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Abstract 

Analysis of time series data for classification or prediction tasks is very useful in various applications 
such as healthcare, climate studies and finance. As big data resources have recently become available 
in many fields, it is now possible to apply extremely high dimensional deep learning models that can 
model long-term temporal and spatial context. Traditional methods such as autoregressive integrated 
moving average (ARIMA), long short-term memory networks (LSTM), gated recurrent units 
(GRUs) and recurrent neural networks (RNN) have provided robust frameworks in the analysis of time 
series data. However, these methods have had limited success when applied to applications where long-
term context is crucial. Transformer-based architectures such as ChatGPT have emerged as a powerful 
method for this class of problems. In this review, we provide a detailed analysis of state of the art in 
deep learning systems that model long-term context. We review eleven transformer-based architectures 
that have been successfully applied to healthcare-related applications involving time series or high 
resolution image data. We have focused on enhanced transformer architectures that can solve important 
challenges such as segmentation, forecasting, and classification.  

1. Introduction 

Time series data analysis involves the examination of datasets composed of time-ordered entries. This 
analysis is crucial in many fields for predicting future trends, understanding past behaviors, and making 
informed decisions. Time series data analysis is a fundamental aspect of statistical studies and data 
science, playing a critical role in numerous fields ranging from healthcare and finance to climate science 
and engineering. The core idea of time series analysis is to understand, model, and predict temporal 
data. The values in time series data are recorded at successive points in time, often at equally spaced 
intervals and hence the data is inherently sequential. 

Time series data possesses several distinct characteristics that are critical for its analysis and interpre-
tation. Some of the important characteristics of time series analysis are autocorrelation, trend and sea-
sonality [1], [2], [3]. Autocorrelation in time series data refers to the degree of correlation between a 
time series and a lagged version of itself.  It shows how much similar or related the data points are to 
their past values within the series: 

𝑅(𝜏)  =  
𝐸[(𝑥(𝑡)  −  𝜇)(𝑥(𝑡  +  𝜏)  −  𝜇)]

𝜎! 	 . 				(1) 

In Eq. 1 we show the autocorrelation 𝑅(𝜏) of a time series 𝑥(𝑡) at lag 𝜏, where 𝐸 is the expected value, 
𝜇 is the mean of the time series, and 𝜎!  is the variance of the time series.  

Trend refers to the long-term movement or direction in the data over time, disregarding short-term 
fluctuations. It represents the underlying tendency of the data to increase, decrease, or remain stable 
over a long period. Trends can be linear or nonlinear and can vary in slope and shape depending on the 
nature of the data and the factors influencing it. 

Seasonality captures the regular fluctuations or patterns that occur at specific regular intervals, such as 
daily, weekly, monthly, or yearly. This is especially common in data related to weather, retail sales, and 
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energy consumption, where the time of year significantly influences the data. Sometimes such seasonal 
variations can be at irregular intervals. These irregular intervals are referred as cyclical variations rather 
than seasonality. 

Stationarity is another characteristic of time series data where statistical properties such as mean, vari-
ance, and autocorrelation are constant over time. Many time series models assume that the data is sta-
tionary, or they involve transforming the data to achieve stationarity. The random variation in the data 
that cannot be attributed to trend, seasonality, or cycles may be considered as noise. Noise is inherently 
stochastic and unpredictable, often referred to as the “error” or “residual” part of a time series.  

Careful analysis of time series data is crucial in many diverse domains since it enables predictive ana-
lytics and gives us insights into important temporal patterns. In the financial sector, time series data 
such as stock prices, exchange rates, and economic indicators like GDP and inflation rates are essential 
for market analysis and forecasting [4]. Financial time series are characterized by their volatility and 
are often analyzed for trend detection, anomaly identification, and risk assessment [5],[6]. Similarly, 
environmental, and climatological time series, including temperature recordings, rainfall measure-
ments, and air quality indices, play a vital role in climate modeling and environmental research. These 
datasets are integral for understanding long-term climate patterns, seasonal variations, and environmen-
tal change assessments [7]. 

Biomedical time series data, including heart rate monitoring and EEG recordings, are fundamental in 
patient health monitoring and medical research [8]. In speech signal processing, time series analysis has 
been applied to enhance voice recognition systems and improve human-computer interaction. Algo-
rithms for speech signal analysis have been developed to extract features in both time and frequency 
domains, providing valuable insights for speech recognition and processing [9]. In industrial settings, 
time series data such as production levels and equipment performance metrics aid in optimizing opera-
tions and predictive maintenance. Retail and business analytics heavily rely on time series data for sales 
forecasting and understanding consumer behavior patterns.  

Large language model (LLM) based algorithms are used for generating auxiliary virtual images, demon-
strating significant improvements in image processing tasks. The use of a transformer architecture to 
enrich feature diversity of images, showcases the potential of LLMs in image processing applications 
[10]. Furthermore, the integration of LLMs in image processing highlights the significance of spatial 
and temporal contexts. Spatial context often requires detailed analysis within a snapshot, while temporal 
context benefits from long-term models that track changes over time. 

Each of these time series data categories, with their unique properties and patterns, require specialized 
analytical techniques. From stochastic models and machine learning algorithms to signal processing 
and statistical methods, the insights derived from these analyses are pivotal in decision-making pro-
cesses across various sectors. For example, in Figure 1, we show the stock market variation in Dow 
Jones from Jan 2023 to Feb 2024. Trend is very important in such signals, and such signals are not zero 
mean or easily modeled by stable linear systems. 

In Figure 2, we show a satellite image of glacier shrinkage due to climatic conditions. It is to be noted 
the time series data need not always be one dimensional as in stock market or biomedical signals. The 
idea of spatial context, the ability to model the relationship between adjacent pixels, is important in 
applications, such as image and video processing, environmental modeling, and geographical infor-
mation systems. In such applications, the data encapsulates not only the change over time but also the 
intricate spatial interconnections between data points. For instance, in satellite imagery analysis used 
for environmental monitoring or urban planning, each pixel's value evolves over time, reflecting 
changes due to natural events, human activities, or seasonal cycles. 

In Figure 3, we provide another example of time series data obtained from the EEG recordings. Such 
signals, which are multichannel in nature, have both temporal and spatial dependencies. Here, spatial 
dependencies mean correlations between channels, where each channel corresponds to a signal 
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collected from a sensor placed in a specific location on the scalp. A temporal event, such as a seizure, 
occurs on multiple channels which are physically close to one another. 

2. Traditional Time Series Analysis Techniques 

Traditional methods for time series analysis have evolved over the years. To analyze time series data, 
classical approaches such as autoregressive models were widely used, especially for prediction tasks. 
These models predict future data points using a linear combination of past values. The autoregressive 
model assumes that the output variable depends linearly on its previous values and a stochastic term. 
Talwar [11] explored various autoregressive models for dynamic forecasting of equity markets, empha-
sizing the use of past data in predicting future volatility. Bondon [12] provided an explicit formula for 
the prediction error of future values of a stationary process with incomplete past data, highlighting the 
use of autoregressive processes. Madadi et al. [13] expanded autoregressive models to forecast dynamic 
line ratings in power networks, addressing the trend and fluctuation of past data. Ray [14] discussed the 
use of mid-prediction filters in autoregressive models for separating the nonstationary part of a signal. 
Hall et al. [15] explored high-dimensional generalized linear autoregressive models, offering insights 
into predicting future observations using current and past observations. Engle [16] introduced auto-
regressive conditional heteroscedastic (ARCH) processes, a class of stochastic processes used for fore-
casting with nonconstant variances conditional on the past. Rather [17] presented an autoregressive 
neural network approach for predicting stock returns, emphasizing the use of past values in regression 
variables. 

2.1. Correlation-Based Methods 

Moving average (MA) models use the past forecast errors in a regression-like model. A moving average 
model helps in smoothing out noise from random fluctuations in time series data. Autoregressive mov-
ing average (ARMA) models combine both AR and MA models to describe time series data using both 
autoregressive terms and moving average terms. Loneck & Zurbenko [18] discussed the Kolmogorov-
Zurbenko periodogram with DiRienzo-Zurbenko smoothing for spectral analysis of time series data, 
comparing its performance to traditional ARIMA algorithms. Sun et al. [19] proposed an MA method 
based on complex exponential decomposition for noise elimination in non-stationary and non-linear 
signals.  

An extension of ARMA, autoregressive integrated moving average models (ARIMA) includes differ-
encing of raw observations (integration) to make the time series stationary, which is a common require-
ment for AR and MA models. Lee et al. [20]  applied an ARIMA model to predict future network 
throughput, crucial for improving network protocols. Garg et al. [21] used the ARIMA model to analyze 
long-term noise monitoring data in traffic noise pollution studies. Valipour et al. [22] estimated the 
ability of ARIMA models in forecasting the monthly inflow of Dez dam reservoir. Sameh & El-
shabrawy [23] investigated the application of ARIMA and SARIMAX models in the context of climate 
change time series forecasting. Pitfield [24] compared the efficiency of ARIMA and regression models 
in simulating air-transport passengers by route. 

The Box-Jenkins methodology [1],[35] is a systematic method for applying an autoregressive integrated 
moving average (ARIMA) model. Haviluddin & Alfred  [36] presented an approach for network traffic 
characterization using the ARIMA technique, demonstrating its application in modeling internet net-
work traffic. Jafarian-Namin et al. [37] focused on modeling and forecasting the yearly inflation rate of 
Iran using ARIMA, employing the Box-Jenkins methodology to confirm the effectiveness of different 
ARIMA models. Duarte et al. [38] compared Box and Jenkins methodologies with Artificial Neural 
Networks in time series forecasting, highlighting the performance of ARIMA and Transfer Function 
Models versus Neural Network Models. Jamii et al. [39] aimed to predict carbon dioxide emissions in 
Morocco using the Box-Jenkins ARIMA approach, demonstrating the application of this methodology 
in environmental modeling. 
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Seasonal decomposition techniques decompose a time series into seasonal, trend, and residual compo-
nents, typically using moving averages. Dozie & Ibebuogu [25] discussed the decomposition with the 
mixed model using the Buys-Ballot method, emphasizing the estimation of trend parameters, seasonal 
indices, and residual components. Hebbel & Heiler [26] presented a method for decomposing a time 
series into trend-cyclical and seasonal components, using a smoothness criterion and goodness of fit 
criterion. He et al. [27] developed a seasonal-trend decomposition-based dendritic neuron model 
(STLDNM) for financial time series prediction, highlighting the effectiveness of seasonal-trend decom-
position in complex data series. Sulandari et al. [28] combined deterministic function and neural net-
work models to forecast time series with trend and seasonal patterns, utilizing singular spectrum anal-
ysis (SSA) for decomposition. Lacroix [29] explored short-term analysis and business cycle estimation 
using seasonal decomposition, focusing on the consistency of methodologies in seasonal adjustment 
and trend-cycle estimation. Zhang & Li [30] proposed a novel decomposition and combination tech-
nique for forecasting electricity consumption, using STL decomposition to separate trend, season, and 
residual components of time series. 

Cross-correlation and autocorrelation analysis measure the relationship between the time series and 
lagged versions of itself or another time series. Dean & Dunsmuir [51] highlight the dangers of cross-
correlation in time series analysis within various fields, emphasizing the importance of constructing 
transfer function autoregressive models to avoid spurious relationships due to autocorrelation. Olden & 
Neff [52] discuss the biases in cross-correlation analysis caused by intra-multiplicity (the time lags 
observed and the cross-correlation coefficients that are computed within a pair of time series) even in 
the absence of autocorrelation, and provide formulas to quantify and minimize these biases. Taylor [53] 
explains how autocorrelations, correlograms, and plots of the autocorrelation function can reveal the 
structure of a cycle within time-series data, providing statistical methods for deeper analysis. Zhang, 
Huang, Shekhar, & Kumar  [54] utilize spatial autocorrelation to propose new processing strategies for 
correlation-based similarity range queries and joins, offering a novel approach to managing the compu-
tational cost of correlation analysis in spatial time series datasets. Stattegger [55] employs time series 
analysis techniques like autocorrelation and cross-correlation to reconstruct tectonic structures from 
geochemical drill hole log data, demonstrating the application of these methods in geology. 

2.2. Frequency Domain and Multi-Timescale Based Methods 

Fourier analysis techniques transform a time series into its frequency components. This is particularly 
useful in signal processing and in situations where periodic patterns need to be identified. Kaiser [31] 
discussed windowed Fourier transforms, highlighting their utility in providing information about sig-
nals simultaneously in the time and frequency domains, which is essential in signal processing. Brad-
ford [32] examined time-frequency analysis methods, including Fourier Transforms, for analyzing sys-
tems with changing dynamic properties, underlining their importance in civil engineering and 
seismology. Kolawole [33] covered frequency analysis of signals using Fourier series and Fourier trans-
form, emphasizing its role in signal processing and systems design. Vergura et al. [34] conducted a 
time-frequency analysis using Fourier and Wavelet transforms to detect properties of power required 
by different types of users, showcasing the application of Fourier analysis in power systems.  

Spectral analysis uses the frequency spectrum contained in time series data, which is particularly useful 
in fields like seismology and electrophysiology. Ghaderpour et al. [56] introduced the antileakage least-
squares spectral analysis for seismic data regularization and random noise attenuation, offering solu-
tions to the spectral leakage problem. Baisch & Bokelmann [57] presented a method for spectral anal-
ysis of non-equidistantly spaced time series, applying the CLEAN algorithm to seismological data to 
detect temporal changes in elastic wave velocities. Ghil et al. [7] reviewed advanced spectral methods 
for climatic time series, illustrating connections between time series analysis and nonlinear dynamics, 
and discussing signal-to-noise enhancement. 

Wavelet analysis breaks down time series data into different frequency components and studying each 
component with a resolution matched to its scale. Karim et al. [64] explored the use of wavelets (symlet 
16) to detect business cycles in Malaysia by decomposing time series to study long-run trends and high-
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frequency components. Bartosch & Wassermann [65] presented a wavelet coherence method to display 
local coherence information between two seismic stations, applying it to seismic near-field data from 
Stromboli volcano. Masuda & Okabe [66] discussed the application of the wavelet transform for sta-
tionarity analysis and predictions in time series, allowing the observation of series in both time and 
frequency domains simultaneously. Schiff [67] adapted a noise reduction technique for time-series data 
using wavelets, presenting a method that filters noise using control surrogate data sets. Torrence & 
Compo [68] provided a practical guide to wavelet analysis with examples from the El Niño–Southern 
Oscillation (ENSO), including statistical significance tests for wavelet power spectra. 

Exponential smoothing techniques include methods like Simple Exponential Smoothing for univariate 
data without trend or seasonality, and Holt-Winters’ Exponential Smoothing for data with trend and/or 
seasonality. Gelper et al. [40] presented robust versions of exponential and Holt-Winters smoothing 
methods suitable for forecasting univariate time series in the presence of outliers, offering a recursive 
updating scheme for pre-cleaned data. Taylor & McSharry [41] evaluated univariate forecasting meth-
ods using European electricity demand data, highlighting the performance of double seasonal Holt-
Winters exponential smoothing among other methods for predicting up to a day-ahead demand. 
Luoman [42] introduced three kinds of exponential smoothing — Simple, Holt and Winters. These are 
applicable to time series data with a variety of characteristics including trend and seasonality. 

2.3. Nonlinear Methods 

There were methods developed to deal with time series data exhibiting nonlinear behaviors, which can-
not be captured adequately by linear models. Hegger et al. [58] describe the TISEAN package, which 
implements methods of nonlinear time series analysis based on deterministic chaos, covering data rep-
resentation, prediction, noise reduction, dimension and Lyapunov estimation, and nonlinearity testing. 
Small [59] focuses on time series embedding and reconstruction, essential for analyzing experimental 
time series data with nonlinear methods, including discussions on determinism and stationarity in phys-
iological data. Bradley & Kantz [60] revisit nonlinear time-series analysis, discussing the practical is-
sues that restrict the approach's power, such as signal sampling and noise, and highlighting its successful 
application across thousands of real and synthetic data sets. 

Kantz [61] discusses the potentials and limitations of nonlinear time series analysis, emphasizing the 
need for extensions of methods towards systems coupled to random noises and those with more than a 
few active degrees of freedom. Zou et al. [62] provide an in-depth review of complex network methods 
for characterizing dynamical systems based on time series, covering phase space-based recurrence net-
works, visibility graphs, and Markov chain-based transition networks. Pereda et al. [63] describe non-
linear multivariate analysis methods used in neurophysiology to study the relationship between simul-
taneously recorded signals, covering concepts of phase synchronization, generalized synchronization, 
and event synchronization. 

2.4. Regression-Based Methods 

Identifying and analyzing trends in time series data often requires statistical techniques to model and 
forecast future values based on observed trends. Neves & Cordeiro [43] presented an approach integrat-
ing exponential smoothing and bootstrap methodologies for time series prediction, emphasizing the 
importance of selecting the best model for accurate forecasts. Zavala & Messina [44] provided a statis-
tical framework based on dynamic harmonic regression for examining modal behavior, trend extraction, 
and forecasting in wind power generation, showcasing the flexibility of time series models. Miah [45] 
explored techniques for the analysis of financial data using time series models, demonstrating how to 
analyze and forecast economic indicators and perform trend analysis.  

Jha et al. [46] investigated contemporary approaches for forecasting vehicular population in India, com-
paring trend line analysis, econometric analysis, and time series (TS) analysis, and found TS analysis 
to be more accurate. Wonu & Orlu [47] modeled time-series data on senior secondary student mathe-
matics achievement over 29 years, using trend analysis and ARIMA techniques to forecast future 
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values, highlighting the effectiveness of these methods in educational data analysis. Idrees et al. [48] 
discussed analyzing the Indian stock market using time series data to build a statistical model for effi-
cient future stock predictions. This research demonstrates the significance of time series analysis in 
financial markets for uncovering market trends and forecasting stock performance. Rivera [49] empha-
sized the role of stationarity in business and economic research, discussing the importance of identifying 
non-stationary time series and the need for stationarity in the data prior to analysis. Hu [50] introduced 
the combination of time series forecasting with topological data analysis as a technique to solve real-
world problems, using COVID-19 pandemic data as a case study. 

In this section we have discussed the traditional time series analysis methods ranging from auto-regres-
sive models, which leverage past values for predictions, and moving average models, aimed at smooth-
ing out noise, to more complex Autoregressive Integrated Moving Average (ARIMA). These techniques 
have been applied across various domains, such as finance, climate studies, biomedical, speech signal 
etc. Techniques such as seasonal decomposition and Fourier analysis are used to identify the periodic 
patterns whereas exponential smoothing and trend analysis provide tools for handling data with or with-
out seasonal variations. Spectral, wavelet, and nonlinear time series analyses offer advanced methods 
for dealing with complex data structures. The variety of methodologies discussed in this section high-
lights the evolution of time series analysis in capturing and forecasting the intricate behaviors of se-
quential data across various fields. 

3. Modern Approaches in Time Series Analysis 

Modern methods for time series analysis have significantly evolved, incorporating advanced statistical 
techniques, machine learning algorithms, and artificial intelligence. These methods are capable of han-
dling large volumes of data, complex patterns, and non-linear relationships, making them suitable for a 
wide range of applications, from finance and business forecasting to environmental monitoring and 
healthcare. In this section, we highlight several approaches that represented fundamental advances in 
the field, or introduced paradigms that became the foundation for more advanced approaches. 

3.1. Reinforcement Learning 

Reinforcement Learning optimizes a cumulative reward metric to make decisions over time. Ansari 
et al. [69] proposed a novel decision support system for automated stock trading based on deep rein-
forcement learning, observing both past and future trends of stock prices to make optimal trading deci-
sions. This study demonstrated the effective use of reinforcement learning in algorithmic trading and 
stock market forecasting. Aboussalah et al. [70] explored the value of the cross-sectional approach to 
deep reinforcement learning in dynamic asset allocation. This research provides insights into the effec-
tiveness of reinforcement learning algorithms in financial applications, particularly in portfolio man-
agement.  

Roy et al. [71] presented an augmented AI algorithmic trading approach that combines a Thick Data 
Heuristic with Deep Reinforcement Learning for day and swing trading order timing executions. The 
study shows the integration of AI and heuristics with deep learning techniques for effective trading 
decisions. Lei et al. (2020) proposed a time-driven feature-aware jointly deep reinforcement learning 
model (TFJ-DRL) for algorithmic trading, integrating deep learning with reinforcement learning for 
improved financial signal representation and decision-making [72]. Li et al. [73] introduced a robust 
deep reinforcement learning-based trading agent for algorithmic trading in dynamic financial markets, 
using deep Q-network and asynchronous advantage actor-critic for adapting to trading markets. Chen 
et al. [74] proposed an agent-based reinforcement learning system to mimic professional trading strat-
egies, demonstrating its ability to reproduce trading decisions and improve convergence in dynamic 
environments.  

 



7 

3.2. Nonparametric Methods 

Techniques such as k-Nearest Neighbors (k-NN), Support Vector Machines (SVMs), and similar clus-
tering algorithms are widely used for time series clustering and classification tasks. These methods are 
robust and powerful, and often are used to establish baseline performance for new data sets and appli-
cations. Chandralekha & Shenbagavadivu  [75] explored clustering and classification in machine learn-
ing, particularly for predicting heart disease by analyzing various medical diagnostic parameters and 
patterns. They compared unsupervised learning (like K-means, K-modes, K-medoids) and supervised 
learning (such as SVM, Random Forest, Decision Tree, and k-NN). Senthil & Suseendran [76] proposed 
a Sliding Window Technique-based Improved Association Rule Mining with Enhanced SVM (SWT-
IARM with ESVM) for time series data classification. This approach focuses on efficient rule discovery 
and classification by combining ESVM classification with IARM for more accurate rule classification. 

Ougiaroglou et al. [77] explored the application of data reduction techniques as a preprocessing step 
before training Neural Networks and SVMs for time series classification. They also proposed a new 
data reduction technique based on the k-median clustering algorithm. Yang et al. [78] developed a ker-
nel fuzzy c-means clustering-based fuzzy SVM algorithm (KFCM-FSVM) for dealing with classifica-
tion problems involving outliers or noises, using FCM clustering in the high-dimensional feature space. 
Sathyamoorthy & Sivasankar [79] presented a hybrid approach where clustering algorithms are used to 
reduce the training dataset size, followed by applying complex algorithms like SVM and MLP for clas-
sification on the reduced data set. 

Advanced algorithms such as Isolation Forest, One-Class SVM, and Autoencoders are used to identify 
unusual patterns or outliers in time series data, crucial in fraud detection and system health monitoring. 
Aguilar et al. [80] proposed the first interpretable autoencoder based on decision trees, designed to 
handle categorical data without the need to transform data representation. This model provides a natural 
explanation for experts in application areas and is among the top-ranked anomaly detection algorithms, 
along with One-class SVM and Gaussian Mixture.  Park et al. [81] proposed multi-modal anomaly 
detection in embedded systems using time-correlated measurements of power consumption and 
memory accesses. They trained one-class SVM and isolation forest classifiers for anomaly detection, 
showing accurate detection of anomalies.  

Ma & Perkins [82] introduced a new algorithm for time-series novelty detection based on one-class 
SVMs. They converted time-series into vectors in phase spaces and interpreted novel events as outliers 
of the “normal” distribution, showing promising performance of the algorithm. Alfeo et al. [83] pro-
posed an anomaly detection approach based on deep learning for smart manufacturing. They combined 
an autoencoder with a discriminator based on general heuristics, proving the convenience of this ap-
proach against isolation forest in industrial applications. Yang et al. [84] proposed a high-dimensional 
anomaly detection algorithm based on isolated forest with a deep autoencoder (AE-IForest), mapping 
high-dimensional data to a low-dimensional space and fusing reconstruction error with data isolation 
scores for anomaly detection. 

Derbentsev et al. [127] discuss short-term forecasting of cryptocurrency time series using random for-
ests and a stochastic gradient boosting machine, highlighting the applicability of machine learning en-
sembles for forecasting cryptocurrency prices. Pop et al. [128] analyze the performance of random for-
ests and gradient boosting algorithms in forecasting energy consumption, and compare them to a 
Weighted Average Ensemble Method. Mienye et al. [129] present a concise overview of ensemble 
learning, covering bagging, boosting, and stacking, and focuses on widely used ensemble algorithms, 
including random forest and gradient boosting. 

3.3. Neural Networks 

Convolutional Neural Networks (CNNs), primarily known for image processing, have been adapted for 
time series analysis. They can capture spatial-temporal patterns in data, making them useful for series 
with spatial components (like EEG signals). Liu et al. [100] proposed a multivariate convolutional 
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neural network (MVCNN) for multivariate time series classification, integrating a tensor scheme with 
a novel deep learning architecture. Nakamura et al. [101] discussed using one-dimensional convolu-
tional neural networks (1D-CNNs) for time series analysis with a method to mitigate noise interference 
by injecting noise into the data for feature extraction. Younis et al. [102] proposed a new approach to 
interpret CNN outputs for multivariate time series data by extracting and clustering activated time series 
sequences learned from a trained network. Chadha et al. [103] proposed permutation layers in CNNs to 
overcome inefficiencies in capturing features from unsorted “2D-images” formed by multivariate time-
series analysis. Chervyakov et al. [104] focused on reducing the hardware cost of CNNs in applications 
like time series analysis, suggesting a CNN architecture based on the Residue Number System (RNS). 
Utama et al. [105] optimized CNN architecture for multivariate time-series data analysis using Particle 
Swarm Optimization (PSO), showing improvement in performance compared to ordinary CNNs.  

Long Short Term Memory Network (LSTM) is a type of recurrent neural network (RNN) effective in 
complex time series forecasting due to its ability to model long-term dependencies. Manaswi  [85] 
discusses the concepts of recurrent neural networks (RNNs) and LSTMs, highlighting their use in se-
quence prediction and time-series forecasting. Wu et al. [86]  propose a new forecasting framework 
with LSTM models for forecasting Bitcoin daily prices, validating the excellent forecasting accuracy 
of the proposed models. Luo & Wang  [87] introduce a long-term prediction model for time series using 
fuzzy information granules and recurrent fuzzy neural networks, integrating type-2 fuzzy sets and 
LSTM to improve anti-noise and memory ability. Kim et al. [88] propose a novel neural network archi-
tecture using a combination of LSTM and convolutional layers to predict time-series energy data with 
higher accuracy. Chen & Xu  [89] developed a piecewise time series prediction model combining 
stacked LSTM network with a genetic algorithm, demonstrating its effectiveness in automatically se-
lecting the proper structure according to the data. 

Similar to LSTM, Gated Recurrent Units (GRU) are a type of RNN that are efficient in modeling tem-
poral sequences and their long-range dependencies. They are used in situations where LSTMs might be 
too computationally intensive. Onyekpe et al. [90] proposed a Quaternion Gated Recurrent Unit 
(QGRU) for sensor fusion, leveraging quaternion algebra to map correlations within multidimensional 
features more efficiently than traditional GRUs. Tallec & Ollivier (2018) proved that learnable gates in 
recurrent models provide quasi-invariance to general time transformations in input data, leading to a 
new way of initializing gate biases in LSTMs and GRUs. Shen et al. [91] explored the use of GRU 
networks for predicting trading signals for stock indexes, comparing GRU-based models with tradi-
tional deep nets and support vector machines (SVM) [92]. Zheng & Chen  [93] proposed a novel GRU 
model with selective state updating and adaptive mixed gradient optimization for accurate power time-
series prediction.  

Erichson et al. [94] introduced a novel gated recurrent unit with a weighted time-delay feedback mech-
anism to improve the modeling of long-term dependencies in sequential data. Dangovski et al. [95] 
developed the Rotational Unit of Memory (RUM), a phase-coded representation of the memory state in 
RNNs, which unifies unitary learning and associative memory, showing improved performance over 
LSTMs/GRUs. Morchid  [96] proposed the Parsimonious Memory Unit (PMU) based on the assump-
tion that short and long-term dependencies are related, showing better efficiency and processing time 
compared to GRU. Bilkhu et al. [97] implemented a Transformer-based model for video captioning 
using GRUs, showing improved performance on video captioning tasks. Hong et al. [98] proposed the 
Long Memory Gated Recurrent Unit (LMGRU) based on LSTM and GRU models, achieving better 
effectiveness and efficiency in time series classification tasks. Som et al. [99] utilized GRUs in combi-
nation with RNN for text classification, achieving a classification accuracy of 87% on a movie review 
dataset. 

3.4. Deep Neural Networks 

DeepAR is a probabilistic forecasting model with autoregressive recurrent networks. DeepAR provides 
accurate forecasting, especially for large datasets with many related time series. Jiang et al. [106] pro-
posed an optimized DeepAR model using the Sparrow Search Algorithm for atmospheric PM2.5 
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prediction, demonstrating improved forecasting accuracy in both interval and point predictions. Dong 
et al. [107] introduced a real-time wireless monitoring system and employed the DeepAR model for 
deformation prediction of unstable slopes, showing good safety control ability and prediction accuracy. 
Jeon & Seong [108] modified the DeepAR model to address the intermittent and irregular characteristics 
of sales demand, achieving robust and stable predictions in time series forecasting. Consoli et al. [71] 
used economic news within a DeepAR framework to forecast the Italian 10-year interest rate spread, 
showing that a deep learning network outperforms classical methods. Park et al. [109] investigated 
DeepAR models for probabilistic forecasting of photovoltaic generations, evaluating the tightness of 
the prediction interval with normalized residues.  

Shen et al. [110] proposed DeepARMA, an LSTM-based model derived from DeepAR, addressing 
weaknesses in rolling window size determination and noise neglect. Li et al. [111] built a model based 
on deep neural networks, combining convolutional and recurrent networks for multivariate time series 
analysis, including an autoregressive network. Gouttes et al. [112] proposed a method for probabilistic 
time series forecasting, combining an autoregressive recurrent neural network with Implicit Quantile 
Networks. 

Prophet, developed by Facebook, is designed for forecasting with daily observations that display pat-
terns on different time scales. It is particularly effective for handling outliers, missing data, and seasonal 
effects. Chuwang & Chen [113] employed the Box–Jenkins time series with the Facebook Prophet al-
gorithm for forecasting daily and weekly passenger demand for urban rail transit stations, demonstrating 
better computational forecasting performance accuracy. Toharudin et al. [114] employed LSTM and 
Facebook Prophet models in air temperature forecasting, highlighting the performance of Prophet in 
managing complex data series.  

Saiktishna et al. [115] analyzed stock market trends using FB Prophet, noting its improved performance 
and accuracy in prediction. Huang [116] utilized Facebook Prophet with macroeconomic regressors for 
forecasting stock prices, demonstrating its superiority in prediction accuracy compared to other models. 
Mahmud [117] predicted and analyzed COVID-19 daily cases in Bangladesh using the Facebook 
Prophet Model, demonstrating its capability in handling complex data series. Mphale et al. [118] pro-
posed the Facebook-Prophet model for forecasting COVID-19 mortality in the SADC region, highlight-
ing its effectiveness in prediction. Suresh et al. [119] conducted historical analysis and forecasting of 
the stock market using the FB Prophet model, emphasizing its improved performance in forecasting.   

Vector Autoregression (VAR) is an extension of the AR model that captures the linear interdependen-
cies among multiple time series. VAR models are widely used in econometrics. Lu [120] discusses the 
application of VAR in analyzing the dynamics among geographic processes and for spatial autoregres-
sive modeling, providing an example of US population dynamics between 1910 and 1990. Myers et 
al. [121] use VAR methods to analyze the contribution of supply, demand, and policy shocks to fluctu-
ations in the Australian wool market, comparing VAR procedures with conventional models. Alvarez-
De-Toledo et al. [122] offer an approximation between econometric techniques and system dynamics 
methodology, showing how to simulate an SVAR model. McCracken et al. [123] assess forecasts from 
a mixed-frequency VAR to obtain intra-quarter forecasts of output growth as new information becomes 
available. Kilian & Lütkepohl [124] review the structural VAR approach in econometrics, contrasting 
it with other methodologies and highlighting its application in macroeconomics and finance. 

3.5. Hybrid Methods 

Ensemble Methods combine predictions from multiple models to improve forecasting accuracy. Meth-
ods like random forests, gradient boosting, and bagging are used in an ensemble manner for time series 
predictions. Galicia et al. [125]. This study presents ensemble models for forecasting big data time se-
ries, combining decision tree, gradient boosted trees, and random forest methods. The performance is 
evaluated on electricity consumption data, showing that the ensemble models outperform individual 
members. Valatsos et al. [126] predict critical time intervals for freight transportation using ensemble 
learning techniques, including bagging, random forest, and gradient boosting. 
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Levy & O’Malley [130] combined traditional statistical models with modern machine learning tech-
niques to capture both linear and non-linear aspects of data. They introduced “Interaction Transformer”, 
an algorithm that boosts logistic regression by integrating machine learning to identify interaction fea-
tures from a random forest model. Chen [131] reviews models for predicting business bankruptcies, 
noting the shift from traditional statistical methodologies to machine learning techniques. The author 
emphasizes the role of hybrid classifiers, combining machine learning algorithms like support vector 
machines, decision trees, and genetic algorithms to improve the accuracy of bankruptcy prediction mod-
els. Anifowose et al. [132] present a hybrid machine learning approach to predict the formation cemen-
tation factor, combining the nonlinear feature selection capability of functional networks (FNs) with 
traditional artificial neural networks (ANNs). The FN-ANN hybrid model demonstrates improved ac-
curacy and computational efficiency. 

Von Rueden et al. [133] describe the combination of machine learning and simulation towards a hybrid 
modeling approach, suitable for applications based on both causal relationships and hidden dependen-
cies represented in data. The authors discuss various types of combinations using simulation-assisted 
machine learning and machine learning-assisted simulation.  Sadat et al. [134] developed a hybrid cryp-
tographic framework for secure and efficient regression analysis over distributed data, combining some-
what homomorphic encryption and Intel Software Guard Extensions (Intel SGX). The framework en-
sures privacy while maintaining computational efficiency.  These modern methods are often more 
flexible and powerful than traditional approaches, particularly in handling non-linear patterns, large 
datasets, and real-time analysis. They require a good understanding of the underlying models and ap-
propriate preprocessing of data. The choice of method often depends on the specific characteristics of 
the time series data and the objectives of the analysis. 

In Table 1, we provide a comparison of traditional methods for time series modeling and discuss the 
pros and cons of each approach. In Table 2, we provide a similar summary for modern approaches. 

4. Long-Term Dependencies in Time Series Data 

The temporal dependencies in time series data are crucial in various applications such as stock market 
prediction and fault diagnosis. These dependencies can span timeframes of a few hours to a few years 
making the analysis and classification of such data a challenging task. Time series data in energy sys-
tems, like wind turbines, inherently contain extremely long-term dependencies that are essential for 
forming classifiable features and effective fault diagnosis [135]. Biomedical time series data, such as 
EEG and ECG, do exhibit long-term dependencies, as demonstrated by Maiorana [136] in their study 
on the longitudinal behavior of EEG signals. This was further supported by Nakano  [137], who found 
a relationship between the slowing of EEG and mental function decline in the elderly. The importance 
of capturing these long-term dependencies in predicting clinical events was highlighted by Li [138], 
who developed a hierarchical Transformer-based model for accurate prediction using longitudinal elec-
tronic health records. Zhao [139] also emphasized the need to retain sequential information in temporal 
data, which is crucial for prediction tasks in the biomedical domain. 

The studies by Thombs  [140], Lutz [141], Kim [142], and Jackson [143] collectively suggest that time 
series data from climate studies does exhibit long-term dependencies. Thombs and Kim both highlight 
the importance of analyzing historical time series data and the need for alternative adjustment methods 
to account for seasonality and long-term trends. Lutz and Jackson further emphasize the significance of 
longitudinal data in understanding the impact of climate change on forest ecosystems and ecological 
processes. These studies collectively underscore the presence of long-term dependencies in climate-
related time series data. 

Time series data obtained from financial analysis, such as stock market and inflation data, often exhibit 
long-term dependencies. This is due to the inherent nature of these data, which are characterized by 
sequential observations over time. These dependencies can be attributed to various factors, including 
the presence of heterogeneity, omitted variable bias, and duration dependence [144]. In the context of 
stock trading markets, univariate time series models have been found to be effective in certain cases, 
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particularly in segments with sufficient historical data [145]. However, the effectiveness of these mod-
els may not be generalizable to all domains, particularly in forecasting after turning points. The presence 
of serial dependency in time series data can pose challenges in analysis, particularly when conventional 
methods that ignore this dependency are used [146]. Despite these challenges, time series analysis re-
mains a valuable tool for understanding the underlying processes and patterns of change in financial 
data [147].  

Despite these advancements, capturing long term dependencies and rare event detections is challenging. 
Modeling long-term dependencies poses what amounts to a combinatorial problem. Until the introduc-
tion of the so-called Large Language Model (LLM), this was an elusive problem. The Transformer 
model, which is based on an architecture that implements what is known as self-attention, has been a 
disruptive force in machine learning. 

4.1. Introduction to the Transformer Architecture 

The Transformer architecture (Figure 4), introduced by Vaswani et al. [148], leverages self-attention 
(scaled dot-product attention) as its core mechanism. This enables the model to assign importance 
weights to different parts of the input sequence, unlike recurrent and convolutional layers. These 
weights allow the Transformer to focus on relevant elements during processing, capturing long-range 
dependencies effectively. Central to self-attention is the computation of attention weights, which deter-
mine which parts of the input sequence are most relevant for a particular element. This eliminates the 
need for recurrent layers, which struggle with modeling long-range dependencies. In the original Trans-
former architecture, the input words or phrases are represented as vectors of real numbers in a high-
dimensional space. This process is called input embedding and during this process the information about 
the order of the input sequence will be lost. Hence the authors introduced the concept of positional 
encoding which generates a vector informing the model about element positions within the sequence. 

In Scaled Dot-Product Attention, the attention weights are computed as a function of the query (𝑄) and 
the key (𝐾) matrices, scaled by the dimension of the keys (𝑑"): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	(𝑄, 𝐾, 𝑉) = 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥 9
𝑄𝐾#

:𝑑"
;𝑉						(2) 

where 𝑄 is the matrix of queries, 𝐾 is the matrix of keys, 𝑉 is the matrix of values, and 𝑑" is the 
dimensionality of the key vectors. 

A Transformer architecture enhances the ability of the model to focus on different positions by employ-
ing multiple heads for the attention mechanism. Each head captures different aspects of the attention. 
The output of each head is concatenated and linearly transformed into the desired dimensionality: 

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑$, ℎ𝑒𝑎𝑑!, . . . . . . , ℎ𝑒𝑎𝑑%)𝑊&			(3) 
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where 𝑊'
( ,𝑊'

+ ,𝑊'
* are the parameter matrices for 𝑖,% head, and 𝑊&  is the output linear transfor-

mation matrix. 

In the original Transformer model, which is designed for natural language processing, positional en-
codings are added to the input embeddings to give the model information about the position of each 
word in a sentence. This concept is crucial for time series analysis as well, where the order of data points 
significantly impacts their meaning. For time series, positional encodings can be adapted to represent 
the sequential nature of the data more accurately, ensuring the model recognizes the temporal order of 
observations. This involves encoding not just the position within a sequence but also the actual time 
intervals between observations, which can be particularly important in irregularly sampled time series. 
Adjustments to the Transformer architecture, such as customizing the input and output layers or 
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integrating domain-specific features, can help the model better interpret and predict these continuous 
values. By introducing mechanisms such as cyclic positional encodings into the model, a Transformer 
can recognize and predict these cyclic patterns more effectively. Researchers have introduced various 
modifications in the Transformer architecture, as shown in Figure 5, which enumerates application ar-
eas and domain specific architectures. 

This review emphasizes applications in signal processing that addresses time series related tasks such 
as forecasting, classification, and anomaly detection. The popular  architectures used for such applica-
tions include LogTrans [149], InParformer [150], Informer [151], Sageformer [152], Autoformer [153], 
Pyraformer [154], W-Transformers [155], FEDformer [156], Crossformer [157], Temporal Fusion 
Transformers (TFT) [158], [159], [160], and Transformer-XL [161]. 

4.2. LogTrans 

The LogTrans architecture introduces an architecture that provides a combination of Transformer ar-
chitecture and CNN parallel network for biomedical image segmentation [149]. CNNs excel at learning 
local dependencies within images. However, they tend to lack a broader understanding of the overall 
structure and relationships between different regions and components. LogTrans offers a hybrid ap-
proach using parallel branches consisting of a CNN and a transformer. The CNN branch focuses on 
extracting localized features (textures, edges, specific cell patterns), whereas the transformer branch 
specializes in learning global spatial relationships and contextual information.  

The Separate-Combiner (SeCo) module is the heart of the LogTrans architecture. Instead of just jam-
ming outputs from the two branches together, this module does two things: (1) separate – allows CNN 
and transformer features to further refine on their own, emphasizing relevant patterns for their specific 
focus; and (2) combiner: strategically fuses the refined features, enriching the representation. This gives 
the resulting segmentation the best of both worlds. 

The LogTrans framework was evaluated on several biomedical datasets, including ablation studies on 
ISIC-2017 and UITNS-2022 as shown in Table 3. 

4.3. Temporal Fusion Transformer 

The Temporal Fusion Transformer (TFT) [139], [158], [160], [162], shown in Figure 7, integrates sev-
eral components to handle different types of data and temporal relationships effectively. The core com-
ponents include Gated Residual Networks, Variable Selection Networks, LSTM encoders, Multi-Head 
Attention, and Quantile forecasts. This architecture allows TFT to capture complex temporal patterns, 
handle missing data, and provide uncertainty estimates for forecasts. It is particularly effective in multi-
horizon forecasting tasks, where predictions are needed over multiple future time steps. 

B. Lim et al. [158] introduces an attention-based architecture for multi-horizon forecasting that com-
bines high performance with interpretable insights into temporal dynamics. TFT uses recurrent layers 
for local processing and interpretable self-attention layers for long-term dependencies. The architecture 
includes specialized components to select relevant features and gating layers to suppress unnecessary 
components, enabling high performance in a wide range of scenarios. The architectural innovations 
include gating mechanisms that allow the model to adaptively manage its depth and complexity, ena-
bling efficient information processing across different scenarios without overfitting to less relevant data 
components. 

The variable selection networks play a crucial role in identifying and focusing on the most relevant 
input variables for each forecasting step, thereby enhancing the model's accuracy and interpretability. 
TFT integrates information from static metadata using separate gated residual network (GRN) encoders 
to produce four different context vectors that are wired into various locations in temporal fusion de-
coder. TFT integrates vital background information into the forecasting process, allowing the model to 
condition its temporal dynamics on these static inputs. The model employs a combination of sequence-
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to-sequence layers for local processing and an interpretable multi-head attention mechanism to capture 
long-term dependencies, offering a comprehensive understanding of both short and long-term temporal 
relationships. By generating prediction intervals, TFT provides valuable insights into the possible range 
of future values, enhancing decision-making processes with a clearer assessment of risk and uncertainty. 

Fabian et.al. [160] examines the importance of accurate thermal load forecasting for district heating and 
cooling networks and evaluates the performance of the Temporal Fusion Transformer (TFT) in this 
context, presenting its use for producing 72-hour heating load forecasts for three different district heat-
ing grids in the city of ULM. Comparing TFT's performance with other machine learning methods, 
superior forecasting abilities across various scenarios, significantly in the spring and fall seasons, was 
demonstrated. This improvement is attributed to TFT's attention-based mechanism, which excels in 
handling the temporal nature of the data and its ability to generalize across different conditions. The 
research underscores TFT's potential in optimizing the use of renewable energy and reducing reliance 
on fossil fuels in district heating systems. TFT consistently outperformed other methods in terms of 
Mean Absolute Percentage Error (MAPE) across all district heating networks. The study found that, in 
the spring, TFT's MAPE improvement ranged from 2% better for one network to 8% better for another, 
highlighting its robustness even in harder-to-predict seasons. 

Ratchakit et al. [159] applies TFT to forecast vital sign trajectories in intensive care patients, focusing 
on heart rate (HR), respiratory rate (RR), and oxygen saturation (SpO2). The results show that TFT 
could effectively forecast vital sign trajectories, such as heart rate (HR) and respiratory rate (RR), in 
intensive care patients. The model could provide accurate future vital signs predictions, with most un-
seen values falling within the 95% prediction interval. The study highlights TFT's ability to capture 
temporal dynamics and potential in detecting irregular patterns in vital sign time series, suggesting its 
usefulness in clinical settings for early detection of patient deterioration.  

Behrens et al. [160] explored TFT for thermal load prediction in district heating and cooling networks, 
providing a comparison with other machine learning methods and demonstrating its effectiveness in 
forecasting heating load for different grids. Liao & Radhakrishnan [162] tested the TFT approach for 
short-term load forecasting in power distribution networks, showing its effectiveness over traditional 
methods. 

4.4. InParformer 

InParformer [150] is another model based on transformer architecture for long-term time series fore-
casting. The architecture, shown in Figure 8, It features an interactive parallel attention mechanism for 
learning dependencies in both frequency and time domains, enhanced by query selection, key-value 
pair compression, and evolutionary seasonal-trend decomposition modules. These innovations target 
the challenges of redundancy, semantic  density, and complex temporal patterns in time series data. The 
methodology emphasizes efficiency and interpretability, significantly outperforming state-of-the-art 
models across various real-world datasets. 

InParformer demonstrates remarkable performance in long-term time series forecasting (LTSF) across 
various datasets and metrics. This performance is highlighted by its comparison with other state-of-the-
art models such as FEDformer, Autoformer, Informer, and others, offering a comprehensive view of its 
capabilities. InParformer consistently outperformed competing models across multiple datasets, includ-
ing ETT (Electricity Transformer Temperature), Electricity, Exchange, and Weather datasets, showcas-
ing its versatility and robustness in handling different types of time series data. The model achieved 
significant reductions in Mean Square Error (MSE) and Mean Absolute Error (MAE), indicating its 
precise forecasting ability. For instance, in the ETTm2 dataset, InParformer achieved an MSE of 0.260 
and an MAE of 0.323 for a prediction length of 192, outperforming FEDformer, which had an MSE of 
0.269 and an MAE of 0.328 for the same prediction length. 

Similarly, in the Exchange dataset, InParformer outperformed other models with an MSE reduction of 
up to 15.1% compared to FEDformer, highlighting its efficiency in datasets lacking clear periodicity. 
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These results underscore InParformer's advanced design, incorporating interactive parallel attention and 
evolutionary seasonal-trend decomposition, which enables it to capture complex temporal dependencies 
more effectively than its counterparts. Its superior performance across diverse forecasting horizons fur-
ther emphasizes its stability and adaptability in varying temporal resolutions. 

4.5. Informer 

The Informer model, shown in Figure 9, is designed to handle the high prediction capacity required for 
capturing long-range dependencies between input and output efficiently. Informer addresses several 
problems with the traditional transformer model, such as quadratic time complexity, high memory us-
age, and limitations of the encoder-decoder architecture. To overcome these, Informer introduces three 
key innovations: (i) a ProbSparse self-attention mechanism that reduces time complexity and memory 
usage to O(L log L) while maintaining performance, (ii) self-attention distilling that emphasizes domi-
nant attention and manages extremely long input sequences effectively, and (iii) a generative style de-
coder that predicts long time series sequences in one forward operation, significantly speeding up in-
ference for long-sequence predictions. The Informer model demonstrates superior performance over 
existing methods through extensive experiments on four large-scale datasets [156]. 

An important variant of the Informer architecture is the Frequency Enhanced Decomposed Transformer, 
FedFormer, which aims to improve long-term series forecasting by combining a transformer model with 
seasonal-trend decomposition with a frequency enhancement model to handle short-term details. FED-
former is shown to be more effective and efficient than the standard transformer, with a linear complex-
ity to sequence length, and it reduces prediction error significantly on benchmark datasets [163]. How-
ever, the Informer's distinctive characteristics, particularly its ProbSparse self-attention mechanism and 
generative style decoder, are unique solutions to the specific challenges of modeling long-term depend-
encies, and this are not addressed by the FEDformer approach. 

4.6. Sageformer 

The Series-Aware Framework for Long-Term Multivariate Time Series Forecasting architecture, 
known as SageFormer, introduces a novel framework for forecasting multivariate time series (MTS) 
data. MTS data are quite common with the rise of Internet of Things (IoT) devices. These devices 
generate vast amounts of MTS data, necessitating advanced forecasting models capable of understand-
ing the intricate interplays and temporal dynamics within this data. Long-term fore casting of MTS data 
is particularly challenging due to the need to capture both intra- and inter-series dependencies accu-
rately.  

SageFormer, shown in Figure 10, leverages graph structures to discern and model complex relationships 
between different series, capturing diverse temporal patterns while filtering out redundant information. 
The framework integrates seamlessly with existing transformer-based models, enhancing their ability 
to understand inter-series relationships. This integration enriches the models without significantly in-
creasing complexity. Through extensive experiments on real-world and synthetic datasets, SageFormer 
demonstrates superior forecasting performance compared to contemporary state-of-the-art approaches. 

Unlike in traditional Transformer architecture where input token are obtained by projecting input time 
series in a patch, the Sageformer integrates global tokens to enhance series awareness [152]. It uses an 
iterative message-passing process shown in Figure 11. Graph Structure Learning employs end-to-end 
learning of the adjacency matrix to capture relationships across series without prior knowledge, making 
it versatile for different datasets. Experiments on six real-world datasets (e.g., Traffic, Electricity, 
Weather) and two synthetic datasets, were conducted demonstrating SageFormer's effectiveness across 
various domains. SageFormer outperforms nine popular models for long-term MTS forecasting models, 
including models that focus on inter-series dependencies and long-term context using transformers. 
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4.7. Autoformer 

The Autoformer approach [148] is a variation of the transformer architecture that includes a deep de-
composition architecture, as shown in Figure 12. The Autoformer consists of an inner series decompo-
sition block, an autocorrelation mechanism, and a corresponding encoder and decoder. The Autoformer 
features an autocorrelation mechanism inspired by stochastic process theory, which focuses on the pe-
riodicity of the series to discover dependencies and aggregate representations at the sub-series level. 
This mechanism is more efficient and accurate than traditional self-attention, particularly for long-term 
forecasting tasks.  

The Autoformer achieved state-of-the-art accuracy, with a 38% relative improvement over existing 
methods on six benchmark datasets that span five practical applications, including energy, traffic, eco-
nomics, weather, and disease [164]. These datasets included  (i) load and oil temperature data from an 
electric transformer, (ii) an electricity dataset that contains the hourly electricity consumption, (iii) ex-
change records of the daily exchange rates of eight different countries, (iv) hourly traffic data from 
California Department of Transportation, (v) weather recorded every 10 minutes for the year 2020 con-
taining 21 meteorological indicators, and (vi) weekly recorded influenza like illness (ILI) patients data 
from Centers for Disease Control and Prevention of the United States. For the multivariate setting, 
Autoformer achieved state of the art performance for all benchmarks and all prediction length settings. 
Autoformer gave a 74% MSE reduction in ETT, 18% in electricity, 61% in exchange, 15% in traffic 
and 21% in weather. For the input 36-predict-60 setting of ILI, Autoformer delivered a 43% MSE re-
duction. Overall, Autoformer yielded a 38% averaged MSE reduction. 

4.8. Pyraformer 

In Pyraformer, a novel pyramidal attention-based transformer is proposed to bridge the gap between 
capturing the long-range dependencies and achieving a low time and space complexity [154]. Specifi-
cally, a pyramidal attention mechanism is developed by passing messages based on attention in the 
pyramidal graph as shown in Figure 13. 

The edges in this graph can be divided into two groups: the inter-scale and the intra-scale connections. 
The inter-scale connections build a multiresolution representation of the original sequence: nodes at the 
finest scale correspond to the time points in the original time series (e.g., hourly observations), while 
nodes in the coarser scales represent features with lower resolutions (e.g., daily, weekly, and monthly 
patterns). Such latent coarser scale nodes are initially introduced via a coarser-scale construction mod-
ule. On the other hand, the intra-scale edges capture the temporal dependencies at each resolution by 
connecting neighboring nodes together. As a result, this model provides a compact representation for 
long-range temporal dependencies among far-apart positions by capturing such behavior at coarser res-
olutions, leading to a smaller length of the signal traversing path. Moreover, modeling temporal de-
pendencies of different ranges at different scales with sparse neighboring intra-scale connections sig-
nificantly reduces the computational cost. 

At the heart of Pyraformer is its hierarchical attention mechanism shown in Figure 14, which processes 
data in a pyramidal fashion. This design reduces the computation required for long sequences by sum-
marizing information at multiple scales and then integrating these summaries to capture long-range 
dependencies. By leveraging this pyramidal structure, Pyraformer significantly reduces the time and 
space complexity associated with processing long sequences. This efficiency makes it a practical choice 
for large-scale applications where computational resources are a limiting factor. The architecture's de-
sign is inherently adaptable, making it suitable for a wide range of applications beyond just text pro-
cessing. It has shown promising results in time series forecasting, where capturing long-range depend-
encies is crucial for accurate predictions. 

The Pyraformer model has been evaluated across multiple datasets to demonstrate its effectiveness and 
efficiency. It has been observed to deliver an improvement in MSE and MAE while tested with three 
different datasets: Electricity [165], ETTh1 and ETTm1 [151]. For ETTh1, Pyraformer decreased the 
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MSE by 24.8%, 28.9%, 26.2% respectively when the prediction length is 168, 336, and 720. In appli-
cations ranging from financial market prediction to weather forecasting and natural language tasks, 
Pyraformer's innovative approach offers a balance between performance and efficiency. 

4.9. W-Transformers 

The W-Transformer is a wavelet-based transformer framework that marks a significant advancement in 
univariate time series forecasting. This framework, shown in Figure 15, leverages the maximal overlap 
discrete wavelet transformation (MODWT) to decompose time series data, enabling the capture of non-
stationary and long-range nonlinear dependencies. The W-Transformer framework is designed to tackle 
the challenges of forecasting non-stationary time series data, which is a common scenario in real-world 
applications. Non-stationarity in time series data, characterized by changes in mean and variance over 
time, poses significant challenges for traditional forecasting models.  

W-Transformers address this challenge by incorporating wavelet transformations with the Transformer 
architecture, allowing for the efficient capture of both local and global temporal dependencies in the 
data. The MODWT is employed as a preprocessing step to decompose the time series data into various 
frequency components. This decomposition allows the W-Transformer to analyze the data at multiple 
resolutions, capturing the inherent multi-scale temporal dynamics. The wavelet transformation's ability 
to handle non-stationarity makes it an ideal choice for preprocessing time series data for forecasting 
tasks. The W-Transformer architecture exhibited superior performance in root mean square error 
(RMSE) on four different datasets as shown in Table 4. 

4.10. FedFormer 

Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting (FEDformer) [156], 
is a novel architecture for long-term series forecasting. Its architecture is shown in Figure 16. FED-
former combines transformer models with seasonal-trend decomposition and frequency domain analy-
sis to enhance forecasting accuracy. By incorporating Fourier and wavelet transforms, FEDformer 
achieves linear computational complexity, outperforming state-of-the-art models in efficiency and ac-
curacy across multiple datasets. The approach addresses the limitations of traditional transformer mod-
els in capturing global time series trends, offering significant improvements in multivariate and univari-
ate forecasting tasks. 

The FEDformer architecture introduces a dual-path design integrating both Fourier and wavelet trans-
forms to enhance time series forecasting. This structure allows for efficient processing of long se-
quences by decomposing them into frequency components, enabling the model to capture both global 
and local temporal dependencies with reduced computational complexity. The innovative use of fre-
quency-enhanced attention mechanisms in FEDformer facilitates a more effective and scalable ap-
proach to long-term forecasting tasks. 

The FEDformer model's performance was evaluated using six datasets covering a range of real-world 
scenarios including energy, economics, traffic, weather, and disease. FEDformer outperformed all other 
models on the six benchmark datasets across all prediction horizons, with an overall 14.8% relative 
MSE reduction compared to Autoformer. Notably, for some datasets like Exchange and ILI, the im-
provement was even more significant, exceeding 20%. This showcases FEDformer's strength in long-
term forecasting and its ability to handle data without clear periodicity effectively. In univariate time 
series forecasting, FEDformer achieved an overall 22.6% relative MSE reduction compared to Auto-
former [153]. For certain datasets, such as traffic data, the improvement exceeded 30%. This further 
validates FEDformer's effectiveness in long-term forecasting. The model's dual-path structure, utilizing 
both Fourier and wavelet transforms (denoted as FEDformer-f and FEDformer-w), allows it to excel 
across different datasets by leveraging their complementary strengths. 



17 

4.11. CrossFormer++ 

CrossFormer++ [157], is an enhanced vision transformer leveraging cross-scale attention for improved 
performance in image classification, object detection, instance segmentation, and semantic segmenta-
tion tasks. It introduces a cross-scale embedding layer (CEL) and long-short distance attention (LSDA) 
for efficient feature processing across scales. Additionally, it addresses issues like self-attention map 
enlargement and amplitude explosion with a progressive group size (PGS) and an amplitude cooling 
layer (ACL), respectively. Extensive experiments demonstrate CrossFormer++'s superior performance 
across various tasks compared to existing models. 

CrossFormer++ employs a pyramid structure that organizes the transformer model into four stages as 
shown in Figure 17. Each stage is designed to progressively refine the features extracted from the input 
image, allowing for a hierarchical representation that captures both local and global contextual infor-
mation effectively. 

At the beginning of each stage, a Cross-scale Embedding Layer (CEL) is utilized to generate input 
tokens. The CEL operates by sampling patches from the input image using four different kernel sizes, 
allowing it to capture features at multiple scales. This multi-scale approach enables the model to main-
tain a balance between computational efficiency and the ability to capture detailed feature information 
from various parts of the image.  

Within each CrossFormer block, the Long Short Distance Attention (LSDA) module is a key compo-
nent. LSDA is divided into Short Distance Attention (SDA) and Long Distance Attention (LDA) mech-
anisms. SDA focuses on building dependencies among neighboring embeddings, capturing local feature 
information efficiently. Conversely, LDA is responsible for establishing connections between embed-
dings that are far apart, enabling the model to integrate global contextual information. This dual atten-
tion mechanism allows CrossFormer++ to effectively process visual information across different spatial 
ranges.  

To enhance the model's ability to understand the positional relationship between different tokens, Cross-
Former++ incorporates a Dynamic Position Bias (DPB) module. This module adapts the relative posi-
tion bias to accommodate variable image and group sizes, ensuring that positional information is accu-
rately captured regardless of the input dimensions. This flexibility is crucial for tasks like object 
detection, where the input image size can vary significantly. 

Two additional innovations in CrossFormer++ are the Progressive Group Size (PGS) and the Amplitude 
Cooling Layer (ACL). PGS addresses the varying attention needs at different layers of the model by 
adjusting the group size progressively. This ensures that local features are emphasized in early layers, 
while global features are prioritized in deeper layers. The ACL is introduced to manage the amplifica-
tion of activation amplitudes across layers, which can destabilize training. By cooling down the ampli-
tude, ACL helps maintain training stability and improve model performance. 

On ImageNet data, CrossFormer++ models achieve a noticeable improvement in accuracy over existing 
vision transformers and their predecessors (CrossFormer models), with gains up to 0.8% in average 
accuracy across different model sizes [157]. For instance, CrossFormer++-B achieves 84.2% accuracy. 
CrossFormer++ significantly outperforms most existing vision transformers in object detection and in-
stance segmentation tasks on the COCO 2017 dataset. CrossFormer++ surpasses CrossFormer by at 
least 0.5% average precision (AP). The semantic segmentation task on the ADE20K dataset exhibits 
greater performance gains over other architectures as the model size increases, indicating its effective-
ness in dense prediction tasks.  

4.12. Transformer-XL 

Transformer-XL [161] introduces a novel approach to language modeling, enabling the capture of 
longer-term dependencies beyond fixed-length contexts. It achieves this through a segment-level 
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recurrence mechanism and a new positional encoding scheme, significantly improving performance 
over traditional models like RNNs and vanilla transformers. Transformer-XL demonstrates its effec-
tiveness across various datasets, significantly reducing perplexity and enhancing text generation quality. 
This model represents a substantial advancement in handling sequential data, offering promising appli-
cations in areas requiring nuanced understanding of long-term context. 

Transformer-XL incorporates a recurrence mechanism at the segment level, allowing the model to carry 
over information from previous segments. This design enables the model to maintain a longer effective 
context without being limited by the fixed size of input segments. During training, hidden states from 
previous segments are reused as extended context for the current segment, enhancing the model's ability 
to capture long-term dependencies. This approach addresses both the limitations of fixed-length con-
texts and the context fragmentation problem, leading to improved modeling of longer sequences.  

A crucial innovation in Transformer-XL is the introduction of relative positional encodings, which re-
place the absolute positional encodings used in standard transformers. This change is necessary to main-
tain the coherence of positional information when reusing hidden states across segments. Relative po-
sitional encodings allow the model to understand the relative positions of tokens within a sequence, 
enabling the reuse of states without causing confusion about the temporal order of events. This tech-
nique not only preserves temporal information but also allows for more flexible and efficient handling 
of sequence lengths. 

Transformer-XL reduced the state-of-the-art (SoTA) perplexity from 20.5 to 18.3, on WikiText-103 
[166], showcasing its superiority over previous models in capturing long-term dependencies in a large 
dataset with an average article length of 3.6K tokens [161]. On the enwik8 dataset [167] that contains 
100M bytes of unprocessed Wikipedia text, Transformer-XL achieved new SoTA results, outperform-
ing previous Transformer models and conventional RNN-based models by a significant margin. Nota-
bly, the 12-layer Transformer-XL matched the performance of a 64-layer network from a previous study 
with only 17% of the parameter budget, emphasizing its efficiency  [161].  

Similar to enwik8, text8 contains 100M processed Wikipedia characters created by lowering case the 
text and removing any character other than the 26 letters a through z, and space. Transformer-XL 
adapted the same model and hyper-parameters from enwik8, achieving the new SoTA from 1.13 to 1.08 
[161]. Transformer-XL significantly improved the SoTA from 23.7 to 21.8 [161]on the One Billion 
Word dataset [168], indicating its generalizability and effectiveness in modeling both short and long 
sequences. 

5. Conclusion 

In this review, we have explored advanced machine learning models for modeling long-term context. 
We have focused on enhanced transformer architectures that can solve important challenges such as 
biomedical image segmentation, time series forecasting, and language modeling. Innovations such as 
the LogTrans architecture, which combine CNNs with transformers were shown to be superior to stand-
ard transformer architectures. Other architectures, like Autoformer and CrossFormer++, introduce 
mechanisms for capturing periodicity and cross-scale features. These advancements signify major 
strides in accuracy, efficiency, and applicability of transformers across different domains, showcasing 
their versatility and potential for future research and applications. Table 5 provides a comparison of key 
features and advancements of these architectures. 

In this chapter we covered both classical and modern approaches to modeling long-term context. Char-
acteristics like autocorrelation, trend, and seasonality in time series data across various domains were 
discussed. Classical methods such as autoregressive models, moving averages, and Box-Jenkins meth-
odology, as well as modern techniques like RNNs, CNNs and LSTMs were discussed. 

This review underscores the importance of capturing long-term dependencies in time series data. It 
highlights studies demonstrating the effectiveness of capturing these dependencies for accurate 
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prediction and classification. Central to these models is the transformer architecture that allows the 
system to focus on relevant parts of the input sequence, effectively capturing long-term dependencies 
without the limitations of recurrent layers. This review also explores applications of transformer varia-
tions in signal processing for tasks such as forecasting, classification, and anomaly detection, showcas-
ing architectures like LogTrans, Informer, and Temporal Fusion Transformers. It compares traditional 
methods and modern approaches, highlighting their applications, advantages, and disadvantages.  

The future of attention-based models and transformer architectures are promising due to its emphasis 
on domain-specific adaptations, hybrid model development, and possible improvement in optimiza-
tions. We may expect advancements in transformer encoding techniques to capture temporal relation-
ships more effectively. Authors have proposed such an approach of detecting rare events in extremely 
long time series data. Additionally, research will explore integrating established time series methods 
within transformer frameworks. Another focus will be on quantifying the uncertainty in forecasting 
problems, enabling more reliable decision support systems. Advancements in handling multivariate 
time series with transformers are another area that will unlock the analysis of complex interdependent 
systems. Research on optimizing computational efficiency will be equally important for deploying 
transformer based models in real-time as well as resource-constrained time series applications. 
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Table 1. Comparison of traditional methods 

Model Name Description Application Advantages Disadvantages 

Autoregressive (AR) Models Models that use a linear combination 
of past values of the variable. 

Economics, finance, weather 
forecasting. 

Simple and effective for 
some types of time series 
data. 

Assumes linearity and sta-
tionarity in data. 

Moving Average (MA) Mod-
els 

Models that use past forecast errors 
in a regression-like model. 

Stock market analysis, sales 
forecasting. 

Good for smoothing out 
noise and short-term fluctu-
ations. 

Limited to capturing only 
recent past influences. 

ARMA Models Combines AR and MA models to 
model time series data. 

Signal processing, econo-
metrics. 

More flexible than pure AR 
or MA models. 

Requires stationary data. 

ARIMA Models An extension of ARMA that includes 
differencing to make data stationary. 

Financial market predic-
tions, sales forecasting. 

Effective for non-stationary 
data, including data with 
trends. 

Model identification can be 
complex. 

Seasonal Decomposition Decomposes a time series into sea-
sonal, trend, and residual compo-
nents. 

Seasonal data analysis in 
various fields. 

Useful for understanding 
and modeling seasonal varia-
tions. 

Assumes a repetitive sea-
sonal pattern. 

Fourier Analysis Transforms time series into fre-
quency components. 

Signal processing, climatol-
ogy. 

Useful for identifying perio-
dicities in data. 

Not suitable for non-peri-
odic or non-linear data. 

Box-Jenkins Methodology A systematic method of using 
ARIMA models. 

Broad application in various 
time series analyses. 

Provides a comprehensive 
approach to model building. 

Requires expertise and can 
be time-consuming. 

Exponential Smoothing A method that weights the historical 
data, decreasing exponentially. 

Inventory control, sales 
forecasting. 

Simple to apply and effec-
tive for data with no clear 
trend or seasonality. 

Struggles with data showing 
high variability or trends. 

Trend Analysis Identifying and analyzing trends in 
time series data. 

Market analysis, environ-
mental data analysis. 

Useful for forecasting and 
understanding long-term 
trends. 

Can oversimplify data by fo-
cusing mainly on trends. 

Cross-Correlation and Auto-
correlation Analysis 

Measure the relationship between 
time series and their lags. 

Signal processing, econo-
metrics. 

Useful for identifying lags of 
importance in time series 
data. 

Limited in dealing with 
non-linear relationships. 

Spectral Analysis Analyzes the frequency spectrum in 
time series data. 

Seismology, astronomy. Effective in identifying 
dominant cycles and perio-
dicities. 

Requires understanding of 
advanced mathematical con-
cepts. 

Nonlinear Time Series Anal-
ysis 

Methods to deal with nonlinear be-
haviors in time series. 

Neuroscience, climate sci-
ences. 

Can capture complex dy-
namics not modeled by lin-
ear methods. 

Often complex and require 
large amounts of data for 
modeling. 

Wavelet Analysis Breaking down data into different 
frequency components. 

Signal processing, image 
analysis. 

Good for analyzing data 
with time-varying frequen-
cies. 

Can be mathematically com-
plex and computationally 
intensive. 
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Table 2. Comparison of modern approaches 

Model Name Description Application Examples Advantages Disadvantages 

Long Short-Term Memory 
(LSTM) Networks 

RNNs capable of learning long-term 
dependencies in data. 

Financial forecasting, 
speech recognition. 

Good at capturing long-term 
dependencies in data. 

Computationally intensive, 
prone to overfitting. 

Gated Recurrent Units 
(GRUs) 

Simplified version of LSTMs, also a 
type of RNN. 

Natural language processing, 
music generation. 

Require fewer parameters 
than LSTMs, faster training. 

Less expressive than LSTMs 
for certain complex pat-
terns. 

Convolutional Neural Net-
works (CNNs) for Time Se-
ries 

Utilize convolutional layers for time 
series data. 

Image and signal processing, 
anomaly detection. 

Effective in capturing spa-
tial-temporal patterns. 

Not inherently suited for se-
quence prediction tasks. 

DeepAR Probabilistic forecasting with auto-
regressive recurrent networks. 

Demand forecasting, energy 
load forecasting. 

Good for large datasets with 
multiple related series. 

Requires large amounts of 
data to perform well. 

Prophet Designed for forecasting with daily 
observations. 

Business metrics forecasting, 
web traffic. 

Handles outliers, missing 
data, and seasonal effects. 

Less effective for non-daily 
data or non-linear trends. 

Vector Autoregression 
(VAR) 

Captures linear interdependencies 
among multiple time series. 

Econometrics, multivariate 
time series analysis. 

Can model interdependen-
cies in multiple time series. 

Assumes linearity, not suita-
ble for non-stationary data. 

Ensemble Methods Combines predictions from multiple 
models. 

Financial time series predic-
tion, weather forecasting. 

Improves accuracy and ro-
bustness. 

Can be complex to imple-
ment and interpret. 

Hybrid Models Combines traditional statistical mod-
els with machine learning. 

Any application requiring 
both linear and non-linear 
modeling. 

Captures both linear and 
non-linear aspects of data. 

Can be complex to imple-
ment and tune. 
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Table 3. Ablation study of the effects of various component of LogTrans framework  

Methods Jaccard Sensitiv-
ity 

mIoU F1-Score 

Backbone (EfficientNet-B6 + Concat + Decoder) 0.7744 0.8135 0.8422 0.8556 
EfficientNet-B6 w/ Swin Transformer + Concat + Decoder 0.7746 0.815 0.8431 0.8552 
EfficientNet-B6 w/ Swin Transformer + SeCo module + Decoder 0.7852 0.8257 0.8498 0.8638 
EfficientNet-B6 w/ Swin Transformer + SeCo module + ReSD block + Decoder 0.7880 0.8343 0.8512 0.8661 
Backbone (EfficientNet-B6 + Concat + Decoder) 0.7386 0.8352 0.8654 0.8297 
EfficientNet-B6 w/ Swin Transformer + Concat + Decoder 0.7454 0.8394 0.8690 0.8346 
EfficientNet-B6 w/ Swin Transformer + SeCo module + Decoder 0.7524 0.8582 0.8726 0.8421 
EfficientNet-B6 w/ Swin Transformer + SeCo module + ReSD block + Decoder 0.7549 0.8450 0.8739 0.8442 
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 Table 4. Comparison of W-Transformer with other architectures 

Data Metrics WARIMA ETS SETAR ARNN RNN Deep-AR Transformer W-Trans. 

Website 

Traffic 

RMSE 1281.64 1192.66 1082.51 1356.29 2593.36 2010.79 2638.05 847.41 

MAE 975.38 864.14 921.82 1065.48 2413.45 1875.34 2470.93 634.74 

sMAPE 39.48 36.31 43.89 41.23 164.07 107.14 180.14 31.02 

MASE 1.10 0.98 1.04 1.21 2.66 2.07 2.73 0.70 

Sunspot RMSE 41.48 37.46 57.06 71.83 74.16 52.50 40.63 30.07 

MAE 33.05 30.72 45.67 56.93 63.75 41.78 32.36 22.63 

sMAPE 41.48 38.21 62.91 97.60 108.69 65.21 40.40 30.09 

MASE 2.80 2.60 3.87 4.82 10.91 7.15 5.54 3.87 

Japan 

Flu 

RMSE 196.65 186.15 297.30 239.31 171.51 179.61 326.55 76.21 

MAE 174.17 171.63 281.93 199.93 114.01 163.67 276.56 58.98 

sMAPE 136.76 134.94 142.31 126.77 130.00 133.18 131.81 103.19 

MASE 4.83 3.95 6.49 4.60 2.27 3.26 5.51 1.17 

Bangkok 

Dengue 

RMSE 1889.92 3454.05 2153.80 819.90 824.70 786.21 767.52 735.00 

MAE 1756.66 3423.33 1486.24 678.36 681.73 634.59 611.18 608.30 

sMAPE 119.20 145.50 114.83 76.91 187.26 151.00 136.43 154.62 

MASE 7.57 14.75 6.40 2.92 2.56 2.38 2.29 2.28 

Network 

Analytics 

RMSE 43.94 23.65 40.58 24.71 43.00 22.51 29.21 19.00 

MAE 39.06 18.31 35.97 21.99 37.98 19.09 25.80 15.96 

sMAPE 94.56 70.46 91.69 75.80 93.34 71.52 80.64 60.31 

MASE 6.49 3.04 5.97 3.66 6.46 3.25 4.39 2.71 
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Table 5. Summary of transformer architectures 

Model Key Features Application Areas Notable Advancements 

LogTrans Dual-branch design with SeCo 
module 

Biomedical image segmentation Enhanced accuracy and robustness 

TFT Gated Residual Networks, LSTM, 
Multi-Head Attention 

Time series forecasting Superior forecasting abilities, han-
dles missing data 

InParformer Interactive Parallel Attention Long-term time series forecasting Efficiency and interpretability in 
forecasting 

Informer ProbSparse self-attention, distilling Long-term series forecasting Reduced computational complexity, 
high performance 

SageFormer Graph structures for inter-series re-
lationships 

Multivariate time series forecasting Enhanced forecasting performance 

Autoformer Decomposition architecture, Auto-
correlation 

Time series forecasting Improved accuracy on periodicity 
and dependencies 

Pyraformer Pyramidal attention mechanism Time series forecasting Efficient long-range dependency 
capturing 

W-Transformers Wavelet-based preprocessing Non-stationary time series forecast-
ing 

Effective capture of local and global 
dependencies 

FEDformer Seasonal-trend decomposition, fre-
quency domain analysis 

Long-term series forecasting High efficiency and accuracy 

CrossFormer++ Cross-scale attention mechanisms Image classification and segmenta-
tion 

Efficient processing of features 
across scales 

Transformer-XL Segment-level recurrence, relative 
positional encoding 

Language modeling Capture of longer-term dependen-
cies, improved performance 
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Figure 1. Performance of Dow Jones from Jan 2023 to Feb 2024 
(Source https://www.moneycontrol.com/us-markets/) 
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Figure 2. Norway’s Ålfotbreen glacier is shrinking rapidly images from 1985(top left) to 
2021(bottom right) 
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Figure 3. Recording of a 10 second EEG signal 
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Figure 4. The original transformer model proposed in [148] 
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Figure 5. Popular transformer architectures and application areas 
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Figure 6. LogTrans Architecture [149]  

 
 
 
 

 
 

 

 
 



42 

 
 

 
 
 

 

Figure 7. Temporal Fusion Transformer architecture 
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Figure 8. InParformer Architecture 
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Figure 9. Informer model overview 
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Figure 10. Series Aware Framework 
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Figure 11. Illustration of the iterative message-passing process in SageFormer 
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Figure 12. Autoformer architecture 
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Figure 13. Pyramidal graph 
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Figure 14. The architecture of Pyraformer 
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Figure 15. Architecture of W-Transformer 
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Figure 16. Fedformer Structure 
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Figure 17. Architecture of Crossformer 

  

 
 
 
 

 
 

 

 
 


