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Abstract—The Fisher—Rao linear discriminant anal-
ysis (LDA) is a valuable tool for multi-class clas-
sification and data reduction. We investigate LDA
within the maximum likelihood framework and pro-
pose a general formulation to handle heteroscedastic-
ity. Small size numerical experiments with randomly
generated data verify the validity of our formulation.

I. INTRODUCTION

Linear discriminant analysis (LDA) is a mathe-
matical tool widely used for dimensionality reduc-
tion and multi-class classification [1], [2], [3]. Our
interest in LDA [4] stems from our desire to use au-
ditory features in speech recognition and from the
encouraging results obtained by Brown [5]. However,
inconsistent modeling assumptions between LDA,
and the models used for recognition yield final sys-
tems with non-optimum performance.

LDA can be derived as a maximum likelihood
method for normal populations with different means,
and common co-variance matrices [6]. Hastie [7]
has further generalized this approach to the case
where class distributions are Gaussian mixture mod-
els. However the constraint of common co-variance
matrices is still maintained.

In this work we present a generalization where the
constraint of equality of the co-variance matrices is
relaxed [8]. Surprisingly, despite the past observa-
tions of relationship between maximum likelihood
models and LDA [6], to the best of our knowledge,
the proposed generalization of LDA to handle het-
eroscedasticity has not been reported in the litera-
ture.

II. DIMENSION REDUCTION THROUGH LINEAR
PROJECTIONS

The problem of dimensionality reduction through
linter projections can be described as follows: Let
z be an n dimensional observation vector. We seek
a linear transformation " — R? (p < n) of the
form y, = 6]z where 6, is an n x p matrix. Let
0 be a non-singular linear transformation which is
partitioned as

0 = [0,0n—] = [ ...0.] (1)

where 6, are the first p columns of § and 8,_,
corresponds to the remaining n — p columns and g;
corresponds to the i’th column of 6. Then, obser-
vation vector dimension reduction can be viewed as
a two step procedure. First a non-singular linear
transformation is applied to x to obtain y = 7z,
and then in the second step only the first p rows of
y are retained to give yp.

Dimensionality reduction as described above, is
useful in practical pattern classification applications,
where the ultimate objective the design of a system
that puts the vector of observations (features) in dif-
ferent classes on the basis of the observed data. LDA
attempts to choose the linear transformation 6, in
such a way so as to retain the maximum amount of
class discrimination information in the early stages
of the system.

Let there be a total of J classes, and let g(i) —
{1...J} indicate the class that is associated with
x;. Let {x;} be the set of training examples avail-
able. Then Zg(i):j 1 = Nj; associated with class j,

and Z;=1 N; = N is the total number of training
examples. If X is the sample mean where:

1 X
X=< ; ; (2)
The total sample variance T is defined as

~ 1 X ~ r
T = Nizzl(ﬂfi—X)(wi—X) 3)

The class means Xj, the class variances W; and
the overall pooled variance W are defined as:
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X = o= 3w (4)
7 g(i)=j
_ 1 _ _
9(i)=4
j=1...J (5)
_ 1 _
W = NZNJ J (6)



LDA maximizes the ratio of the overall variance
to the within class variance [3], [9].
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If before LDA, z undergoes a linear transforma-
tion, any such full rank linear transformation will ap-
pear both in the numerator and the denominator of
this ratio (as a multiplier of T and W), and thus di-
vide out. Hence, linear discriminants are invariant to
any full-rank linear transformation of the input [9].
It can be shown that the solution to the above equa-
tion corresponds to the right eigenvector of W 1T
that has the largest eigenvalue [3]. By choosing the
eigenvectors corresponding to the largest p eigenval-
ues, and letting y, = OZX where 0, is a n X p matrix
of the eigenvectors, a p dimensional uncorrelated ob-
servations are obtained.

LDA

Best discriminant

Fig. 1.  An illustration of how LDA fails in the case of two
Gaussian classes

However, LDA may fail when the within class dis-
tributions are heteroscedastic. This is schematically
depicted in figure 1. The two classes have almost the
same mean, but the variances are very different in
one direction. In this case a classifier would perform
better if a projection is taken along the direction
in which the variances are different, and un-equal
variance models can be used in the classifier design.
Since the LDA method pools the within class vari-
ances, it would choose the projection marked as LDA
in the figure, which is clearly not the best.

In this paper, we provide a solution to this prob-
lem by elaborating on earlier work of Campbell [6]

who first noted the relationship between an LDA
transformation and the estimation of maximum like-
lihood parameters of a Gaussian model with some
a-priori assumptions on the structure of the mod-
els. The first assumption was that all the class dis-
crimination information resides in a p dimensional
sub-space of the n dimensional observation space,
while the second assumption constraints the within
class variances to be equal for all the classes. There-
fore, LDA projections are best suited for a Gaussian-
model based classifier which assumes that the ob-
servation vector was generated from that, while its
performance is not optimal when the the class dis-
tributions are heteroscedastic. The generalization
the handle heteroscedasticity is obtained by drop-
ping the equal variance assumption in the model.
There is no closed form solution for § and numeri-
cal optimization techniques have to be used to find
the optimal projections. But this is not much dif-
ferent than LDA, where again numerical methods
are required to find the eigen-vectors. The objec-
tive function is simplified to speed up the numerical
optimization.

III. GENERALIZATIONS OF LDA

As in the previous section, let 8 be a non-singular
linear transformation that transforms the data vari-
ables z into new variables y. For dimension reduc-
tion we will assume a model that only the first p
components of y carry any class discrimination infor-
mation. This is equivalent to assuming that the class
means lie in a p-dimensional subspace, and the re-
maining n — p dimensional subspace is homogeneous
with respect to class means and variances. Also, the
full rank linear transformation € is such that the first
p columns of @ span the p-dimensional sub-space in
which the class means and probably the class vari-
ances are different. Since 6 allows for rotations, the
constraints on the mean are not too restrictive. For
the sake of notational convenience we would parti-
tion the parameter space of the means 45, variances
Y, as follows

C ]
) P
Hi B0, p+1 [ m ®
L MO’” -
[ > 0
% = i(pxp) (n—p) ] (9)
I 0 E(n—19><n—p)

where po is the common term in all the means,



and pf are different for each class. ¥; have also
been partitioned in the corresponding manner, such
that £("?) is common for all classes, while 25.’ could
be different for different classes.

The density function of a data point under the
model above is given as

Pz;) = 6] e(yi_"g(i))ng(i)(yi_”g(i))
(2m)" 2y (5)
(10)
where y = 7. The log-likelihood Lr of the data
under the linear transformation and constrained

Gaussian model assumption for each class is

log Lr(uj,Xj,0)z;)

N
1 _
-3 Z{(ngi - Ng(i))TEg(t') (CRET Hg(i))
i=1
+log((2m)"|Zg(s)|) } + log|6] (11)

The subscript F is to remind us that %" are differ-
ent and full co-variance matrices. The above likeli-
hood function can now be maximized with respect to
various parameters. A straight-forward maximiza-
tion with respect to various parameters can be a
time consuming task. However the task can be con-
siderably simplified by first calculating the optimal
values of the mean and variance parameters in terms
of the linear transformation 6. Differentiating the
likelihood equation with respect to the parameters
u; and X; gives the mean and variance estimates as

po= 6r'X; (12)
fo = 65 X (13)
N 1 .
= (oTWja,,) j=1...0 (14

DIy Na,{_p:ran,p (15)

Note that the pj, 7 =1...J can be calculated if 8
isknown,and 0j, j=1...Jifp;, j=1...Jand §
are known. Therefore, we would first like to solve for
f. Substituting the values of the optimized us and
osin (11) gives the likelihood of the data in terms of
0 which can be simplified and then maximized with
respect to € to give

~

N
0 = argmaxg{——log|( T0n )|

J
—Z 7]10g|(0ZWj6p)| + Nloglo]}  (16)
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where 6 is the estimate of the parameter 6. At this
point one may choose to use only the first p columns
of 8 to obtain the best discriminating projection un-
der the Gaussian model assumption.

A. X constrained to diagonal

Due to computational simplicity, within class vari-
ances are often assumed to be diagonal. This is
especially true in the case of speech recognition
where the number of models is so enormous that
invariably diagonal variance matrices are assumed.
Therefore the optimal projections for this case have
also been considered. Suppose we further assume
that E? and X("P) are diagonal matrices such that
%; = Diag(oj...0% o?*'...0™). Then in terms of
the matrix partitions above the log-likelihood of the
data can be written as

log Lp(p;,%;,0/{z:}) =

n N k
log 2w + N log 6] — 5 Z log |o”|
k=p+1
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Using the same method as before, maximizing the

likelihood with respect to pj, ¥; 7 =1...J, we get
o o= 07 % (19)
- _ . T Y17 .
Y2 = Diag(0,W;0,) j=1...0 (20)
¥"P = Diag(l_ T0n ) (21)

Substituting values of all the above maximized pa-
rameters except 8 in (17) gives the likelihood of the
data in terms of . The maximum likelihood es-
timate for # can now be found by maximizing the
likelihood numerically. It can be shown that this
maximization can be simplified to the following

N , _
fp = argmax,{— o) log |Diag(6:_,T0n_p)|

J
N, _
— Y~ log |Diag(6; W;6,)| + Nlog 6]} (22)
j=1

Where 6 is the estimator for 6 the optimal trans-

formation if one wishes to diagonal variance Gaus-
sian models to model each class.



B. X’s constrained to be equal

If we additionally require that ¥; = X, Vj , then
the maximum likelihood parameter estimates can be
written as follows

o= 6,X; (23)
fo = 65 X (24)
5P = Diag(0IW6,) j=1...0 (25)
S"P = Diag(f._,T0n p) (26)
and
. N P
0 = argma,xa{—E10g|D1ag(0n_pT0n,p)|

N _
— 5 log |Diag (62 W6,)| + Nlog|0|} (27)

Here equation (27) is obtained by inserting the
values of p; and ¥ that maximize the likelihood,
and then dropping the constant terms in the log-
likelihood. It can be shown that the solution ob-
tained by taking the eigenvectors corresponding to
largest p eigenvalues of W~'T also maximizes the
above expression, thus asserting the claim that LDA
is the maximum likelihood parameter estimate of a
constrained model.

IV. COMPUTING 6

Optimal values for ép, éD and éE must be com-
puted numerically. First it should be pointed out
that the optimal solution for 8 is not unique. In fact
it is easy to show that

Proposition 1: The maximum value of the log-
likelihood (maximized with respect to p; and Xj)
is independent of linear scaling of the columns of 6.

PROOF: W.L.O.G. we will consider the case of
the log-likelihood under the equal variance assump-
tion. It can be written as

log Lp(6|{z;}) = _TNn(1+log27r)—Nlog|9|

N . —

+2 log Ding(61_, 6, )
N . Tor

+5 log |Diag(6, W6,)| (28)

Now for any n x n matrices § and A,

P
|Diag(6; A6,)| = [ [ 07 A
i=1
Let us assume that i’th column of 6, 67; is scaled by

a linear factor a > 0 to give 6. W.L.O.G. we also
assume that ¢ < p.

Then the new value of the likelihood can be writ-
ten as

—Nn

log Lp(fl{x:}) = ——(1 +log2m) — Nlog(alf])
N . =
+5 log(a? |D1ag(6ZW0p)|)
N P
+§ log |Dla‘g(0n—pT0n—P)|

-N N _
= Tn(l + log 2m) + > log |Diag (6} _,T0n_p)|

2Nloga N . -
t— t3 log [Diag (6, W6,)|

—Nlogl|f| — Nloga
= log Lp(9|{=:}) (29)

Thus proposition 1 follows. Similarly it can be
shown that non-singular transformations of 6,, or
0r—p do not affect log-likelihood Lg(.).

Therefore sometimes it is easier to optimize if
the norm of columns of @ is explicitly constrained
to some non-zero number, say 1. We have then
been able to perform the required optimization
using quadratic programming algorithms such as
those available in MATLAB™ optimization tool-
box. Analytic expressions for the derivative of the
likelihood are explicitly provided for the optimiza-
tion routines. Even though we use quadratic opti-
mization techniques the likelihood surface is not nec-
essarily quadratic and the optimization algorithms
occasionally fail. It has however been possible to
recover by slightly perturbing 6 and re-starting the
optimization.

V. EXPERIMENTS

Experiments with randomly generated data have
been performed to illustrate the method. Five di-
mensional data has been randomly generated for
four classes with Gaussian distribution for each
class. The means vectors and the variance matri-
ces for each of the classes are also randomly gener-
ated. Then the dimension is reduced to two (p = 2)
using the method described in the previous section.
The optimization was performed using the standard
MATLAB™ optimization tool-box. Since the opti-
mization has to be performed iteratively, it is useful
to first find the linear discriminants, and use those as
the initial guess. The analytical derivatives are sup-
plied explicitly. The results are shown in figures 2,
3 and 4.

Some interesting observations can be made from
these projections. Note that two of the four classes
(dots and stars) significantly overlap in the case
where variances are assumed to be equal (Fig. 2). In
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Fig. 2. Optimal Projection of a five dimensional data with
four classes to a two dimensional subspace. Variances are
assumed to be equal.
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Fig. 3. Optimal Projection of a five dimensional data with

four classes to a two dimensional subspace. Variances are
assumed to be diagonal and unequal.

the projections shown in figures 3 and 4, this over-
lap has been significantly reduced. Also note that in
the case of LDA (figure 2), the within class variances
do not appear to be too much different. Hence one
may be tempted to incorrectly conclude that assum-
ing equal variances is not a very bad assumption.
However the difference in variance is clear from the
data plotted in figure 4. When the variance along
the discriminating projections are constrained to be
diagonal (figure 3) a projection is indeed found for
which the major and the minor axis of the within
class distributions are almost parallel to the hori-
zontal and the vertical axis. Finding a linear trans-
formation that would make all the within-class co-
variance matrices diagonal is in general impossible
when the number of groups is more than two. How-
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Fig. 4. Optimal Projection of a five dimensional data with
four classes to a two dimensional subspace. Variances are
assumed to be unequal.

ever, since the columns of 8 are not constrained to be
orthogonal, it has been possible to find a transforma-
tion for which the within-class co-variance matrices
are as close to diagonal as possible.

VI. DISCUSSION

Campbell [6] has proposed that

Proposition 2: If the columns of § are restricted to
the canonical variates, then the likelihood is maxi-
mized if the first p columns of § correspond to the
eigenvectors of the largest p eigenvalues of W 1T

Although the proposition is true, one should note
that the choice of restricting 6 to the canonical vari-
ates, is arbitrary. Here, an alternate proof is pre-
sented and is followed by a stronger statement re-
garding the optimality of LDA.
_ PROOF: Suppose real matrix 6 is such that both
67T and 67 WY are diagonal matrices. Let the di-
agonal elements of #7776 and §7TWE be written as
{of,...,aL} and {&}",..., o} respectively. Such
a 6 is called the generalized eigenvector of the ma-
trices T and W and correspond to the well known
Fisher-Rao LDA solution. This 6 also corresponds
to the right eigenvectors of W~'T. The eigenvalues
are given as {af/adV,...;al/a}V}. Assume that
the columns of § are arranged in the order of de-
scending magnitude of the eigenvalues of W~'T.

In our usual notation let 6, denote the first
p columns. Using proposition 1, we can assume
w.lo.g. that |§| = 1. Then the log-likelihood of
the data can be written as

A —-N
log Lr(0{z:}) = Tn(1+10g27r)+



N & N &
> Z loga;?r+5210gazw (30)
i=1

i=p+1

Now suppose we consider an alternate solution
where the ith column of 6 (1 < i < p) is swapped
with jth column of § (p < j < n). Then due to the
the fact that the columns were arranged in the or-
der of descending eigenvalues, AT A} < AWAT and
hence the alternate solution cannot give a better
likelihood. Therefore 6 does indeed maximize the
likelihood. Q.E.D. A

Preposition 2 requires that the columns of 8 be
the eigenvectors of W~'T. However this is not a
necessary constraint. In fact, a more general claim
can be made.

Theorem 1: LDA transformation is equivalent to
finding maximum-likelihood parameters of a Gaus-
sian model which assumes that all the class discrim-
ination information resides in a p dimensional sub-
space of the n dimensional feature space, and makes
a further assumption that the within class variances
are equal for all the classes (i.e. LDA solution is also
solution of the equation (27))

PROOF: Differentiating (27) with respect to 6 and
equating the derivative to zero yields the following
equations

I, = 6IW6,(Diag(6; W6,))~" (31)

0 = 6  W6,(Diag(8]W8,))~" (32)
In—p = gn—pTQn—p(Diag(GZ—pTGn—p))_l(33)
0 = apfﬁnfp(Diag(OZ:_pTﬁn,p))71 (34)

Any 6 that satisfies (31), (32), (33), and (34) is a
candidate for for the maximum-likelihood solution.
However for any ﬂ that satisfies (31), (32), (33), and
(34), 67TH and T W have to be of the form

C AV 0
rwe = ] e
0 A

| 0
[ B 0

U AL 0

'8 = | e (36)
I 0 A

Where A and B are positive-definite matrices.
Due to proposition 1, we can assume w.l.o.g. that
|6] = 1. Then the log-likelihood of the data can be
written as

log Le(f|{z:}) =

N zn: logx\r%—ﬂilog)\w@'?)
2 T2 ‘

i=p+1 i=1

-N
Tn (1+log2m)

Now let U4 and Up be the unitary matrices that
diagonalize A and B respectively. let us also define

U= [ U;;‘ UOB ] (38)

and 3 ~
0=U¢6 (39)
Then it is easy to verify that
log L (8|{x:}) = log Lg(0|{=:}).

However from proposition 2, log Lz (6|{z;}) cannot
be greater than log Lg(6|{z;}). Hence the proof.

Note that the constraints above require only
01? W@, to be diagonal. GZ_pWGn_p may not nec-
essarily be diagonal and (33), (34), (24) and (25)
may still be satisfied. Similar argument holds for
6IT6,. Hence one can conclude that the choice of 6
is not unique. It is reasonable indeed, because given
any projection @, any full rank linear transform of
0, is also an equally good projection.
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