Name: \qquad

Problem	Points	Score
1	50	
2	50	
Total	100	

Notes:

(1) The exam is closed books and notes except for one double-sided sheet of notes.
(2) Please indicate clearly your answer to the problem.
(3) If I can't read or follow your solution, it is wrong and no partial credit will be awarded.
(50 pts) Problem No. 1: Consider a three-state discrete HMM model where each state can output one of two symbols, H or T , with equal probability. The first state is a start state, meaning all sequences must pass through this state. The last state is a stop state, meaning all sequences must terminate on this state. State no. 1 is connected to states nos. 2 and 3. State 2 is connected to itself and state no. 3. State no. 3 is a terminal state and has no other connections. Assume uniform distributions for the transition probabilities (e.g., 0.5 for each of the two transition probabilities leaving state no. $1 ; 0.5$ for each transition from state no. 2).
(a) What is the average duration of a sequence output from this model? How would you describe the shape of this distribution?
(b) What is the probability this model produced the following sequences: "H", "HH", "HHH", "HHHH"?
(c) Train the model using the following data: "H", "T", "HH", "TT", "HHH", "TTT". Is this a hidden Markov model?
(50 pts) Problem No. 2: You are given two training data sets: (1) [0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]; (2) $[0.25,0.25],[-1.0,0.0],[-1.0,-1.0],[0,-1.0]$. Your evaluation set consists of $[0.5,0.5]$ and $[-0.5,-0.5]$.
(a) Design a decision tree to classify this data. What is the probability of error?
(b) Design a kNN algorithm to classify this data using $\mathrm{k}=2$ (walk through the steps of classifying each point using the training data). What is the probability of error?
(c) Design a Support Vector Machine to classify this data (keep it simple). What is the probability of error?
(d) Compare and contrast these approaches.

