11/15/2015 Denoising Autoencoders (dA) — DeepLearning 0.1 documentation

Denoising Autoencoders (dA)

This section assumes the reader has already read through Classifying MNIST digits using Logistic Regression

and Multilayer Perceptron. Additionally it uses the following Theano functions and concepts : T.tanh, shared

variables, basic arithmetic ops, T.grad, Random numbers, floatX. If you intend to run the code on GPU also read
GPU.

The code for this section is available for download here.

The Denoising Autoencoder (dA) is an extension of a classical autoencoder and it was introduced as a
building block for deep networks in [Vincent08]. We will start the tutorial with a short discussion on
Autoencoders.

Autoencoders

See section 4.6 of [Bengio09] for an overview of auto-encoders. An autoencoder takes an input
X £ [D_, l]d and first maps it (with an encoder) to a hidden representation y € [D_, 1]‘1' through a
deterministic mapping, e.g.:

¥ =s(Wx +b)

Where 5 is a non-linearity such as the sigmoid. The latent representation ¥, or code is then mapped
back (with a decoder) into a reconstruction z of the same shape as x. The mapping happens through a
similar transformation, e.g.:

z = s(W'y +b')

(Here, the prime symbol does not indicate matrix transposition.) z should be seen as a prediction of x,
given the code ¥. Optionally, the weight matrix Y&/ of the reverse mapping may be constrained to be
the transpose of the forward mapping: YW* — W Y. This is referred to as tied weights. The parameters
of this model (namely V&7, h, h' and, if one doesn’t use tied weights, also W/*) are optimized such that
the average reconstruction error is minimized.

The reconstruction error can be measured in many ways, depending on the appropriate distributional
assumptions on the input given the code. The traditional squared errorL(xz] = ||x — z||2, can be
used. If the input is interpreted as either bit vectors or vectors of bit probabilities, cross-entropy of the
reconstruction can be used:

d

Ly(x,z) = —Z[xklogz;; + (1 —xp) log(1 — z)]
k=1

The hope is that the code ¥ is a distributed representation that captures the coordinates along the main
factors of variation in the data. This is similar to the way the projection on principal components would
capture the main factors of variation in the data. Indeed, if there is one linear hidden layer (the code)
and the mean squared error criterion is used to train the network, then the £ hidden units learn to
project the input in the span of the first £ principal components of the data. If the hidden layer is non-
linear, the auto-encoder behaves differently from PCA, with the ability to capture multi-modal aspects
of the input distribution. The departure from PCA becomes even more important when we consider
stacking multiple encoders (and their corresponding decoders) when building a deep auto-encoder

Hinton06].

Because ¥ is viewed as a lossy compression of x, it cannot be a good (small-loss) compression for all x.
Optimization makes it a good compression for training examples, and hopefully for other inputs as well,
but not for arbitrary inputs. That is the sense in which an auto-encoder generalizes: it gives low
reconstruction error on test examples from the same distribution as the training examples, but generally
high reconstruction error on samples randomly chosen from the input space.

http://deeplearning.net/tutorial/dA html 1/11

11/15/2015

Denoising Autoencoders (dA) — DeepLearning 0.1 documentation

We want to implement an auto-encoder using Theano, in the form of a class, that could be afterwards
used in constructing a stacked autoencoder. The first step is to create shared variables for the
parameters of the autoencoder W, b and I'. (Since we are using tied weights in this tutorial, 37T will
be used for W/):

def __init_ (

self,

numpy_rng,
theano_rng=None,
input=None,
n_visible=784,
n_hidden=500,
W=None,
bhid=None,
bvis=None

mun

Initialize the dA class by specifying the number of visible units (the
dimension d of the input), the number of hidden units (the dimension
d' of the latent or hidden space) and the corruption Llevel. The
constructor also receives symbolic variables for the input, weights and
bias. Such a symbolic variables are useful when, for example the input
is the result of some computations, or when weights are shared between
the dA and an MLP Layer. When dealing with SdAs this always happens,
the dA on Llayer 2 gets as 1input the output of the dA on layer 1,

and the weights of the dA are used in the second stage of training

to construct an MLP.

:type numpy_rng: numpy.random.RandomState
:param numpy_rng: number random generator used to generate weights

:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one 1is
generated based on a seed drawn from “rng’

:type 1input: theano.tensor.TensorType
:param input: a symbolic description of the input or None for
standalone dA

:type n_visible: int
:param n_visible: number of visible units

:type n_hidden: int
:param n_hidden: number of hidden units

:type W: theano.tensor.TensorType

:param W: Theano variable pointing to a set of weights that should be
shared belong the dA and another architecture; 1if dA should
be standalone set this to None

:type bhid: theano.tensor.TensorType

:param bhid: Theano variable pointing to a set of biases values (for
hidden units) that should be shared belong dA and another
architecture; 1if dA should be standalone set this to None

:type bvis: theano.tensor.TensorType

:param bvis: Theano variable pointing to a set of biases values (for
visible units) that should be shared belong dA and another
architecture; 1if dA should be standalone set this to None

mun

self.n_visible = n_visible
self.n_hidden = n_hidden

create a Theano random generator that gives symbolic random values
if not theano_rng:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))

note : W' was written as "W_prime’ and b' as “b_prime’

if not W:
W is initialized with “initial_W which is uniformely sampled
from -4*sqrt(6./(n_visible+n_hidden)) and
4*sqrt(6./(n_hidden+n_visible))the output of uniform if
converted using asarray to dtype
theano.config.floatX so that the code 1is runable on GPU
initial_W = numpy.asarray(

http://deeplearning.net/tutorial/dA html 2/11

11/15/2015

Denoising Autoencoders (dA) — DeepLearning 0.1 documentation

numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)),
high=4 * numpy.sqrt(6. / (n_hidden + n_visible)),
size=(n_visible, n_hidden)

)

dtype=theano.config.floatX

)
W = theano.shared(value=initial W, name='W', borrow=True)

if not bvis:
bvis = theano.shared(
value=numpy.zeros(
n_visible,
dtype=theano.config.floatX

)s
borrow=True
)
if not bhid:

bhid = theano.shared(
value=numpy.zeros(
n_hidden,
dtype=theano.config.floatX
)
name='b",
borrow=True

)

self.W = W
b corresponds to the bias of the hidden
self.b = bhid
b_prime corresponds to the bias of the visible
self.b_prime = bvis
tied weights, therefore W_prime is W transpose
self.W_prime = self.W.T
self.theano_rng = theano_rng
1f no input is given, generate a variable representing the input
if input is None:
we use a matrix because we expect a minibatch of several
examples, each example being a row
self.x = T.dmatrix(name="input")
else:
self.x = input

self.params = [self.W, self.b, self.b_prime]

Note that we pass the symbolic input to the autoencoder as a parameter. This is so that we can
concatenate layers of autoencoders to form a deep network: the symbolic output (the ¥ above) of layer j;
will be the symbolic input of layer j; + 1.

Now we can express the computation of the latent representation and of the reconstructed signal:

def

def

get_hidden_values(self, input):
""" Computes the values of the hidden Llayer
return T.nnet.sigmoid(T.dot(input, self.W) + self.b)

won

get_reconstructed_input(self, hidden):
"""Computes the reconstructed input given the values of the
hidden Layer

wnn

return T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime)

And using these functions we can compute the cost and the updates of one stochastic gradient descent

step :

def get_cost_updates(self, corruption_level, learning_rate):

""" This function computes the cost and the updates for one trainng
step of the dA """

tilde_x = self.get_corrupted_input(self.x, corruption_level)
y = self.get_hidden_values(tilde_x)

z = self.get_reconstructed_input(y)

note : we sum over the size of a datapoint; if we are using

http://deeplearning.net/tutorial/dA html 3/11

11/15/2015 Denoising Autoencoders (dA) — DeepLearning 0.1 documentation

minibatches, L will be a vector, with one entry per
example in minibatch
= - T.sum(self.x * T.log(z) + (1 - self.x) * T.log(l - z), axis=1)
note : L 1s now a vector, where each element is the
cross-entropy cost of the reconstruction of the
corresponding example of the minibatch. We need to
compute the average of all these to get the cost of
the minibatch
cost = T.mean(L)

HHBHHCHR

compute the gradients of the cost of the "dA" with respect
to 1its parameters
gparams = T.grad(cost, self.params)
generate the List of updates
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)

]

return (cost, updates)

We can now define a function that applied iteratively will update the parameters W, b and b_prime such
that the reconstruction cost is approximately minimized.

da = dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=x,
n_visible=28 * 28,
n_hidden=500

)

cost, updates = da.get_cost_updates(
corruption_level=0.,
learning_rate=learning_rate

)

train_da = theano.function(
[index],
cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size]
}

)

start_time = timeit.default_timer()

HHFHH
TRAINING
A

go through training epochs
for epoch in xrange(training_epochs):
go through trainng set
c =[]
for batch_index in xrange(n_train_batches):
c.append(train_da(batch_index))

print 'Training epoch %d, cost ' % epoch, numpy.mean(c)
end_time = timeit.default_timer()

training_time = (end_time - start_time)
print >> sys.stderr, ('The no corruption code for file ' +
os.path.split(__file_)[1] +
' ran for %.2fm' % ((training_time) / 60.))
image = Image.fromarray(
tile_raster_images(X=da.W.get_value(borrow=True).T,
img_shape=(28, 28), tile_shape=(10, 10),
tile_spacing=(1, 1)))
image.save('filters_corruption_0.png')

start-snippet-3

HHHHH
BUILDING THE MODEL CORRUPTION 30%

http://deeplearning.net/tutorial/dA html 4/11

11/15/2015

if

__name__

Denoising Autoencoders (dA) — DeepLearning 0.1 documentation
HHAF A R R

rng = numpy.random.RandomState(123)
theano_rng = RandomStreams(rng.randint(2 ** 30))

da = dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=x,
n_visible=28 * 28,
n_hidden=500

)

cost, updates = da.get_cost_updates(
corruption_level=0.3,
learning_rate=learning_rate

)

train_da = theano.function(
[index],
cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size]
}

)

start_time = timeit.default_timer()

HHFH
TRAINING
HHR

go through training epochs
for epoch in xrange(training_epochs):
go through trainng set
c =11
for batch_index in xrange(n_train_batches):
c.append(train_da(batch_index))

print 'Training epoch %d, cost ' % epoch, numpy.mean(c)

end_time = timeit.default_timer()

training_time = (end_time - start_time)
print >> sys.stderr, ('The 30% corruption code for file ' +
os.path.split(__file_)[1] +
' ran for %.2fm' % (training_time / 60.))
end-snippet-3

start-snippet-4

image = Image.fromarray(tile_raster_images(
X=da.W.get_value(borrow=True).T,
img_shape=(28, 28), tile_shape=(10, 10),
tile_spacing=(1, 1)))

image.save('filters_corruption_30.png")

end-snippet-4

os.chdir('../")

== "'__main__":
test_dA()

If there is no constraint besides minimizing the reconstruction error, one might expect an auto-encoder
with 12 inputs and an encoding of dimension i (or greater) to learn the identity function, merely
mapping an input to its copy. Such an autoencoder would not differentiate test examples (from the
training distribution) from other input configurations.

Surprisingly, experiments reported in [Bengio07] suggest that, in practice, when trained with stochastic
gradient descent, non-linear auto-encoders with more hidden units than inputs (called overcomplete)
yield useful representations. (Here, “useful” means that a network taking the encoding as input has low
classification error.)

A simple explanation is that stochastic gradient descent with early stopping is similar to an L2

http://deeplearning.net/tutorial/dA html

5/11

11/15/2015

Denoising Autoencoders (dA) — DeepLearning 0.1 documentation

regularization of the parameters. To achieve perfect reconstruction of continuous inputs, a one-hidden
layer auto-encoder with non-linear hidden units (exactly like in the above code) needs very small
weights in the first (encoding) layer, to bring the non-linearity of the hidden units into their linear
regime, and very large weights in the second (decoding) layer. With binary inputs, very large weights are
also needed to completely minimize the reconstruction error. Since the implicit or explicit regularization
makes it difficult to reach large-weight solutions, the optimization algorithm finds encodings which only
work well for examples similar to those in the training set, which is what we want. It means that the
representation is exploiting statistical regularities present in the training set, rather than merely learning
to replicate the input.

There are other ways by which an auto-encoder with more hidden units than inputs could be prevented
from learning the identity function, capturing something useful about the input in its hidden
representation. One is the addition of sparsity (forcing many of the hidden units to be zero or near-
zero). Sparsity has been exploited very successfully by many [Ranzato07] [Lee08]. Another is to add
randomness in the transformation from input to reconstruction. This technique is used in Restricted
Boltzmann Machines (discussed later in Restricted Boltzmann Machines (RBM)), as well as in Denoising
Auto-Encoders, discussed below.

Denoising Autoencoders

The idea behind denoising autoencoders is simple. In order to force the hidden layer to discover more
robust features and prevent it from simply learning the identity, we train the autoencoder to reconstruct
the input from a corrupted version of it.

The denoising auto-encoder is a stochastic version of the auto-encoder. Intuitively, a denoising auto-
encoder does two things: try to encode the input (preserve the information about the input), and try to
undo the effect of a corruption process stochastically applied to the input of the auto-encoder. The
latter can only be done by capturing the statistical dependencies between the inputs. The denoising
auto-encoder can be understood from different perspectives (the manifold learning perspective,
stochastic operator perspective, bottom-up - information theoretic perspective, top-down - generative
model perspective), all of which are explained in [Vincent08]. See also section 7.2 of [Bengio09] for an
overview of auto-encoders.

In [Vincent08], the stochastic corruption process randomly sets some of the inputs (as many as half of
them) to zero. Hence the denoising auto-encoder is trying to predict the corrupted (i.e. missing) values
from the uncorrupted (i.e., non-missing) values, for randomly selected subsets of missing patterns.
Note how being able to predict any subset of variables from the rest is a sufficient condition for
completely capturing the joint distribution between a set of variables (this is how Gibbs sampling
works).

To convert the autoencoder class into a denoising autoencoder class, all we need to do is to add a
stochastic corruption step operating on the input. The input can be corrupted in many ways, but in this
tutorial we will stick to the original corruption mechanism of randomly masking entries of the input by
making them zero. The code below does just that :

def get_corrupted_input(self, input, corruption_level):
"""This function keeps " “1-corruption_level " entries of the inputs the
same and zero-out randomly selected subset of size " “coruption_level
Note : first argument of theano.rng.binomial is the shape(size) of
random numbers that it should produce
second argument is the number of trials
third argument 1is the probability of success of any trial

this will produce an array of 0s and 1s where 1 has a
probability of 1 - " “corruption_Llevel " and © with
“Tcorruption_Llevel "

The binomial function return int64 data type by
default. 1int64 multiplicated by the 1input
type(floatX) always return floaté64. To keep all data
in floatX when floatX is float32, we set the dtype of
the binomial to floatX. As 1in our case the value of
the binomial 1is always © or 1, this don't change the
result. This 1is needed to allow the gpu to work

http://deeplearning.net/tutorial/dA html

6/11

11/15/2015 Denoising Autoencoders (dA) — DeepLearning 0.1 documentation
correctly as it only support float32 for now.

wnn

return self.theano_rng.binomial(size=input.shape, n=1,
p=1 - corruption_level,
dtype=theano.config.floatX) * input

In the stacked autoencoder class (Stacked Autoencoders) the weights of the dA class have to be shared
with those of a corresponding sigmoid layer. For this reason, the constructor of the dA also gets Theano
variables pointing to the shared parameters. If those parameters are left to None, new ones will be
constructed.

The final denoising autoencoder class becomes :

class dA(object):
"""Denoising Auto-Encoder class (dA)

A denoising autoencoders tries to reconstruct the input from a corrupted
version of it by projecting it first in a latent space and reprojecting

it afterwards back in the 1input space. Please refer to Vincent et al.,2008
for more details. If x is the input then equation (1) computes a partially
destroyed version of x by means of a stochastic mapping q_D. Equation (2)
computes the projection of the input into the Llatent space. Equation (3)
computes the reconstruction of the input, while equation (4) computes the
reconstruction error.

. math::
\tilde{x} ~ q_D(\tilde{x}[x) (1)
y = s(W \tilde{x} + b) (2)
x=sW'y +b') (3)
L(x,z) = -sum _{k=1}"d [x_k \log z_k + (1-x_k) \log(1-z_k)] (4)

won

def __init_ (
self,
numpy_rng,
theano_rng=None,
input=None,
n_visible=784,
n_hidden=500,
W=None,
bhid=None,
bvis=None

mun

Initialize the dA class by specifying the number of visible units (the
dimension d of the input), the number of hidden units (the dimension
d' of the latent or hidden space) and the corruption Llevel. The
constructor also receives symbolic variables for the input, weights and
bias. Such a symbolic variables are useful when, for example the input
is the result of some computations, or when weights are shared between
the dA and an MLP Llayer. When dealing with SdAs this always happens,
the dA on layer 2 gets as 1input the output of the dA on layer 1,

and the weights of the dA are used in the second stage of training

to construct an MLP.

:type numpy_rng: numpy.random.RandomState
:param numpy_rng: number random generator used to generate weights

:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; 1if None is given one 1is
generated based on a seed drawn from “rng’

:type 1input: theano.tensor.TensorType
:param input: a symbolic description of the input or None for
standalone dA

:type n_visible: int
:param n_visible: number of visible units

:type n_hidden: 1int

http://deeplearning.net/tutorial/dA html

7/11

11/15/2015 Denoising Autoencoders (dA) — DeepLearning 0.1 documentation
:param n_hidden: number of hidden units

:type W: theano.tensor.TensorType

:param W: Theano variable pointing to a set of weights that should be
shared belong the dA and another architecture; if dA should
be standalone set this to None

:type bhid: theano.tensor.TensorType

:param bhid: Theano variable pointing to a set of biases values (for
hidden units) that should be shared belong dA and another
architecture; 1if dA should be standalone set this to None

:type bvis: theano.tensor.TensorType

:param bvis: Theano variable pointing to a set of biases values (for
visible units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None

wnn

self.n_visible = n_visible
self.n_hidden = n_hidden

create a Theano random generator that gives symbolic random values
if not theano_rng:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))

note : W' was written as "W_prime” and b' as “b_prime"
if not W:
W i1s initialized with “initial_W which is uniformely sampled
from -4*sqrt(6./(n_visible+n_hidden)) and
4*sqrt(6./(n_hidden+n_visible))the output of uniform if
converted using asarray to dtype
theano.config.floatX so that the code 1is runable on GPU
initial_W = numpy.asarray(
numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)),
high=4 * numpy.sqrt(6. / (n_hidden + n_visible)),
size=(n_visible, n_hidden)
)
dtype=theano.config.floatX

)
W = theano.shared(value=initial W, name='W', borrow=True)

if not bvis:
bvis = theano.shared(
value=numpy.zeros(
n_visible,
dtype=theano.config.floatX

3
borrow=True

)

if not bhid:
bhid = theano.shared(
value=numpy.zeros(
n_hidden,
dtype=theano.config.floatX

El

name='b",
borrow=True
)
self.W = W
b corresponds to the bias of the hidden
self.b = bhid

b_prime corresponds to the bias of the visible
self.b_prime = bvis
tied weights, therefore W_prime is W transpose
self.W_prime = self.W.T
self.theano_rng = theano_rng
1f no input is given, generate a variable representing the input
if input is None:
we use a matrix because we expect a minibatch of several
examples, each example being a row
self.x = T.dmatrix(name="input")
else:
self.x = input

self.params = [self.W, self.b, self.b_prime]

http://deeplearning.net/tutorial/dA html

8/11

11/15/2015 Denoising Autoencoders (dA) — DeepLearning 0.1 documentation

def get_corrupted_input(self, input, corruption_level):
"""This function keeps " “1-corruption_Llevel " entries of the inputs the
same and zero-out randomly selected subset of size " “coruption_level
Note : first argument of theano.rng.binomial 1is the shape(size) of
random numbers that it should produce
second argument is the number of trials
third argument is the probability of success of any trial

this will produce an array of 0s and 1s where 1 has a
probability of 1 - ~“corruption_Llevel " and @ with
““corruption_Llevel "

The binomial function return int64 data type by
default. 1int64 multiplicated by the input
type(floatX) always return floaté64. To keep all data
in floatX when floatX is float32, we set the dtype of
the binomial to floatX. As 1in our case the value of
the binomial is always © or 1, this don't change the
result. This 1is needed to allow the gpu to work
correctly as it only support float32 for now.

return self.theano_rng.binomial(size=input.shape, n=1,

p=1 - corruption_level,
dtype=theano.config.floatX) * input

def get_hidden_values(self, input):
""" Computes the values of the hidden Layer """
return T.nnet.sigmoid(T.dot(input, self.W) + self.b)

def get_reconstructed_input(self, hidden):
"""Computes the reconstructed input given the values of the
hidden Layer

return T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime)
def get_cost_updates(self, corruption_level, learning_rate):

""" This function computes the cost and the updates for one trainng

step of the dA """

tilde_x = self.get_corrupted_input(self.x, corruption_level)

y = self.get_hidden_values(tilde_x)

z = self.get_reconstructed_input(y)

note : we sum over the size of a datapoint; if we are using
minibatches, L will be a vector, with one entry per
example in minibatch

L = - T.sum(self.x * T.log(z) + (1 - self.x) * T.log(l - z), axis=1)
note : L 1s now a vector, where each element is the

cross-entropy cost of the reconstruction of the

corresponding example of the minibatch. We need to

compute the average of all these to get the cost of
the minibatch

cost = T.mean(L)

compute the gradients of the cost of the "dA" with respect
to its parameters
gparams = T.grad(cost, self.params)
generate the Llist of updates
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)

]

return (cost, updates)

Putting it All Together

It is easy now to construct an instance of our dA class and train it.

allocate symbolic variables for the data
index = T.l1lscalar() # index to a [mini]batch
x = T.matrix('x"') # the data is presented as rasterized images

HHHHAHAR BB R R

http://deeplearning.net/tutorial/dA html 9/11

11/15/2015 Denoising Autoencoders (dA) — DeepLearning 0.1 documentation

BUILDING THE MODEL CORRUPTION 30%
HAAAHAAR YRR HAHAARBH BB GHHHHHBRRBEGHHH

rng = numpy.random.RandomState(123)
theano_rng = RandomStreams(rng.randint(2 ** 30))

da = dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=x,
n_visible=28 * 28,
n_hidden=500

)

cost, updates = da.get_cost_updates(
corruption_level=0.3,
learning_rate=learning_rate

)

train_da = theano.function(
[index],
cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size]
}

)
start_time = timeit.default_timer()

HUHHH AR
TRAINING
HUHHH A

go through training epochs

for epoch in xrange(training_epochs):
go through trainng set
c =11

for batch_index in xrange(n_train_batches):
c.append(train_da(batch_index))

print 'Training epoch %d, cost ' % epoch, numpy.mean(c)
end_time = timeit.default_timer()

training_time = (end_time - start_time)

print >> sys.stderr, ('The 30% corruption code for file +
os.path.split(__file_)[1] +
ran for %.2fm' % (training_time / 60.))

In order to get a feeling of what the network learned we are going to plot the filters (defined by the
weight matrix). Bear in mind, however, that this does not provide the entire story, since we neglect the
biases and plot the weights up to a multiplicative constant (weights are converted to values between 0
and 1).

To plot our filters we will need the help of tile raster_images (see Plotting Samples and Filters) so we

urge the reader to study it. Also using the help of the Python Image Library, the following lines of code
will save the filters as an image :

image = Image.fromarray(tile_raster_images(
X=da.W.get_value(borrow=True).T,
img_shape=(28, 28), tile_shape=(10, 10),
tile_spacing=(1, 1)))

image.save('filters_corruption_30.png")

Running the Code

To run the code :
python dA.py

The resulted filters when we do not use any noise are :

http://deeplearning.net/tutorial/dA html 10/11

11/15/2015 Denoising Autoencoders (dA) — DeepLearning 0.1 documentation

http://deeplearning.net/tutorial/dA html 11/11

