| Name: |
|-------|
|-------|

| Problem | Points | Score |
|---------|--------|-------|
| 1(a)    | 15     |       |
| 1(b)    | 10     |       |
| 1(c)    | 15     |       |
| 1(d)    | 10     |       |
| 2(a)    | 10     |       |
| 2(b)    | 15     |       |
| 2(c)    | 15     |       |
| 2(d)    | 10     |       |
| Total   | 100    |       |

## Notes:

- (1) The exam is closed books and notes except for one double-sided sheet of notes.
- (2) Please indicate clearly your answer to the problem.
- (3) If I can't read or follow your solution, it is wrong and no partial credit will be awarded.

**Problem No. 1**: Consider the data shown to the right. We are going to answer a few qualitative questions about classifiers trained on this data. Assume a Euclidean distance is used to compute probabilities and that priors and variances are ignored. Use maximum likelihood classification.

(a) Draw the decision surface that would be computed using a kNN classifier where  $k \rightarrow \infty$  (in other words, all the data is used to form the decision surface). Explain.



(b) What value of k is optimal (achieves a minimum error rate)? Explain.

(c) Draw the decision surface that would be achieved by a Support Vector Machine (SVM) (with no slack variables). Explain.

(d) Explain any differences between the SVM and kNN decision surfaces and what aspects of the data influence these differences.

**Problem No. 2**: Let's assume that we train and classify the data to the right using a linear classifier. Again, ignore priors and variances. Use a Euclidean distance.

(a) What is the minimum theoretical error rate that can be achieved?



(b) There are four points in this data set. Using a kNN approach and leave-one-out cross validation, what is the minimum error rate that can be achieved?

(c) Suppose a linear classifier was trained using maximum likelihood parameter estimation, and a decision surface was found that corresponds to a vertical line at the origin (y = 0). Next, suppose several iterations of discriminative training were run. How would you expect the decision surface to change? Note that since a linear classifier was used, the surface must always remain a line.

(d) If you trained a decision tree on this data, what might the tree look like? Clearly explain your assumptions.