Name: _____

Problem	Points	Score
1(a)	30	
1(b)	10	
1(c)	10	
2	25	
3	25	
Total	100	

Notes:

- (1) The exam is closed books and notes except for one double-sided sheet of notes.
- (2) Please indicate clearly your answer to the problem.

(3) If I can't read or follow your solution, it is wrong and no partial credit will be awarded.

Problem No. 1: Consider two probability distributions representing a 2-class problem:

$$p(x|\omega_1) = \begin{cases} 1/\alpha & 0 \le x < \alpha \\ 0 & elsewhere \end{cases} \qquad p(x|\omega_1) = \begin{cases} 1 & (\beta - 1/2) \le x < (\beta + 1/2) \\ 0 & elsewhere \end{cases}$$

- (a) Sketch the probability of error for a maximum likelihood classifier (assume equal priors) as a function of α and β . Think carefully how these parameters influence the result and show a set of plots that are representative of the behavior. Under what condition is the error minimum? maximum? What are the minimum and maximum error rates that can be achieved?
- (b) Pick a value of α and β for which the error rate is approximately 25%. Now assume you are doing maximum a posteriori classification. Plot the probability of error as the prior for class 1 increases and the prior for class 2 decreases (these must sum to one, so when one increases the other decreases).
- (c) Suppose now that you are going to model each class as a Gaussian random variable. How would the result for (a) change? Be precise.

Problem No. 2: A coin is flipped 100 times. Given that there were 55 heads, find the maximum likelihood estimate for the probability p of heads on a single toss.

Problem No. 3: Maximum likelihood methods apply to estimates of prior probabilities as well. Let samples be drawn by successive, independent selections of a state of nature ω_i with unknown probability $P(\omega_i)$. Let $z_{ik} = 1$ if the state of nature for the kth sample is ω_i and $z_{ik} = 0$ otherwise. Derive the maximum likelihood estimate of the prior probability for class i, $P(\omega_i)$, and discuss why this makes sense. (Hint: write an expression for $P(z_{i1},...,z_{in}|P(\omega_i))$). How would this estimate change if Bayesian methods were employed?