of a photon num-
ber measurement of the output arms and is parametrized by 
an additional controllable phase shift of φ in the free arm—
equivalently, the unknown phase can be tweaked by a chosen 
φ. The optimal measurement process is an adaptive strat-
egy: an entangled N-photon state is prepared (see e.g. Berry 
et al (2001)), the photons are sequentially injected into the 
interferometer and photon numbers are measured. At each 
step, the measurement performed is modified by choosing 

58 More specifically, most metrology settings problems constitute instances 
of off-line planning, and thus not RL, as the ‘environment specification’ is 
fully specified—in other words, there is no need to actually run an experi-
ment and the optimal strategies can be found off-line. See section 1.2 for 
more detail.
59 Technically, the estimation also involves the use of a suitable estimator 
function, but these details will not matter.

60 This is often also expressed in terms of the variance (∆θ)2, so as N−2, 
rather than the standard deviation.
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a different phase shift φ, which depends on previous mea-
surement outcomes. In Berry and Wiseman (2000) and Berry 
et al (2001), an explicit strategy was given which achieves 
the Heisenberg scaling of the optimal order O(1/N). How-
ever, for N  >  4 it was shown this strategy is not strictly 
optimal.

This type of planning is hard as it reduces to the solving of 
non-convex optimization problems61. The field of ML deals 
with such planning problems as well, and so many optim-
ization techniques have been developed for this purpose. 
The applications of such ML techniques, specifically parti-
cle swarm optimization, were first suggested in the pioneer-
ing works of Hentschel and Sanders (2010, 2011) and later in 
Sergeevich and Bartlett (2012). In subsequent work, perhaps 
more well-known methods of differential evolution have been 
demonstrated to be superior and more computationally effi-
cient (Lovett et al 2013).

4.1.3. Generalized Hamiltonian estimation settings. ML 
techniques can also be employed in significantly more gen-
eral settings of quantum process estimation. More general 
Hamiltonian estimation settings consider a partially con-
trolled evolution given by HC(θ), where C is a collection 
of control parameters of the system. This is a reasonable 
setting in e.g. the production of quantum devices, which 
have controls (C), but whose actual performance (depen-
dent on θ) needs to be confirmed. Further, since production 
devices are seldom identical, it is beneficial to even further 
generalize this setting, by allowing the unknown param-
eters θ to be only probabilistically characterized. More pre-
cisely, they are probabilistically dependent on another set of 
hyperparam eters ζ = (ζ1, . . . , ζk), such that the parameters θ 
are distributed according to a known conditional probabil-
ity distribution P(θ|ζ). This generalized task of estimating 
the hyperparameters ζ  thus allows the treatment of systems 
with inherent stochastic noise, when the influence of noise is 
understood (given by P(θ|ζ)). Such very general scenarios 
are addressed in Granade et al (2012), relying on classical 
learning techniques of Bayesian experimental design (BED) 
(Loredo 2004), combined with Monte Carlo methods. The 
details of this method are beyond the scope of this review, 
but, roughly speaking, BED assumes a Bayesian perspec-
tive on the experiments of the type described above. The 
estimation methods of the general problem (ignoring the 
hyperparameters and noise, for simplicity, although the same 
techniques apply) realize a conditional probability distribu-
tion P(d|θ; C) where d  corresponds to experimental data, 
i.e. measurement outcomes collected in the experiment. 

Assuming some prior distribution over hidden parameters 
(P(θ|C)), the posterior distribution, given experimental out-
comes, is given via Bayes’ theorem by

P(θ|d; C) =
P(d|θ; C)P(θ|C)

P(d|C)
. (22)

The evaluation of the above is already non-trivial, principally 
because the normalization factor P(d|C) includes an integra-
tion over the parameter space. Further, of particular interest 
are scenarios where an experiment is iterated many times. In 
this case, analogously to the adaptive setting for metrology 
discussed above, it is beneficial to tune the control parameters 
C dependent on the outcomes.

BED (Loredo 2004) tackles such adaptive set-
tings by selecting the subsequent control parameters C 
so as to maximize a utility function62 for each update 
step. The Bayes updates consist of the computing of 
P(θ|d1, . . . , dl−1dk) ∝ P(dk|θ)P(θ|d1, . . . , dl−1) at each 
step. The evaluation of the normalization factor P(d|C)−1 is, 
however, also non-trivial, as it includes an integration over 
the parameter space. In Granade et  al (2012) this integra-
tion is tackled via numerical integration techniques, namely 
sequential Monte Carlo, yielding a novel technique for robust 
Hamiltonian estimation.

The robust Hamiltonian estimation method was subse-
quently expanded to use access to trusted quantum simulators, 
which forms a more powerful and efficient estimation scheme 
(Wiebe et al 2014b)63, which was also shown to be robust to 
moderate noise and imperfections in the trusted simulators 
(Wiebe et  al 2014a). A restricted version of the method of 
estimation with simulators was experimentally realized in 
Wang et al (2017). More recently, connected to the methods 
of robust Hamiltonian estimation, Bayesian and sequential 
Monte Carlo based estimation have further been combined 
with particle swarm optimization techniques (Stenberg et al 
2016). There the goal was to achieve reliable coupling strength 
and frequency estimation in simple decohering systems, 
corre sponding to realistic physical models. More specifically, 
the studied problem is the estimation of field–atom coupling 
terms and the mode frequency term in the Jaynes–Cummings 
model. The controlled parameters are the local field strength 
and measurements are done via swap spectroscopy.

Aside from using ML to perform partial process tomog-
raphy of controlled quantum systems, ML can also help in 
genuine problems of quantum control, specifically, the design 
of target quantum gates. This forms the next topic.

61 The non-convexity stems from the fact that the effective input state at 
each stage depends on previous measurements performed. As the entire 
interferometer set-up can be viewed as a one-subsystem measurement, the 
conditional states also depend on unknown parameters and these are used in 
the subsequent stages of the protocol (Hentschel and Sanders 2010).

62 The utility function is an object stemming from decision theory and in the 
case of BED it measures how well the experiment improves our inferences. 
It is typically defined by the prior–posterior gain of information as measured 
by the Shannon entropy, although there are other possibilities.
63 This addition partially circumvents the computation of the likelihood func-
tion P(d|θ; C), which requires the simulation of the quantum system and is, 
in fact, in general intractable.
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4.2. Design of target evolutions

From a QIP perspective, one of the most important tasks is 
the design of elementary quantum gates, needed for QC. The 
paradigmatic approach to this is via quantum control, which 
aims to identify how control fields of physical systems need to 
be adapted in time, to achieve desired evolutions. The design-
ing of target evolutions can also be achieved in other settings, 
e.g. by using larger systems and unmodulated dynamics. In 
both cases, ML optimization techniques can be used to design 
optimal strategies off line. However, target evolutions can also 
be achieved in run-time, by interacting with a tunable physical 
system, and without the need for the complete description of 
the system. We first consider off-line settings and briefly com-
ment on the latter on-line settings thereafter.

4.2.1. Off-line design. The paradigmatic setting in quantum 
control considers a Hamiltonian with a controllable (c) and a drift 
part (dr), e.g. H(C(t)) = Hdr + C(t)Hc. The free part is modu-
lated via a (real-valued) control field C(t). The resulting time-

integrated operator U = U[C(t)] ∝ exp
(
−i

∫ T
0 dtH(C(t))

)
, 

over some finite time T, is a function of the chosen field function 

C(t). The typical goal is to specify the control field C(t) which 
maximizes the transition probability from some initial state 
|0〉 to a final state |φ〉 , i.e. to find argmaxC| 〈φ|U[C(t)] |0〉 |64. 
Generically, the mappings C(t) �→ U[C(t)] are highly involved 
but, nonetheless, empirically it was shown that greedy optim-
ization approaches provide optimal solutions (which is the 
reason greedy approaches dominate in practice). This empiri-
cal observation was later elucidated theoretically (Rabitz et al 
2004), suggesting that in generic systems local minima do not 
exist, which leads to easy optimization (see also Russell and 
Rabitz (2017) for a more up-to-date account). This is good 
news for experiments, but also suggests that quantum control 
has no need for advanced ML techniques. However, as is often 
the case with claims of such generality, the underlying subtle 

assumptions are fragile and can often be broken. In par ticular, 
greedy algorithms for optimizing the control problem as 
above can fail, even in the low dimensional case, if we simply 
place rather reasonable constraints on the control function and 
parameters. Already for 3-level and 2-qubit systems with con-
straints on the allowed evolution time t and the precision of 
the linearization of the time-dependent control parameters65, 
it is possible to construct examples where greedy approaches 
fail, yet global (derivative-free) approaches, in particular 
differ ential evolution, succeed (Zahedinejad et al 2014).

Another example of hard off-line control concerns the 
design of high fidelity single-shot three-qubit gates66, which 
is in Zahedinejad et al (2015) and Zahedinejad et al (2016) 
addressed using a specialized novel optimization algorithm 
the authors called subspace-selective self-adaptive differential 
evolution (SuSSADE).

An interesting alternative approach to gate design is by 
utilizing larger systems. Specifically designed larger systems 
can naturally implement desired evolutions on a subsystem, 
without the need for time-dependent control (see QC with 
always-on interaction (Benjamin and Bose 2003)). In other 
words, local gates are realized despite the fact that the global 
dynamics is unmodulated. The non-trivial task of constructing 
such global dynamics for the Toffoli gate is in Banchi et al 
(2016) tackled by a method which relies upon stochastic gra-
dient descent and draws from supervised learning techniques.

4.2.2. On-line design. Complementary to off-line meth-
ods, here we assume access to an actual quantum experiment 
and the identification of optimal strategies relies on on-line 
feedback. In these cases, the quantum experiment need not 
be fully specified beforehand. Further, the required method-
ologies lean towards on-line planning and RL, rather than 
optimization. In the case where optimization is required, the 
parameters of optimization are different due to experimental 
constraints; see Shir et al (2012) for an extensive treatment of 
the topic.

The connections between on-line methods which use feed-
back from experiments to ‘steer’ systems to desired evolutions 
have been connected to ML in early works (Bang et al 2008, 
Gammelmark and lmer 2009). These exploratory works deal 
with generic control problems via experimental feedback and 
have, especially at the time, remained mostly unnoticed by the 
community. In more recent times, feedback-based learning 
and optimization has received more attention. For instance, 
in Chen et al (2014) the authors have explored the applica-
bility of a modified Q-learning algorithm for RL (see sec-
tion 2.3) on canonical control problems. Further, the potential 
of RL methods had been discussed in the context of optimal 
parameter estimation, but also typical optimal control sce-
narios, in Palittapongarnpim et al (2016). In the latter work, 

Executive summary: One of the main tasks in quantum 
information is the design of target quantum evolutions, 
including quantum gate design. This task can be tackled 
by quantum control, which studies controlled physical 
systems where certain parameters can be adjusted dur-
ing system evolution, or by using extended systems and 
unmodulated dynamics. Here the underlying problem is 
an optimization problem, that is, the problem of finding 
optimal control functions or extended system param-
eters of a system which is otherwise fully specified. 
Under realistic constraints these optimization tasks are 
often non-convex, and so hard for conventional optim-
izers yet amenable to advanced ML technologies. Target 
evolution design problems can also be tackled by using 
feed-back from the actual experimental system, leading 
to the use of on-line optimization methods and RL.

64 An example of such additional fields would be controlled laser fields in 
ion trap experiments, and the field function C specifies how the laser field 
strengths are modulated over time.

65 It is assumed that the field function C(t) describing parameter values as 
functions of time is step-wise constant, split into K segments. The larger the 
value of K is, the better the approximation of a smooth function is, which 
would arguably be better suited for greedy approaches.
66 This includes the Toffoli (and Fredkin) gate which is of particular interest 
as it forms a universal gate set together with the simple single-qubit Had-
amard transform (Shi 2002) (if ancillas qubits are used).
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the authors also provide a concise yet extensive overview of 
related topics and outline a perspective which unifies various 
aspects of ML and RL in an approach to resolve hard quantum 
measurement and control problems. In Clausen and Briegel 
(2016), RL based on PS updates was analyzed in the context 
of  general control-and-feedback problems. Finally, ideas of 
unified computational platforms for quantum control, albeit 
without explicit emphasis on ML techniques, had been previ-
ously provided in Machnes et al (2011).

In the next section, we further coarse-grain our  perspective 
to consider scenarios where ML techniques control various 
gates and more complex processes, and even help us learn 
how to do interesting experiments.

4.3. Controlling quantum experiments, and machine-assisted 
research

The prospects for utilizing ML and AI in quantum experiments 
have also been investigated for ‘higher-level’ experimental 
design problems. Here one considers automated machines that 
control complex processes which e.g. specify the execution of 
longer sequences of simple gates or the execution of quantum 
computations. Moreover, it has been suggested that learning 
machines can be used for, and integrated into, the very design 
of quantum experiments, thereby helping us in conducting 
genuine research. We first present two results where ML and 
RL methods have been utilized to control more complex pro-
cesses (e.g. generate sequences of quantum gates to preserve 
memory) and consider the perspectives of machines genuinely 
helping in research thereafter.

4.3.1. Controlling complex processes. The simplest example 
of involved ML machinery being used to generate control of 
slightly more complex systems was done in the context of the 
problem of dynamical decoupling for quantum memories. In 
this scenario, a quantum memory is modeled as a system cou-
pled to a bath (with a local Hamiltonian for the system (HS) and 
the bath HB) and decoherence is realized by a coupling term 
HSB; the local unitary errors are captured by HS. The evo lution 

of the total Hamiltonian Hnoise = HS + HB + HSB would 
destroy the contents of the memory, but this can be mitigated 
by adding a controllable local term HC acting on the system 
alone67. Certain optimal choices of the control Hamiltonian 
HC are known. For instance, we can consider the scenario 
where HC is modulated so that it implements instantaneous68 
Pauli-X and Pauli-Y unitary operations, sequentially, at inter-
vals ∆t . As this interval, which is also the time of the deco-
herence-causing free evolution, approaches zero, so ∆t → 0, 
this process is known to ensure perfect memory. However, the 
moment the setting is made more realistic, allowing finite ∆t  
times, the space of optimal sequences becomes complicated. 
In particular, optimal sequences start depending on ∆t, the 
form of the noise Hamiltonian and total evolution time.

To identify optimal sequences, in August and Ni (2017), 
the authors employ a recurrent NN, specifically the LSTM 
(see section  2.1.1 for details), which is trained to generate 
sequences which minimize final noise. The entire sequences 
of pulses (Pauli gates) which the networks generated were 
shown to outperform well-known sequences.

In a substantially different setting, where interaction nec-
essarily arises, the authors studied how AI/ML techniques 
can be used to make quantum protocols themselves adap-
tive. Specifically, the authors applied RL methods based on 
projective simulation (PS) (Briegel and De las Cuevas 2012) 
(see section  7.1) to the task of protecting QC from local 
stray fields (Tiersch et al 2015). In MBQC (Raussendorf and 
Briegel 2001, Briegel et al 2009), the computation is driven 
by performing adaptive single-qubit projective measurements 
on a large entangled resource state, such as the cluster state 
(Briegel and Raussendorf 2001, Raussendorf and Briegel 
2001). In a scenario where the resource state is exposed to a 
stray field, each qubit undergoes a local rotation. To mitigate 
this, in Tiersch et al (2015), the authors introduce a learning 
agent which ‘plays’ with a local probe qubit, initialized in, 
say, the  +1 eigenstate of σx, denoted by |+〉, learning how to 
compensate for the unknown field. In essence, given a meas-
urement (preparation), the agent chooses the next measure-
ment direction (effectively guessing its evolution), obtaining a 
reward whenever a  +1 outcome is observed. The agent is thus 
trained to compensate for the unknown field, and serves as an 
‘interpreter’ between desired measurements and the measure-
ments which should be performed in the given setting (i.e. in 
the given field with given frequency of measurements (∆t)); 
see figure 11. The problem of mitigating such fixed stray fields 
could naturally be solved with non-adaptive methods where 
we use knowledge about the system to solve our problem, by 
e.g. measuring the field and adapting accordingly, or by using 
fault-tolerant constructions. From a learning perspective, such 
direct methods have a few shortcomings which may be worth 
presenting for didactic purposes. Fault tolerant methods are 
clearly wasteful, as they fail to gain or utilize any knowledge 

67 For the sake of intuition, a frequent application of X gates, referred to as 
bang-bang control, on a system which is freely evolving with respect to σz 
effectively flips the direction of rotation of the system Hamiltonian, effec-
tively undoing its action.
68 By ‘instantaneous’ we mean that it is assumed that the implementation 
requires no evolution time, e.g. by using infinite field strengths.

Executive summary: ML and RL techniques can help 
us control complex quantum systems, devices and even 
quantum laboratories. Furthermore, almost as a by-prod-
uct, they may also help us to learn more about the physi-
cal systems and processes studied in an experiment. 
Examples include adaptive control systems (agents) 
which learn how to control quantum devices, e.g. how 
to preserve the memory of a quantum computer, com-
bat noise processes, generate entangled quantum states 
and target evolutions of interest. Such learning systems 
may be instrumental in the building of a scalable uni-
versal quantum computer. In the process of learning 
such optimal behaviors even relatively simple artificial 
agents may also learn, in an implicit, embodied sense, 
about the underlying physics, which can be used by us 
to obtain novel insights. In other words artificial learn-
ing agents can genuinely help us do research.
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about the noise processes. In contrast, field estimation meth-
ods learn too much, and assume a model of the world. In par-
ticular, to compensate for the measured field we need to use 
quantum mechanics, specifically the Born rule. In contrast, 
the RL approach is model-free: the Born rule plays no part, 
and ‘correct behavior’ is learned and established exclusively 
based on experience. This is conceptually different, but also 
operatively critical, as model-free approaches allow for more 
autonomy and flexibility (i.e. the same machinery can be used 
in more settings without intervention)69. Regarding learning 
too much, one of the basic principles of statistical learning 
posits that ‘when solving a problem of interest, one should not 
solve a more general problem as an intermediate step’ (Vapnik 
1995), which is intuitive. The problem of the presented setting 
is ‘how to adapt the measurement settings’, not ‘character-
ize the stray fields’. While in the present context the informa-
tion-theoretic content of the two questions may be the same, 
it should be easy to imagine that if more complex fields are 
considered full process characterization contains a lot more 
information than needed to optimally adapt the local meas-
urements. The approaches of Tiersch et al (2015) can further 
be generalized to utilize information from stabilizer measure-
ments (Orsucci et  al 2016) or, similarly, outcomes of syn-
drome measurements when codes are utilized (Combes et al 
2014) (instead of probe states) to similar ends. Addressing 
somewhat related problems, but using supervised learn-
ing methods, the authors in Mavadia et al (2017) have also 
shown how to compensate for qubit decoherence (stochastic 
evolution) in experiments. Related to the topics of automated 
optim ization of (complex) quantum protocols, in recent works 
generic optimization  algorithms have been exploited to optim-
ize and analyze QKD-type cryptographic protocols in the 
presence of noise (Krawec 2016, Krawec et al 2017). Further, 

in Wigley et al (2016), the authors demonstrated how on-line 
ML optim ization can be used to find optimal evaporation 
ramps for Bose–Einstein condensates production.

Finally, we point out that one of the most exciting appli-
cations of ML in the context of quantum experiments is the 
possibility that advanced ML techniques could significantly 
mitigate the major obstacles preventing the building of scal-
able quantum computers. This question can be addressed at 
various levels. For instance, the aforementioned control prob-
lems, relying on adaptive methods for the robust implementa-
tions of unitary gates, comprise a ‘lower-level’ aspect. The 
results of Tiersch et al (2015) and August and Ni (2017) also 
contribute to the overall goal of building large-scale robust 
quantum computers, but at a higher level—the action space of 
the agent already assumes access to unitary gates and meas-
urements as primitives. In line with the same program, ML 
techniques can also help on an even further abstracted level, in 
helping with hard classical post-processing which may occur 
in the run-time of a quantum computer. Prominent examples 
here include ML efforts to optimize the decoders for quant um 
error correction codes. In this vital area, researchers have 
explored various ML techniques for a spectrum of issues. For 
instance, in the pioneering work in Torlai and Melko (2017), 
the potential of using restricted Boltzmann machines (BMs) 
(see section  2.1.1) to output near-optimal decoding/correct-
ing strategies based on syndrome outcomes was explored. In 
follow up works, Varsamopoulos et al (2018) and Krastanov 
and Jiang (2017), feed-forward shallow and deep NN archi-
tectures were employed to speed up the decoding process or to 
achieve performance-beating standard decoding algorithms, 
respectively. In Baireuther et al (2017), the authors proposed 
an adaptive decoder based on LSTMs (see section 2.1.1). The 
proposed architecture accounted not only for temporally cor-
related errors, but allowed the training to be performed based 
on experimental data alone, i.e. without a reference to an error 
model. Similar problems have also been considered in the 
settings of restricted devices. For instance, in Johnson et al 
(2017), the authors have explored device-specific error-cor-
recting encoding and decoding circuits in a variational setting. 
Here, parametrized circuits of a fixed structure are optimized 
to perform error correction, with no reference to a partic-
ular error correcting code. Such approaches are par ticularly 
appealing for near-term devices which can handle only a 
modest number of qubits and operations of only a limited 
computational depth. Such variational approaches are similar 
to how various ML techniques are employed (in particular, 
they are conceptually close to classical autoencoders; see sec-
tion 2.1.1). Further, in this setting, the correct solutions may 
involve very hard optimization steps which form yet another 
class of entry points for ML methodology to be employed70. 
As the field advances, we are expecting to see a significant 
increase in the number of applications of ML for the purpose 
of building large-scale quantum devices.

Measurement angles 

Probe play PS Learning agent

Adapted  measurements 
 performed
d  m

Figure 11. The learning agent learns how to correctly perform 
MBQC measurements in an unknown field.

69 Indeed, the authors also show that correct behavior can be established 
when additional unknown parameters are introduced, like time-and-space 
dependent fields (see Tiersch et al (2015) for results), where hand-crafted 
methods would fail.

70 As highlighted in section 1.1, a similar variational philosophy is also 
underpinning some of the newer approaches to quantum algorithms with 
shallow and specialized architectures, see, e.g. Farhi et al (2014), Peruzzo 
et al (2014) and McClean et al (2016).
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4.3.2. Learning how to experiment. One of the first examples 
of applications of RL in QIP appears in the context of exper-
imental photonics, where one of the current challenges lies in 
the generation of highly entangled, high dimensional, multi-
party states. Such states are generated on optical tables, the sys-
tematic configuration of which, to generate complex quant um 
states, is still not fully understood. The search for configura-
tions which are interesting can be mapped to an RL problem, 
where a learning agent is rewarded whenever it generates an 
interesting state (in a simulation). In a precursor work by Krenn 
et al (2016), the authors used a feedback-assisted search algo-
rithm to identify previously unknown configurations which 
generate novel highly entangled states. This demonstrated that 
the design of novel quantum experiments can also be automa-
tized, which can significantly aid in research. This idea, given in 
the context of optical tables, has subsequently been combined 
with earlier proposals to employ AI agents in quantum informa-
tion protocols and as ‘lab robots’ in future quantum laboratories 
(Briegel 2013). This led to the application of more advanced RL 
techniques, based on the PS framework, for the tasks of under-
standing the Hilbert space accessible with optical tables  and 
the autonomous machine-discovery of useful optical gadgets 
(Melnikov et  al 2017). Related to the topic of learning new 
insight from experimenting machines, in Bukov et  al (2017) 
the authors consider the problem of preparing target states by 
means of chosen pulses implementing (a restricted set) of rota-
tions. This is a standard control task, and the authors show that 
RL achieves respectable and sometimes near-optimal results. 
However, for our purposes, the most relevant aspects of this 
work pertain to the fact that the authors also illustrate how ML/
RL techniques can be used to obtain new insights in quantum 
experiments and non-equilibrium physics by circumventing 
human intuition, which can be flawed. Interestingly, the authors 
also demonstrate the reverse, i.e. how physics insights can help 
elucidate learning problems71.

4.4. Machine learning in condensed-matter and many-body 

physics

ML techniques have, over the course of the last 20 years, become 
an indispensable tool set for many natural sciences which deal 
with highly complex systems. These include biology (specifi-
cally genetics, genomics, proteomics and the general field of 
computational biology) (Libbrecht and Noble 2015), medicine 
(e.g. in epidemiology, disease development, etc) (Cleophas and 
Zwinderman 2015), chemistry (Cartwright 2007) and high-
energy and particle physics (Castelvecchi 2015). Unsurprisingly, 
they have also permeated various aspects of condensed-matter 
and many-body physics. Early examples of this were proposed 
in the context of quantum chemistry and density functional the-
ory (Curtarolo et al 2003, Snyder et al 2012, Rupp et al 2012, Li 
et al 2015a), or for the approximation of the Green’s function of 
the single-site Anderson impurity model (Arsenault et al 2014). 
The interest in connections between NNs and many-body and 
condensed-matter physics has undergone immense growth since. 
Some of the results which we cover next deviate from the pri-
mary topic of this review, those concerning the overlaps of QIP 
and ML. However, since QIP and condensed-matter and many-
body physics share significant overlaps we feel it is important to 
at least briefly flesh out the basic ideas. We focus on two of the 
most fertile research directions in this field of study to emerge 
in recent times. The first is the problem of learning phases of 
matter and the detection of phase trans itions in physical systems. 
The second deals with the (surprisingly large) capacities of gen-
erative models to capture relevant parts of the Hilbert space.

Learning phases. A canonical example is the discrimina-
tion of samples of configurations stemming from different 
phases of matter, e.g. Ising model configurations of thermal 
states below or above the critical temperature. This problem 
has been tackled using principal component analysis and 
nearest neighbor unsupervised learning techniques (Wang 
2016) (see also Hu et al (2017)). Such methods also have the 
potential to, beyond just detecting phases, actually identify 
order parameters (Wang 2016)—in the above case, magne-
tization. More complicated discrimination problems, e.g. 
discriminating Coulomb phases, have been resolved using 
basic feed-forward networks, and CNNs were trained to 
detect topological phases (Carrasquilla and Melko 2017) as 
well as phases in fermionic systems on cubic lattices (Ch’ng 
et  al 2016). NNs have also been combined with quantum 
Monte Carlo methods (Broecker et  al 2016) and with 
unsuper vised methods (van Nieuwenburg et al 2017, Ch’ng 
et al 2018) (applied also in Wang (2016)), in both cases to 
improve classification performance in various systems. It 
is notable that all these methods prove quite successful in 
‘learning’ phases, without any information about the sys-
tem Hamiltonian. While the focus in this field had mostly 
been on NN architectures, other supervised methods, spe-
cifically kernel methods (e.g. SVMs), had been used for the 
same purpose (Ponte and Melko 2017)72. The large number 

71 For instance, the authors investigate the strategies explored by the learning 
agent, and identify spin-glass-like phase transition in the space of protocols 
as a function of the protocol duration. This highlights the difficulty of the 
learning problem.

Executive summary: One of the quintessential prob-
lems of many-body physics is the identification of 
phases of matter. A popular overlap between ML and 
this branch of physics demonstrates that supervised and 
unsupervised systems can be trained to classify differ-
ent phases. More interestingly, unsupervised learning 
can be used to detect phases and even discover order 
parameters, possibly genuinely leading to novel physi-
cal insights. Another important overlap considers the 
representational power of (generalized) NNs, to char-
acterize interesting families of quantum systems. Both 
suggest a deeper link between certain learning models, 
on the one hand, and physical systems, on the other, the 
scope of which is currently an important research topic. 72 Kernel methods may be in some cases advantageous as they can have a 

higher interpretability: it is often easier to understand the reason behind the 
optimal model in the cases of kernel methods than with NNs, which also 
means that learning about the underlying physics may be easier in the cases 
of kernel methods. However, as clarified in section 2.1.1, the question of 
what interpretability means and which systems are more likely to be forced 
to ensure it remains a matter of ongoing debate.
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of works dedicated to this problem have in recent times 
combined various ML methods with various supervised and 
unsupervised variants of the problem of learning phases of 
matter. This includes supervised methods, where machines 
are trained to discriminate phases given labeled examples, 
and also unsupervised methods (briefly summarized above). 
It is not difficult to argue that unsupervised approaches may 
have a greater appeal, as they allow us not only to study 
systems where phases are quite well understood, but also 
to recover a fully unknown phase diagram. However, in 
contrast to pure supervised settings, the unsuper vised solu-
tions often utilize hand-crafted pre-processing of data and 
other types of prior knowledge (Huembeli et al 2017). One 
of the emerging challenges is thus to achieve fully unsuper-
vised extraction of the phase-space diagram, ideally relying 
only on data which is essentially raw, in the sense that it 
has not been pre-processed using hand-crafted procedures 
or extensive prior knowledge. Recent works (Broecker et al 
2017 and Morningstar and Melko 2017) address this chal-
lenge using modified CNNs and deep BMs, respectively. In 
Huembeli et al (2017), the authors utilize cutting-edge tech-
niques from ML, namely domain adversarial NN (DANN) 
training (see section  2.1.1), to achieve a type of transfer 
learning—the network is trained, in part, on the part of the 
parameter space where phases are well-understood (and 
thus can be labeled) and this knowledge is then applied on 
the unknown section of the parameter space. The key idea 
behind DANNs is that the network is trained in such a fash-
ion that the final classifier is forced to be invariant under 
change of the domain—in other words it cannot distinguish 
between the data stemming from the two sections  of the 
parameter space. This ensures that only the features specify-
ing the phases influence the classification, and thus ensures 
correct generalization.

A partial explanation behind the success of neuronal 
approaches for classifying phases of matter may lie in their 
form. Specifically, they may have the capacity to encode 
important properties of physical systems both in the classical 
and in the quantum case. This motivates the second line of 
research we mentioned.

Representational capacities of generative models. The 
research in this area is motivated by a simple example. BMs, 
even in their restricted variant, are known to have the capac-
ity to encode complicated distributions. In the same sense, 
restricted BMs, extended to accept complex weights (i.e. the 
weights wij in equations  (2) and (3)) encode quantum states 
and the hidden layer captures correlations, both classical and 
quantum (entanglement). In Carleo and Troyer (2017) it was 
shown that this approach describes equilibrium and dynamical 
properties of many prototypical systems accurately: that is, 
restricted BMs form a useful ansatz for interesting quant um 
states (called neural-network quantum states (NQSs)), where 
the number of neurons in the hidden layer controls the size of 
the representable subset of the Hilbert space. This is analo-
gous to how, for instance, the bond dimension controls the 
scope of the matrix product state ansatz (Verstraete et  al 
2008). This property can also be exploited in order to achieve 

efficient quantum state tomography73 (Torlai et al 2017). In 
subsequent works, the authors have also analyzed the struc-
ture of entanglement of NQSs (Deng et  al 2017) and have 
provided analytic proofs of the representation power of deep 
restricted BMs, proving they can e.g. represent ground states 
of any k-local Hamiltonians with polynomial-size gaps (Gao 
and Duan 2017). It is worthwhile to note that the representa-
tional power of standard variational representations (e.g. that 
of the variational renormalization group) had previously been 
contrasted to those of deep NNs (Mehta and Schwab 2014), 
with the goal of elucidating the success of deep networks. 
Related to this, the tensor network (Östlund and Rommer 
1995, Verstraete and Cirac 2004) formalism has been used for 
the efficient description of deep convolutional arithmetic cir-
cuits, establishing also a formal connection between quant um 
many-body states and deep learning (Levine et al 2017). In 
related research, in Glasser et  al (2018), the authors have 
established a strong connection between quantum states spec-
ified by restricted BMs and classes of tensor-network states: 
short-range restricted BMs74 correspond to a class of so-called 
plaquette states, whereas standard restricted BMs (with no 
locality constraints) capture the class of so-called string-bond 
states with a non-local geometry and low bond dimension. 
The authors also utilize these results to generalize standard 
NQSs to exactly describe certain lattice fractional quantum 
Hall states and to well-approximate chiral spin liquid. Such 
results nicely exemplify the types of advantages we may hope 
to obtain by combining ML insights with many-body physics.

Very recently, the intersections between ML and many-body 
quantum physics have also inspired research into ML-motivated 
entanglement witnesses and classifiers (Ma and Yung 2017, Lu 
et  al 2017) and also into furthering the connections between 
ML and many-body physics, specifically, entanglement theory. 
These recent results have positioned NNs as one of the most 
exciting new techniques to be applied in the context of both 
condensed-matter and many-body physics. In addition, they also 
show the potential of the converse direction of influence—the 
application of the mathematical formalism of many-body phys-
ics to deepen of our understanding of complex learning models.

5. Quantum generalizations of machine learning 
concepts

The onset of quantum theory necessitated a change in how 
we describe physical systems, but also a change in our under-
standing of what information is75. Quantum information is a 
more general concept, and QIP exploits the genuine quantum 
features for more efficient processing (using quantum comp-
uters) and more efficient communication. Such quintessential 
quantum properties, such as the fact that even pure states can-
not be perfectly copied (Wootters and Zurek 1982), are often 

73 This method can be thought of as effectively assigning a prior stating that 
the analyzed state is well approximated by an NQS.
74 It should be noted that similar locality restrictions also appear in the 
structure of CNNs.
75 Arguably, in the light of the physicalistic viewpoint on the nature of infor-
mation, which posits that ‘Information is [ultimately] physical’.
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argued to be at the heart of many quantum applications, such 
as cryptography. Similarly, quintessential information pro-
cessing operations are more general in the quantum world: 
closed quantum systems can undergo arbitrary unitary evo-
lutions, whereas the corresponding classical closed-system 
evolutions correspond to the (finite) group of permutations76. 
The majority of ML literature deals with learning from, and 
about, data—that is, classical information. This section exam-
ines the question of what ML looks like when the data (and 
perhaps its processing) is fundamentally quantum. We will 
first explore quantum generalizations of supervised learning, 
where the ‘data points’ are now genuine quantum states. This 
generates a plethora of scenarios which are indistinguishable 
in the classical case (e.g. having one or two copies of the same 
example is not the same!). Next, we will consider another 
quantum generalization of learning, where quantum states are 
used to represent the generalizations of unknown concepts in 
computational learning theory (COLT)—thus we talk about 
the learning of quantum states. Following this we will present 
some results on quantum generalizations of POMDPs which 
could lead to quantum-generalized RL (although this actually 
just generalizes the mathematical structure).

5.1. Quantum generalizations: machine learning of quantum 
data

One of the basic problems of ML is that of supervised learn-

ing, where a training set D = {(xi, yi)}i is used to infer a label-

ing rule mapping data points to labels xi
rule→ yi  (see section 1.2 

for more details). More generally, supervised learning deals 
with the classification of classical data. In the tradition of QIP, 
data can also be quantum—that is, all quantum states carry, 
or rather represent, (quantum) information. What can be done 
with datasets of the type {(ρi, yi)}i, where ρi  is a quantum 
state? Colloquially it is often said that one of the critical dis-
tinctions between classical and quantum data is that quantum 
data cannot be copied. In other words, having one instance 
of an example, by abuse of notation denoted (ρi ⊗ yi), is not 
generally as useful as having two copies (ρi ⊗ yi)

⊗2. In con-
trast, in the case of classification with functional labeling 
rules, this is the same. The closest classical analog of dealing 

with quantum data is the case where labelings are not deter-
ministic or, equivalently, where the conditional distribution 
P(label|datapoint) is not extremal (Dirac). This is the case of 
classification (or learning) of random variables, or probabilis-
tic concepts, where the task is to produce the best guess label, 
specifying the random process which ‘most likely’ produced 
the data point77. In this case, having access to two examples in 
the training phase which are independently sampled from the 
same distribution is not the same as having two copies of one 
and the same individual sample—these are perfectly corre-
lated and carry no new information78. To obtain full informa-
tion about a distribution, or random variable, one in principle 
needs infinitely many samples. Similarly, in the quantum case, 
having infinitely many copies of the same quantum state ρ is 
operatively equivalent to having a classical description of the 
given state.

Despite similarities, quantum information is still different 
from mere stochastic data. The precursors of ML-type classi-
fication tasks can be identified in the theories of quantum state 
discrimination, which we briefly comment on first. Next, we 
review some early works dealing with ‘quantum pattern match-
ing’, which spans various generalizations of supervised settings, 
and first works which explicitly propose the study of quantum-
generalized ML. Next, we discuss more general results, which 
characterize inductive learning in quantum settings. Finally, we 
present a COLT perspective on learning with quantum data, 
which addresses the learnability of quantum states.

5.1.1. State discrimination, state classification and machine 
learning of quantum data.

State discrimination.  The entry point to this topic can 
again be traced to seminal works of Helstrom (1969) and 
Holevo (1982), as the problems of state discrimination can 
be rephrased as variants of supervised learning problems. 
In typical state discrimination settings, the task is the iden-
tification of a given quantum state (given as an instance of 
a quant um system prepared in that state), under the promise 
that it belongs to a (typically finite) set {ρi}i, where the set 
is fully classically specified. Recall that state estimation, in 
contrast, typically assumes continuous parametrized families, 
and the task is the estimation of the parameter. In this sense, 
discrimination is a discretized estimation problem79, and the 
problems of identifying optimal measurements (under various 
figures  of merit) and success bounds have been considered 
extensively and continuously throughout the history of QIP 
(Helstrom 1969, Croke et al 2008, Slussarenko et al 2017).

Remark. Traditional quantum state discrimination can 
be rephrased as degenerate supervised learning setting for 
quantum states. Here, the space of ‘data points’ is restrict-

76 Classical evolutions are guaranteed to transform computational basis 
states (the ‘classical states’) to computational basis states, and closed-system 
implies the dynamics must be reversible, leaving only permutations.

Executive summary: A significant fraction of the field 
of ML deals with data analysis, classification, cluster-
ing, etc. QIP generalizes standard notions of data to 
include quantum states. The processing of quantum 
information comes with restrictions (e.g. no-cloning 
or no-deleting), but also new processing options. This 
section  addresses the question of how conventional 
ML concepts can be extended to the quantum domain, 
mostly focusing on aspects of supervised learning and 
learnability of quant um systems but also on concepts 
underlying RL.

77 Note that in this setting we do not have the descriptions of the stochastic 
processes given a priori—they are to be inferred from the training examples.
78 In this sense, the no-cloning theorem also applies to classical information: 
an unknown random variable cannot be cloned. In QIP language this simply 
means that the no-cloning theorem applies to diagonal density matrices, i.e. 
ρ �→ ρ⊗ ρ, even when ρ is promised to be diagonal.
79 Intuitively, estimation is to discrimination what regression is to classifica-
tion in the ML world.
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ed to a finite (or parametrized) family {ρi}i, and the train-
ing set contains an effectively infinite number of examples 
D = {(ρi, i)⊗∞}; naturally, this notation is just a short-hand 
for having the complete classical description of the quantum 
states80. In what follows we will sometimes write ρ⊗∞ to de-
note a quantum system containing the classical description of 
the density matrix ρ.

Quantum template matching—classical templates. A variant 
of discrimination, or class assignment task, which is one of 
the first instances of works which establish explicit connec-
tions with ML and discrimination-type problems, is ‘template 
matching’ (Sasaki et  al 2001). In this pioneering work, the 
authors consider discrimination problems where the input 
states ψ may not correspond to the (known) template states 
{ρi}i and the correct matching label is determined by the larg-
est Uhlmann fidelity. More precisely, the task is defined as 
follows: given a classically specified family of template states 
{ρi}i and given M copies of a quantum input ψ⊗M , output the 

label icorr defined by icorr = argmaxiTr
[√√

ψρi
√
ψ
]2

. In this 

original work, the authors focus on two-class cases, with pure 
state inputs, and identify fully quantum and semi-classical 
strategies for this problem. ‘Fully quantum strategies’ identify 
the optimal POVM. Semi-classical strategies impose a restric-
tion of measurement strategies to separable measurements, or 
perform state estimation on the input, a type of ‘quantum fea-
ture extraction’.

Quantum template matching—quantum templates. In a gen-
eralization of the work in Sasaki et al (2001), the authors in 
Sasaki and Carlini (2002) consider the case where instead 
of having access to the classical descriptions of the template 
states {ρi}i, we are given access to a certain number of copies, 
K. In other words, we are given access to a quantum system 
in the state 

⊗
i ρ

⊗K
i . Setting K → ∞ recovers the case with 

classical templates. This generalized setting introduces many 
complications, which do not exist in the ‘more classical’ case 
with classical templates. For instance, classifying measure-
ments now must ‘use up’ copies of template states, as they 
too cannot be cloned. The authors identify various flavors of 
semi-classical strategies for this problem. For instance, if the 
template states are first estimated, we are facing the scenario 
of classical templates (albeit with error). The classical tem-
plate setting itself allows semi-classical strategies, where all 
systems are first estimated, and it allows coherent strategies. 
The authors find optimal solutions for K  =  1 and show that 
there exists a fully quantum procedure that is strictly superior 
to straightforward semi-classical extensions.

Remark. Quantum template matching problems can be un-
derstood as quantum-generalized supervised learning, where 
the training set is of the form {(ρ⊗K

i , i)i}, data beyond the 

training set comes from the family 
{
ψ⊗M

}
 (number of copies 

is known) and the classes are defined via minimal distance, 
as measured by the Uhlmann fidelity. The case K → ∞ ap-
proaches the special case of classical templates. Restricting 
the states ψ to the set of template states (restricted template 
matching) and setting M  =  1 recovers standard state discrimi-
nation.

Other known optimality results for (restricted) template match-
ing. For the restricted matching case, where the input is 
promised to be from the template set, the optimal solutions 
for the two-class setting, minimum error figure of merit and 
uniform priors of inputs have been found in Bergou and Hil-
lery (2005) and Hayashi et  al (2005) for the qubit case. In 
Hayashi et al (2006) the authors found optimal solutions for 
the unambiguous discrimination case81. An asymptotically 
optimal strategy in the restricted matching case with finite 
templates K < ∞ for arbitrary priors and mixed qubit states 
was later found in Guţă and Kotłowski (2010). This work also 
provides a solid introduction to the topic, a review of quantum 
analogies for statistical learning and emphasizes connections 
to ML methodologies and concepts.

Later, in Sentís et al (2012), the authors introduced and com-
pared all three strategies—classical estimate-and-discriminate, 
classical optimal and quantum strategy—for the restricted tem-
plate matching case with finite templates. Recall that the adjec-
tive ‘classical’ here denotes that the training states are fully 
measured out as the first step—the quantum set is converted to 
classical information, meaning that no quantum memory is fur-
ther required—and that the learning can be truly inductive. A 
surprising result is that the intuitive estimate-and-discriminate 
strategy, which reduces supervised classification to optimal 
estimation coupled with a (standard) quantum state discrimi-
nation problem, is not optimal for learning. Another measure-
ment provides not only better performance, but matches the 
optimal quantum strategy exactly (as opposed to asymptoti-
cally). Interestingly, the results of Guţă and Kotłowski (2010) 
and Sentís et al (2012) make opposite claims for essentially the 
same setting: no separation versus separation between coher-
ent (fully quantum) and semi-classical strategies, respectively. 
This discrepancy is caused by differences in the chosen fig-
ures of merit and a different definition of asymptotic optimality 
(Sentís 2017) and serves as an effective reminder of the sub-
tle nature of quantum learning. Optimal strategies have been 
subsequently explored in other settings as well, e.g. when the 
dataset comprises coherent states (Sentís et al 2015) and in the 
cases where an error margin is in an otherwise unambiguous 
setting (Sentís et al 2013).

Quantum generalizations of (un)supervised learning. The 
works of the previous paragraph consider particular families 
of generalizations of supervised learning problems. The first 
attempts to classify and characterize what ML could look like 

80 From an operative and information content perspective, having infinitely 
many copies is equivalent to having a full classical description: infinite 
copies are sufficient and necessary for perfect tomography—yielding the 
exact classical description—whereas having an exact classical description is 
sufficient and necessary for generating an unbounded copy number.

81 In unambiguous discrimination, the device is allowed to output an am-
biguous ‘I do not know’ outcome, but is not allowed to err in the case it does 
output an outcome. The goal is to minimize the probability of the ambiguous 
outcome.
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in a quantum world from a more general perspective were, 
however, first explicitly carried out in Aïmeur et  al (2006). 
There, the basic object introduced is the database of labeled 
quantum or classical objects, i.e. DK

n = {(|ψi〉⊗i , yi)}n
i=1

82, 
which may come in copies. Such a database can, in general, 
then be processed to solve various types of tasks, using clas-
sical or quant um processing. The authors propose to charac-
terize quantum learning scenarios in terms of classes, denoted 
Lcontext

goal . Here context may denote whether we are dealing with 
classical or quantum data and whether the learning algorithm 
is relying on quantum capabilities or not. The goal speci-
fies the learning task or goal (perhaps in very broad terms). 
Examples include Lc

c, which corresponds to standard classical 
ML, and Lq

c , which could mean we use a quantum computer 
to analyze classical data. The example of template matching 
classical templates (K = ∞) (Sasaki et  al 2001) considered 
earlier in this section would be denoted by Lc

q, and the gen-
eralization with finite template numbers K < ∞ would fit in 
L⊗K

q . While the formalism above suggests a focus on super-
vised settings, the authors also suggest that datasets could be 
inputs for (unsuper vised) clustering. The authors further study 
quantum algorithms for determining closeness of quantum 
states83, which could be the basic building block of quantum 
clustering algorithms, and also compute certain error bounds 
for special cases of classification (state discrimination) using 
well known results of Helstrom (1969). Similar ideas were 
used in Lu and Braunstein (2014) for the purpose of defining 
a quantum decision tree algorithm for data classification in the 
quantum regime.

The strong connection between quantum-generalized learn-
ing theory sketched out in Aïmeur et al (2006) and the classi-
cal84 theory of Helstrom (1969) was more deeply explored in 
Gambs (2008). There, the author computed the lower bounds of 
sample complexity—in this case the minimal number of cop-
ies K—needed to solve a few types of classification problems. 
For this purpose the author introduced a few techniques which 
reduce ML-type classification problems to the settings where 
the theory (Helstrom 1969) of could be directly applied. These 
types of results contribute to establishing a deeper connection 
between the problems of ML and the techniques of QIP.

Quantum inductive learning. Recall that inductive, eager 
learning produces a best guess classifier which can be applied to 
the entire domain of data points, based on the training set. But, 
the results of Sasaki and Carlini (2002) discussed in the para-
graph on template matching with quantum templates already 
point to problems with this concept in the quantum realm—
the optimal classifier may require a copy of the quant um data 
points to perform classification, which seemingly prohibits 
unlimited use. The perspectives of such quantum generaliza-
tions of supervised learning in its inductive form were recently 

addressed from a broad perspective (Monràs et  al 2017). 
Recall that inductive learning algorithms, intuitively, use only 
the training set to specify a hypothesis (the estimation of the 
true labeling function). In contrast, in transductive learning, 
the learner is also given the data points for which the labels 
are unknown. These unlabeled points may correspond to the 
cross-validation test set or the actual target data. Even though 
the labels are unknown, they carry additional information from 
the complete dataset which can be helpful in identifying the 
correct labeling rule85. Another distinction is that transductive 
algorithms need only label the given points, whereas inductive 
algorithms need to specify a classifier, i.e. a labeling function, 
defined on the entire space of possible points. In Monràs et al 
(2017), the authors notice that the property of an algorithm 
being inductive corresponds to a non-signaling property86, 
which they can use to prove that ‘being inductive’ (i.e. being 
‘no signaling’) is equivalent to having an algorithm which out-
puts a classifier h based on the training set alone, which is then 
applied to every training instance. A third equivalent charac-
terization of inductive learning is that the training and testing 
cleanly separate as phases. While these observations are quite 
intuitive in the classical case, they are in fact problematic in 
the quantum world. Specifically, if the training examples are 
quantum objects, quantum no-cloning, in general, prohibits the 
applying of a hypothesis function (candidate labeling function) 
h arbitrarily many times. This is easy to see since each instance 
of h must depend on the quantum data in some non-trivial way, 
if we are dealing with a learning algorithm. Multiple copies of 
h would then require multiple copies of (at least parts of) the 
quantum data.

A possible implication of this would be that, in the quant um 
realm, inductive learning cannot be cleanly separated into 
training and testing. Nonetheless, the authors show that the 
no-signaling criterion, for certain symmetric measures of per-
formance, implies that a separation is asymptotically possible. 
Specifically, the authors show that for any quantum inductive 
no-signaling algorithm A there exists another, perhaps differ-
ent, algorithm A′, which does separate in a training and testing 
phase and which, asymptotically, attains the same performance 
(Monràs et al 2017). Such a protocol A′, essentially, utilizes a 
semi-classical strategy. In other words, for inductive settings, 
classical intuition survives despite the no-cloning theorems.

5.1.2. Computational learning perspectives: quantum states 
as concepts. The previous subsections addressed the top-
ics of classification of quantum states, based on quantum 
database examples. The overall theory, however, relies on 
the assumption that there exists a labeling rule which gener-
ates such examples and the labeling rule is what is learned. 
This rule is also known as a concept in COLT (e.g. PAC 

82 Such a dataset can be stored in, or instantiated by, a 2-n partite quantum 
system, prepared in the state 

⊗n
i=1 |ψi〉⊗Ki |yi〉.

83 These are based on the SWAP-test (see section 6.3.2), in terms of  
Uhlmann fidelity
84 Here we mean classical in the sense of ‘being a classic’, rather than  
pertaining to classical systems.

85 For instance, a transductive algorithm may use unsupervised clustering 
techniques to assign labels, as the whole set is given in advance.
86 The outcome of the entire learning and evaluation process can be viewed 
as a probability distribution P(y) = P(y1 . . . yk|x1 . . . xk; A), where A is the 
training set, x1, . . . xk are the points of the test state and y1 . . . yk  the respec-
tive labels the algorithm assigns with the probability P(y). No signaling 
implies that the marginal distribution for the kth test element P(yk) only 
depends on xk and the training set, but not on the other test points {xl}l �=k .
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learning; see section  2.2.1 for details). A reasonable suf-
ficient criterion is whether one can predict the probabili-
ties of the outcomes of any two-outcome measurements 
on this state, as this already suffices for a full tomographic 
reconstruction. What would ‘the learning of quantum states’ 
mean, from this perspective? What does it mean to ‘know 
a quantum state’? A natural criterion is that one ‘knows’ 
a quantum state if one can predict the measurement out-
come probabilities of any given measurement. In Aaronson 
(2007), the author addressed the question of the learnability 
of quantum states in the sense above, where the role of a 
concept is played by a given quantum state, and ‘knowing’ 
the concept then equates to the possibility of predicting the 
outcome probability of a given measurement and its out-
come. One immediate distinction from conventional COLT, 
discussed in section  2.2.1, is that the concept range is no 
longer binary. However, as we clarified, classical COLT has 
generalizations with continuous ranges. In particular, so 
called p-concepts have range in [0, 1] (Kearns and Schapire 
1994), and quantities which are analogs of the VC dimen-
sion and analogous theorems relating this to generalization 
performance exist for the p-concept case as well (see Aar-
onson (2007)). Explicitly, the basic elements of such a gen-
eralized theory are: domain of concepts X, a sample x ∈ X 
and the p-concept f : X → [0, 1]. These abstract objects are 
mapped to central objects of quantum information theory 
(Aaronson 2007) as follows: the domain of concepts is the 
set of two-outcome quantum measurements, a sample is a 
POVM element Π87 (in short: x ↔ Π) and the p-concept to 
be learned is a quantum state ψ. The evaluation of the con-
cept/hypothesis on the sample corresponds to the probabil-
ity Tr[Πψ] ∈ [0, 1] of observing the measurement outcome 
associated with Π when the state ψ is measured.

It may be useful to further clarify the connection between 
the standard data-classification perspectives of supervised 
learning and the COLT perspective above. In the language of 
supervised learning we typically talk about classifiers, which 
partition their domain — or rather, they label the data points. 
In the setting of learning of quantum states, the classifier is the 
concept — in this case the quantum state. The quantum state 
‘classifies’ the set of quantum POVM elements, according 
to the probability of observing the corresponding outcome. 
Specifically, a quantum state ρ (concept/hypothesis/classifier) 
assigns the label Tr [ρ Π] ∈ [0,1] to the POVM element (data 
point) Π. The training set elements for this model are of the 
form (Π, Tr(ρΠ)), with 0 � Π � .

In the spirit of COLT, the concept class ‘quantum states’, 
is said to be learnable under some distribution D over two-
outcome generalized measurement elements (Π) if, for every 
concept—quantum state ρ—there exists an algorithm with 
access to examples of the form (Π, Tr(ρΠ)), where Π is 
drawn according to D, which outputs a hypothesis h which 
(approximately) correctly predicts the label Tr(ρΠ′) with 
high probability when Π′ is drawn from D. Note that the role 
of a hypothesis here can simply be played by a ‘best guess’ 
classical description of the quantum state ρ. The key result 

of Aaronson (2007) is that quantum states are learnable with 
sample complexity scaling only linearly in the number of 
qubits88, that is, logarithmically in the dimension of the den-
sity matrix. In operative terms, if Alice wishes to send an n 
qubit quantum state to Bob who will perform on it a two-out-
come measurement (and Alice does not know which), she can 
achieve near-ideal performance by sending (O(n)) classical 
bits89, which has clear practical but also theoretical impor-
tance. In some sense, these results can also be thought of 
as a generalized variant of Holevo bound theorems (Holevo 
1982), limiting how much information can be stored and 
retrieved in the case of quantum systems. This latter result has 
thus far been more influential in the contexts of tomography 
than quantum ML, despite being quite a fundamental result 
in quantum learning theory. However, for fully practical pur-
poses, the results above come with a caveat. The learning of 
quantum states is efficient in sample complexity (e.g. num-
ber of measurements one needs to perform) but the computa-
tional complexity of the reconstruction of the hypothesis is, 
in fact, likely exponential in the qubit number. Very recently, 
the  efficiency of the reconstruction algorithms for the learn-
ing of stabilizer states was also shown in Rocchetto (2017).

5.2. (Quantum) learning and quantum processes

Learning of quantum processes. The concept of learning is quite 
diffuse and ‘quantum learning’ has been used in the literature quite 
often. Not every instance corresponds to generalizations of ‘clas-
sical learning’ in a machine or statistical learning sense. Nonethe-
less, some such works further illustrate the distinctions between 
the approaches one can employ with access to classical (quantum) 
tools, while learning about classical or quantum objects.

87 More precisely Π is a positive-semidefinite operator such that −Π is 
positive-semidefinite as well.

88 The dependencies on the allowed inverse error and inverse allowed failure 
probability are polynomial and polylogarithmic, respectively.
89 Here we assume Alice can locally generate her states at will. A classical 
strategy (using classical channels) is thus always possible by having Alice send 
the outcomes of full state tomography (or equivalently the classical description 
of the state), but this requires the use of O(2n) bits already for pure states.

Executive summary: The notion of quantum learning 
has been used in the literature to refer to the study of 
various aspects of ‘learning about’ quantum systems. 
Beyond the learning of quantum states, one can also 
consider the learning of quantum evolutions. Here 
‘knowing’ is operatively defined as having the capacity 
to implement the given unitary at a later point—this is 
similar to how ‘knowing’ in COLT implies that we can 
apply the concept function at a later point. Finally, as 
learning can pertain to learning in interactive environ-
ments—RL—one can consider the quantum gener-
alizations of such settings. One of the first results in 
this direction formulates a quantum generalization of 
POMDPs. Note that as POMDPs form the mathemati-
cal basis of RL, the quantum-generalized mathematical 
object—quantum POMDP—may form a basis of quant-
um-generalized RL.
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Learning unitaries. For instance ‘quantum learning of unitary 
operations’ has been used to refer to the task of optimal stor-
ing and retrieval of unknown unitary operations, which is a 
two stage process. In the storing phase, one is given access 
to a few uses of some unitary U. In the retrieval phase, one 
is asked to approximate the state U |ψ〉 , given one or a few 
instances of a (previously fully unknown) state |ψ〉. As in the 
case of quantum template states (see section 5.1.1), we can dis-
tinguish semi-classical prepare-and-measure strategies (where 
U is estimated and represented as classical information) from 
quantum strategies, where the unitaries are applied on some 
resource state, which is used together with the input state |ψ〉 
in the retrieval stage. There is no simple universal answer to 
the question of optimal strategies. In Bisio et  al (2010), the 
authors have shown, under reasonable assumptions, the sur-
prising result that optimal strategies are semi-classical. In con-
trast, in Bisio et al (2011), the same question was asked for 
generalized measurements and the opposite was shown: opti-
mal strategies require quantum memory. See e.g. Sedlák et al 
(2017) for some recent results on probabilistic unitary storage 
and retrieval, which can be understood as genuinely quantum 
learning90 of quant um operations.

Learning measurements. The problem of identifying which 
measurement apparatus one is facing has featured in compara-
tively fewer works; see e.g. Sedlák and Ziman (2014) for a 
more recent example. Related to this, we encounter a more 
learning-theoretical perspective on the topic of learning meas-
urements. In the comprehensive paper Cheng et  al (2016) 
(which can serve as a review of parts of quantum ML in its 
own right), the authors explore the question of the learnability 
of quantum measurements. This can be thought of as the dual 
of the task of learning quantum states discussed previously in 
this section. Here, the examples are of the form (ρ, Tr(ρE)) 
and it is the measurement that is fixed. In this work, the 
authors compute a number of complexity measures, which 
are closely related to the VC dimension (see section 2.2.1), 
for which sample complexity bounds are known. From such 
complexity bounds one can, for instance, rigorously answer 
various relevant operative questions, such as how many ran-
dom quantum probe states we need to prepare on average to 
accurately estimate a quantum measurement. Complementing 
the standard estimation problems, here we do not compute the 
optimal strategy but effectively gauge the information gain 
of a randomized strategy. These measures are computed for 
the family of hypotheses/concepts which can be obtained by 
either fixing the POVM element (thus learning the quantum 
measurement) or by fixing the state (which is the setting of 
Aaronson (2007)) and clearly illustrate the power of ML the-
ory when applied in QIP context.

Foundations of quantum-generalized RL. The majority of 
quantum generalizations of ML concepts fit neatly in the 
domain of supervised learning with a few notable excep-
tions. In particular, in Barry et al (2014), the authors intro-
duce a quantum generalization of partially observable MDPs 

(POMDPs), discussed in section  2.3. For the convenience 
of the reader we give a brief recap of these objects. A fully 
observable MDP is a formalization of task environments: 
the environ ment can be in any number of states S  which the 
agent can observe. An action a ∈ A  of the agent triggers a 
trans ition of the state of the environment—the transition can 
be stochastic, and is specified by a Markov transition matrix 
Pa91. Additionally, beyond the dynamics, each MDP comes 
with a reward function R : S ×A× S → Λ, which rewards 
certain state-action-state transitions. In a POMDP, the agent 
does not see the actual state of the environment, but rather 
just observations o ∈ O, which are (stochastic) functions of 
the environ mental state92. Although the exact environmental 
state of the environment is not directly accessible to the agent, 
given the full specification of the system the agent can still 
assign a probability distribution over the state space given 
an interaction history. This is called a belief state and can be 
represented as a mixed state (mixing the ‘classical’ actual 
environmental states) which is diagonal in the POMDP state 
basis. The quantum generalization promotes the environment 
belief state to any quantum state defined on the Hilbert space 
spanned by the orthonormal basis {|s〉 |s ∈ S}. The dynamics 
of the quantum POMDP are defined by actions which cor-
respond to quantum instruments (superoperators) the agent 
can apply: to each action a, we associate the set of Krauss 
operators {Ka

o}o∈O, which satisfy 
∑

o Ka†
oKa

o = . If the agent 
performs the action a and observes the observation o, the state 
of the environment is mapped as ρ → Ka

oρKa
o
†/Tr[Ka

oρKa
o
†], 

where Tr[Ka
oρKa

o
†] is the probability of observing that out-

come. Finally, rewards are defined via the expected values 
of action-specific positive operators Ra, so Tr[Raρ], given the 
state ρ. In Barry et  al (2014), the authors have studied this 
model from the computational perspective of the hardness of 
identifying the best strategies for the agent, contrasting this 
setting to classical settings and proving separations. In par-
ticular, the complexity of deciding policy existence for finite 
horizons93 is the same for the quantum and classical cases94. 
However, a separation can be found with respect to the goal 
reachability problem, which asks whether there exists a policy 
(of any length) which, with probability 1, reaches some target 
state. This separation is maximal—this problem is decidable 
in the classical case, yet undecidable in the quantum case. 
While this particular separation may not have immediate con-
sequences for quantum learning, it suggests that there may be 
other (dramatic) separations with more immediate relevance.

90 Quantum in that that which is learned is encoded in a quantum state.

91 In other words, for any environment state s, producing an action a causes 
a transition to some state s′  with probability �s′

τ
Pa�s , where states are repre-

sented as canonical vectors.
92 In general, the observations output can also depend on the previous action 
of the agent.
93 That is, given a full specification of the setting, decide whether there ex-
ists a policy for the agent which achieves a cumulative reward above some 
value, in a certain number of states.
94 This decision problem is already undecidable in the infinite horizon case 
for the classical problem, and thus trivially undecidable in the quantum case 
as well.
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6. Quantum enhancements for machine learning

One of the most advertised aspects of quantum ML deals 
with the question of whether quantum effects can help us 
solve classical learning tasks more efficiently, ideally mir-
roring the successes of QC. The very first attempts to apply 
quant um information techniques to ML problems were made 
even before the seminal works of Shor (1997) and Grover 
(1996). Notable examples include the pioneering research 
into quant um NNs and quantum perceptrons (Lewenstein 
1994, Kak 1995), the potential of quantum COLT (Bshouty 
and Jackson 1998) and early suggestions to exploit the expo-
nential size of the Hilbert space for efficient data-vector rep-
resentation and classification (Vlasov 1994, 1997). The topic 
of quantum NNs has undergone sustained growth and devel-
opment since these early days, exploring various types of 
questions regarding the interplay of quantum mechanics and 
NNs. Most of the research in this area is not directly targeted 
at algorithmic improvements, and hence will be only briefly 
mentioned here. A fraction of the research into quantum NNs, 
which was disproportionately more active in the early days, 
considered the speculative topics of the function of quantum 
effects in NNs, both artificial and biological (Penrose 1989, 
Kak 1995). Parts of this research line have focused on con-
crete models, such as the effect of transverse fields in Hopfield 
networds (HNs) (Nishimori and Nonomura 1996) and deco-
herence in models of biological nets (Tegmark 2000), which, 
it is argued, would destroy any potential quantum effect. A 
second topic which permeates the research in quantum NNs 
is concerned with the fundamental question of a meaningful 
quantization of standard feed-forward NNs. The key question 
here is finding the best way to reconcile the linear nature of 
quantum theory with the necessity for non-linearities in the 
activation function of an NN (see section 2.1.1) and identify-
ing suitable physical systems to implement such a scheme. 
Early ideas here included giving up on non-linearities per se 
and considering networks of unitaries which substitute lay-
ers of neurons (Lewenstein 1994). Another approach exploits 
non-linearities which stem from measurements and post-
selection (arguably first suggested in Kak (1995)). The same 
issue is addressed by Behrman et al (1996) by using a contin-
uous mechanical system where the non-linearity is achieved 
by coupling the system with an environment95 in the model 
system of quantum dots. The purely foundational research 
into implementations of such networks and analysis of their 
quantum mechanical features has been and continues to be 
an active field of research (see e.g. Altaisky et al (2017)). For 
more information on this topic we refer the reader to more 
specialized reviews (Garman 2011, Schuld et al 2014b).

Unlike the research into quantum NNs, which has a founda-
tional flavor, the majority of works studying quantum effects 
for classical ML problems are specifically focused on identify-
ing improvements. The first examples of quantum advantages 
in this context were provided in the context of quantum COLT, 
which is the topic of the first subsection below. In the second 
subsection we will survey research suggesting the possibilities 

of improvement in the capacity of associative memories. The 
last subsection deals with proposals which address computa-
tional run-time improvements in classical learning algorithms, 
the first of which came out as early as the early 2000s. Here 
we will differentiate between approaches which focus on 
quantum improvements in the training phase of a classifier by 
means of quantum optimization (mostly focused on exploiting 
near-term technologies and restricted devices) and approaches 
which build algorithms based on, roughly speaking, quantum 
parallelism and ‘quantum linear algebra’—which typically 
assume universal quantum computers and often ‘pre-filled’ 
databases. It should be noted that the majority of research in 
quantum ML is focused precisely on this last aspect, and the 
results here are already quite numerous. We can thus afford to 
present only a chosen selection of results.

6.1. Learning efficiency improvements: sample complexity

As elaborated on in section 2.2.1, COLT deals with the  problem 
of learning concepts, typically abstracted as boolean func-
tions of bit-strings of length n, that is, c : {0, 1}n → {0, 1}, 
from input–output relations alone. For intuitive purposes it is 
helpful to think of the task of optical character recognition 
(OCR), where we are given a bitmap image (black-and-white 
scan) of some size n = N × M , and a concept may be, say, 
‘everything which represents the letter A’ or, more precisely, 
the concept specifying which bitmaps correspond to the bit-
maps of the letter ‘A’. Further, we are most often interested in 
a learning performance for a set of concepts: a concept class 
C = {c|c : {0, 1}n → {0, 1}}—in the context of the running 
example of OCR, we care about algorithms which are capable 
of recognizing all letters, and not just ‘A’96.

The three typical settings studied in literature are the PAC 
model, exact learning from membership queries and the agnos-
tic model; see section 2.2.1. These models differ in the type of 

95 Similar ideas were also discussed by Peruš in Peruš (2000).

96 Note that the choice and size of the concept class significantly influences 
the hardness of learning. For instance, if we assume that a given concept 
can be any boolean function, it is clear that one in principle needs to see all 
possible (thus exponentially many). In contrast, if the concept class contains 
only one element, learning is trivial, as the optimal algorithm just outputs 
the single concept.

Executive summary: The first results showing the sepa-
ration between quantum and classical computers were 
obtained in the context of oracles and for sample com-

plexity—even the famous Grover’s search algorithm 
constitutes such a result. Similarly, COLT deals with 
the learning, i.e. the identification or the approximation, 
of concepts, which are also nothing but oracles. Thus, 
quantum oracular computation settings and learning 
theory share the same underlying framework, which is 
investigated and exploited in this formal topic. To talk 
about quantum COLT and improvements, or bounds, 
on sample complexity, the classical concept oracles are 
thus upgraded to quantum concept oracles, which out-
put quantum states and/or allow access in superposition.
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access to the concept oracle which is allowed. In the PAC model, 
the oracle outputs labeled examples according to some specified 
distribution, analogous to basic supervised learning. In the mem-
bership queries model, the learner gets to choose the examples, 
and this is similar to active supervised learning. In the agnostic 
model, the concept is ‘noisy’, i.e. forms a stochastic function, 
which is natural in supervised settings (the joint datapoint-label 
distribution P(x, y) need not be ‘functional’, i.e. it may have 
non-zero probabilities for P(x, y) and P(x, y′), for some x and 
y �= y′); for details we refer the reader to section 2.2.1.

All three models have been treated from a quantum per-
spective and whether or not quantum advantages are obtain-
able greatly depends on the details of the settings. Here we 
give a very succinct overview of the main results, partially 
following the structure of the recent survey on the topic by 
Arunachalam and de Wolf (2017).

6.1.1. Quantum PAC learning. The first quantum generaliza-
tion of PAC learning was presented in Bshouty and Jackson 
(1998), where the quantum example oracle was defined to out-
put coherent superpositions

∑
x

√
pD(x) |x, c(x)〉 , (23)

for a given distribution D over the data points x for a con-
cept c. Recall that classical PAC oracles output a sample pair 
(x, c(x)), where x is drawn from D, which can be understood 
as copies of the mixed state 

∑
x pD(x) |x, c(x)〉 〈x, c(x)|, with 

pD(x) = P(D = x). The quantum oracle reduces to the standard 
oracle if the quantum example is measured in the standard (com-
putational) basis. This first pioneering work showed that quant um 
algorithms with access to such a quantum-generalized oracle can 
provide more efficient learning of certain concept classes. The 
authors have considered the concept class of DNF formulas under 
the uniform distribution: here the concepts are s-term form ulas 
in disjunctive normal form. In other words, each concept c is of 
the form c(x) =

∨
I

∧
j(xI)

′
j , where xI is a substring of x associ-

ated to I, which is a subset of the indices of cardinality at most 
s, and (xI)

′
j is a variable or its negation (a literal). An example 

of a DNF is of the form (x1 ∧ x3 ∧ ¬x6) ∨ (x4 ∧ ¬x8 ∧ x1) · · ·, 
where parentheses (terms) only contain variables or their nega-
tions in conjunction (ANDs, ∧), whereas all the parentheses are 
in disjunction (ORs, ∨).

The uniform DNF learning problem (for n variables and 
poly(n) terms) is not known to be efficiently PAC learnable, 
but in Bshouty and Jackson (1998) it was proven to be effi-
ciently quantum PAC learnable. The choice of this learning 
problem was not accidental: DNF learning is known to be 
learnable in the membership query model, which is described 
in detail in the next section. The corresponding classical algo-
rithm which learns DNF in the membership query model 
directly inspired the quantum variant in the PAC case97. If the 

underlying distribution over the concept domain is uniform, 
other concept classes can be learned with a quantum speed-
up as well, specifically, so called k-juntas: n-bit binary func-
tions which depend only on k  <  n bits. In Atıcı and Servedio 
(2007), Atıcı and Servedio have shown that there exists a 
quantum algorithm for learning k-juntas using O(k log(k)/ε) 
uniform quantum examples, O(2k) uniform classical exam-
ples and O(n k log(k)/ε+ 2k log(1/ε)) time. Note that the 
improvement in this case is not in query complexity but rather 
in the classical processing, which, for the best known classi-
cal algorithm, has complexity at least O(n2k/3) (see Atıcı and 
Servedio (2007) and Arunachalam and de Wolf (2017) for fur-
ther details).

Diverging from perfect PAC settings, in Cross et al (2015), 
the authors considered the learning of linear boolean func-
tions98 under the uniform distribution over the examples. The 
twist in this work is the assumption of noise99 which allows 
for evidence of a classical quantum learnability separation.

In more recent times, it was also shown that learning with 
errors100, an important topic in COLT with critical applica-
tions in post-quantum cryptography, has been shown to be 
efficiently learnable given quantum examples (Grilo and 
Kerenidis 2017).

Distribution-free PAC. While the assumption of the uniform 
distribution D constitutes a convenient theoretical setting, in 
reality most often we have few guarantees on the underlying 
distribution of the examples. For this reason PAC learning 
often refers to distribution-free learning, meaning learning 
under the worst case distribution D. Perhaps surprisingly, it 
was recently shown that the quantum PAC learning model 
offers no advantages in terms of sample complexity over the 
classical model. Specifically, in Arunachalam and de Wolf 
(2016) the authors show that if C is a concept class of VC 
dimension d  +  1 then, for every (non-negative) δ � 1/2 
and ε � 1/20, every (ε, δ)-quantum PAC learner requires 
Ω(d/ε+ log(d−1)/ε) samples. The same number of samples, 
however, is also known to suffice for a classical PAC learner 
(for any ε and δ).

A similar result, showing no separation between 
quant um and classical agnostic learning was also proven in 
Arunachalam and de Wolf (2016)101.

97 To provide the minimal amount of intuition, the best classical algorithm 
for the membership query model heavily depends on Fourier transforms 
(FT) of certain sets—the authors then use the fact that FT can be efficiently 
implemented on the amplitudes of the states generated by the quantum 
oracle using quantum computers. We refer the reader to Bshouty and Jack-
son (1998) for further details.

98 The learning of such functions is in QIP circles also known as the 
(non-recursive) Bernstein–Vazirani problem defined first in Bernstein and 
Vazirani (1997).
99 However, the meaning of noise is not exactly the same in the classical and 
quantum case.
100 In learning with errors, one is required to learn a hidden vector a, given 
examples of the form (x, xτa + ε), where ε is an error term drawn from 
some distribution and all the operations are done within a fixed field. Note 
that the zero-error version matches the setting of Fourier sampling.  
The building of cryptographic primitives whose hardness relies on the  
hardness of the learning problem of learning with errors had been a common 
approach to building protocols secure against quantum adversaries. The pre-
sented result does not break these approaches but does highlight previously 
unrecognized issues.
101 The notions of efficiency and sample complexity in the agnostic model 
are analogous to those in the PAC model, as is the quantum oracle which 

provides the coherent samples 
∑

x,y

√
pD(x, y) |x, y〉. See section 2.2.1 for 

more details.
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Quantum predictive PAC learning. Standard PAC learning 
settings do not allow exponential separations between clas-
sical and quantum sample complexity of learning, and con-
sequently the notion of learnable concepts is the same in 
the classical and the quantum case. This changes if we con-
sider weaker learning settings or, rather, a weaker mean-
ing of what it means to learn. The PAC learning setting 
assumes that the learning algorithm outputs a hypothesis 
h with a low error with high confidence. In the classical 
case, there is no distinction between expecting that the 
hypothesis h can be applied once or any arbitrary number 
of times. However, in the quantum case, where the exam-
ples from the oracle may be quantum states, this changes 
and inductive learning in general may not be possible in 
all settings; see section 5. In Gavinsky (2012), the author 
considers a quantum PAC setting where only one (or poly-
nomially few) evaluations of the hypothesis are required, 
called the Predictive Quantum (PQ) model102. In this set-
ting the author identifies a relational concept class (i.e. 
each data point may have many correct labels) which is not 
(polynomially) learnable in the classical case, but is PQ 
learnable under a standard quant um oracle under the uni-
form distribution. The basic idea is to use quantum states, 
obtained by processing quantum examples, for each of the 
testing instances—in other words, the ‘implementation’ of 
the hypothesis contains a quantum state obtained from the 
oracle. This quantum state cannot be efficiently estimated, 
but can be efficiently obtained using the PQ oracle. The 
concept class and the labeling process are inspired by a 
distributed computation problem for which an exponential 
classical–quantum separation had been identified earlier in 
Bar-Yossef et al (2008). This work provides another note-
worthy example of the intimate connection between vari-
ous aspects of QIP—in this case, quantum communication 
complexity theory—and quantum learning.

6.1.2. Learning from membership queries. In the model of 
exact learning from membership queries, the learner can 
choose the elements from the concept domain it wishes to 
be labeled (similar to active learning); however, the task is 
to identify the concept exactly (no error) except with prob-
ability δ < 1/3103. Learning from membership queries has, 
in the quantum domain, usually been called oracle identi-
fication. While quantum improvements in this context are 
possible, in Servedio and Gortler (2004), the authors show 
that they are at most low-degree polynomial improvements 

in the most general cases. More precisely, if a concept 
class C over n-bits has classical and quantum member-
ship query complexities D(C) and Q(C), respectively, then 
D(C)  =  O(nQ(C)3)104—in other words, improvements in 
sample complexity can be at most polynomial. Polynomial 
relationships have also been established for worst-case 
exact learning sample complexities (so-called (N, M)-query 
complexity); see Kothari (2013) and Arunachalam and de 
Wolf (2017). The above result is in spirit similar to ear-
lier results in Beals et al (2001), where it was shown that 
quant um query complexity cannot provide a better-than-
polynomial improvement over classical results, unless 
structural requirements on the oracle are imposed.

The results so far considered are standard, compara-
tively simple generalizations of classical learning settings, 
leading to somewhat restricted improvements in sample 
complexity. More dramatic improvements are possible if 
computational (time) complexity is taken into account, 
or if slightly non-standard generalizations of the learning 
model are considered. Note that we are not explicitly bring-
ing computational complexity separations into the picture. 
Rather, under the assumption that certain computation 
problems are hard for the learner, we obtain a sample com-
plexity separation.

In particular, already in Kearns and Valiant (1994) the 
authors constructed several classes of Boolean functions in 
the distribution-free model whose efficient learning (in the 
sample complexity sense) implies the capacity of factoring 
so-called Blum integers—a task not known to be solvable 
classically, but solvable on a quantum computer105. Using 
this observations, Servedio and Gortler have demonstrated 
classes which are efficiently quantum PAC learnable and 
classes which are efficiently learnable in the quantum mem-
bership query model, but which are not efficiently learnable in 
the corresponding classical models, unless Blum integers106 
can be efficiently factored on a classical computer (Servedio 
and Gortler 2004).

102 In a manner of speaking, to learn a concept, in the PAC sense, implies 
that we can apply what we have learned arbitrarily many times. In PQ it 
suffices that the learner be capable of applying what it had learned just 
once to be considered successful. It, however, follows that if the number of 
examples is polynomial, PQ learnability also implies that the verification of 
learning can be successfully executed polynomially many times as well.
103 As usual, success probability which is polynomially bounded away from 
1/2 would also do.

104 This simple formulation of the claim of Servedio and Gortler (2004) was 
presented in Arunachalam and de Wolf (2017).
105 These ideas exploit the connections between asymmetric  
cryptography and learning. In asymmetric cryptography, a message can be 
decrypted easily using a public key, but the decryption is computationally 
hard unless one has a private key. To exemplify, the public key could  
be a Blum integer whereas the private key could be one of the factors.  
The data points are essentially the encryptions of integers k, E(k, N),  
for a public key N. The concept is defined by the least significant bit of k, 
which, provably, is not easier to obtain with bounded error than  
the decryption itself, which is computationally hard. A successful  
efficient learner of such a concept could factor Blum integers.  
The full proposal has further details which we omit for  
simplicity.
106 The integer n is a Blum integer if it is a product of two distinct prime 
numbers p and q, which are congruent to 3 mod 4 (i.e. both can be written in 
the form 4t + 3, for a non-negative integer t.).

Rep. Prog. Phys. 81 (2018) 074001



Report on Progress

41

6.2. Improvements in learning capacity

The pioneering investigations in the areas between COLT, NNs 
and QIP challenged the classical sample complexity bounds. 
Soon thereafter (and likely independently), the first propos-
als suggesting quantum improvements in the context of space 
complexity emerged—specifically the efficiency of associa-
tive memories. Recall that associative, or CAM is a storage 
device which can be loaded with patterns, typically a subset 
of n-bit bit-strings P = {xi}i, xi ∈ {0, 1}n, which are then, 
unlike in the case of standard RAM-type memories, not recov-
ered by address but by content similarity: given an input string 
y ∈ {0, 1}n, the memory should return y if it is one of the stored 
patterns (i.e. y ∈ P) or else a stored pattern which is ‘closest’ 
to y, with respect to some distance, typically the Hamming 
distance. Deterministic perfect storage of any set of patterns 
clearly requires O(n × 2n) bits (there are in total 2n distinct 
patterns each requiring n bits), and the interesting aspects of 
CAMs begin when the requirements are somewhat relaxed. We 
can identify roughly two basic groups of ideas which were sug-
gested to lead to improved capacities. The first group, sketched 
next, relies directly on the structure of the Hilbert space, 
whereas the second group of ideas stems from the quantization 
of a well-understood architecture for a CAM system: the HN.

6.2.1. Capacity from amplitude encoding. In some of the 
first works (Ventura and Martinez 2000 and Trugenberger 
2001) it was suggested that the proverbial ‘exponential-sized’ 
Hilbert space describing systems of qubits may allow expo-
nential improvements: intuitively even exponentially nume-
rous pattern sets P can be ‘stored’ in a quant um state of only 

n qubits: |ψP〉 = |P|− 1
2
∑

x∈P |x〉. These early works suggested 
creative ideas on how such a memory could be used to recover 
patterns (e.g. via modified amplitude amplification), though 
these often suffered from a lack of scalability and other quite 
fundamental issues, preventing them from yielding complete 
proposals107, and thus we will not dig into the details. We 
will, however, point out that these works may be interpreted 

to propose some of the first examples of ‘amplitude encod-
ing’ of classical data, which is heavily used in modern 
approaches to quantum ML. In par ticular, the stored memory 
of a CAM can always be represented as a single bit-string 
(b(0···0), b(0···1), . . . , b(1...1)) of length 2n (each bit in the bit-
string is indexed by a pattern, and its value encodes whether 
it is stored or not). This data vector (in this case binary, 
but this is not critical) is thus encoded into ampl itudes of a 
quantum state of an exponentially smaller number of qubits: 
b = (b(0···0), b(0···1), . . . , b(1...1)) →

∑
x∈{0,1}n bx |x〉 (up to 

normalization).

6.2.2. Capacity via quantized Hopfield networks. A different 
approach to increasing the capacities of CAMs arises from 
the ‘quantization’ of different aspects of classical HNs, which 
constitute well-understood classical CAM systems.

Hopfield networks as content-addressable memories. Recall 
that an HN is a recurrent NN characterized by a set of n neu-
rons, whose connectivity is given by a (typically symmetric) 
real matrix of weights W = (wij)ij and a vector of (real) local 
thresholds {θi}n

i=1. In the context of CAMs, the matrix W 
encodes the stored patterns, which are in this setting best rep-
resented as sequences of signs, so x ∈ {1,−1}n. The retrieval, 
given an input pattern y ∈ {1,−1}n, is realized by setting the 
kth neuron sk to the kth value of the input pattern yk followed by 
the ‘running of the network’ according to standard perceptron 
rules: each neuron k computes its subsequent value by check-
ing if its inbound weighted sum is above the local threshold: 
sk ← sign(

∑
l wklsl − θk) (assuming sign(0) = +1)108. As dis-

cussed previously, under moderate assumptions the described 
dynamical system converges to local attractive points, which 
also correspond to the energy minima of the Ising functional

E(s) = −1
2

∑
ij

wijsisj +
∑

i

θisi. (24)

Such a system still allows significant freedom in the rule 
specifying the matrix W, given a set of patterns to be stored: 
intuitively, we need to ‘program’ the minima of E (choosing 
the appropriate W will suffice, as the local thresholds can be 
set to zero) to be the target patterns, ideally without storing 
too many unwanted, so-called spurious, patterns. This and 
other properties of a useful storing rule, that is, a rule which 
specifies W given the patterns, are given as follows (Storkey 
1997): (a) locality: an update of a particular connection should 
depend only on the information available to the neurons on 
either side of the connection109; (b) incrementality: the rule 
should allow the updating of the matrix W to store an addi-
tional pattern based only on the new pattern and W itself110; 

Executive summary: The observation that a complete 
description of quantum systems typically requires the 
specification of exponentially many complex-valued 
amplitudes has lead to the idea that those same amplitudes 
could be used to store data using only logarithmically 
few systems. While this idea fails for most applications, 
it has inspired some of the first proposals to use quant um 
systems for dramatic improvement in the capacities of 
associative, or content-addressable, memories. More 
likely quantum upgrades of content-addressable memo-
ries (CAMs), however, may come from a substantially 
different direction, which explores methods of extract-

ing information from HNs—used as CAMs—and which 
is inspired by quantum adiabatic computing to realize a 
recall process which is similar to yet different from stan-
dard recall methods. The quantum methods may yield 
advantages by outputting superpositions of data and it 
has been suggested that they also utilize the memory 
more efficiently, leading to increased capacities.

107 For a discussion on some of the shortcomings see e.g. Brun et al (2003) 
and Trugenberger (2003), and we also refer the reader to more recent 
reviews (Schuld et al 2014b, 2014a) for further details and analysis of the 
potential application of such memories to pattern recognition problems.
108 The updates can be synchronous, meaning all neurons update their values 
at the same time, or asynchronous, in which case usually a random order is 
assigned. In most analyses, and here, asynchronous updates are assumed.
109 Locality matters as the lack of it prohibits parallelizable architectures.
110 In particular, it should not be necessary to have external memory storing 
e.g. all stored patterns, which would render HN-based CAMs undesirably 
non-adaptive and inflexible.
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(c) immediateness: the rule should not require a limiting com-
putational process for the evaluation of the weight matrix 
(rather, it should be a simple computation of few steps). The 
most critical property of a useful rule is that it (d) results in a 
CAM with a non-trivial capacity: it should be capable of stor-
ing and retrieving some number of patterns with controllable 
error (which includes few spurious patterns, for instance).

The first rule, historically speaking, the Hebbian rule, sat-
isfies all the conditions above and is given by a simple recur-
rence relation: for the set of patterns {xk}k the weight matrix 
is given by wij =

∑
k xk

i xk
j /M  (where xk

j  is the jth sign of the 
kth pattern, and M is the number of patterns). The capacity 
of HNs under standard recall and Hebbian updates has been 
investigated from various perspectives and, in the context of 
absolute capacity (the asymptotic ratio of the number of pat-
terns that can be stored without error to the number of neurons, 
as the network size tends to infinity), it is known to scale as 
O( n

2 log(n) ). A well known result in the field improves on this 

to the capacity of O( n√
2 log(n)

), and is achieved by a different 

rule introduced by Storkey (1997), while maintaining all the 
desired properties. Here, we should emphasize that, in broad 
terms, the capacity is typically (sub)-linear in n. Better results, 
however, can be achieved in the classical settings if some of 
the assumptions (a)–(c) are dropped, but this is undesirable.

Quantization of Hopfield-based content-addressable memo-
ries. In early works by Rigatos and Tzafestas (2006, 2007), the 
authors have considered fuzzy and probabilistic learning rules, 
and have broadly argued that (a) such probabilistic rules corre-
spond to a quantum deliberation process and that (b) the result-
ing CAMs can have significantly larger capacities. However, 
more rigorous (and fully worked out) results were shown more 
recently, by combining HNs with ideas from adiabatic QC.

The first idea, presented in Neigovzen et al (2009) connects 
HNs and quantum annealing. Recall that the HN can be char-

acterized by the Ising functional E(s) = − 1
2

∑
ij wijsisj  (see 

equation  (2)), where the stored patterns correspond to local 
minima and where we have, without the loss of generality, 
assumed that the local thresholds are zero. The classical recall 
corresponds to the problem of finding local minima closest to 
the input pattern y. However, an alternative system, with simi-
lar features, is obtained if the input pattern is added in place 

of the local thresholds: E(s, y) = − 1
2

∑
ij wijsisj − Γ

∑
i yisi . 

Intuitively, this lowers the energy landscape of the system spe-
cifically around the input pattern configuration. But then the 
stored pattern (previous local minimum) which is closest to 
the input pattern is the most likely candidate for a global mini-
mum. Further, the problem of finding such configurations can 
now be tackled via quantum annealing: we define the quantum 

‘memory Hamiltonian’ naturally by Hmem = − 1
2

∑
ij wijσ

z
iσ

z
j  

and the HN Hamiltonian, given input y by Hp = Hmem + ΓHinp, 
where the input Hamiltonian is given by Hinp = −

∑
i yiσ

z
i . 

The quantum recall is obtained by adiabatic evolution via the 
Hamiltonian trajectory H(t) = Λ(t)Hinit + Hp, where Λ(0) is 
large enough that Hinit dominates, and Λ(1) = 0. The system 
is initialized in the ground state of the (arbitrary and simple) 
Hamiltonian Hinit, and if the evolution in t is slow enough to 

satisfy the criteria of the adiabatic theorem, the system ends in 
the ground state of Hp. This proposal exchanged local optim-
ization (classical retrieval) for global optimization. While this 
is generally a bad idea111, what is gained is a quantum form-
ulation of the problem which can be run on adiabatic archi-
tectures, and also the fact that this system can return quantum 
superpositions of recalled patterns, if multiple stored patterns 
are approximately equally close to the input, which can be 
an advantage (Neigovzen et  al 2009). However, the system 
above does not behave exactly the same as the classical recall 
network, which was further investigated in subsequent work 
(Seddiqi and Humble 2014) analyzing the sensitivity of the 
quantum recall under various classical learning rules. Further, 
in Santra et al (2016) the authors have provided an extensive 
analysis of the capacity of the Hebb-based HN, but under 
quantum annealing recall as proposed in Neigovzen et  al 
(2009), showing, surprisingly, that this model yields exponen-
tial storage capacity under the assumption of random memo-
ries. This result stands in apparent stark contrast to standard 
classical capacities reported in textbooks112.

Regarding near-term implementability, in Santra et  al 
(2016) the authors have investigated the suitability of the 
Chimera graph-based architectures of the D-Wave program-
mable quantum annealing device for quantum recall HN tasks, 
showing the potential for demonstrable quantum improve-
ments in near-term devices.

6.3. Run-time improvements: computational complexity

111 Generically, local optimization is easier than global, and in the context of 
the Ising system, global optimization is known to be NP-hard.
112 At this point it should be mentioned that recently exponential capacities 
of HNs have been proposed for fully classical systems, by considering dif-
ferent learning rules (Hillar and Tran 2014, Karbasi et al 2014), which also 
tolerate moderate noise. The relationship and potential advantages of the 
quantum proposals remains to be elucidated.

Executive summary: The theory of quantum algorithms 
has provided examples of computational speed-ups for 
decision problems, various functional problems, oracu-
lar problems, sampling tasks and optimization prob-
lems. This section presents quantum algorithms which 
provide speed-ups for learning-type problems. The 
two main classes of approaches differ in the underly-

ing computational architecture—a large class of algo-
rithms relies on quantum annealers, which may not be 
universal for QC but may natively solve certain sub-
tasks important in the context of ML. These approaches 
then have an increased likelihood of being realizable 
with near-term devices. In contrast, the second class 
of approaches assumes universal quantum computers, 
and often data prepared and accessible in quantum data-
bases, but offers up to exponential improvements. Here 
we distinguish between quantum amplitude amplifica-
tion and amplitude encoding approaches, which, with 
very few exceptions, cover all quantum algorithms for 
supervised and unsupervised learning.
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The most prolific research area within quantum ML in the last 
few years has focused on identifying ML algorithms, or their 
computationally intensive subroutines, which may be sped up 
using quantum computers. While there are multiple natural 
ways to classify the performed research, an appealing first-
order delineation follows the types of quantum computational 
architectures assumed113. Here we can identify research which 
is focused on using quantum annealing architectures, which are 
exper imentally well justified and even commercially available 
in recent times (mostly in terms of the D-Wave system set-ups). 
In most such research, the annealing architecture will be uti-
lized to perform a classically hard optimization problem usually 
emerging in the training phases of many classical algorithms. 
An involved part of such approaches will often be a meaningful 
rephrasing of such ML optimization to a form which an anneal-
ing architecture can (likely) handle. While the overall supervised 
task comprises multiple computational elements, it is only the 
optimization that will be treated by a quantum system in these 
proposals.

The second approach to speeding up ML algorithms 
assumes universal QC capabilities. Here, the obtained algo-
rithms are typically expressed in terms of quantum circuits. 
For most proposals in this research line, to guarantee actual 
speed-ups there will be additional assumptions. For instance, 
most proposals can only guarantee improvements if the data 
which is to be analyzed is already present in a type of quantum 
oracle or a quantum memory and, more generally, that certain 
quantum states, which depend on the data, can be prepared 
efficiently. The overhead of initializing such a memory in the 
first place is not counted, but this may not be unreasonable as 
in practice the same database is most often used for a great 
number of analyses. Other assumptions may also be placed on 
the structure of the dataset itself, such as low condition num-
bers of certain matrices containing the data (Aaronson 2015).

6.3.1. Speed-up via adiabatic optimization. Quantum optim-
ization techniques play an increasingly important role in quantum 
ML. Here, we can roughly distinguish two flavors of approaches, 
which differ in what computationally difficult aspect of training 
of a classical model is tackled by adiabatic methods. In the (his-
torically) first approach, we deal with clear-cut optimization in 
the context of binary classifiers and, more specifically, boosting 
(see section 2.1.3). Since then, it has been shown that annealers 
can also help by generating samples from hard-to-simulate distri-
butions. We will mostly focus on the earlier approaches, and only 
briefly mention the other more recent results.

Optimization for boosting. The representative line of 
research, which also initiated the development of this topic 
of quantum-enhanced ML based on adiabatic QC, focuses on 
a particular family of optimization problems called quadratic 
unconstrained binary optimization (QUBO) problems of the 
form

x∗ = (x∗1 , . . . , x∗n) = argmin(x1,...,xn)

∑
i<j

Jijxixj, xk ∈ {0, 1}

 (25)
specified by a real matrix J. QUBO problems are equiva-
lent to the problem of identifying lowest energy states of 

the Ising functional114 E(s) = − 1
2

∑
ij Jijsisj +

∑
i θisi , pro-

vided we make no assumptions on the underlying lattice. 
Modern annealing architectures provide means for tackling 
the problem of finding such ground states using adiabatic QC. 
Typically we are dealing with systems which can implement 
the tunable Hamiltonian of the form

H(t) = −A(t)
∑

i

σx

︸ ︷︷ ︸
Hinitial

+B(t)
∑

ij

Jijσ
z
iσ

z
j

︸ ︷︷ ︸
Htarget

,
 (26)

where A, B are smooth positive functions such that 
A(0) � B(0) and B(1) � A(1), that is, by tuning t suffi-
ciently slowly we can perform adiabatic preparation of the 
ground state of the Ising Hamiltonian Htarget, thereby solving 
the optimization problem. In practice, the parameters Jij can-
not be chosen fully freely (e.g. the connectivity is restricted 
to the so-called Chimera graph (Hen et al 2015) in D-Wave 
architectures), and also the realized interaction strength val-
ues have a limited precision and accuracy (Neven et al 2009b, 
Bian et al 2010), but we will ignore this for the moment. In 
general, finding ground states of the Ising model is functional 
NP-hard115, which is likely beyond the reach of quantum 
comp uters. However, annealing architectures still may have 
many advantages; for instance it is believed that they may still 
provide speed-ups in all, or at least average, instances and/or 
that they may provide good heuristic methods and hopefully 
near optimal solutions116.

In other words, any aspect of optimization occurring in 
ML algorithms which has an efficient mapping to (non-trivial) 
instances of QUBO problems, specifically those which can 
be realized by experimental set-ups, is a valid candidate for 
quantum improvements. Such optimization problems have 
been identified in a number of contexts, mostly dealing with 
training binary classifiers, and so belong to the class of super-
vised learning problems. The first setting considers the prob-
lem of building optimal classifiers from linear combinations 
of simple hypothesis functions, which minimize empirical 
error, while controlling the model complexity through a so-
called regularization term. This is the common optimization 
setting of boosting (see section 2.1.3) and, with appropriate 

113 Other classification criteria could be according to tasks, i.e. supervised 
versus unsupervised versus generative models etc, or depending on the 
underlying quantum algorithms used, e.g. amplitude amplification or equa-
tion solving.

114 More precisely, an efficient algorithm which solves general QUBO 
problems can also efficiently solve arbitrary Ising ground state problems. 
One direction is trivial as QUBO optimization is a special case of ground 
state finding where the local fields are zero. In the converse, given an Ising 
ground state problem over n variables, we can construct a QUBO over n  +  1 
variables which can be used to encode the local terms.
115 Finding ground states is not a decision problem, so technically it is not 
correct to state that it is NP-hard. The class functional NP (FNP) is the 
extension of the NP class to functional (relational) problems.
116 Indeed, one of the features of adiabatic models in general is that they 
provide an elegant means for (generically) providing approximate solutions, 
by simply performing the annealing process faster than prescribed by the 
adiabatic theorem.
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mathematical gymnastics and few assumptions, it can be 
reduced to a QUBO problem.

The overarching setting of this line of work can be 
expressed in the context of training a binary classifier by 
combining weaker hypotheses. For this setting, consider a 
dataset D = {xi, yi}M

i=1, xi ∈ n, yi ∈ {−1, 1}, and a set of 
hypotheses {hj}K

j=1, hj : n → {−1, 1}. For a given weight 
vector w ∈ n  we define the composite classifier of the form 
hcw(x) = sign(

∑
k wkhk(x)).

The training of the composite classifier is achieved by the 
optimization of the vector w  so as to minimize misclassifi-
cation on the training set, and so as to decrease the risk of 
overtraining. The misclassification cost is specified via a loss 
function L, which depends on the dataset and the hypothesis 
set in the boosting context. The overtraining risk, which tames 
the complexity of the model, is controlled by a so-called regu-
larization term R. Formally we are solving

argminw L(w; D) + R(w). (27)

This constitutes the standard boosting frameworks exactly, 
but is also closely related to the training of certain SVMs, 
i.e. hyperplane classifiers117. In other words, quantum optim-
ization techniques which work for the boosting setting can 
also help for hyperplane classification.

There are a few well-justified choices for L and R, lead-
ing to classifiers with different properties. Often, best choices 
(the definition of which depends on the context) lead to hard 
optim ization (Long and Servedio 2010), and some of those 
can be reduced to QUBOs, but not straightforwardly.

In the pioneering paper on the topic (Neven et al 2008), 
Neven and co-authors consider the boosting setting. The 
regularization term is chosen to be proportional to the 
0-norm, which counts the number of non-zero entries, that 
is, R(w,λ) = λ‖w‖0. The parameter λ controls the rela-
tive importance of regularization in the overall optimization 
task. A common choice for the loss function would be the 
0–1 loss function L0−1, optimal in some settings, given by 

L0−1(w) =
∑M

j=1 Θ
(
−yj

∑
k wkhk(xj)

)
 (where Θ is the step 

function), which simply counts the number of misclassifica-
tions. This choice is reasonably well motivated in terms of 
performance and is likely to be computationally hard. With 
appropriate discretization of the weights w , which the authors 
argue likely does not hurt performance, the above forms a solid 
candidate for a general adiabatic approach. However, it does 
not fit the QUBO structure (which has only quadratic terms) 
and hence cannot be tackled using existing architectures. 
To achieve the desired QUBO structure the authors impose 

two modifications: they opt for a quadratic loss function 

L2(w) =
∑M

j=1 |yj −
∑

k wkhk(xj)|2 and restrict the weights 
to binary (although this can be circumvented to an extent). 
Such a system is also tested using numerical experiments. In 

a follow-up paper (Neven et  al 2009b), the same team has 
generalized the initial proposal to accommodate another 
practical issue: problem size. Available architectures allow 
optimization over a few thousand variables, whereas in prac-
tice the number of hypotheses one optimizes over (K) may 
be significantly larger. To resolve this, the authors show how 
to break a large optimization problem into more manageable 
chunks while maintaining (experimentally verified) good per-
formance. These ideas were also tested in an actual physical 
architecture (Neven et al 2009a), and combined and refined 
in a more general, iterative algorithm in Neven et al (2012), 
tested also using actual quantum architectures.

While L0−1 loss functions were known to be good choices, 
they were not the norm in practice as they lead to non-convex 
optimization—so convex functions were preferred. However, 
in 2010 it became increasingly clear that convex functions are 
provably bad choices. For instance, in the seminal paper (Long 
and Servedio 2010) Long and Servedio118 showed that boost-
ing with convex optimization completely fails in noisy set-
tings. Motivated by this, in Denchev et al (2012), the authors 
re-investigate D-Wave type architectures and identify a reduc-
tion which allows a non-convex optimization. Expressed in 
the hyperplane classification setting (as explained, this is 
equivalent to the boosting setting in structure), they identify 
a reduction which (indirectly) implements a non-convex func-
tion lq(x) = min{(1 − q)2, (max(0, 1 − x))2}. This function 
is called the q-loss function, where q is a real parameter. The 
implementation of the q-loss function allows for the reali-
zation of optimization relative to the total loss of the form 
Lq(w, b; D) =

∑
j lq(yj(wτx + b)). The resulting regulari-

zation term is in this case proportional to the 2-norm of w, 
instead of the 0-norm as in the previous examples, which may 
be sub-optimal. Nonetheless, the above forms a prime exam-
ple where quantum architectures lead to ML settings which 
would not have been explored in the classical case (the loss 
Lq is unlikely to appear naturally in many settings) yet are 
well motivated, as (a) the function is non-convex and thus has 
the potential to circumvent all the no-go results for convex 
functions and (b) the optimization process can be realized in a 
physical system. The authors perform a number of numerical 
experiments demonstrating the advantages of this choice of a 
non-convex loss function when analyzing noisy data, which is 
certainly promising. In later work (Denchev et al 2015), it was 
also suggested that combinations of loss-regularization which 
are realizable in quantum architectures can also be used for 
so-called totally corrective boosting with cardinality penaliza-
tion, which is believed to be classically intractable.

The details of this go beyond the scope of this review, but 
we can at least provide a flavor of the problem. In corrective 
boosting, the algorithm updates the weights w  essentially 
one step at a time. In totally corrective boosting, at the tth 
step of the boosting algorithm optimization, t entries of w  are 
updated simultaneously. This is known to lead to better regu-
larized solutions, but the optimization is harder. Cardinality 
penalization pertains to using explicitly the 0-norm for the 

117 If we allow the hypotheses hj to attain continuous real values, then by 
setting hj to be the projection on the jth component of the input vector, so 
hj(x) = xj, then the combined classifier attains the inner-product-threshold 
form hcw(x) = sign(wτx) which contains hyperplane classifiers—the only 
component missing is the hyperplane offset b which is incorporated into the 
weight vector by increasing the dimension by 1.

118 Servedio also, incidentally, provided some of the earliest results in quant-
um COLT, discussed in previous sections.
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regularization (discussed earlier), rather than the more com-
mon 1-norm. This, too, leads to harder optimization which 
may be treated using an annealing architecture. In Babbush 
et al (2014), the authors significantly generalized the scope 
of loss functions which can be embedded into quantum archi-
tectures by observing that any polynomial unconstrained 
binary optim ization can, with small overhead, be mapped onto 
a (slightly larger) QUBO problem. In particular, this opens 
up the possibility of implementing odd-degree polynomials 
which are non-convex and can approximate the 0–1 loss func-
tion. This approach introduced new classes of unusual yet 
promising loss functions.

Applications of quantum boosting. Building on the ‘quant um 
boosting’ architecture described above, in Pudenz and Lidar 
(2013) the authors explore the possibility of (aside from 
boosting) realizing anomaly detection, specifically envisioned 
in the computationally challenging problem of software veri-
fication and validation119. In the proposed learning step the 
authors use quantum optimization (boosting) to learn the char-
acteristics of the program being tested. In the novel testing 
step the authors modify the target Hamiltonian so as to lower 
the energy of the states which encode input–outputs where the 
real and ideal software differ. These can then be prepared in 
superposition (i.e. they can prepare a state which is a super-
position over the inputs where P will produce an erroneous 
output) similarly to the previously mentioned proposals in the 
context of adiabatic recall of superpositions in HNs (Neigov-
zen et al 2009).

Beyond boosting. Beyond the problems of boosting, anneal-
ers have been shown to be useful for the training of so-called 
Bayesian Network Structure Learning problems (O’Gorman 
et al 2015), as their training can also be reduced to QUBOs.

In recent years, there has been significant focus on utiliz-
ing restricted annealing devices to realize distributions which 
are computationally expensive to generate. One application of 
this is in the training of certain ML models. A notable example 
of this is based on the fact that the training of deep networks 
usually relies on the use of a so-called generative deep belief 
network, which is a relative of deep Boltzmann machines 
(restricted BMs with multiple layers; see section  2.1.1 for 
more details). The training of deep belief networks, in turn, 
is the computational bottleneck, as it requires the sampling 
of hard-to-generate distributions, specifically particular Gibbs 
distributions. Samples from this distributions may be more 
efficiently prepared using annealing architectures; see e.g. 
Adachi and Henderson (2015). Another popular idea for the 
application of devices capable of preparing hard distributions 
is to utilize them as generative models directly. This is one of 
the faster growing research areas in recent times, in part due 
to the recent increase in popularity of generative models in 
general. It is impossible to provide a comprehensive review of 
this topic and we provide the interested reader with a few of 

the pioneering references (Benedetti et al 2016, 2017) and a 
recent review covering the topic (Perdomo-Ortiz et al 2017).

Further novel ideas introducing fully quantum BM-like 
models have been proposed (Amin et  al 2016). Further, in 
recent work by Sieberer and Lechner (2017) which builds on 
the flexible construction in Lechner et al (2015), the authors 
have shown how to achieve programmable adiabatic archi-
tectures, which allows running algorithms where the weights 
themselves are in superposition. This possibility is also sure to 
inspire novel QML ideas. Moving on from BMs, in recent work 
by Wittek and Gogolin (2017) the authors have also shown 
how suitable annealing architectures may be useful to speed up 
the performance of probabilistic inference in so-called Markov 
logic networks120. This task involves the estimation of partition 
functions arising from statistical models, concretely Markov 
random fields, which include the Ising model as a special case. 
Quantum annealing may speed up this sub-task.

More generally, the idea that restricted, even simple, 
quant um systems which may be realizable with current tech-
nologies could implement information processing elements 
useful for supervised learning is beginning to be explored in 
settings beyond annealers. For instance, in Schuld et al (2017) 
a simple interferometric circuit is used for the efficient evalu-
ation of distances between data vectors, useful for classifica-
tion and clustering. A more complete account of these recent 
ideas is beyond the scope of this review.

6.3.2. Speed-ups in circuit architectures. One of the most 
important applications of ML in recent times has been in 
the context of data mining and analyzing so-called big data. 
The most impressive improvements in this context have been 
achieved by proposing specialized quantum algorithms which 
solve particular ML problems. Such algorithms assume the 
availability of full-blown quantum computers and have been 
tentatively probed since the early 2000s. In recent times, how-
ever, we have witnessed a large influx of ideas. Unlike the 
situation we have seen in the context of quantum annealing, 
where an optimization subroutine alone was run on a quantum 
system, in most of the approaches of this section  the entire 
algorithm, and even the dataset, may be quantized.

The ideas for quantum-enhancements for ML can roughly 
be classified into two groups: (a) approaches which rely on 
Grover’s search and amplitude amplification to obtain up-to-
quadratic speed-ups and (b) approaches which encode relevant 
information into quantum amplitudes and which have a poten-
tial for even exponential improvements. The second group of 
approaches forms perhaps the most developed research line 
in quantum ML, and collects a plethora of quantum tools—
most notably quantum linear algebra, utilized in quantum ML 
proposals.

119 A software is represented as a map P from input to output spaces, here 
specified as a subset of the space of pairs (xinput, xoutput). An implemented 
map (software) P is differentiated from the ideal software P̂  by the mis-
matches in the defining pairs.

120 Markov logic networks (Richardson and Domingos 2006) combine first-
order logic as used for knowledge representation and reasoning with statisti-
cal modeling—essentially, the world is described via first-order sentences (a 
knowledge base), which gives rise to a graphical statistical model (a Markov 
random field) where correlations stem from the relations in the knowledge 
base.
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Speed-ups by amplitude amplification. In Anguita et  al 
(2003), it was noticed that the training of SVMs may be a hard 
optimization task, with no obviously better approaches than 
brute-force search. In turn, for such cases of optimization with 
no structure, QIP offers at least a quadratic relief in the guise of 
variants of Grover (1996) search algorithm or its application to 
minimum finding (Durr and Hoyer 1999). This idea predates 
and is, in spirit, similar to some of the early adiabatic-based 
proposals of the previous subsection, but the methodology is 
substantially different. The potential of quadratic improve-
ments stemming from Grover-like search mechanisms was 
explored more extensively in Aïmeur et al (2013), in the con-
text of unsupervised learning tasks. There the authors assume 
access to a black-box oracle which computes a distance mea-
sure between any two data points. Using this, combined with 
amplitude amplification techniques (e.g. minimum finding in 
Durr and Hoyer (1999)), the authors achieve up-to-quadratic 
improvements in key subroutines used in clustering (unsuper-
vised learning) tasks. Specifically, improvements are obtained 
in algorithms performing minimum spanning tree clustering, 
divisive clustering and k-medians clustering121. Additionally, 
the authors also show that quantum effects allow for a better 
parallelization of clustering tasks, by constructing a distrib-
uted version of Grover’s search. This construction may be par-
ticularly relevant as large databases can often be distributed.

More recently, in Wiebe et al (2014c) the author consid-
ers the problem of training deep (more than two-layered) 
BMs. As we mentioned earlier, one of the bottlenecks of 
exactly training BMs stems from the fact that it requires the 
estimation of probabilities of certain equilibrium distribu-
tions. Computing this analytically is typically not possible 
(it is as hard as computing partition functions) and sampling 
approaches are costly as they require attaining the equilibrium 
distribution and many iterations to reliably estimate small val-
ues. This is often circumvented by using proxy solutions (e.g. 
relying on contrastive divergence) to train approximately, but 
it is known that these methods are inferior to exact training. 
In Wiebe et al (2014c), a quantum algorithm is devised which 
prepares coherent encodings of the target distributions, rely-
ing on quantum amplitude amplification, often attaining quad-
ratic improvements in the number of training points and even 
exponential improvements in the number of neurons, in some 
regimes. Quadratic improvements have also been obtained in 
pure data mining contexts, specifically in association rules 
mining (Yu et  al 2016), which, roughly speaking, identifies 
correlations between objects in large databases122. As our 
final example in the class of quantum algorithms relying on 

amplitude amplification we mention the algorithm for the 
training of perceptrons (Wiebe et  al 2016). Here, quant um 
amplitude amplification was used not only to quadratically 
speed up training but also, interestingly, to quadratically 
reduce the error probability. Since perceptrons constitute spe-
cial cases of SVMs, this result is similar in motivation to the 
much older proposal (Anguita et al 2003), but relies on more 
modern and involved techniques.

Precursors of amplitude encoding. The first ideas suggest-
ing the use of amplitudes to store data vectors exponen-
tially efficiently, which might be utilized for classification 
based on state fidelity (effectively, the inner product of 
the vectors), were mentioned in very early works (Vlasov 
1994, 1997) which escaped broader attention. In another 
early, and similarly mostly overlooked work by Schützhold 
(2003),  Schützhold proposed an interesting application of 
QC to pattern recognition problems, which addresses many 
ideas which have only been investigated, and re-invented, 
by the community relatively recently. The author consid-
ers the problem of identifying ‘patterns’ in images, speci-
fied by N × M  black-and-white bitmaps, characterized by 
a function f : {1, . . . , N} × {1, . . . , M} → {0, 1} (which 
technically coincides with a concept in COLT see sec-
tion  2.2.1), specifying the color-value f (x, y) ∈ {0, 1} of a 
pixel at coordinate (x, y). The function f is given as a quant um 

oracle |x〉 |y〉 |b〉
Uf→ |x〉 |y〉 |b ⊕ f (x, y)〉. The oracle is used 

in quantum parallel (applied to a superposition of all coor-
dinates) and conditioned on the bit-value function being 1 
(this process succeeds with constant probability, when-
ever the density of points is constant,) leading to the state 
|ψ〉 = N

∑
x,y s.t.f (x,y)=1 |x〉 |y〉, where N  is a normalization 

factor. Note that this state is proportional to the vectorized 
bitmap image itself, when given in the computational basis. 
Next, the author points out that ‘patterns’—repeating mac-
roscopic features—can often be detected by applying the 
discrete Fourier transform to the image vector, which has 
classical complexity O(NM log(NM)). However, the quant um 
Fourier transform (QFT) can be applied to the state |ψ〉 utiliz-
ing exponentially fewer gates. The author proceeds to show 
that the measurements of the QFT-transformed state may 
yield useful information, such as pattern localization. This 
work is innovative in a few aspects. First, the author utilized 
the encoding of data points (here strings of binary values) 
into amplitudes by using a quantum memory, in a manner 
which is related to the applications in the context of content-
addressable memories discussed in section  6.2.1. It should 
be pointed out, however, that in the present application of 
amplitude encoding, non-binary amplitudes have clear mean-
ing (in say grayscale images), although this is not explicitly 
discussed by the author123. Second, in contrast to all previ-
ous proposals, the author shows the potential for a quantifi-
able exponential computational complexity improvement for 
a family of tasks. However, this is all contingent on having 

121 In minimum tree clustering, data is represented as a weighted graph 
(weight being the distance) and a minimum weight spanning tree is found. k 
clusters are identified by simply removing the k  −  1- highest weight edges. 
Divisive clustering is an iterative method which splits sets into two subsets 
according to a chosen criterion, and this process is iterated. k  −  median 
clustering identifies clusters which minimize the cumulative within-cluster 
distances to the median point of the cluster.
122 To exemplify the logic behind association rules mining, in the typical 
context of shopping, if shopping item (list element) B occurs in nearly every 
shopping list in which shopping item A occurs as well, one concludes that 
the person buying A is also likely to buy B. This is captured by the rule 
denoted B ⇒ A.

123 The earlier works Vlasov (1994) and Vlasov (1997) explicitly utilize 
amplitude encoding; however, the proposals are not as detailed as  
Schützhold (2003).
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access to the pre-filled database (Uf), the loading of which 
would nullify any advantage. Aside from the fact that this 
may be considered to be a one-off overhead, Schützhold dis-
cusses physical means of loading data from optical images 
in a quantum-parallel approach, which may be effectively 
efficient.

Amplitude encoding: linear algebra tools. The very basic idea 
of amplitude encoding is to treat states of N-level quant um 
systems as data vectors themselves. More precisely, given a 
data vector x ∈ n, the amplitude encoding would constitute 
the normalized quantum state |x〉 =

∑
i xi |i〉 /||x||, where it is 

often also assumed that norm of the vector ‖x‖ can always be 
accessed.

Note that N-dimensional data points are encoded into 
amplitudes of n ∈ O(log(N)) qubits. Any polynomial circuit 
applied to the n-qubit register encoding the data thus con-
stitutes only a polylogarithmic computation relative to the 
data-vector size, and this is at the basis of all exponential 
improvements (also in the case of Schützhold (2003), dis-
cussed in the previous section)124.

These ideas have lead to a research area which could be 
called ‘quantum linear algebra’ (QLA), that is, a collection 
of algorithms which solve certain linear algebra problems by 
directly encoding numerical vectors into state vectors. These 
quantum sub-routines have then been used to speed up nume-
rous ML algorithms, some of which we describe later in this 
section. QLA includes algorithms for matrix inversion, princi-
pal component analysis (Harrow et al 2009, Lloyd et al 2014) 
and many others. For didactic purposes, we will first give 
the simplest example which performs the estimation of inner 
products in logarithmic time.

Tool 1: inner product evaluation. Given access to boxes which 
prepare quantum states |ψ〉 and |φ〉 , the overlap |〈φ |ψ〉 |2 can 
be estimated to precision ε using O(1/ε) copies, using the so-
called the swap test.

The swap test (Buhrman et al 2001) applies a controlled-
SWAP gate onto the state |ψ〉 |φ〉 , where the control qubit is 
set to the uniform superposition |+〉. The probability of ‘suc-
ceeding’, i.e. observing |+〉 on the control after the circuit, is 
given by (1 + |〈φ |ψ〉 |2)/2, and this can be estimated by itera-
tion (a more efficient option using quantum phase estimation 
is also possible). If the states |ψ〉 and |φ〉 encode unit-length 
data vectors, the success value encodes their inner product up 
to sign. Norms and phases can also be estimated by minor 
tweaks to this basic idea—in particular, actual norms of the 
amplitude-encoded states will be accessible in a separate ora-
cle and used in algorithms. The sample complexity of this pro-
cess depends only on precision, whereas the gate complexity 
is proportional to O(log(N)) as that many qubits need to be 
control-swapped and measured.

The swap test also works as expected if the reduced states 
are mixed and the overall state is product. This method of 
computing inner products, relative to classical vector multi-
plication, offers an exponential improvement with respect to 
N (if calls to devices which generate |ψ〉 and |φ〉 take O(1)), at 
the cost of significantly worse scaling with respect to errors, 
as classical algorithms have typical error scaling with the log-
arithm of inverse error, O(log(1/ε)). However, in the context 
of ML problems, this can constitute an excellent compromise.

Tool 2: quantum linear system solving.  Perhaps the most 
influential technique for quantum enhanced algorithms for 
ML is based on one of the quintessential problems of linear 
algebra: solving systems of equations. In their seminal paper 
(Harrow et al 2009), the authors proposed the first algorithm 
for ‘quantum linear system’ (QLS) solving, which performs 
the following. Consider an N × N  linear system Ax = b, 
where κ and d are the condition number125 and sparsity of the 
Hermitian system matrix A126. Given (quantum) oracles giv-
ing positions and values of non-zero elements of A (that is, 
given standard oracles for A as encounter ed in Hamiltonian 
simulation; see Berry et al (2015)) and an oracle which pre-
pares the quantum state |b〉 which is the ampl itude encoding of 
b (up to norm), the algorithm in Harrow et al (2009) prepares 
the quantum state |x〉 which is ε-close to the amplitude encod-
ing of the solution vector x. The run-time of the first algo-
rithm is Õ(κ2d2 log(N)/ε). Note that the complexity scales 
proportionally to the logarithm of the system size. Note that 
any classical algorithm must scale at least with N, and this 
offers room for exponential improvements. The original pro-
posal in Harrow et  al (2009) relies on Hamiltonian simula-
tion (implementing exp(iAt),) upon which phase estimation 
is applied. Once phases are estimated, inversely proportional 
amplitudes—that is, the inverses of the eigenvalues of A—
are imprinted via a measurement. It has also been noted that 
certain standard matrix pre-conditioning techniques can also 
be applicable in the QLS scheme (Clader et  al 2013). The 
linear scaling in the error in these proposals stems from the 
phase estimation subroutine. In more recent work by Childs 
et al (2015), the authors also rely on best Hamiltonian simu-
lation techniques, but forgo the expensive phase estimation. 
Roughly speaking, they (probabilistically) implement a linear 
combination of unitaries of the form 

∑
k αk exp(ikAt) upon 

the input state. This constitutes a polynomial in the unitar-
ies which can be made to approximate the inverse operator 
A−1 (in a measurement-accessible subspace) more efficiently. 
This, combined with other numerous optimizations, yields a 
final algorithm with complexity Õ(κdpolylog(N/ε)), which 
is essentially optimal. It is important to note that the appar-
ently exponentially more efficient schemes above do not 
trivially imply provable computational improvements, even if 
we assume free access to all oracles. For instance, one of the 
issues is that the quant um algorithm outputs a quantum state, 124 In a related work by Wiebe and Granade (2015), the authors investigate 

the learning capacity of ‘small’ quantum systems and identify certain limita-
tions in the context of Bayesian learning, based on Grover optimality bounds. 
Here, ‘small’ pertains to systems of logarithmic size, encoding information 
in amplitudes. This work thus probes the potential of space complexity im-
provements for quantum-enhanced learning, related to early ideas discussed 
in section 6.2.

125 Here, the condition number of the matrix A is given by the quotient of the 
largest and smallest singular values of A.
126 The assumption that A is Hermitian is non-restrictive, as an oracle for 
any sparse matrix A can be modified to yield an oracle for the symmetrized 
matrix A′ = |0〉 〈1| ⊗ A† + |1〉 〈0| ⊗ A.
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from which classical values can only be accessed by sampling. 
This process for the reconstruction of the complete output 
vector would kill any improvements. On the other hand, cer-
tain functions of the amplitudes can be computed efficiently, 
the computation of which may still require O(N) steps classi-
cally, yielding the desired exponential improvement. Thus this 
algorithm will be most useful as a sub-routine, an intermedi-
ary step of bigger algorithms, such as those for quantum ML.

Tool 3: density matrix exponentiation.  Density matrix expo-
nentiation (DME) is a remarkably simple idea, with few sub-
tleties and arguably profound consequences. Consider an 
N-dimensional density matrix ρ. Now, from a mathematical 
perspective, ρ is nothing but a semidefinite positive matrix, 
although it is also commonly used to denote the quantum state 
of a quantum system—and these two are subtly different con-
cepts. In the first reading, where ρ is a matrix (we will denote 
it [ρ] to avoid confusion), [ρ] is also a valid description of a 
physical Hamiltonian, with time-integrated unitary evo lution 
exp(−i[ρ]t). Could one approximate exp(−i[ρ]t), having 
access to quantum systems prepared in the state ρ? Given suf-
ficiently many copies (ρ⊗n), the obvious answer is yes—one 
could use full state tomography to reconstruct [ρ], to arbitrary 
precision, and then execute the unitary using, say, Hamiltonian 
simulation (efficiency notwithstanding). In Lloyd et al (2014), 
the authors show a significantly simpler method: given any 
input state σ and one copy of ρ, the quantum state

σ′ = TrB[exp(−i∆tS)(σA ⊗ ρB) exp(i∆tS)], (28)

where S is the Hermitian operator corresponding to the 
quant um SWAP gate, approximates the desired time evolution 
to first order, for small ∆t : σ′ = σ − i∆t[ρ,σ] + O(∆t2). If 
this process is iterated, by using fresh copies of ρ, we obtain 
that the target state σρ = exp(−iρt)σ exp(iρt) can be approxi-
mated to precision ε, by setting ∆t  to O(ε/t) and using O(t2/ε) 
copies of the state ρ. DME is, in some sense, a generalization of 
the process of using SWAP tests between two quantum states, 
to simulate aspects of a measurement specified by one of the 
quantum states. One immediate consequence of this result is 
in the context of Hamiltonian simulation, which can now be 
efficiently realized (with no dependency on the sparsity of the 
Hamiltonian) whenever one can prepare quantum systems in 
a state which is represented by the matrix of the Hamiltonian. 
In particular, this can be realized using qRAM stored descrip-
tions of the Hamiltonian whenever the Hamiltonian itself is 
of low rank. More generally, this also implies e.g. that QLS 
algorithms can also be efficiently executed when the system 
matrix is not sparse, but rather dominated by few principal 
components, i.e. close to a low rank matrix127.

Remark. Algorithms for QLS, inner product evaluation, 
quantum PCA and, consequently, almost all quantum algo-

rithms listed in the remainder of this section also assume ‘pre-
loaded databases’, which allow accessing of information in 
quantum parallel, and/or the accessing or efficient preparation 
of amplitude encoded states. The problem of parallel access, 
or even the storing of quantum states, has been addressed 
and mostly resolved using so-called quantum random access 
memory (qRAM) architectures (Giovannetti et  al 2008)128. 
The same qRAM structures can also be used to realize oracles 
utilized in the approaches based on quantum search. However, 
having access to quantum databases pre-filled with classical 
data does not a priori imply that quantum-amplitude-encoded 
states can also be generated efficiently, which is, at least im-
plicitly, assumed in most works below. For a separate discus-
sion on the cost of some similar assumptions, we refer the 
reader to Aaronson (2015).

Amplitude encoding: algorithms. With all the quantum tools 
in place, we can now present a selection of quantum algo-
rithms for various supervised and unsupervised learning tasks, 
grouped according to the class of problems they solve. The 
majority of proposals of this section follow a clear paradigm: 
the authors investigate established ML approaches and iden-
tify those where the computationally intensive parts can be 
reduced to linear algebra problems, most often  diagonalization 
and/or equation solving. In this sense, further improvements 
in quantum linear algebra approaches are likely to lead to new 
results in quantum ML.

As a final comment, all the algorithms below pertain to dis-
crete-system implementations. Recently, in Lau et al (2017), 
the authors have also considered continuous variable variants 
of qRAM, QLS and DME, which immediately lead to con-
tinuous variable implementations of all the quantum tools and 
most quantum-enhanced ML algorithms listed below.

Regression algorithms. .One of the first proposals for quant um 
enhancements tackled linear regression problems, specifically, 
least-squares fitting, and relied on QLS. In least-squares fitting, 
we are given N M-dimensional real data points paired with 
real labels, so (xi, yi)

N
i=1, xi = (x j

i )j ∈ M , y = (yi)i ∈ N . In 
regression y is called the response variable (also regressand or 
dependent variable), whereas the data points xi are called pre-
dictors (or regressors or explanatory variables), and the goal 
of least-squares linear regression is to establish the best linear 
model, that is β = (βj)j ∈ M  given by

argminβ‖Xβ − y‖2, (29)

where the data matrix X collects the data points xi as rows. In 
other words, linear regression assumes a linear relationship 
between the predictors and the response variables. It is well-
established that the solution to the above least-squares prob-
lem is given by β = X+y, where X+ is the Moore–Penrose 

127 Since a density operator is normalized, the eigenvalues of data matrices 
are rescaled by the dimension of the system. If the eigenvalues are close to 
uniform, they are rendered exponentially small in the qubit number. This 
then requires exponential precision in DME, which would offset any speed-
ups. However, if the spectrum is dominated by a constant number of terms, 
the precision required and overall complexity are again independent from 
the dimension, allowing overall efficient algorithms.

128 qRAM realizes the following mapping: |addr〉 |b〉 qRAM−→ |addr〉 |b ⊕ daddr〉 , 
where daddr represents the data stored at the address addr (the ⊕ represents 
modulo addition, as usual), which is the reversible variant of conventional 
RAM memories. In Giovannetti et al (2008), it was shown that a qRAM can 
be constructed such that its internal processing scales logarithmically in the 
number of memory cells.
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pseudoinverse of the data matrix, which is, in the case that 
X†X is invertible, given by X+ = (X†X)−1X†. The basic idea 
in Wiebe et al (2012) is to apply X† onto the initial vector |y〉 
which amplitude-encodes the response variables, obtaining a 
state proportional to X† |y〉. This can be done e.g. by modify-
ing the original QLS algorithm (Harrow et al 2009) to imprint 
not the inverses of eigenvalues but the eigenvalues themselves. 
Following this, the task of applying (X†X)−1 (onto the gener-
ated state proportional to X† |y〉) is interpreted as an equation-
solving problem for the system (X†X)β = X†y.

The end result is a quantum state |β〉 proportional to the 
solution vector β, in time O(κ4d3 log(N)/ε), where κ, d  and 
ε are the condition number, the sparsity of the ‘symmetrized’ 
data matrix X†X and the error, respectively. Again, we have 
in general few guarantees on the behavior of κ and an obvi-
ous restriction on the sparsity d of the data matrix. However, 
whenever both are O(polylog(N)), we have a potential129 
for exponential improvements. This algorithm is not obvi-
ously useful for actually finding the solution vector β, as it 
is encoded in a quantum state. Nonetheless, it is useful for 
estimating the quality of fit: essentially by applying X onto 
|β〉 we obtain the resulting prediction of y, which can be effi-
ciently compared to the actual response variable vector via 
a swap test130.

These basic ideas for quantum linear regression have since 
been extended in a few works. In an extensive and comple-
mentary work (Wang 2014), the authors rely on the power-
ful technique of ‘qubitization’ (Low and Chuang 2016) and 
optimize the goal of actually producing the best-fit parameters 
β. By necessity, the complexity of their algorithm is propor-
tional to the number of data points M, but is logarithmic in the 
data dimension N, and quite efficient in other relevant param-
eters. In Schuld et al (2016), the authors follow the ideas of 
Wiebe et al (2012) more closely and achieve the same results 
as in the original work when the data matrix, rather than being 
sparse, is low-rank. Further, they improve on the complexities 
by using other state-of-the-art methods. This latter work criti-
cally relies on the technique of DME.

Clustering algorithms. In Lloyd et  al (2013), amplitude 
encoding and inner product estimation are used to estimate 
the distance ‖u − v̄‖ between a given data vector u and the 
average of a collection of data points (centroid) v̄ =

∑
i vi/M 

for M data points {vi}i in time which is logarithmic in both the 
vector length N and number of points M. Using this as a build-
ing block, the authors also show an algorithm for k-means clas-
sification/clustering (where the computing of the distances to 
the centroid is the main cost), achieving an overall complex-
ity O(M log(MN)/ε), which may be even further improved 
in some cases. Here, it is assumed that amplitude-encoded 
state vectors and their normalization values are accessible via 
an oracle, or that they can be efficiently implemented from a 
qRAM storing all the values. Similar techniques, combined 
with coherent quantum phase estimation and Grover-based 
optimization, have also been used for the problem of k-nearest 
neighbor algorithms for supervised and unsupervised learning 
(Wiebe et al 2015).

Quantum principal component analysis. In the same paper 
Lloyd et al (2014) the ideas of DME were immediately applied 
to a quantum version of principal component analysis (PCA). 
PCA constitutes one of the most standard unsupervised learn-
ing techniques useful for dimensionality reduction but, natu-
rally, has a large scope of applications beyond ML. In quantum 
PCA, for a quantum state ρ one applies quantum phase esti-
mation of the unitary exp(−i[ρ]) using DME applied onto the 
state ρ itself. In the ideal case of absolute precision, given the 
spectral decomposition ρ =

∑
i λi |λi〉 〈λi| , this process gen-

erates the state 
∑

i λi |λi〉 〈λi| ⊗ |λ̃i〉〈λ̃i|, where λ̃i denotes the 
numerical  estimation of the eigenvalue λi corre sponding to 
the eigenvector |λi〉. Sampling from this state recovers both 
the (larger) eigenvalues and the corresponding quantum states 
which amplitude-encode the eigenvectors, which may be used 
in further quantum algorithms. The recovery of high-value 
eigenvalues and eigenvectors constitutes the essence of clas-
sical PCA as well.

Quantum support vector machines. One of the most influen-
tial papers in quantum-enhanced ML relies on QLS and DME 
for for the task of quantizing SVM algorithms. For the basic 
ideas behind SVMs see section 2.1.2.

We focus our attention to the problem of training SVMs, as 
given by the optimization task in its dual form, in equation (6), 
repeated here for convenience:

(α∗
1 , . . . α∗

N) = argminα1...αN

∑
i

αi −
1
2

∑
i,j

αiαjyiyjxi · xj,

such that αi � 0 and
∑

i

αiyi = 0.

The solution of the desired SVM is then easily computed by 
w∗ =

∑
i yiαixi.

As a warm-up result, in Rebentrost et al (2014) the authors 
point out that using quantum evaluation of inner products, 
appearing in equation  (30), can already lead to exponential 
speed-ups with respect to the data-vector dimension N. The 
quantum algorithm complexity is, however, still polynomial 
in the number of data points M and the error dependence is 
now linear (as the error of the inner product estimation is 
linear). The authors proceed to show that full exponential 

129 In this section we often talk about the ‘potential’ for exponential 
speed-ups because some of the algorithms as given do not solve classi-
cal computational problems for which classical lower bounds are known. 
Consider the conditions which have to be satisfied for the QLS algorithm 
to offer exponential speed-ups. First, we need to be dealing with problems 
where the preparation of the initial state and qRAM memory can be done in 
O(polylog(N)). Next, the problem condition number must be O(polylog(N)) 
as well. Assuming all this is satisfied, we are still not done: the algorithm 
generates a quantum state. As classical algorithms do not output quantum 
states, we cannot talk about quantum speed-ups. The quantum state can be 
measured, outputting at most O(polylog(N)) (more would kill exponential 
speed-ups due to printout alone) bits which are functions of the quantum 
state. However, the hardness of computing these output bits, given that all 
the initial assumptions are clearly not obvious, needs to be proven.
130 In the paper, the authors take care to appropriately symmetrize all the 
matrices in a manner we discussed in a previous footnote but, for clarity, we 
ignore this technical step.
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improvements can be possible (with respect to both N and 
M), however, for the special case of least-squares SVMs. 
Given the background discussions we have already laid out 
with respect to DME and QLS, the basic idea is here easy 
to explain. Recall that the problem of training least-squares 
SVMs reduces to a linear program, specifically a least-squares 
minimization. As we have seen previously, such minimization 
reduces to equation solving, which was given by the system in 
equation (14) which we repeat here:

[
0 1T

1N Ω+ γ−1I

] [
b
α

]
=

[
0
Y

]
.

 
(30)

Here, 1 is an ‘all ones’ vector, Y is the vector of labels yi, α is 
the vector of the Lagrange multipliers yielding the solution, b 
is the offset, γ is a parameter depending on the hyperparam-
eter C and Ω is the matrix collecting the (mapped) inner prod-
ucts of the training vectors so Ωi,j = xi · xj . The key technical 
aspects of Rebentrost et al (2014) demonstrate how the sys-
tem above is realized in a manner suitable for QLS. To give 
a flavor of the approach, we will simply point out that the 
system sub-matrix Ω is proportional to the reduced density 
matrix of the quantum state 

∑
i |xi| |i〉1 |xi〉2 , obtained after 

tracing out the subsystem 2. This state can, under some con-
straints, be efficiently realized with access to qRAM encoding 
the data points. Following this, DME enables the application 
of QLS where the system matrix has a block proportional 
to Ω, up to technical details which we omit for brevity. The 
overall quantum algorithm generates the quantum state pro-
portional to |ψout〉 ∝ b |0〉+

∑M
i=1 αi |i〉 , encoding the offset 

and the multipliers. The multipliers need not be extracted 
from this state by sampling. Instead any new point can be 
classified by (1) generating an amplitude-encoded state of the 
input and (2) estimating the inner product between this state 
and |ψ′

out〉 ∝ b |0〉 |0〉+
∑M

i=1 αi|xi| |i〉 |xi〉 , which is obtained 
by calling the quantum data oracle using |ψout〉. This process 
has an overall complexity of O(κ3

effε
−3 log(MN)), where κeff 

depends on the eigenstructure of the data matrix. Whenever 
this term is polylogarithmic in data size, we have a potential 
for exponential improvements.

Gaussian process regression. In Zhao et  al (2015) the 
authors demonstrate how QLS can be used to dramatically 
improve Gaussian process regression (GPR), a powerful 
supervised learning method. GPR can be thought of as a sto-
chastic generalization of standard regression: given a train-
ing set {xi, yi}, it models the latent function (which assigns 
labels y to data points), assuming Gaussian noise on the 
labels f (x) = y + ε where ε encodes independent and identi-
cally distributed. More precisely, GPR is a process in which 
an initial distribution over possible latent functions is refined 
by taking into account the training set points, using Bayes-
ian inference. Consequently, the output of GPR is, roughly 
speaking, a distribution over models f which are consistent 
with the observed data (the training set). While the descrip-
tions of such a distribution may be large, in computational 
terms to predict the value of a new point x∗ in GPR one needs 
to compute two numbers: a linear predictor (also referred to 

as the predictive mean, or simply mean) and the variance of 
the predictor, which are specific to x∗. These numbers char-
acterize the distribution of the predicted value y∗ by the GPR 
model which is consistent with the training data. Further, it 
turns out, both values can be computed using modified QLS 
algorithms. The fact that this final output size is independent 
from the dataset size, combined with QLS, provides possibili-
ties for exponential speed-ups in terms of data size. This natu-
rally holds, provided the data is available in qRAM, as is the 
case in most algorithms of this section. It should be mentioned 
that the authors take meticulous care in listing out all the ‘hid-
den costs’ (and the working out of intermediary algorithms) in 
the final tally of the computational complexity.

Geometric and topological data analysis. All the algorithms 
we presented in this subsection thus far critically depend on 
having access to ‘pre-loaded’ databases—the loading itself 
would introduce a linear dependence on the database size, 
whereas the inner-product, QLS and DME algorithms pro-
vide potential for just logarithmic dependence. However, this 
can be circumvented in the cases where the data points in 
the quant um database can be efficiently computed individu-
ally. This is reminiscent of the fact that most applications of 
Grover’s algorithm have a step in which the Grover oracle is 
efficiently computed. In ML applications, this can occur if the 
classical algorithm requires, as a computational step, a combi-
natorial exploration of the (comparatively small) dataset. Then 
the quantum algorithm can generate the combinatorially larger 
space in quantum parallel—thereby efficiently computing the 
effective quantum database. The first example where this was 
achieved was presented in Lloyd et al (2016), in the context of 
topological and geometric data analysis. These techniques are 
very promising in the context of ML, as topological features 
of data do not depend on the metric of choice, and thus capture 
the truly robust features of the data. The notion of topological 
features (in the ML world of discrete data points) are given by 
those properties which exist when data is observed at differ-
ent spatial resolutions. Such persistent features are thus robust 
and less likely to be artefacts of noise or choice of param-
eters, and are mathematically formalized through so-called 
persistent homology. A particular family of features of inter-
est are the number of connected components, holes and voids 
(or cavities). These numbers, which are defined for simplicial 
complexes (roughly, a closed set of simplices), are called Betti 
numbers. To extract such features from data, one must there-
fore construct nested families of simplicial complexes from 
the data and compute the corresponding features captured 
by the Betti numbers. However, there are combinatorially 
many simplices which one should consider and which should 
be analyzed, and one can roughly think of all possible sim-
plices as data points which need further analysis. However, 
they are efficiently generated from a small set—essentially 
the collection of the pair-wise distances between data points. 
The authors show how to generate quantum states which 
encode the simplices in logarithmically few qubits and fur-
ther show that, from this representation, the Betti numbers can 
be efficiently estimated. Iterating this at various resolutions 
allows the identification of persistent features. As usual, full 
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exponential improvements happen under some assumptions 
on the data, and here they are manifest in the capacity to effi-
ciently construct the simplicial states—in particular, having 
the total number of simplices in the complex be exponentially 
large would suffice, although it is not clear when this is the 
case; see Aaronson (2015). This proposal provides evidence 
that quantum ML methods based on amplitude encoding may, 
at least in some cases, yield exponential speed-ups even if data 
is not pre-stored in a qRAM or an analogous system.

Since the first versions of this review appeared, a num-
ber of new algorithms have appeared, which we list with-
out a detailed review, for the convenience of the reader. In 
Rebentrost et al (2017), the authors have utilized amplitude 
encoding to exponentially compress a variant of an associative 
memory, related to Hopfield networks.

As mentioned a large component of modern approaches to 
quantum-enhanced ML relies on quantum linear algebra tech-
niques, and any progress in this area may lead to new quant um 
ML algorithms. Promising recent examples of this were given 
in terms of algorithms for quantum gradient descent (Rebentrost 
et al 2016a, Kerenidis and Prakash 2017), which could e.g. lead 
to novel quantum methods for training NNs. Similarly, recent 
breakthroughs in quantum algorithms for semi-definite pro-
gramming are already inspiring a novel and particularly prom-
ising route for quantum enhanced ML algorithms (Brandão and 
Svore 2017, Brandão et al 2017, van Apeldoorn et al 2017).

7. Quantum learning agents and elements  
of quantum artificial intelligence

The topics discussed thus far in this review, with few excep-
tions, deal with the relationship between physics, mostly QIP, 
and traditional ML techniques which allow us to better under-
stand data, or the process which generates them. In this sec-
tion, we go beyond data analysis and optimization techniques 
to address the relationship between QIP and more general 
learning scenarios, or even between QIP and AI. As men-
tioned, in more general learning or AI discussions, we typi-
cally talk about agents interacting with their environments, 
which may be, or more often fail to be, intelligent. In our view, 
by far the most important aspect of any intelligent agent is its 
capacity to learn from its interactions with its environment. 
However, general intelligent agents learn in environments 
which are complex and may change. Further, the environ-
ments are susceptible to being changed by the agent itself, 
which is the crux of, e.g., learning by experiments. All this 
delineates general learning frameworks, which begin with RL, 
from more restricted settings of data-driven ML.

In this section, we will consider physics-oriented 
approaches to learning via interaction, specifically the pro-
jective simulation (PS) model, and then focus on quantum-
enhancements in the context of RL131. Following this, we will 

discuss an approach for considering the most general learning 
scenarios, where the agent, the environment and their inter-
action, are treated quantum-mechanically: this constitutes a 
quantum generalization of the broad AE framework, underly-
ing modern AI. We will finish off by briefly discussing other 
results from QIP, which do not directly deal with learning, but 
which may still play a role in the future of QAI.

7.1. Quantum learning via interaction

The applications of QIP to reinforcement and other interac-
tive learning problems has been comparatively less studied, 
when compared to quantum enhancements in supervised and 
unsuper vised problems. One of the first proposals which pro-
vided a coherent view on learning agents from a physics per-
spective was that of PS (Briegel and De las Cuevas 2012). We 
first give a detailed description of the PS model and review the 
few other works related to this topic at the end of the section.

PS is a flexible framework for the design of learning agents, 
drawing motivation both from agency and physics, and influ-
enced by modern views on robotics, which also provides a 
natural route to quantization.

The PS agent is an embodied physical entity132 situated in 
an environment on which it can act, and which re-acts in the 
form of certain physical inputs.

A PS agent learns from experience, by perceiving per-
cepts from the set S = {si}i and by performing actions from 
the set A = {ai}i

133. The learning agent’s behavior—that is, 
the choice of actions, given certain percepts—is based on its 
cumulative experience, accumulated in the agent’s memory, 
which is structured. The central concept of the PS framework 
is this structured memory system of the agent: the episodic 
and compositional memory (ECM). The ECM is a network 
of clips, which are the units of episodic memory. A clip, 

131 While RL is a particularly mathematically clen model for learning by 
interaction, it is worthwhile to note that it is not fully general—for instance 
learning in real environments always involves supervised and other learning 
paradigms to control the size of the exploration space, but also various other 
techniques which occur when we try to model settings in continuous, or 
otherwise not turn-based, fashion.

Executive summary: The first proposal which addressed 
the specification of learning agents, designed with the 
possibility of quantum processing of episodic memory 
in mind, was the model of PS. The results on quantum 
improvements of agents which learn by interacting with 
classical environments have mostly been given within this 
framework. The PS agent deliberates by effectively pro-
jecting itself into conceivable situations using its memory, 
which organizes its episodic experiences in a stochastic 
network. Such an agent can solve basic RL problems, 
meta-learn and solve problems with aspects of general-
ization. The deliberation is a stochastic diffusion process, 
allowing for a few routes for quantization. Using quantum 
random walks, quadratic speed-ups can be obtained.

132 The PS perspective is in line with the framework of embodied learning 
agents; see section 2.3 for more detail.
133 The sets of percepts and actions are constrained by the physical interfaces 
of the agent. Further, this basic model assumes discretized time and sensory 
space, which is consistent with actual realizations, although this could be 
generalized.
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denoted ci, can represent134 an individual percept or action, 
so ci ∈ S ∪ A—and indeed there is no other external type 
appearing in the PS framework. However, experiences may be 
more complex (such as an autobiographical episodic memory, 
similar to short video-clips, where we remember a temporally 
extended sequence of actions and percepts that we experi-
enced). This brings us to the following recursive definition: 
a clip is either a percept, an action, or a structure over clips.

Typical examples of structured clips are percept-action 
sequences (s1, a1, . . . , sk, ak), describing what happened, 
i.e. a k-length history of interaction between the agent and 
environ ment, or sets of percepts (s1 or s2 . . .), which can 
used to achieve aspects of generalization. The overall ECM 
is a network of clips (that is, a labeled directed graph, where 
the vertices are the clips), where the edges encode the agent’s 
previous experiences and deliberation paths and have a func-
tional purpose explained momentarily. The ECM is the basis 
of the agent’s deliberation mechanism: it is used to define the 
agent’s instantaneous policy, i.e. the agent probabilistically 
decides on (or rather ‘falls into’) the next action and performs 
it, depending on the state of the current ECM network. There 
are multiple mechanisms for this which we discuss shortly. 
Finally, the learning of the agent is manifest in the updates of 
the ECM network, which occurs in two modes: by (1) changing 
the weights of the edges and (2) the topology of the network, 
through the addition or deletion of clips. The above principles 
describe the basic blueprint behind PS agents. This framework 
can, for instance, be used to construct various types of RL 
agents, related to tabular RL. The set of clips here comprises 
the set of actions and the set of environmental states (as the 
percept set). The ECM is characterized by an h-matrix, speci-
fying real-valued weights (h-values) labeling the connections 
from percept clips to action clips, with, by convention, hij � 1. 
The deliberation, and as a consequence the agent’s policy, is 
realized by a random walk in the memory space governed by 
the h-matrix: that is, the probability of transition from percept 

s to action a is given with p(a|s) = hs,a∑
a′ hs,a′

. In other words, 

the row-wise normalized h-matrix specifies the stochastic 
transition matrix of the PS model, in the Markov chain sense. 
Finally, the learning is manifest in the tuning of the h-values, 
via an update rule, and one of the simplest options is:

ht+1(ci, cj) = ht(ci, cj)− γ(ht(ci, cj)− 1) + δci,cjλ, (31)

where t, t + 1 denote consecutive time steps, λ denotes the 
reward received in the last step (t), the function δci,cj is 1 if and 
only if the transition from clip ci to clip cj occurred in the same 
previous step, and zero otherwise. Finally, γ ∈ [0, 1] is called 
a damping, or dissipation, meta-parameter. This is a simple 
reward-driven rule which, coupled with the deliberation rule, 
incites the agent to favor percept-action transitions which are 
rewarded. The γ term prevents the divergence of the h-values 
and speeds up the re-learning capacities of the model; see  
figures 12 for illustration.

To handle delayed reward settings, for instance in a maze 
or a so called grid-world setting, illustrated in figure 13, the 
reward propagation to all relevant percept-action pairs can 
be realized via a so-called glow mechanism. To each edge, a 
glow value gij is assigned in addition to the hij-value. It is (re-)
set to 1 whenever the edge is used, and decays with the rate 

η ∈ [0, 1], that is, gt
ij = (1 − η)gt−1

ij . The h-value update rule 
is appended to reward all ‘glowing’ edges, proportional to the 
glow value, whenever a reward is issued:

ht+1(ci, cj) = ht(ci, cj)− γ(ht(ci, cj)− 1) + gt
ijλ. (32)

Thus, all the edges which contributed to the final reward get 
a fraction, in proportion to how recently they were used. This 
parallels the intuition that the more recent actions relative to 
the rewarded move played a larger role in the final success.

The expression in equation (32) has functional similarities 
to the Q-learning action-value update rule in equation  (21). 
However, the learning dynamics is different, and the expres-
sions are conceptually different—Q-learning updates estimate 
bounded Q-values, whereas the PS is not a state-value estima-
tion method, but rather a purely reward-driven system.

c)a) b)

Figure 12. (a) An invasion game where the agent is facing an attacker, who must be blocked by appropriately moving to the left or right 
(Briegel and De las Cuevas 2012). These two options form the actions of the agent. The agent (D) learns to associate symbols, presented by 
the attacker (A), to one of the two movements. The basic scenario here is, in RL terms, a contextual two-armed bandit problem (Langford 
and Zhang 2008), where the agent gets rewarded when it correctly couples the two percepts to the two actions. Initially, the percepts have 
no meaning for the agent, and indeed the attacker can alter the meaning over time. (b) The internal network of such a simple PS agent 
requires only action clips (bottom layer) and percept clips (top layer), arranged in two layers, with connections only from percepts to 
actions. The ‘smiling’ edges are rewarded in this initial scenario. c) Basic learning curves for PS with non-zero γ in the invasion game 
where the rule specifying which actions are rewarded switches at time step 250, i.e. the attacker changes its strategy. Re-learning speed and 
asymptotic efficiency depend on γ. Adapted from Briegel and De las Cuevas (2012).

134 Representation means that we, strictly speaking, distinguish actual per-
cepts from the memorized percepts, and the same for actions. This distinc-
tion is however not crucial for the purposes of this exposition.
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The PS framework allows other constructions as well. In 
Briegel and De las Cuevas (2012), the authors also introduced 
emoticons—edge-specific flags which capture aspects of intu-
ition. These can be used to speed-up re-learning via a reflec-
tion mechanism, where a random walk can be iterated multiple 
times, increasing the chances that a desired—flagged—set of 
actions is hit; see Briegel and De las Cuevas (2012) for more 
detail. Further in this direction, the deliberation of the agent 
can be based not on a hitting process—where the agent per-
forms the first action it hits—but rather on a mixing process.

In the latter case, the ECM is a collection of Markov chains 
and the correct action is sampled from the stationary distribu-
tion over the ECM. This model is referred to as the reflective 
PS (rPS) model; see figure 14. Common to all models, how-
ever, is that the deliberation process is governed by a stochas-
tic walk, specified by the ECM.

Regarding performance, the basic PS structure with 
a two-layered network encoding percepts and actions—
which matches standard tabular RL approaches—was 
extensively analyzed and benchmarked against other mod-
els (Melnikov et al 2014, Mautner et al 2015). However, 
the questions that are emphasized in PS literature go 
beyond questions of performance in standard RL tasks, in 
two directions.

For instance, in Mautner et  al (2015) it was shown that 
the action composition aspects of the ECM allow the agent to 
perform better in some benchmarking scenarios, which has 
natural applications in, e.g., the context of protecting MBQC 
from unitary noise (Tiersch et  al 2015) and the context of 
finding novel quantum experiments (Melnikov et  al 2017), 
elaborated on in section 4.3. Further, by utilizing the capac-
ity of ECM to encode larger and multiple networks, we can 
not only also address problems which require generalization 
(Melnikov et  al 2015)—inferring correct behavior by per-
cept similarity—but also design agents which autonomously 
optimize their own meta-parameters, such as γ and η in the 

PS model. That is, the agents can meta-learn (Makmal et al 
2016). These problems go beyond the basic RL framework, 
and the PS framework is flexible enough to also allow the 
incorporation of other learning models—e.g. NNs could be 
used to perform dimensionality reduction (which could allow 
for broader generalization capabilities) or even to directly 
optimize the ECM itself. The PS model has been combined 
with such additional learning machinery in an application to 
robotics and haptic skill learning (Hangl et al 2016, 2017a, 
2017b, 2017c).

However, there is an advantage in keeping the underlying 
PS dynamics homogeneous, that is, essentially solely based 
on random walks over the PS network, in that it offers a few 
natural routes to quantization. This is the second direction of 
foundational research in PS. For instance, in Briegel and De 
las Cuevas (2012) the authors expressed the entire classical PS 
deliberation dynamics as an incoherent part of a Liouvillean 
dynamics (master equation for the quantum density operator) 
which also includes some coherent part (Hamiltonian-driven 
unitary dynamics). This approach may yield advantages both 
in deliberation time and also expands the space of internal 
policies the agent can realize.

Another perspective on the quantization of the PS model 
was developed in the framework of discrete-time quantum 
walks.

In Paparo et al (2014), the authors have exploited the para-
digm of Szegedy-style quantum walks, to improve quadrati-
cally deliberation times of rPS agents. The Szegedy (2004) 
approach to random walks can be used to specify a unitary 
random walk operator UP for a given transition matrix P135 
whose spectral properties are intimately related to those of P 
itself. We refer the reader to the original references for the 
exact specification of UP, and just point out that UP can be 
efficiently constructed via a simple circuit depending on P, or 
given black-box access to entries of P.

Assume P corresponds to an irreducible, aperiodic (guar-
anteeing a unique stationary distribution) and also time-
reversible (meaning it satisfies detailed balance conditions) 
Markov chain. Let π = (πi)i be the unique stationary distri-
bution of P, δ the spectral gap of P136 and |π〉 =

∑
i
√
πi |i〉 

the coherent encoding of the distribution π. Then we have that 

Figure 13. The environment is essentially a grid, where each site 
has an individual percept. The moves dictate the movements of the 
agent (say, up, down, left or right) and certain sites are blocked 
off—walls. The agent explores this world looking for the rewarded 
site. When the rewarded site is found, a reward is given and the 
agent is reset to the same initial position. Adapted from Melnikov 
et al (2014).

a) b)
s

Figure 14. Quantum rPS representation of the ECM network, and 
its steady state over non-action (red) and action (blue) clips.

135 By transition matrix, we mean an entry-wise non-negative matrix, with 
entries in columns adding to unity.
136 The spectral gap is defined by δ = 1 − |λ2|, where λ2 is, in norm, the 
second largest eigenvalue.
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(a) UP |π〉 = |π〉 and (b) the eigenstates {λi} of P and eigen-
phases θi of UP are related by λi = cos(θi)

137.
This is important as the spectral properties, specifically the 

spectral gap δ, more-or-less tightly fix the mixing time—that 
is the number of applications of P needed to obtain the station-
ary distribution—to Õ(1/δ), by the famous Aldous bounds 
(Aldous 1982). This quantity will later bound the complexity 
of classical agents. In contrast, for UP, we have that its non-
zero eigenphases θ are not smaller than Õ(1/

√
δ). This quad-

ratic difference between the inverse spectral eigenvalue gap in 
the classical case and the eigenphase gap in the quantum case 
is at the crux of all speed-ups.

In Magniez et  al (2011), it was shown how the above 
properties of UP can be used to construct a quantum opera-
tor R(π) ≈ − 2 |π〉 〈π| , which exponentially efficiently 
approximates the reflection over the encoding of the station-
ary distribution |π〉. The basic idea in the construction of R(π) 
is to apply phase estimation on UP with precision high enough 
to detect non-zero phases, impose a global phase on all states 
with a non-zero detected phase, and undo the process.

Due to the quadratic relationship between the inverse spec-
tral gap and the smallest eigenphase, this can be achieved 
in time Õ(1/

√
δ). That is, we can reflect over the (coherent 

encoding of the) stationary distribution, whereas obtaining it 
by classical mixing takes Õ(1/δ) applications of the classical 
walk operator. In Paparo et al (2014) this was used to obtain 
quadratically accelerated deliberation times for the rPS agent. 
In the rPS model, the ECM network has a special structure, 
enforced by the update rules. In particular, for each percept 
s we can consider the subnetwork ECMs, which collects all 
the clips one can reach starting from s. By construction, it 
contains all the action clips, but also other intermediary clips. 
The corresponding Markov chain Ps, governing the dynam-
ics of ECMs, is irreducible, aperiodic and time-reversible. In 
the deliberation process, given percept s, the corresponding 
Markov chain Ps mixes, a clip is sampled from the stationary 
distribution, and then output, provided it is an action clip. If it 
is not, the process is repeated.

Computationally speaking, we are facing the problem of 
outputting a single sample, clip c, drawn according to the 
conditional probability distribution p(c) = πc/ε if c ∈ A and 
p(c) = 0 otherwise. Here ε is the total weight of all action 
clips in π. The classical computational complexity of this 
task is given by the product of Õ(1/δ), which is the mixing 
cost, and O(1/ε) which is the average time needed to actu-
ally hit an action clip. Using the Szegedy quantum walk tech-
niques, based on constructing the reflector R(π), followed 
by an amplitude amplification algorithm to ‘project’ onto the 
action space, we obtain a quadratically better complexity of 
Õ(1/

√
δ)× O(1/

√
ε). In full detail, this is achievable if we 

can generate one copy of the coherent encoding of the station-
ary distribution efficiently at each step, and in the context of 

the rPS this can be done in many cases as was shown in Paparo 
et  al (2014) and further generalized in Dunjko and Briegel 
(2015a) and Dunjko and Briegel (2015b).

The proposal in Paparo et al (2014) was the first example 
of a provable quantum speed-up in the context of RL138 and it 
was followed up by a proposal for an experimental demonstra-
tion (Dunjko et al 2015a), which identified a possibility of a 
modular implementation based on coherent controlization—
the process of adding control to almost unknown unitaries.

It is worthwhile to note that further progress in algorithms 
for quantum walks and quantum Markov chain theory has 
the potential to lead to quantum improvements of the PS 
model. This to an extent mirrors the situation in quantum ML, 
where new algorithms for quantum linear algebra may lead 
to quantum speed-ups of other supervised and unsupervised 
algorithms.

Computational speed-ups of deliberation processes in 
learning scenarios are certainly important, but in strict RL par-
adigm such internal processing does not matter and the learn-
ing efficiency depends only on the number of interaction steps 
needed to achieve high quality performance. Since the rPS 
and its quantum analog, the so-called quantum rPS agent, are, 
by construction, behaviorally equivalent (i.e. they perform the 
same action with the same probability, given identical histo-
ries), their learning efficiency is the same. The same, however, 
holds in the context of all the supervised learning algorithms 
we discussed in previous sections, where the speed-ups were in 
the context of computational complexity. In contrast, quant um 
COLT learning results did demonstrate improvements in sam-
ple complexity, as discussed in section 6.1.

While formally distinct, computational and sample com-
plexity can become more closely related the moment the 
learning settings are made more realistic. For instance, if the 
training of a given SVM requires the solution of a BQP com-
plete problem139, classical machines will most likely be able 
to run only classification instances which are uselessly small. 
In contrast, a quantum computer could run such a quant-
um-enhanced learner. The same observation motivates most 
research into quantum annealers for ML; see section 6.3.1.

In Paparo et al (2014), similar ideas were more precisely 
formalized in the context of active RL, where the interaction 
is occurring relative to some external real time. This is criti-
cal, for instance, in settings where the environment changes 
relative to this real time, which is always the case in reality. 
If the deliberation time is slow relative to this change, the 
agent perceives a ‘blurred’, time-averaged environment where 
one cannot learn. In contrast, a faster agent will have time 
to learn before the environment changes—and this makes a 
qualitative difference between the two agents. In the next sec-
tion we will show how actual learning efficiency, in the rigid 

137 In full detail, these relations hold whenever the MC is lazy (all states 
transition back to themselves with probability at least 1/2 ), ensuring that 
all the eigenvalues are non-negative, which can be ensured by adding the 
identity transition with probability 1/2. This slows down mixing and hitting 
processes by an irrelevant factor of 2.

138 We point out that the first ideas suggesting that quantum effects could be 
useful had been previously suggested in Dong et al (2005).
139 BQP stands for bounded-error quantum polynomial and collects deci-
sion problems which can be solved with bounded error using a quantum 
computer. Complete problems of a given class are, in a sense, the hardest 
problems in that class, as all others are reducible to the complete instances 
using weaker reductions. In particular, it is not believed that BQP complete 
problems are solvable on a classical computer, whereas all decision prob-
lems solvable by classical computers do belong to the class BQP.
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metronomic turn-based setting, can also be improved, under 
stronger assumptions.

As mentioned, works which directly apply quantum tech-
niques to RL, or other interactive modes of learning, are 
comparatively few in numbers, despite the ever-growing 
importance of RL. These results still constitute quite iso-
lated approaches, and we briefly review two recent papers. 
In Crawford et al (2016) the authors design an RL algorithm 
based on a deep Boltzmann machine and combine this with 
quantum annealing methods for training such machines to 
achieve a possible speed-up. In related work by Neukart et al 
(2017), the authors demonstrate how to embed particular pol-
icy iteration algorithms (based on Monte Carlo techniques) 
into the D-Wave architecture. These works combine multi-
ple interesting ideas and may be particularly relevant in the 
light of recent advances in quantum annealing architectures. 
Related to quantum RL settings where the interaction is also 
quantized, in Lamata (2017) the authors demonstrated certain 
building blocks of larger quantum RL agents in systems of 
superconducting qubits.

7.2. Quantum agent-environment paradigm for reinforcement 

learning

The topics of learning agents acting in quantum environments 
and the more general questions of the how agent–environment 
interactions should be defined have to this day only been 
broached in a few works by the authors of this review and 
other co-authors. As these topics may form the general prin-
ciples underlying the upcoming field of quantum AI, we take 
the liberty of presenting them in substantial detail.

Motivated by the pragmatic question of the potential of 
quantum enhancements in general learning settings, in Dunjko 
et al (2016) it was suggested that the first step should be the 
identification of a quantum generalization of the AE para-
digm, which underlies both RL and AI. This is comparatively 
easy to do in finite-sized, discrete space settings.

Quantum agent–environment paradigm. The (abstract) AE 
paradigm, roughly illustrated in figure 6, can be understood 
as a two-party communication scenario, the quantum descrip-
tions of which are well-understood in QIP. In particular, the 
two players—here the agent and the environment—are mod-
eled as (infinite) sequences of unitary maps {E i

A}i and {E i
E}i , 

respectively. They both have private memory registers RA and 
RE, with matching Hilbert spaces HA and HE, and to enable 
precise specification of how they communicate (and to cleanly 
delineate the two players), the register of the communication 
channel, RC, is introduced, and it is the register alone which is 
accessible to both players—that is, the maps of the agent act 
on HA ⊗ HC  and of the environment on HE ⊗ HC

140. The two 
players then interact by sequentially applying their respective 
maps in turn (see figure 15).

To further tailor this fully general setting for the pur-
poses of the AE paradigm, the percept and action sets are 
promoted to sets of orthonormal vectors {|s〉 |s ∈ S} and 
{|a〉 |a ∈ A}, which are also mutually orthogonal. These are 
referred to as classical states. The Hilbert space of the chan-
nel is isomorphic to a space spanned by these two sets, so 
HC = span{|x〉 | x ∈ S ∪ A}.

This also captures the notion that the agent/environment only 
performs one action, or issues one percept, per turn. Without 
loss of generality, we assume that the reward status is encoded 
in the percept space. It should be mentioned that the quantum 
AE paradigm also includes all other quantum ML settings as a 
special case. For instance, most quantum-enhanced ML algo-
rithms assume access to quantum database—a quantum mem-
ory—and this setting is illustrated in figure 15, part DL. The 
‘environment’ of the agent here is the database (or whatever the 
mechanism generating the data may be), the actions are the que-
ries and percepts the data points. Since the quantum database 
is, without loss of generality, a unitary map (see e.g. qRAM 
described in section 6.3.2), it requires no additional memory of 
its own nor does it change over interaction steps141.
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RT / UT
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3 UT
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· · ·
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Figure 15. RL: tested agent–environment interaction suitable for 
RL. In general, each map of the tester UT

k  acts on a fresh subsystem 
of the register RT, which is neither under the control of the agent 
nor the environment. The crossed wires represent multiple systems. 
DL: the simpler setting of standard quantum ML, where the 
environmental map is without internal memory, presented in the 
same framework.

140 Other delineations are possible, where the agent and environment have 
individually defined interfaces—a part of E accessible to A and a part of A 
accessible to E—leading to a four-partite system, but we will not be consid-
ering this here (Dunjko et al 2015b).
141 To avoid possible confusion, the actual memory stored in the database is 
formally encoded in the map itself, and requires no additional registers.

Executive summary: To characterize the ultimate scope 
and limits of learning agents in quantum environments, 
one must first establish a framework for quantum 
agents, quantum environments and their interaction: a 
quantum AE paradigm. Such a paradigm should main-
tain the correct classical limit and preserve the critical 

conceptual components—in particular the history of the 

agent–environment interaction, which is non-trivial in 
the quantum case. With such a paradigm in place the 
potential of quantum enhancements of classical agents 
is explored, and it is shown that quantum effects, under 
certain assumptions, can help near-generically improve 
the learning efficiency of agents. A by-product of the 
quantum AE paradigm is a classification of learning 
settings, which is different and complementary to the 
classification stemming from a supervised learning 
perspective.
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At this point, the classical AE paradigm can be recovered 
when the maps of the agent and environment are restricted 
to ‘classical maps’, which, roughly speaking, do not gener-
ate superpositions of classical states nor entanglement when 
applied to classical states.

Further, we now obtain a natural classification of general-
ized AE settings: CC, CQ, QC and QQ, depending on whether 
the agent or the environment are classical (C) or quantum (Q). 
We will come back to this classification in section 7.2.1.

The performance of a learning agent, beyond internal pro-
cessing time, is a function of the realized history of interaction, 
which is the percept-action sequence (of a given finite length) 
which has occurred between a given agent and environment142. 
Any genuine learning-related figure of merit, for instance, the 
probability of a reward at a given time-step (efficiency) or num-
ber of steps needed before the efficiency is above a threshold 
(learning speed), is a function of the interaction history. In the 
classical case, the history can simply be read out by a classical-
basis measurement of the register HC, as the local state of the 
communication register is diagonal in this basis and not entan-
gled to the other systems—meaning the measurement does not 
perturb, i.e. commutes with, the interaction. In the quantum 
case this is not, in general, the case. To recover a robust notion 
of a history (needed to gauge the learning), a more detailed 
description of measurement is used, which captures weaker 
measurements as well: an additional system, a tester, is added, 
which interchangeably couples to the HC register and can copy 
full or partial information to a separate register. Formally, this 
is a sequence of controlled maps, relative to the classical basis, 
controlled by the states on HC and acting on a separate register, 
as illustrated in figure 15. The tester can copy the full informa-
tion when the maps are generalized controlled-NOT gates—in 
which case it is called a classical tester—or even do nothing, 
in which case the interaction is untested. The restriction of the 
tester to maps which are controlled with respect to the classi-
cal basis guarantees that a classical interaction will never be 
perturbed by its presence. With this basic framework in place, 
the authors show a couple of basic theorems characterizing 
when any quantum separations in learning-related figures of 
merit can be expected at all. The notion of a quantum-clas-
sical separation here is essentially the same as in the context 
of oracular computation, or quantum PAC theory: a separation 
means no classical agent could achieve the same performance. 
The authors prove basic expected theorems: quantum improve-
ments (separations) require a genuine quantum interaction 
and, further, full classical testing prohibits this. Further, they 
show that, for any specification of a classical environment, 
there exists a ‘quantum implementation’—a sequence of maps 
{E i

E}i—which is consistent with the classical specification and 
prohibits any quantum improvements.

Provable quantum improvements in reinforcement learning. 
However, if the above no-go scenarios are relaxed, much can 
be achieved. The authors provide a structure of task environ-
ments (roughly speaking, maze-type problems), specification 

of quantum-accessible realizations of these environments 
and a sporadic tester (which leaves a part of the interaction 
untested), for which classical learning agents can often be 
quantum-enhanced.

The idea has a few steps, which we only very briefly sketch 
out. As a first step, the environments considered are deterministic 
and strictly episodic—this means the task is reset after some M 
steps. Since the environments are deterministic, whether or not 
rewards are given depends only on the sequence of actions, as the 
interlacing percepts are uniquely specified. Since everything is 
reset after M steps there are no correlations in the memory of the 
environment between the blocks, i.e. episodes. This allows for 
the specification of a quantum version of the same environment, 
which can be accessed in superpositions and which takes blocks 
of actions and returns the same sequence plus a reward status—
moreover, it can be realized such that it is self-inverse143. With 
access to such an object, a quantum agent can actually Grover-
search for an example of a winning sequence.

To convert this exploration advantage to a learning advan-
tage, the set of agents and environments is restricted to pairs 
which are ‘luck-favoring’, i.e. those where better performance 
in the past implies improved performance in the future, relative 
to a desired figure of merit. Under these conditions, any learn-
ing agent which is luck-favoring relative to a given environ-
ment can be quantum enhanced by first using quantum access to 
quadratically faster find the first winning instance, which is then 
used to ‘pre-train’ the agent in question. The overall quantum-
enhanced agent provably outperforms the basic classical agent.

The construction is illustrated in figure  16. These results 
can be generalized to a broader class of environments. In more 
recent work, the authors have also applied a similar approach to 
provide improvements in the context of meta-learning (Dunjko 
et al 2017). Further, by showing how to embed oracular iden-
tification problems into Markov decision processes, in Dunjko 
et al (2017) the authors have provided constructions of RL task 
environments which satisfy certain criteria for genuine RL 

Figure 16. The interactions for the classical (A) and quantum-
enhanced classical agent (Aq). In Steps 1 and 2, Aq uses quantum 
access to an oracularized environment Eq

oracle  to obtain a rewarding 
sequence hr. Step 3: Aq simulates the agent A and ‘trains’ the 
simulation to produce the rewarding sequence. In Step 4, Aq uses 
the pre-trained agent for interactions with the classical environment 
E, which are now classically tested. Adapted from Dunjko et al 
(2016).

142 In the case where either the agent or environment are stochastic, different 
histories of interaction can occur with different probabilities. The possible 
distribution over histories is sometimes also referred to as the history of 
interaction.

143 This realization is possible under a couple of technical assumptions, for 
details see Dunjko et al Briegel (2015b).
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problems, while still allowing for a provable super-polynomial 
and exponential separation between quantum agents and opti-
mal classical agents. These results showed that even in genuine 
RL problems, better-than-quadratic improvements are possible.

Although these results form the first examples of quantum 
improvements in learning figures of merit in RL contexts, the 
assumptions of having access to ‘quantized’ environments of the 
type used—in essence, the amount of quantum control the agent 
is assumed to have—are quite restrictive from a practical per-
spective. The questions of minimal requirements and the ques-
tions of the scope of improvements possible are still unresolved.

At this point, it should be highlighted that the most probable 
application of results where quantum environments are assumed 
is in the contexts of model-based learning, learning with off-line 
pre-training and learning in simulations. In all these settings, the 
learning interaction is performed with a virtual, rather than a real, 
environment, which opens doors for the techniques described 
in this section. In model-based learning, the agent builds up an 
internal representation of the environ ment, which allows, e.g.,  
planning. Since this representation is internal to the agent, it 
certainly can be quantized (provided sufficiently large quantum 
devices are available). An example of off-line pre-training is the 
AlphaGo system, in particular, the AlphaGo zero variant (Silver 
et al 2017a, 2017b). The AlphaGo system learns via self-play: 
an instance of the model plays against itself. Only after an exten-
sive training phase is the system confronted with a human (or 
software) adversary. Such pre-training is again internal to the 
agent and can in principle be quantized. Similarly, beyond self-
play, training can be performed using a simulation: for instance, 
in the precursor to the AlphaGo system, a learning machine was 
trained to play many Atari games at superhuman level (Mnih 
et al 2015). Although, once trained, the machine could in princi-
ple be used to build a robot to play on an actual computer, all the 
training and evaluation is performed relative to an emulation of 
the Atari system. Again, such emulations or simulations can be 
quantized, as they can be realized internal to the agent.

7.2.1. Agent–environment-based classification of quantum 
machine learning. The AE paradigm is typically encountered 
in the contexts of RL, robotics and more general AI settings, 
while it is less common in ML communities. Nonetheless, 
conventional ML scenarios can naturally be embedded in 
this paradigm, since it is, ultimately, mostly unrestrictive. For 
instance, supervised learning can be thought of as an interaction 
with an environment which is, for a certain number of steps, 
an effective database (or the underlying process, generating the 
data) providing training examples. After a certain number of 
steps, the environment starts providing unlabeled data points 
and the agent responds with the labels. If we further assume 
the environ ment additionally responds with the correct label to 
whatever the agent sent, when the data point/percept was from 
the training set, we can straightforwardly read out the empirical 
risk (training set error) from the history. Since the quantization 
of the AE paradigm naturally leads to four settings—CC, CQ, 
QC and QQ—depending on whether the agent, or environment, 
or both are fully quantum systems, we can classify all of the 
results in quantum ML into one of the four groups. Such coarse-
grained division places standard ML in CC, results on using 
ML to control quantum systems in CQ, quantum speed-ups in 

ML algorithms (without a quantum database, as is the case in 
annealing approaches) in QC and quantum ML/RL where the 
environments, databases or oracles are quantum-accessible are 
QQ. This classification is closely related to the classification 
introduced in Aïmeur et al (2006), which uses the Lcontext

goal  nota-
tion, where ‘context’ may denote whether we are dealing with 
classical or quantum data and/or learner and ‘goal’ specifies the 
learning task (see section 5.1.1 for more details).

The quantum-AE-based separation is not, however, identi-
cal to the Lcontext

goal  systematics. For instance, classical learning 
tasks may require quantum access or classical access, depend-
ing on the details of the setting. Quantum access is required in 
most quantum ML algorithms which rely on a quantum data-
base. Thus, in the quantum AE paradigm, even when we deal 
with a classical ML problem, we may be facing a QQ scenario. 
However, if one considers the bigger picture, the database itself 
must be pre-filled at some point using classical interfaces. If this 
is included in the description of the same quantum ML algo-
rithm, we obtain a QC setting (which now may fail to be as 
efficient). Both viewpoints make sense depending on the sce-
nario which we choose to consider, which may not be obvious 
in the classification of Aïmeur et al (2006). On the other hand, 
the Lcontext

goal  systematics does a nice job separating classical ML 
from quantum generalizations of ML, discussed in section 5.

This mismatch between these two classifications also illus-
trates the difficulties one encounters if a sufficiently coarse-
grained classification of the quantum ML field is required. The 
classification criteria of this field, and also aspects of QAI, in 
this review have been inspired by both the AE-induced criteria 
(perhaps natural from a physics perspective) and the Lcontext

goal  
classification (which is more objective driven, and natural 
from a computer science perspective).

7.3. Towards quantum artificial intelligence

Executive summary: Can quantum computers help us 
build (quantum) AI? The answer to this question can-
not be simpler than the answer to the deep, and largely 
open, question of what intelligence is in the first place. 
Nonetheless, at least for very pragmatic readings of AI, 
early research directions into what QAI may be in the 
future can be identified. We have seen that quant um 
ML enhancements and generalizations cover data 
analysis and pattern matching aspects. Quantum RL 
demonstrates how interactive learning can be quantum-
enhanced. General QC can help with various plan-
ning, reasoning and similar symbol manipulation tasks 
which intelligent agents seem to be good at. Finally, 
the quant um AE paradigm provides a framework for 
the design and evaluation of whole quantum agents, 
built also from quantum-enhanced subroutines. These 
conceptual components, along with many components 
which are yet to be developed, will form a basis for a 
behavior-based theory of quantum-enhanced intelligent 
agents.
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AI is quite a loaded concept, in a manner in which ML is not. 
The question of how genuine AI can be realized is likely to 
be as difficult as the more basic question of what intelligence 
is at all, which has been puzzling philosophers and scientists 
for centuries. Starting a broad discussion of when quantum 
AI will be reached, and what it will be like, is thus clearly ill-
advised. We can nonetheless provide a few less controversial 
observations. The first observation is the fact that the overall 
concept of quantum AI might be given multiple meanings. 
First, it may pertain to a generalization of the very notion of 
intelligence, in the sense section  5 discusses how classical 
learning concepts generalize to include genuinely quantum 
extensions. A second, and a perhaps more pragmatic, reading 
of quantum AI may ask whether quantum effects can be uti-
lized to generate more intelligent agents, where the notion of 
intelligence itself is not generalized: quantum-enhanced AI. 
We will focus on this latter reading for the remainder of this 
review, as quantum generalization of basic learning concepts 
on its own, just as the notion of intelligence on its own, seems 
complicated enough.

To comment on the question of quantum-enhanced AI, we 
first remind the reader that the conceptual debates in AI often 
have two perspectives. The ultimately pragmatic perspective 
is concerned only with behavior in relevant situations. This is 
perhaps best captured by Alan Turing, who suggested that it 
may be irrelevant what intelligence is if it can be recognized by 
virtue of similarity to a ‘prototype’ of intelligence—a human 
(Turing 1950)144. Another perspective tends to try to capture 
cognitive architectures, such as SOAR developed by Laird 
(2012). Cognitive architectures try to identify the components 
needed to build intelligent agents capable of many tasks and 
thus also care about how intelligence is implemented. They 
often also serve as models of human cognition and are both 
theories of what cognition is and of how to implement it. A 
third perspective comes from the practitioners of AI who often 
believe that AI will be a complicated combination of various 
methods and techniques including learning and specialized 
algorithms, but are also sympathetic to the Turing test as the 
definitional method. A simple reading of this third perspec-
tive is particularly appealing, as it allows us to all but equate 
computation, ML and AI. Consequently, all quantum ML 
algorithms and, even broader, even most quantum algorithms 
already constitute progress in quantum AI. Aspects of such 
reading can be found in a few works on the topic (Sgarbas 
2007, Wichert 2014, Moret-Bonillo 2015)145.

The current status of the broad field of quantum ML and 
related research is showing signs of activity with respect to all 
of the three aspects mentioned. The substantial activity in the 
context of ML improvements, in all aspects presented, is cer-
tainly filling the toolbox of methods which one day may play 
a role in the complicated designs of quantum AI practitioners. 

In this category, a relevant role may also be played by various 
algorithms which may help in planning, pruning, reasoning 
via symbol manipulation and other tasks which AI practice 
and theory encounters. Many possible quantum algorithms 
which may be relevant come to mind. Examples include the 
algorithm for performing Bayesian inference (Low et al 2014) 
and algorithms for quadratic and super-polynomial improve-
ments in NAND- and boolean-tree evaluations, which are 
important in evaluation of optimal strategies in two-player 
games146 (Farhi et  al 2008, Childs et  al 2009, Zhan et  al 
2012). Furthermore, even more exotic ideas such as quantum 
game theory (Eisert et al 1999) may be relevant. Regarding 
approaches to quantum AGI and, related, to quantum cognitive 
architectures, while no proposals exist that explicitly address 
this possibility, the framework of PS offers sufficient flexibility 
and structure that it may be considered a good starting point. 
Further, this framework has so far maintained a homogeneous 
structure, preparing the grounds for a more straightforward 
global quantization, in comparison to models which are built 
out of inhomogeneous blocks—already in classical systems 
the performance of a system combined out of inhomogeneous 
units may lead to difficult-to-control behavior and it stands to 
reason that it may be more difficult to synchronize quantum 
devices. It should be mentioned that recently there have been 
works providing a broad framework describing how compos-
ite large quantum systems can be precisely treated (Portmann 
et  al 2017). Finally, from the ultimate pragmatic perspec-
tive, the quantum AE paradigm presented can offer a starting 
point for a quantum-generalized Turing test for QAI, as the 
Turing test itself fits in the paradigm: the environment is the 
administrator of the test and the agent is the machine trying 
to convince the environment it is intelligent. Although at the 
moment the only suitable referees for such a test are classical 
devices—humans—it may be conceivable that they, too, may 
find quantum gadgets useful to better ascertain the nature of 
the candidate147. However, at this point it is prudent to remind 
ourselves and the reader that all the above considerations are 
still highly speculative and that the research into genuine AI 
has barely broken ground.

8. Outlook

In this review, we have presented an overview of various lines 
of research that connect the fields of quantum information 
and QC, on the one hand, and ML and AI, on the other hand. 
Most of the work in this new area of research is still largely 
theor etical and conceptual and there are, for example, hardly 
any dedicated experiments demonstrating how quant um 
mechanics can be exploited for ML and AI. However, there 
are a number of theoretical proposals (Friis et al 2015, Lamata 
2017, Dunjko et al 2015a) and also first experimental works 
showing how these ideas can be implemented in the labora-
tory (Neigovzen et al 2009, Li et al 2015b, Cai et al 2015, 

144 Interestingly, the Turing test assumes that humans are good supervised 
learners of the concept of ‘intelligent agents’, all the while being incapable 
of specifying the classifier—the definition of intelligence—explicitly.
145 It should be mentioned that some of the early discussions on quantum 
AI also consider the possibilities that human brains utilize some form of 
quantum processing, which may be at the crux of human intelligence. Such 
claims are still highly hypothetical, and not reviewed in this work.

146 See www.scottaaronson.com/blog/?p=207 for a simple explanation.
147 This is reminiscent of the problem of quantum verification, where quant-
um Turing test is a term used for the test which efficiently decides whether 
the agent is a genuine quantum device/computer (Kashefi 2013).
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Ristè et al 2017)148. At the same time it is clear that certain 
quant um technologies, which have been developed in the con-
text of QIP and QC, can be readily applied to quantum learn-
ing, to the extent that learning agents or algorithms employ 
elements of QIP in their very design. Similarly, it is clear, and 
there are by now several examples, how techniques from clas-
sical ML can be fruitfully employed in data analysis and the 
design of experiments in quantum many-body physics (see 
section 4.4). One may ask about the long-term impact of the 
exchange of concepts and techniques between QM and ML/
AI. What implications will this exchange have on the develop-
ment of the individual fields, and what is the broader perspec-
tive of these individual activities leading towards a new field 
of research, with its own questions and promises? Indeed, 
returning the focus back to the topics of this review, we can 
highlight one overarching question encapsulating the collec-
tive effort of the presented research:

 ⇒ What is the potential and what are the limitations of an 
interaction between quantum physics and ML and AI?

From a purely theoretical perspective, we can learn from 
analogies with the fields of communication, computation or 
sensing. QIP has shown that to understand the limits of such 
information processing disciplines, both in pragmatic and con-
ceptual senses, one must consider the full extent of quant um 
theory. Consequently, we should expect that the limits of 
learning and of intelligence can also only be fully answered 
in this broader context. In this sense, the topics discussed in 
section 5 already point to the rich and complex theory describ-
ing what learning may be, when even information itself is a 
quantum object, and aspects of section  7.3 point to how a 
general theory of quantum learning may be set-up. While the 
motivation for establishing such a general theory may be fun-
damental, it may also have more pragmatic consequences. In 
fact, arguments can be made that the field of quantum ML and 
the future field of quantum AI may constitute one of the most 
important research developments to emerge in recent times. 
A part of the reason behind such a bold claim stems from the 
obvious potential of both directions of influence between the 
two constituent sides of quantum learning (and quantum AI). 
For instance, the potential of quantum enhancements for ML 
is profound. In a society where data is generated at a geomet-
ric rate149 and where its understanding may help us combat 
global problems, the potential of faster, better analyses can-
not be overestimated. Conversely, ML and AI technologies 
are becoming indispensable tools in all high technologies, but 
they are also showing the potential to help us do research in a 
novel, better way. A more subtle reason supporting optimism 
lies in positive feedback loops between ML, AI and QIP which 
are becoming apparent, and which are, moreover, specific to 
these two disciplines. To begin with, we can claim that QC, 
once realized, will play an integral part in future AI systems, 
on general grounds. This can be deduced from even a cursory 

overview of the history of AI, which reveals that qualitative 
improvements in computing and information technologies 
result in progress in AI tasks, which is also intuitive. In sim-
ple terms, state-of-the-art in AI will always rely on state-of-
the-art in computing. In contrast, ML and AI technologies are 
becoming indispensable tools in all high technologies.

The perfect match between ML, AI and QIP, however may 
have deeper foundations. In particular,

  →  advancements in ML/AI may help with critical steps in 
the building of quantum computers.

In recent times, it has become ever more apparent that 
learning methods may make the difference between a given 
technology being realizable or being effectively impossible—
beyond obvious examples, for instance direct computational 
approaches to build a human-level Go-playing software had 
failed, whereas AlphaGo (Silver et al 2016, 2017a, 2017b), a 
fundamentally learning AI technology, achieved this complex 
goal. QC may in fact end up being such a technology, where 
exquisite fast and adaptive control—realized by an autono-
mous smart laboratory perhaps—helps mitigate the hurdles 
towards quantum computers. However, cutting edge research 
discussed in sections  4.3 and 4.4 suggests that ML and AI 
techniques could help at an even deeper level, by helping us 
discover novel techniques that may provide the missing link 
for full blown quantum technologies. Thus ML and AI may be 
what we need to build quantum computers.

Another observation, which is hinted at with increasing 
frequency in the community, and which fully entwines ML, 
AI and QIP, is that

  →  AI/ML applications may be the best reasons to build 
quantum computers.

Quantum computers have been proven to dramatically out-
perform their classical counterparts only on a handful of prob-
lems. Perhaps the best applications of quantum comp uters that 
have enticed investors until recently were quantum simulation 
and quantum cryptology (i.e. using QC to break encryption), 
which may have been simply insufficient to stimulate broad-
scale public investments. In contrast ML- and AI-type tasks 
may be regarded as the ‘killer applications’ QC has been wait-
ing for. However, not only are ML and AI applications well 
motivated, but in recent times arguments have been put forward 
that ML-type applications may be uniquely suited to be tackled 
by quantum technologies. For instance, ML-type applications 
deal with massive parallel processing of high dimensional 
data—quantum comp uters seem to be good for this. Further, 
while most simulation and numerical processing tasks require 
data stability, which is incompatible with the noise modern 
days quantum devices undergo, ML applications always work 
with noisy data. This means that such an analysis makes sense 
only if it is robust to noise to start with, which is the often 
unspoken fact of ML: the important features are the robust fea-
tures. Under such laxer sets of constraints on the desired infor-
mation processing, various current-day technologies such as 
quantum annealing methods may become a possible solution. 

148 These complement the experimental work based on superconducting 
quantum annealers (Neven et al 2009a, Adachi and Henderson 2015), which 
is closely related to one of the approaches to QML.
149 https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data/ 
(accessed July 2017).

Rep. Prog. Phys. 81 (2018) 074001

https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data/


Report on Progress

60

The two main flavors, or directions of influence, in quantum 
ML thus have a natural synergistic effect. This is a further 
motivation that, despite their quite fundamental differences, 
both directions of QML should be investigated in close col-
laboration. Naturally, at the moment, each individual sub-field 
of quant um ML comes with its own set of open problems, key 
issues which need to be resolved before any credible verdict 
on the future of quantum ML can be made. Most fit into one of 
the two quintessential categories of research into topics con-
sidering quantum-enhancements: (a) what are the limits/how 
much of an edge over best classical solutions can be achieved 
and (b) could the proposals be implemented in practice in 
any reasonable term. For most of the topics discussed, both 
questions above remain widely open. For instance, regarding 
quantum enhancements using universal computation, only a 
few models have been beneficially quantized, and the exact 
problem they solve, even in theory, does not match the best 
established methods used in practice. Regarding the second 
facet, the most impressive improvements (barring isolated 
exceptions) can be achieved only under a significant number 
of assumptions, such as quant um databases, and certain suit-
able properties of the structure of the datasets150. Beyond par-
ticular issues which were occasionally pointed out in various 
parts of this review, we will forgo providing an extensive list 
of specific open questions for each of the research lines and 
refer the interested reader to the more specialized reviews for 
more detail (Wittek 2014a, Schuld et al 2014b, Biamonte et al 
2016, Arunachalam and de Wolf 2017, Ciliberto et al 2017).

This leads us to the final topic of speculation of this out-
look section: whether QC will truly be instrumental in the con-
struction of genuine artificial (general) intelligence. On one 
hand, there is no doubt that quantum computers could help in 
heavily computational problems one typically encounters in, 
e.g., ML. In so far as AI reduces to sets of ML tasks, QC may 
help. However, we have ample evidence that AI is more than 
a sum of such specific-task-solving parts, and in this sense 
even radical (quantum) speed-ups in the solving of such tasks 
may yield only a limited progress into the design of artificially 
intelligent systems. For instance, human brains are (usually) 
taken as a reference for systems capable of generating intel-
ligent behavior. Yet there is little, and no non-controversial, 
reason to believe genuine quantum effects play any critical 
part in their performance (rather, there are ample reasons to 
dismiss the relevance of quantum effects), and thus whatever 
makes us intelligent most likely is not just a consequence of 
mere computational speed. In other words, quantum comp-
uters may not be necessary for general AI. The extent to which 
quantum mechanics has something to say about general AI 
will be the subject of research in years to come. Nonetheless, 
we can already set aside any doubt that quantum computers 
and AI can help each other, to an extent which will not be 
disregarded.
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