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9. Let the two sets of vectors be §; = {x1,...,%,} and S3 = {y1,...,¥m}. We
assume S; and Sy are linearly seperable, that is, there exists a linear discriminant
function g(x) = w'x + wp such that

g(x) > Oimpliesx€S; and

g{x) < 0implies x € Ss.

Consider a point x in the convex hull of Sy, or

n
X = E a; X4,
=1

where the ;s are non-negative and sum to 1. The discriminant function evaluated
at x is

g(x) = wix+wp

n
= wt (E a,;xi) + wp
i=1
n

= Z ; (Whx; + wo)
i=1
> 0,

where we used the fact that wix; +wp >0for1<i<nand ¥ a; =1

g1
Now let us assume that our point x is also in the convex hull of 89, or

e
x=3_B¥i
i=1

where the 3;’s are non-negative and sum to 1. We follow the approach immediately
above and find

g(x) = w'x+uw

= Wt Z ﬁj Y; + wp

=1

-~ E B; (why; +wo)
i=1 ¥
a(y;)<0

< 0,

where the last step comes from the realization that g(y;) = w'y; + wp < 0 for each
yi, since they are each in Sy. Thus, we have a contradiction: g(x) > 0 and g(x) <0,
and hence clearly the intersection is empty. In short, either two sets of vectors are
either linearly separable or their convex hulls intersects.

10. Consider a piecewise linear machine.

{a) The discriminiant functions have the form

gi(x) = max g;;(x),

F=1,ms
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as shown in the figure.

The margins are not the same, simply because the real margin is the distance of the
support vectors to the optimal hyperplane in R® space, and their projection to lower
dimensional subspaces does not necessarily preserve the margin.

31. The Support Vector Machine algorithm can be written:

Algorithm 0 (SVM)

1 begin initialize a; worstl «— co; worst2 «— o0; b+ oo

2 1+ 0

3 do i+—1+1

4 if z; = —1 and aly;z; < worstl, then worstl « aly;z; kworstl «— k
5 if z; = 1 and aly;z; < worst2, then worst2 «— aly;z; kworst2 — k

6 untili=n

7 a«<—a-+ Ykworst2 — Ykworstl

8 ag + at(kaorstZ -+ y.‘cwm'stl)/Q

9 oldb «— b, b— atykworstl/ ” a ”
10 until |[b—oldb|< €

11 return ag,a

12 end

Note that the algorithm picks the worst classified patterns from each class and adjusts
a such that the hyperplane moves toward the center of the worst patterns and rotates
so that the angle between the hyperplane and the vector connecting the worst points
increases. Once the hyperplane separates the classes, all the updates will involve
support vectors, since the if statements can only pick the vectors with the smallest
|a’y;|.

32. Consider Support Vector Machines for classification.

(a) We are given the following six points in two categories:

PR (W R
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o e Qo= ()= )

withz1222:‘33:—1andz4i25:%:+1-

The optimal hyperplane is y; +y2 = 3/2, or (3/2 —1 — 141 y1 y2) = 0. To
ensure zzaly > 1, we have to scale (3/2 —1 — 1)* by 2, and thus the weight
vector is (3 —2 — 2)!. The optimal margin is the shortest distance from the
patterns to the optimal hyperplane, which is v/2/4, as can be seen in the figure.

(b) Support vectors are the samples on the margin, that is, the ones with the shortest
distance to the separating hyperplane. In this case, the support vectors are

{X11 X3:x5fxﬁ} = {(11 1)11 (an)t-» (110)?‘1 (01 1)t}'

(c) We seek to maximize the criterion given in Eq. 109 in the text,
™ 1 n
L(Q) = Z Qfp — 5 Zakajzkzjy;yk
k=1 k.

subject to the constraints

k3

szak =0

k=1

for o > 0. Using the constraint, we can substitute ag = o1 + a2 +as - — 05
in the expression for L(c). Then we can get a system of linear equations by
setting the partial derivatives, 8L/8a; to zero. This yields:

S = =3 6 1 o1 —9
-2 -5 2 =1 1 s -
2 2 -5 1 1 my | =1 =2
0 -1 1 -1 -1 o 0
t 1 8 ~1 -8 as 0

Unfortunately, this is an inconsistent set of equations. Therefore, the maxima
must be achieved on the boundary (where some ; vanish). We try each a; =0
and solve 9L /8a; = 0:

OL(0, s, 03,04,05) _
304,‘_ -
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implies & = 1/5(0,-2 —2 8 —8 — 4)*, which violates the constraint o; > 0.
Next, both of the following vanishing derivatives,

OL(a1,0, 03, 04,05)  OL{01, a2,0, a4, 05)

Ooy; Oay; =il

lead to inconsistent equations. Then the derivative

OL(o, 02,03,0,05)
(9(1‘1' B

0

implies e« = 1/5(16 0 4 0 14 6)*, which does not violate the constraint a; > 0.
In this case the criterion function is L{a) = 4. Finally, we have

6‘L(a1, 9, O3, Oy, 0) _

Baz-

0

which implies @ = 1/5(2 2 2 0 0 6)?, and the constraint o; > 0 is obeyed. In
this case the criterion function is L{a) = 1.2.
Thus o = 1/5(16 0 4 0 14 6)! is where the criterion function L reaches its

maximum within the constraints. Now we seek the weight vector a. We seek to
minimize L(a, &) of Eq. 108 in the text,

}_ T
L(a,a) = 5lal* - > ak[zatyr — 1],
k=1

with respect to a. We take the derivative of the criterion function,

oL ”
5; =a— gakzkyk :0,

which for the ay found above has solution

a = —(16/3)y; — Oya—4/5y3 + Oy + 14/5y5 + 6/5y6
0
= ~2
-

Note that OL/0a = 0 here is not sufficient to allow us to find the bias ag directly
since the ||a||? term does not include the augmented vector a and ), agzx = 0.
We determine ag, then, by using one of the support vectors, for instance y; =
(11 1)%. Since y; is a support vector, a’y;2z; = 1 holds, and thus

0
[ 2 Ja11)=-a+4=1
=

This, then, means ag = 3, and the full weight vector is a = (3 —2 —2)*.

33. Consider the Kuhn-Tucker theorem and the conversion of a constrained optimiza-
tion problem for support vector machines to an unconstrained one.
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(a) Here the relevant functional is given by Eq. 108 in the text, that is,

(b)

1 mn
L{a, o) = §Ha||2 — " ox[zatyx - 1].
k=1

We seek to maximize L with respect to e to guarantee that all the patterns are
correctly classified, that is zza'yg > 1, and we want to minimize I with respect
to the (un-augmented) a. This will give us the optimal hyperplane. This solution
corresponds to a saddle point in a—a space, as shown in the figure.

We write the augmented vector a as (ag a,)!, where ap is the augmented bias.
Then we have

1 ki
L(ar, o, a0) = §||f=‘a~||2 =Y ox[zalyx + zrao — 1].
k=1

At the saddle point, 8L/Bap = 0 and 8L/Ba, = 0. The first of these derivative
vanishing implies

n
E a;zk =
k=1

The second derivative vanishing implies

8L .
a =ar — ;akzk}'k

and thus
n
a.- =Y afzyk
k=1

Since 3. agzi =0, we can thus write the solution in augmented form as
k=1

n
*
a= E L ZEYE-
k=1
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d) If ot (zra"tyi — 1) = 0 and if z;a*y; # 0, then af must be zero. Respectively,
k Y ¥y k
call the predicates ash, NOT'p and q, then the abovestatesh AND NOT p — q,
which is equivalent to h AND NOT q — p. In other words, given the expression
i (zxa™y — 1) =0,
then o* is non-zero if and only if zpa*ty, = 1.

(e) Here we have

B 1 n 9 n ﬂ
L = §|| > akziyi LI - {Zk (Z rzyr | ¥e — 1
k=1 k=1 1=1
n t n n n
(Z akzkyk) (Z akzkyk) -3 sy + 3 o
k=1 k=1 ki k=1

N | =

Thus we have
L 1
L= E o — 5 ZH: R ZEAYEYI-

(f) See part (e).
34. We repeat Example 2 in the text but with the following four points:

yi=(1v25/25v/2125), ya=(1 —2v2 —4v28V2416)",21 =2z = -1
y3=(1vV23v/26/249), ys=(1 —2v/25v2 —5v2125)", 23— z4 = +1

We seek the optimal hyperplane, and thus want to maximize the functional given by
Eq. 109 in the text:

4
1
Lia) = ey + s +ag +ag — 5 Z AR ZRAY YL
ki
with constraints a; + @y = a3 + a4 and a; > 0. We substitute ay = oy + s — a3
into L(ex) and take the partial derivatives with respect to a1, as and a3 and set the
derivatives to zero:

oL

—— = 2-208c; — 256 + 2323 =0
(90:1

ﬁ = 2-—256a; — 592as + 4963 =0
aag

Y

-—Lw = 232a; + 496as — 53303 = 0.
6013

The solution to these equations — ay = 0.0154, ap = 0.0067, az = 0.0126 — indeed
satisfy the constraint a; > 0, as required.
Now we compute a using Eq. 108 in the text:

8L -
Ba :a—gakzklﬁc =0,





