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Problem Points Score 

1(a) 20  

1(b) 20  

2(a) 20  

2(b) 20  

3 20  

Total 100  

 

Notes: 

(1) The exam is closed books and notes except for one double-sided sheet of notes. 

(2) Please indicate clearly your answer to the problem. 

(3) If I can’t read or follow your solution, it is wrong and no partial credit will be awarded. 



ECE 8527 EXAM NO. 1 PAGE 2 OF 2 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING FALL’2017 

Problem No. 1: Let ),
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(a) Show that the minimum probability of error is given by: du
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Problem No. 2: Given a two-class two-dimensional classification problem (x = {x1,x2}) with the following 
parameters (uniform distributions): 
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where ./)(P)(P 2121 =w=w  

(a) Write the Bayes decision rule for this case (hint: draw the decision boundary). Is this solution unique? 
Explain. 

(b) Compute the probability of error. 

Problem No. 3: Let x have a uniform density: 
    
p x θ( ) = 1/ θ 0≤ x≤ θ

0 otherwise
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. Suppose that n samples 

    
D = x1,x2,…,xn{ }  are drawn independently from 

   
p x θ( ) . Derive an expression for the maximum likelihood 

estimate of θ. Hint: compute the likelihood of the data given θ and differentiate. Discuss what happens to 
this estimate as   n→∞ . 


