
The IBM 2015 English Conversational Telephone Speech Recognition System

George Saon, Hong-Kwang J. Kuo, Steven Rennie and Michael Picheny

IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598
gsaon@us.ibm.com

Abstract
We describe the latest improvements to the IBM English con-
versational telephone speech recognition system. Some of the
techniques that were found beneficial are: maxout networks
with annealed dropout rates; networks with a very large number
of outputs trained on 2000 hours of data; joint modeling of par-
tially unfolded recurrent neural networks and convolutional nets
by combining the bottleneck and output layers and retraining
the resulting model; and lastly, sophisticated language model
rescoring with exponential and neural network LMs. These
techniques result in an 8.0% word error rate on the Switchboard
part of the Hub5-2000 evaluation test set which is 23% relative
better than our previous best published result.
Index Terms: recurrent neural networks, convolutional neural
networks, conversational speech recognition

1. Introduction
Ever since [1] demonstrated the large accuracy gains from using
deep neural network acoustic models versus Gaussian mixture
models, the Switchboard corpus has become the de facto stan-
dard experimental testbed for reporting believable and, more
importantly, reproducible results for LVCSR. We surmise that
this is because it is the largest publicly available dataset (up to
2300 hours of training data) composed of truly conversational
speech and because, in general, techniques which result in im-
provements on Switchboard tend to work well on both small
and large vocabulary tasks. One can think of LDA/STC, VTLN,
FMLLR and lattice-based model and feature-space discrimina-
tive training which were developed first on Switchboard and
then became ubiquitous as prime examples of such techniques.

Since Switchboard is such a well-studied corpus, we
thought we would take a step back and reflect on how far we
have come in terms of speech recognition technology. To set
the baseline, the human word error rate on this task is esti-
mated to be around 4% [2]. Quoting [2] again, in 1995, “a
high-performance HMM recognizer” achieved a 43% WER on
Switchboard [3]. In 2000, Cambridge University achieved an
at the time impressive error rate of 19.3% during the Hub5e
DARPA evaluation [4] which they attributed to “careful en-
gineering”. At the height of technological development for
GMM-based systems, the winning IBM submission scored
15.2% WER during the 2004 DARPA EARS Rich Transcrip-
tion evaluation [5] largely due to the Attila ASR toolkit [6] and
fMPE [7]. Nowadays, deep neural networks have levelled the
playing field and multiple sites can easily reach 12-14% WER
using much simpler systems [8, 9, 10, 11, 12] as shown in Ta-
ble 6.

To achieve an error rate of 8.0% on this task is not trivial.
In our opinion, a successful recipe has to contain several ingre-
dients. The first and most obvious one is to train larger acoustic
and language models on more data. The second (a little less

obvious) is to train neural nets that have diverse architectures
and operate on different input representations so that we get ac-
curacy gains from both feature and model combination. Third,
extra “spice” such as networks with maxout nonlinearities and
exponential and NN language models were also found to sig-
nificantly lower the error rate of our system. Last but not least,
it is our experience that having a strong GMM-HMM baseline
system [6, 13] which provides high-quality alignments used for
the various speaker adaptation techniques and for DNN cross-
entropy training helps.

The paper is organized as follows: in section 2 we describe
the processing steps that are common across all models, in sec-
tion 3 we present a set of system improvements, and in section 4
we summarize our findings and ponder future opportunities for
improvement.

2. General processing
Here we describe the common processing steps for all the
models detailed in this paper. In particular, we discuss front-
end processing, speaker adaptation and neural network training
specifics which are largely similar to [14, 13].

2.1. Training and test data

The training data consists of 1975 hours of segmented audio
from English telephone conversations between two strangers on
a preassigned topic and is divided as follows: 262 hours from
the Switchboard 1 data collection, 1698 hours from the Fisher
data collection and 15 hours of CallHome audio. The test set is
the Hub5 2000 evaluation set and contains two parts: 2.1 hours
(21.4K words, 40 speakers) of Switchboard data and 1.6 hours
(21.6K words, 40 speakers) of CallHome audio. The decoding
vocabulary has 30.5K words and 32.9K pronunciations and all
decodings were performed with a 4M 4-gram language model
(and rescored with different LMs in subsection 3.4).

2.2. Feature extraction

Speech is coded into 25 ms frames, with a frame-shift of 10 ms.
Each frame is represented by a feature vector of 13 VTL-warped
perceptual linear prediction (PLP) cepstral coefficients which
are mean and variance normalized per conversation side. Every
9 consecutive cepstral frames are spliced together and projected
down to 40 dimensions using LDA. The range of this transfor-
mation is further diagonalized by means of a global semi-tied
covariance transform. Next, the LDA features are transformed
with one feature-space MLLR (FMLLR) transform per conver-
sation side at both training and test time. Convolutional nets are
trained on VTL-warped logmel features augmented with first
and second temporal derivatives. The Mel filterbank has 40 fil-
ters and the input to the CNNs are blocks of 11 consecutive
40×3-dimensional frames (as described in [13]).
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In addition to VTLN and FMLLR, DNNs are adapted to the
speaker by appending 100-dimensional i-vectors to every block
of 11 FMLLR frames as described in [14]. The i-vectors are
extracted using a universal background model given by a GMM
with 2048 diagonal covariance mixture components which was
trained with maximum likelihood on the speaker-adapted fea-
tures. The i-vectors are extracted once per conversation side.

2.3. Neural network training

All models have sigmoid hidden layers and softmax output lay-
ers (except for the models from subsection 3.1) and are trained
with 10-15 epochs of SGD on frame-randomized minibatches
of 250 frames and a cross-entropy criterion. The targets corre-
spond to the context-dependent HMM states obtained by align-
ing the audio with a GMM-HMM system with 300K Gaussians
trained with maximum likelihood on the FMLLR features. The
same alignments are mapped to the leaves of various phonetic
decision trees which differ in phone context size (±2 or ±3)
and number of leaves (16K, 32K and 64K). Prior to CE train-
ing, the networks are initialized with layerwise discriminative
pretraining as suggested in [1]. Additionally, we applied 20-30
iterations of hessian-free sequence discriminative training (ST)
by using the state-based minimum Bayes risk (MBR) objective
function as described in [15]. The trained networks are used
directly in a hybrid decoding scenario by subtracting the loga-
rithm of the HMM state priors from the log of the DNN output
scores.

3. System improvements
In this section we discuss specific improvements related to
acoustic and language modeling. More concretely, we de-
scribe the following techniques: maxout models with annealed
dropout (subsection 3.1); training DNNs, CNNs and RNNs with
a very large number of outputs (subsection 3.2); improved joint
training of convolutional and non-convolutional nets (subsec-
tion 3.3); and language model rescoring with exponential and
neural network LMs (subsection 3.4).

3.1. Maxout networks with annealed dropout

Maxout networks [16] generalize rectified linear (ReLU,
max[0, a]) units, employing non-linearities of the form:

sj = max
i∈C(j)

ai (1)

where the activations ai = wT
i x+ bi are based, as usual, on in-

ner products, and the sets of activations {C(j)} utilized by dif-
ferent hidden units are typically disjoint. Maxout networks are
conditionally linear and so avoid the vanishing gradient prob-
lem, and are well suited for the dropout training procedure [17],
which for a linear model, trains an exponentially sized model
ensemble (2D models for input dimension D), whose geometric
average can be computed by simply renormalizing at test time.

Maxout networks for ASR have recently been investigated
by several researchers, and found to produce significant gains
when training data is limited [18], but negligible gains in our
personal experience when the amount of training data exceeds
approximately 100 hours. However, recently we showed that by
annealing the dropout rate over the course of training, Maxout
networks can produce substantial gains, even in big data sce-
narios [19]. The annealing procedure effectively initializes the
ensemble of models being learned at a given iteration with an
ensemble of models with lower mean and higher variance in the

number of active units. This stochastic regularization procedure
retains the benefits of the standard dropout training procedure
(a strong exploration-phase; a preference for population-based
predictions) without compromising the capacity of the network
being learned.

Table 1 compares the performance of our annealed dropout
Maxout networks (Maxout-AD) to corresponding sigmoid-
based DNNs and CNNs from [13] learned using our standard
training procedure, using only the SWB-1 training data (262
hours). All Maxout networks utilize 2 filters per hidden unit,
and the same number of layers and roughly the same number
of parameters per layer as the sigmoid-based DNN/CNN coun-
terparts. Parameter equalization is achieved by having a factor
of
√
2 more neurons per hidden layer for the maxout nets since

the maxout operation reduces the number of outputs by a fac-
tor of 2. Note that ReLU networks, in our experience, perform
on-par with sigmoid-based DNNs in this data regime. Max-
out networks trained with AD (Maxout-AD), on the other hand,
show a clear advantage over our traditional networks. Also, note
that the convolutional layers of the Maxout-AD CNN have only
128 and 256 feature map outputs, whereas those of the sigmoid
CNN has 512/512 outputs. Training of the Maxout-AD CNN
with a 512/512 filter configuration is in progress.

Model WER SWB (ST)
sigmoid Maxout-AD

DNN 11.9 11.0
CNN 11.8 11.6

DNN+CNN 10.5 10.2

Table 1: Word error rates of sigmoid vs. Maxout networks
trained with annealed dropout (Maxout-AD) for ST CNNs,
DNNs and score fusion on Hub5’00 SWB. Note that all net-
works are trained only on the SWB-1 data (262 hours).

3.2. Networks with very large output layers

When training on 2000 hours of data, we found it beneficial to
increase the number of context-dependent HMM output targets
to values that are far larger than commonly reported. To keep
the computation and the number of parameters in check, we
also had to use a bottleneck layer before the output layer [20]
with typically 512 neurons. Back in the days when we were
training GMM-based acoustic models, we did not notice accu-
racy improvements when using more than, say, 10000 HMM
states [5]. We conjecture that this is because GMMs are a
distributed model and require more data for each state to reli-
ably estimate the mixture components, whereas the DNN out-
put layer is shared between states. This allows DNNs to have
a much richer target space. Additionally, we experimented
with growing acoustic decision trees where the phonetic con-
text is increased to heptaphones (±3 phones within words and
±2 phones across words). This was a distinct feature of our
EARS RT’04 evaluation system which made a significant dif-
ference [5]. The effect of varying the number of outputs and
phonetic context is shown in Table 2 for DNNs with 5 hidden
layers (4 with 2048 units and 1 with 512 units) trained with 15
passes of cross-entropy on 2000 hours.

Based on these results, a compromise was struck by choos-
ing models with 32K outputs and pentaphone acoustic context
in all subsequent experiments. We have trained three types of
models that differ in functionality and input features:



Nb. outputs Phonetic ctx. WER SWB (CE)
16000 ±2 12.0
16000 ±3 11.8
32000 ±2 11.7
64000 ±2 11.9

Table 2: Comparison of word error rates for CE-trained DNNs
with different number of outputs and phonetic context size on
Hub5’00 SWB.

• Regular DNNs that operate on 11 spliced 40-
dimensional FMLLR frames and 100-dimensional i-
vectors. These models have 5 hidden sigmoid layers (4
with 2048 units and 1 with 512 units) and their architec-
ture is shown on the left side of Figure 1.

• Convolutional neural networks with two convolutional
layers with 128 and 256 filters respectively. The CNNs
operate on blocks of 11 consecutive VTL-warped 40-
dimensional logmel frames augmented with first and sec-
ond derivatives with 9×9 convolution windows. The
convolution and pooling layer configuration is taken
from [21] and the architecture is also shown on the left
side of Figure 1.

• Partially unfolded recurrent neural networks [22] which
operate on a sliding window of 6 40-dimensional FM-
LLR frames (from t . . . t + 5) and 100-dimensional i-
vectors. The 6-frame window slides backwards in time
from t to t − 5 (so that the RNN and the DNN have ex-
actly the same input). The first hidden layer is recurrent
and is followed by 4 non-recurrent hidden layers (3 with
2048 neurons and 1 with 512 neurons) and one output
layer with 32000 softmax units.

All nets are trained with 10-15 passes of cross-entropy on
2000 hours of audio and 30 iterations of sequence discrimina-
tive training using Hessian-free optimization [15]. The perfor-
mance of the individual networks as well as their score fusion
combination is shown in Table 3 on the Hub5’00 test set (SWB
and CallHome parts). For score fusion, we decode with a frame-
level sum of the outputs of the nets prior to the softmax with
uniform weights.

Model WER SWB WER CH
CE ST CE ST

CNN 12.6 10.4 18.4 17.9
DNN 11.7 10.3 18.5 17.0
RNN 11.5 9.9 17.7 16.3

DNN+CNN 11.3 9.6 17.4 16.3
RNN+CNN 11.2 9.4 17.0 16.1

DNN+RNN+CNN 11.1 9.4 17.1 15.9

Table 3: Comparison of word error rates for CE and ST CNN,
DNN, RNN and various score fusions on Hub5’00.

3.3. Improved joint training of recurrent and convolutional
nets

In [13], we proposed a method for jointly modeling and training
a CNN and a DNN. The crux of the method is to have the first
layers be network specific (convolution and pooling for CNN

operating on spectral features and input layer for DNN operat-
ing on PLP-based and i-vector features) and the remaining lay-
ers be shared. The outputs of the network-specific layers are
merged into one common hidden layer followed by additional
(common) hidden layers and one output layer. This graph struc-
ture for the joint network extends the standard linear sequence
of layers for DNNs (or CNNs). By using this architecture, we
reported a 12% relative gain on a Switchboard 300 hours setup
over the best single model (from 11.8% for the CNN to 10.4%
for the joint CNN/DNN). We also showed that performing score
fusion of a CNN and a DNN trained separately achieves a sim-
ilar WER of 10.5%. Hence, the main benefit of the joint model
in [13] over the score fusion approach is the shared computation
for the common hidden and output layers which is considerably
faster than having to do two separate forward passes.

A different approach that we are advocating here is to ini-
tialize the joint model such that it is equivalent to the score fu-
sion of the separate models. The reasoning behind this is that,
after retraining, the objective function for sequence discrimina-
tive training can only improve (or, at worst, remain the same).
For the case of log-linear score combination of multiple neural
networks with the same number (and type) of outputs, this ini-
tialization is done by concatenating the individual weight matri-
ces between the bottleneck and output layers and by dividing the
resulting matrix by the number of models (assuming uniform
weights). An example of a joint CNN/DNN model initialized
in such a way is illustrated in Figure 1. For convenience, we
have indicated the sizes of the weight matrices in the oval boxes
and the dimensionality of the layers is attached to the arrows.
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Figure 1: Forming a joint CNN/DNN model out of separately
trained networks by fusing the bottleneck and output layers.

We have experimented with jointly training the unfolded
RNN and the CNN from subsection 3.2. Two experimental sce-
narios were considered. The first is where the joint model was
initialized with the fusion of the cross-entropy trained RNN and
CNN whereas the second uses ST models as the starting point.
For both scenarios we generate numerator and denominator lat-
tices with the initial joint model and optimize the lattice-based
MBR loss using distributed hessian-free training [15]. In Ta-
ble 4 we compare the WERs for several systems on the Hub5’00
test set (SWB and CallHome parts).



RNN/CNN combination WER SWB WER CH
score fusion of CE models 11.2 17.0
score fusion of ST models 9.4 16.1
joint model from CE models (ST) 9.3 15.6
joint model from ST models (ST) 9.4 15.7

Table 4: Comparison of word error rates for CE and sequence
trained unfolded RNN and DNN with score fusion and joint
modeling on Hub5’00. The WERs for the joint models are after
sequence training.

We observe that joint modeling and sequence discrimina-
tive retraining helps by 0.5% on the CallHome part and only
0.1% on SWB over score fusion of the ST models. Also, the
performance of the joint model after sequence training appears
to be slightly better for the initialization from CE models (we
expected it to be the other way around).

3.4. Language model

In experiments comparing acoustic models reported in previous
sections, we used a baseline legacy language model that had
been used for previous publications: a 4M 4-gram language
model with a vocabulary of 30.5K words. While keeping the
vocabulary the same, we rebuilt the LM using publicly avail-
able (e.g. LDC) training data, including Switchboard, Fisher,
Gigaword, and Broadcast News and Conversations. The most
relevant data are the transcripts of the 1975 hour audio data used
for training the acoustic model, consisting of about 24M words.

To build the new n-gram language model, we trained a 4-
gram model with modified Kneser-Ney smoothing [23] for each
corpus, and then linearly interpolated the component models
with weights chosen to optimize perplexity on a held-out set.
Then we applied entropy pruning [24], resulting in a single 4-
gram LM consisting of 37M n-grams. This new n-gram LM was
used in combination with our best acoustic model to decode and
generate word lattices for further LM rescoring experiments.
The first two lines of Table 5 show the improvement using this
larger n-gram LM trained on more data. The WER improved
by 0.5% for SWB and 0.3% for CallHome. Part of this im-
provement (0.1-0.2%) was due to also using a larger beam for
decoding.

LM WER SWB WER CH
Baseline 4M 4-gram 9.3 15.6
37M 4-gram (n-gram) 8.8 15.3
n-gram + model M 8.4 14.3
n-gram + model M + NNLM 8.0 14.1

Table 5: Comparison of word error rates for different language
models.

For LM rescoring, we used two types of LMs: model M,
a class-based exponential model [25] and neural network LM
(NNLM) [26, 27, 28, 29]. We built a model M LM on each
corpus and interpolated the models, together with the 37M n-
gram LM. As shown in Table 5, using model M results in an
improvement of 0.4% on SWB and 1.0% on CallHome.

We built two NNLMs for interpolation. One was trained
on just the most relevant data: the 24M word corpus (Switch-
board/Fisher/CallHome acoustic transcripts). Another was

trained on a 560M word subset of the LM training data: in or-
der to speed up training for this larger set, we employed a hi-
erarchical NNLM approximation [27, 30]. Table 5 shows that,
compared with the n-gram LM baseline, interpolating NNLM to
model M and n-gram LM results in an improvement of 0.8% on
SWB (8.8% to 8.0%) and 1.2% on CallHome (15.3% to 14.1%).

Lastly, in Table 6 we compare our results with those ob-
tained by various other systems from the literature. For clarity,
we also specify the type of training data that was used for acous-
tic modeling in each case.

System AM training data SWB CH
Vesely et al. [8] SWB 12.6 24.1
Seide et al. [9] SWB+Fisher+other 13.1 –
Hannun et al. [10] SWB+Fisher 12.6 19.3
Zhou et al. [11] SWB 14.2 –
Maas et al. [12] SWB 14.3 26.0
Maas et al. [12] SWB+Fisher 15.0 23.0
Soltau et al. [13] SWB 10.4 19.1∗

This system SWB+Fisher+CH 8.0 14.1

Table 6: Comparison of word error rates on Hub5’00 (SWB
and CH) for existing systems (∗ note that the 19.1% CallHome
WER is not reported in [13]).

4. Discussion
We have presented a set of improvements to our English Switch-
board system that lowered the error rate substantially com-
pared to our previous best result [13]. In decreasing order of
importance these are: rescoring with strong language models
trained on diverse data sources; joint training of an RNN and a
CNN with 32000 outputs on 2000 hours of audio and maxout
networks with annealed dropout. We expect additional accu-
racy gains by training the maxout nets and larger CNNs with a
512/512 filter configuration on all the data.

Extrapolating from historical trends, we believe that human
accuracy on this task can be reached within the next decade.
We think that the way to get there will most likely involve an
increase of several orders of magnitude in training data and
the use of more sophisticated neural network architectures that
tightly integrate multiple knowledge sources (acoustics, lan-
guage, pragmatics, etc.).
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