
ECE 8527 Homework Number 4: Markov Processes, HMMS
and Estimation

Andrew Powell

May 9, 2014

1. Create N random sequences of length 100 for each of these models:

ω1 : π1 = {0.33, 0.33, 0.34} A1 =

 0.500 0.250 0.250
0.125 0.750 0.125
0.250 0.250 0.500

 B1 =

 0.750 0.125 0.125
0.500 0.250 0.250
0.250 0.250 0.500


ω2 : π2 = {0.25, 0.50, 0.25} A2 =

 0.900 0.050 0.050
0.050 0.900 0.050
0.050 0.050 0.900

 B2 =

 0.500 0.250 0.250
0.125 0.750 0.125
0.333 0.333 0.334


(1)

By convention, assume the output symbols L, M , and H correspond to the discrete
symbols. Treat each of these two sets as your training sets. Re-seed your random number
generator (if applicable) and generate M random sequences of length 100 for your test
data—again generating M sequences for each class.

(a) Plot the likelihood of the training of the training data given the models as a function
of the number of Baum-Welch training iterations (using only the training sets).
Comment on convergence of this plot. Select a reasonable value for the remaining
tasks.

For each of the two specified classes, ω1 and ω2, how the data’s likelihood given
the model P (D|θ) changes with the number of iterations i needed to generate the
model θ is shown in Figure 1.

To help with the explanation of the results, the following explains the important
notation. D refers to the data. The data D, of course, contains a sequence of the
output symbols emitted from the hidden states. θ refers to the model used to generate
the data and is also associated with one of the two classes ω. The number of BW
iterations i, initial state vector π, the transitional matrix A, the observation matrix
B, and as well as other unmentioned parameters are all a part of the model θ. The
subscripts proceeding any of the aforementioned symbols refer to the particular class
associated with the symbol. For instance, D1 refers to data associated with class ω1,
and θ2 refers to model of the class ω2.

As specified for this problem, the transitional matrices, A1 and A2 are utilized to
create the training and test data. For every iteration i, Atrain and Btrain is generated
from the BW algorithm. log(P (D|θ)) is also generated for each iteration of the BW
algorithm.

It is very important to mention the initial guesses—i.e. Ainitial, Binitial, and πinitial—are

1

ECE 8527: Introduction to Machine Learning Homework 4 2

“randomized”. Namely, Ainitial and Binitial are generated as stochastic matrices whose
elements are randomly selected, whereas πinitial is generated as a normalized vector
whose elements are initially chosen at random, prior to the normalization. From much
experimentation, it is discovered setting all the elements of the initial guesses to .333
causes the two different implementations of the BW algorithm to fail and only return
the initial guesses as roughly the trained results θtrain—i.e. Atrain, Btrain, and πtrain.

The implementation of the BW algorithm utilized for Homework 4’s simulation is from
Kevin Murphy’s HMM MATLAB toolbox. Several other functions related to hidden
Markov models (HMMs) are also called from Murphy’s toolbox. It is also worth
mentioning the solutions for Homework 4 were once carried out with MATLAB’s
implementation of the BW algorithm and other HMM-related tools from its Statistics
toolbox. The reason for switching to Murphy’s toolbox was because it was thought
the implementation from MATLAB’s Statistics toolbox was erroneous. However, it
was soon discovered the issue was with the initial guesses, not the Statistics toolbox.
The reason for sticking with Murphy’s toolbox is the toolbox is much easier to use
and there are closer sources for getting assistance (i.e. Amir).

As shown in Figure 1, the particular simulation developed for generating the likelihoods
log(P (D|θ2)) for the number of iterations i of the BW algorithm only goes up to 3
iterations. 3 iterations is also the value of i chosen for the rest of Homework 4. The
reason? 3 iterations is actually all the Murphy’s implementation of the BW algorithm
needs to converge for N sequences of training data, each of which is 100 symbols in
length and where N = 5× 103. Indeed, the function that executes the BW algorithm
always stop at 3 iterations when the tolerance indicating convergence is reached.

Figure 1: log(P (D1|θ1)) versus i (on left) and log(P (D2|θ2)) versus i (on right)
N = 5× 103

(b) Set M = 100, and plot the probability of error for classifying the test data as a
function of N (the amount of training data). Do this using an ML approach—for
each test vector, compute the likelihood it could have produced by the model, and
choose the model which has the greater likelihood. Justify your results.

Figure 2 shows how the probability of error (or the error rate) P (e) as a function
of the N number of training data sequences used to train the model θ. The P (e) as
a functions of N is computed for the test data sequences produced by the models θ1

ECE 8527: Introduction to Machine Learning Homework 4 3

and θ2.

The P (e) as a function is obtained as follows. The beginning set of steps are each
computed for each N . The models θtrain are first trained from N sets of training data
sequences D previously generated from their respective models θ. The probability of
the model for each test data sequence P (θ|D) is calculated for both of the trained
models θtrain. P (θ|D) can be viewed as the probability of a class ω if the particular
test data sequence D is given—which is the unscaled posterior probability P (ω|D),
where D is viewed as a feature vector. The classes ω to which each test data sequence
D may potentially belong thus are chosen based on having the largest posterior
P (ω|D) for the particular test data sequence D.

Once the number of errors for each value of N and each test data sequence D is
known, the error rate P (e) is finally determined by dividing each error count (i.e. the
number of errors) by M , the total number test data sequences generated from each
of the two models θ.

The results shown in Figure 2 appear correct; both error rates P (e) appear to go
to 0 when the N number of training data sequences goes to infinity.

Figure 2: P (e) versus N , where P (e) is the probability of error and N is the number of training
data sequences (please note, for the right plot, the N number of training data sets is actually
increasing in steps of 50)

2. Choose a reasonable value of N and M , and repeat 1(b) using HMMs with a different
number of states. Plot the probability of error as function of the number of states over the
range [1, 10]. Can you infer the number of “underling states” in the model from this plot?
Explain.

Figures 3 and 4 contain plots of the error rate P (e) as a function of the trained model’s
number of hidden states, which is expressed by the number of rows and columns the
trained transitional matrix Atrain has. The number of rows the observation matrix Btrain

has also changes to the number of hidden states; however, since the number of unique
states observed from the training data sequences does not change, the number of columns
the observation matrix Btrain has remains the same.

ECE 8527: Introduction to Machine Learning Homework 4 4

The error rate P (e) determined for this problem’s simulation is determined with a similar
approach as explained in Problem 1c. The only difference is the number of hidden states
of the trained θtrain is varied for the range [1, 10], instead of the number training data
sequences.

Each plot in the Figures 3 and 4 is the result of running the simulation for 3 separate
trials. Similar to the results seen in the solution to Problem 1b, the P (e) calculated over
the test data sequences originally generated from the second model θ2 is always larger
than the P (e) calculated over the test data sequences originally generated from the first
model θ1. The Another observation is the general shape of the P (e) calculated over the
second model’s test data sequences; the P (e) appears to have a more concave shape. Due
to random nature of the simulation, however, the seemingly concave nature of the P (e)
calculated over the second model’s test data sequences could easily be due to chance, rather
than an actual trend.

As for inferring the number of hidden states from the original models θ, the trend appears
to be the P (e) peaks when the trained model’s number of hidden states is equal to
original model’s number of hidden states. Another simulation (not shown) revealed this
observations could have been another coincidence. However, is being able to determine the
precise number of hidden states absolutely necessary? If the error rate P (e) is optimized
up to the point before the trained θtrain starts to over-generalize, then however many
hidden states of the trained model should be sufficient.

Figure 3: P (e) versus the trained model’s number of hidden states

ECE 8527: Introduction to Machine Learning Homework 4 5

Figure 4: P (e) versus the trained model’s number of hidden states

3. Repeat problem 1, but replace the discrete emission distributions with multivariate Gaussian
distributions. Assume a mean vector of dimension 2, two Gaussian distributions per
state, and use the mean and covariance parameters. Also experiment with the number of
Gaussian mixtures. Plot the probability of error as a function of the number of mixtures
components allocated to each state (using the same number of mixtures per state).

The solutions to problem 3 are presented with the following format. The solutions listed
under 3a and 3b correspond to the questions asked in problems 1a and 1b, except the
models θ instead have multivariate Gaussian mixtures emitted from their hidden states.
The Gaussian mixtures’ parameters—mean vector µ , covariance matrix Σ, coefficient
matrix c—emitted are not presented within the text of this document, but can be found
with the rest of the MATLAB source code shown in this document’s appendix. The
solution to problem 3c contains the results to the simulation developed to determine the
error rate P (e) as a function of the number of Gaussian distributions emitted from each
of the trained model’s hidden states.

(a) Figure 5 contains two plots of the error rate P (e) as the number of iterations i for
training with the BW algorithm changes. As aforementioned, each plot corresponds
to one of the two classes ω and their respective models θ. As shown in the plots,
the likelihood of the training data D when the model θ that produced the data D is
given converges quickly after 2 iterations. The number of iterations i chosen for the
rest of problem 3 is 3, seeing as likelihood log(P (D|θ)) does not change much after 3
iterations and more iterations causes the training to last longer.

ECE 8527: Introduction to Machine Learning Homework 4 6

Figure 5: log(P (D1|θ1)) versus i (on left) and log(P (D2|θ2)) versus i (on right)
N = 5× 103

(b) Figure 6 and Figure 7 together contain a number of plots, each of which graphically
display the P (e) as the number of training data sequences is increased for each time
a trained model θtrain is generated with the BW algorithm. Each plot represents the
results of running the simulation once.

Interestingly enough, the error rate P (e) determined from the test data D1 produced
from class 1’s model θ1 is seemingly greater than the test data D2 produced from
class 2’s model θ2. The assumption is the transitional matrix Atrain trained from
class 1’s training data D1 is a closer approximation to class 1’s transitional matrix A
than the transitional matrix Atrain trained from class 2’s training data D2 is to class
2’s transitional matrix A.

Overall, the results make perfect sense; the more training data inputted into the
training process, the better the resultant classifier, as demonstrated by the error rate
P (e) dropping to zero the number of training data sequences is increased.

Figure 6: P (e) versus N , where P (e) is the probability of error and N is the number of training
data sequences

ECE 8527: Introduction to Machine Learning Homework 4 7

Figure 7: P (e) versus N , where P (e) is the probability of error and N is the number of training
data sequences

(c) Similar to how the results are determine in the solutions for problems 3a and 3b, the
error rate P (e) is determined by Bayesian decision theory on each test data sequence
taken from a particular set of test data sequences. The two sets of interested of
course are the set generated from the first model and the set generated from the
second model. However, in the context of this solution, the number of randomly
generated Gaussian distributions per hidden state for each of the trained models is
the independent variable, rather than the number of iterations or number of hidden
states.

The number of randomly generated Gaussian distributions per hidden state is by
simply initializing the BW algorithm with a new initial model θtrain. Please refer
to source code that implements to the simulation for more information on how the
observations are initialized.

Figure 8: P (e) versus the number of randomly generated 2-dimensional Gaussian distributions
emitted from each of the trained model’s hidden states

4. Plot the computation time required to train the models of Problem 3 as a function of the
number of training sequences N and the number of iterations of training. Similarly, plot

ECE 8527: Introduction to Machine Learning Homework 4 8

the computation time as a function of the number of test sequences M . Explain whether
these plots match your theoretical predictions for computational complexity.

Before the results shown in Figures 9 and 10 to this problem are discussed, the assumptions
made about the problem are first explained. The computational time necessary to train the
models is interpreted as the amount time it takes for the BW algorithm to run (obviously).
However, considering the test data sequences have nothing to do with the training, it is
assumed the “computation time as a function of the number of test sequences M ” refers
to time taken to determine each posterior probability P (ω|D) needed for the classification
of each test data sequence D. What’s more, it is assumed the the time complexity of the
function called to determine the posterior is the time complexity of the Forward/Viterbi
algorithm, which is O(N2T), where N is the number of hidden states and T is the length of
each data sequence. The theoretical time complexity of the BW algorithm is also O(N2T).

Unfortunately, due to the limited amount of time to complete Problem 4, the only work
done for this problem is the generation of the numerical data and then building the plots
to display the data. Figure 9 shows how the computation time changes with respect to the
number of training sequences and the number of iterations, with the BW algorithm. In all
cases, it is easy to notice the linear increase when the number of training sequences increase
and the number of iterations increase. Because the parameters of the time complexity do
not get changed, the number of hidden states N and the length of each set of sequences T ,
a linear increase makes perfect sense for the amount of time the algorithm should take to
complete. In essence, the time complexity is simply being scaled by the number of training
sequences and the number of iterations.

The same idea is applicable for Figure 10, in which the time for calculating the posterior
probability is shown as a function of the number of test data sequences. Again, the time
complexity’s parameters are not changed, so only a linear increase is possible.

It is also worth noting MATLAB explains setting the affinity to a single processor is
recommended for determining the most accurate timing results, since running simulations
normally implies the performance is optimized to run faster. 9 10

Figure 9: Training time as a function of the number of training sequences and number of
iterations

ECE 8527: Introduction to Machine Learning Homework 4 9

Figure 10: Time for determining the posterior probability P (ω|D) versus number of test data
sequences

Appendix

1 function Homework4Script

3 close all;

5 % references
%

7 % Kevin Murphy's HMM MATLAB toolbox:
% http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

9

% These are the parameters configured for the MATLAB script. It has been
11 % observed randomly selecting the initial transition, observation, and

% priors produces the best results with the BW (i.e. EM) algorithm
13 N = 1e3; % number of random sequence for training data

M = 100; % number of random sequences for test data
15 lTr = 100; % length of training data

lTe = 100; % length of test data
17 symbols = {'L','M','H'}; % symbols (aren't really used)

eA = mk_stochastic(rand(3,3)); % initial guess for A
19 eB = mk_stochastic(rand(3,3)); % initial guess for B

eBg = generateGaussianParameters(3, 2, 2); % initial guess for B (gaussian)
21 ei = normalise(rand(3,1)); % initial guess for initial

global globalData; % global data is declared as a struct
23

% Functions that are used in the script
25 n2s = @(value)num2str(value);

m2s = @(mat)mat2str(mat);
27 getMu = @(B)B{1};

getSigma = @(B)B{2};
29 getMixmat = @(B)B{3};

function [B] = setGaussianParameters(mu, sigma, mixmat)
31 B = {mu, sigma, mixmat};

end
33 function [B, local] = generateGaussianParameters(...

nHiddenStates, nMixtures, nFeatures)
35 local = struct;

local.T = 50;
37 local.nex = 50;

ECE 8527: Introduction to Machine Learning Homework 4 10

local.data = randn(nFeatures,local.T,local.nex);
39 [local.mu, local.sigma] = mixgauss_init(nHiddenStates*nMixtures, ...

reshape(local.data, [nFeatures local.T*local.nex]), 'full');
41 local.mu = reshape(local.mu, [nFeatures nHiddenStates nMixtures]);

local.sigma = reshape(local.sigma, [nFeatures nFeatures nHiddenStates nMixtures]);
43 local.coefficient = mk_stochastic(rand(nHiddenStates,nMixtures));

B = setGaussianParameters(local.mu, local.sigma, local.coefficient);
45 end

function [mm, local, i] = createMM(initial, A, B, varargin)
47 mm =struct(...

'initial', initial, 'A', A, 'B', B, ...
49 'initialtrain', [], 'Atrain', [], 'Btrain', [], ...

'trainingData', cell(1), 'trainingDataStates', cell(1), ...
51 'testData', cell(1), 'testDataStates', cell(1), ...

'GaussianOutput', false, ...
53 'pDGM', [], ...

'states', cell(1), ...
55 'iterations', 3);

local = struct;
57 for i = 1:2:numel(varargin);

local.arg = varargin{i};
59 local.value = varargin{i+1};

if strcmpi('Mu', local.arg)
61 mm.GaussianOutput = true;

local.mu = local.value;
63 elseif strcmpi('Sigma', local.arg)

mm.GaussianOutput = true;
65 local.sigma = local.value;

elseif strcmpi('Coefficient', local.arg)
67 mm.GaussianOutput = true;

local.mixmat = local.value;
69 else error('Unrecognizable Input');

end
71 end

if mm.GaussianOutput
73 mm.B = setGaussianParameters(...

local.mu, local.sigma, local.mixmat);
75 end

end
77 function [mm, arg] = createMMdata(mm, varargin)

for arg = varargin
79 if strcmpi('TrainingData', arg)

[mm.trainingData, mm.trainingDataStates] = ...
81 createMMdataNest(mm, lTr, N);

elseif strcmpi('TestData', arg)
83 [mm.testData, mm.testDataStates] = createMMdataNest(mm, lTe, M);

else
85 error('Unrecognizable Input');

end
87 end

function [data, states] = createMMdataNest(mm, l, count)
89 if mm.GaussianOutput

[data, states] = mhmm_sample(l, count, mm.initial, mm.A, ...
91 getMu(mm.B), getSigma(mm.B), getMixmat(mm.B));

else
93 [data, states] = dhmm_sample(mm.initial, mm.A, mm.B, count, l);

end
95 end

end
97 function [mm, time, local, i] = trainMMdata(mm, varargin)

local = struct;
99 local.A = eA;

if mm.GaussianOutput, local.B = eBg;

ECE 8527: Introduction to Machine Learning Homework 4 11

101 else local.B = eB; end
local.initial = ei;

103 local.data = mm.trainingData;
local.iter = mm.iterations;

105 local.recordTime = false;
for i = 1:2:numel(varargin)

107 local.arg = varargin{i};
local.value = varargin{i+1};

109 if strcmpi('A', local.arg), local.A = local.value;
elseif strcmpi('Initial', local.arg), local.initial = local.value;

111 elseif strcmpi('B', local.arg), local.B = local.value;
elseif strcmpi('Data', local.arg), local.data = local.value;

113 elseif strcmpi('Iter', local.arg), local.iter = local.value;
elseif strcmpi('Time', local.arg), local.recordTime = true;

115 else error('Unrecognizable Input');
end

117 end
if local.recordTime, tic; end

119 if mm.GaussianOutput
[mm.pDGM, mm.initialtrain, mm.Atrain, ...

121 local.mu, local.sigma, local.mixmat] = mhmm_em(...
local.data, local.initial, local.A, ...

123 getMu(local.B), getSigma(local.B), getMixmat(local.B), ...
'max_iter', local.iter);

125 mm.Btrain = setGaussianParameters(...
local.mu, local.sigma, local.mixmat);

127 else
[mm.pDGM, mm.initialtrain, mm.Atrain, mm.Btrain] = dhmm_em(...

129 local.data, local.initial, local.A, local.B, ...
'max_iter', local.iter);

131 end
if local.recordTime, time = toc; end

133 end
function [pMGD, time, local, i] = getPMGD(mm, varargin)

135 local = struct;
local.data = mm.testData;

137 local.initial = mm.initialtrain;
local.A = mm.Atrain;

139 local.B = mm.Btrain;
local.recordTime = false;

141 for i = 1:2:numel(varargin)
local.arg = varargin{i};

143 local.value = varargin{i+1};
if strcmpi('Data', local.arg), local.data = local.value;

145 elseif strcmpi('Initial', local.arg), local.initial = local.value;
elseif strcmpi('A', local.arg), local.A = local.value;

147 elseif strcmpi('B', local.arg), local.B = local.value;
elseif strcmpi('Time', local.arg), local.recordTime = true;

149 else error('Unrecognizable Input');
end

151 end
if local.recordTime, tic; end

153 if mm.GaussianOutput
pMGD = mhmm_logprob(local.data, local.initial, local.A, ...

155 getMu(local.B), getSigma(local.B), getMixmat(local.B));
else

157 pMGD = dhmm_logprob(local.data, local.initial, local.A, local.B);
end

159 if local.recordTime, time = toc; end
end

161

% These are the declarations for the models
163 while true

ECE 8527: Introduction to Machine Learning Homework 4 12

165 % discrete stuff
initial1 = [0.33, 0.33, 0.34];

167 A1 = [.500 .250 .250
.125 .750 .125

169 .250 .250 .500];
B1 = [.750 .125 .125

171 .500 .250 .250
.250 .250 .500];

173

initial2 = [0.25, 0.50, .25];
175 A2 = [.900 .050 .050

.050 .900 .050
177 .050 .050 .900];

B2 = [.500 .250 .250
179 .125 .750 .125

.333 .333 .334];
181

mms = [createMM(initial1, A1, B1)
183 createMM(initial2, A2, B2)];

mmsSize = numel(mms);
185

% gaussian stuff
187 mu1 = zeros(2, 3, 2);

sigma1 = zeros(2, 2, 3, 2);
189 coefficient1 = [0.50 0.50

0.90 0.10
191 0.75 0.25];

mu1(:, 1, 1) = [0.50 0.50];
193 sigma1(:, :, 1, 1) = [1.00 0.25

0.25 0.50];
195 mu1(:, 1, 2) = [0.75 0.25];

sigma1(:, :, 1, 2) = [1.00 0.50
197 0.50 0.25];

mu1(:, 2, 1) = [0.90 0.10];
199 sigma1(:, :, 2, 1) = [1.00 0.75

0.75 1.00];
201 mu1(:, 2, 2) = [0.10 0.90];

sigma1(:, :, 2, 2) = [1.00 0.25
203 0.25 1.00];

mu1(:, 3, 1) = [0.70 0.30];
205 sigma1(:, :, 3, 1) = [1.00 0.01

0.01 1.00];
207 mu1(:, 3, 2) = [0.30 0.70];

sigma1(:, :, 3, 2) = [0.50 0.10
209 0.10 .25];

211 mu2 = zeros(2, 3, 2);
sigma2 = zeros(2, 2, 3, 2);

213 coefficient2 = [0.90 0.10
0.10 0.90

215 0.50 0.50];
mu2(:, 1, 1) = [0.10 0.10];

217 sigma2(:, :, 1, 1) = [1.00 0.75
0.75 1.00];

219 mu2(:, 1, 2) = [0.25 0.25];
sigma2(:, :, 1, 2) = [1.00 0.50

221 0.50 0.25];
mu2(:, 2, 1) = [0.35 0.35];

223 sigma2(:, :, 2, 1) = [0.75 0.40
0.40 0.25];

225 mu2(:, 2, 2) = [0.45 0.65];
sigma2(:, :, 2, 2) = [0.25 0.01

ECE 8527: Introduction to Machine Learning Homework 4 13

227 0.01 0.25];
mu2(:, 3, 1) = [0.55 0.85];

229 sigma2(:, :, 3, 1) = [1.00 0.25
0.25 1.00];

231 mu2(:, 3, 2) = [0.65 0.95];
sigma2(:, :, 3, 2) = [0.50 0.10

233 0.10 .25];

235 mmgs = [createMM(initial1, A1, [], ...
'Mu', mu1, 'Sigma', sigma1, 'Coefficient', coefficient1)

237 createMM(initial2, A2, [], ...
'Mu', mu2, 'Sigma', sigma2, 'Coefficient', coefficient2)];

239 mmgsSize = numel(mmgs);

241 break;
end

243

% Generate data based on discrete observations
245 while false

247 % The first step is to generate all the data. 'createMMdata' and several
% other functions are actually user-defined functions that abstract some of

249 % the lower-level details and the functions from Kevin Murphy's HMM MATLAB
% toolbox (i.e. the toolbox Amir recommended).

251 for i = 1:mmsSize

253 % Create the sequences of training and test data.
mms(i) = createMMdata(mms(i), 'TrainingData', 'TestData');

255 end

257 break;
end

259

% Test stuff Dr. Picone had me do in order to verify whether or not the
261 % trained transition and observation matrices were converging

while false
263

iters = [1e2];
265 Ns = [1e2, 1e3, 1e4];

267 disp(char(['iters: ' m2s(iters)], ...
['Ns: ' m2s(Ns)]));

269

for i = 2:mmsSize
271 disp(['Class : ' n2s(i)]);

A = mms(i).A
273 B = mms(i).B

for iter = iters
275 for n = Ns

mms(i) = trainMMdata(mms(i), ...
277 'Data', mms(i).trainingData(1:n,:), ...

'Iter', iter);
279 disp(['iter: ' n2s(iter)]);

disp(['N: ' n2s(n)]);
281 Atrain = mms(i).Atrain

Btrain = mms(i).Btrain
283 end

end
285 disp(char('----', '----'));

end
287

break;
289 end

ECE 8527: Introduction to Machine Learning Homework 4 14

291 % Script for Problem 1a
while false

293

% Set up the iteration vector. For the sake of saving time, I am left this
295 % vector very small. Moreover, I found the BW algorithm usually converged

% within the default tolerance in 3 iterations.
297 iters = 1:3;

299 % The actions contained within the for-loop are done for each model in the
% structure array 'mms'

301 for i = 1:mmsSize
mm = mms(i);

303

% Determine likelihood of the data given the model for each iteration
305 likelihoodVersusIter = zeros(2, numel(iters));

for iter = iters
307 mm = trainMMdata(mm, 'Iter', iter);

likelihoodVersusIter(:,iter == iters) = [iter; mm.pDGM(end)];
309 end

311 % Find the maximum of the likelihood to find a reasonable iterations.
[~, maxIndex] = max(likelihoodVersusIter(2,:));

313 mm.iterations = likelihoodVersusIter(1, maxIndex);

315 % Plot results
figure

317 hold on
plot(likelihoodVersusIter(1,:), likelihoodVersusIter(2,:));

319 plot(likelihoodVersusIter(1,maxIndex),...
likelihoodVersusIter(2,maxIndex), ...

321 '.','MarkerSize',30);
xlabel('Iterations');

323 ylabel(['log(P(D_' num2str(i) '|\theta' num2str(i) '))']);
grid on

325 hold off

327 mms(i) = mm;
end

329

break;
331 end

333 % Script for Problem 1b
while false

335

% Parameters and data
337 Ns = 1:100;

Ms = 1:M;
339 errors = zeros(mmsSize, numel(Ns));

341 disp(['Now onto determining probability of error as a function of the ' ...
'number of training data sequences used for training.']);

343

for i = 1:mmsSize
345

% The number of incorrectly assigned classes are determined for every
347 % value of the variable 'n'. 'n' causes the number of sequences for

% training to increase.
349 for n = Ns

351 disp([n2s(n) ' sets of training data are being used for training']);
pMGDs = zeros(mmsSize, numel(Ms));

ECE 8527: Introduction to Machine Learning Homework 4 15

353

% Calculated the models and then determine the number of errors.
355 for k = 1:mmsSize

357 % Train the new models based on 'n' amount of data
disp(['Class ' n2s(k) ' is being trained.']);

359 mms(k) = trainMMdata(mms(k),'Data', mms(i).trainingData(1:n,:));
disp(['Class ' n2s(k) ' is done being trained.']);

361

% Determine the posteriors for each of M test data sequences
363 for m=Ms

pMGDs(k, m==Ms) = getPMGD(mms(k), ...
365 'Data', mms(k).testData(m==Ms,:));

end
367 end

369 % Use the Maximum A Posteriori approach (i.e. Maximum Likelihood
% Classfication) in order to determine the number of errors.

371 [~, MAPClassSelections] = max(pMGDs);
errors(i, n==Ns) = sum(MAPClassSelections ~= i);

373 disp(['There are ' n2s(errors(i, n==Ns)) ...
' error(s) with class ' n2s(i)]);

375 end
end

377

% Determine the error rates for the sets of test data
379 errorRates = errors/numel(Ms);

381 % Plot the results
figure

383 hold on
colors = ['b', 'g'];

385 legendValues = cell(mmsSize, 1);
for i = 1:mmsSize

387 plot(Ns, errorRates(i,:), colors(i));
legendValues{i} = ['P(e) for D_' n2s(i)];

389 end
xlabel('n (i.e. number of training data sets used for training)');

391 ylabel('P(e)');
legend(legendValues);

393 grid on
hold off

395

break;
397 end

399 % Script for Problem 2
while false

401

nstates = 1:20;
403 Ms = 1:M;

errors = zeros(mmsSize, numel(nstates));
405

disp(['Now onto determining probability of error as a function of the ' ...
407 'number of states used for training.']);

409 for i = 1:mmsSize
for nstate = nstates

411

disp([n2s(nstate) ' states used for training.']);
413 pMGDs = zeros(mmsSize, numel(Ms));

415 % Calculated the models and then determine the number of errors.

ECE 8527: Introduction to Machine Learning Homework 4 16

for k = 1:mmsSize
417

% Create a new model with initial guesses and train against
419 % the data

disp(['Class ' n2s(k) ' is being trained.']);
421 mms(k) = trainMMdata(mms(k), ...

'Initial', normalise(rand(nstate,1)), ...
423 'A', mk_stochastic(rand(nstate,nstate)), ...

'B', mk_stochastic(rand(nstate,size(mms(k).B,2))));
425 disp(['Class ' n2s(k) ' is done being trained.']);

427 % Determine the posteriors for each of M test data sequences
for m=Ms

429 pMGDs(k, m==Ms) = getPMGD(mms(k), ...
'Data', mms(i).testData(m==Ms,:));

431 end
end

433

% Use the Maximum A Posteriori approach (i.e. Maximum Likelihood
435 % Classfication) in order to determine the number of errors.

[~, MAPClassSelections] = max(pMGDs);
437 errors(i, nstate==nstates) = sum(MAPClassSelections ~= i);

disp(['There are ' n2s(errors(i, nstate==nstates)) ...
439 ' error(s) with class ' n2s(i)]);

end
441 end

443 % Determine the error rates for the sets of test data
errorRates = errors/numel(Ms);

445

% Plot the results
447 figure

hold on
449 colors = ['b', 'g'];

legendValues = cell(mmsSize, 1);
451 for i = 1:mmsSize

plot(nstates, errorRates(i,:), colors(i));
453 legendValues{i} = ['P(e) for D_' n2s(i)];

end
455 title(char(['N: ' n2s(N)], ['M: ' n2s(M)]));

xlabel('Number of states');
457 ylabel('P(e)');

legend(legendValues);
459 grid on

hold off
461

break;
463 end

465 % Generate data based on mixed gaussain observations
while true

467

for i = 1:mmgsSize
469 mmgs(i) = createMMdata(mmgs(i), 'TrainingData', 'TestData');

end
471

break;
473 end

475 % Script for Problem 3a
while false

477

disp(['Starting script for determining the probability of error as a ' ...

ECE 8527: Introduction to Machine Learning Homework 4 17

479 'function of the number of iterations']);

481 iters = 1:5;
for i = 1:mmgsSize

483 disp(['On Class ' n2s(i)]);
likelihoodVersusIter = zeros(2, numel(iters));

485 for iter = iters
disp(['Training Class ' n2s(i) ' for ' n2s(iter) ' iteration(s)']);

487 mmgs(i) = trainMMdata(mmgs(i), 'Iter', iter);
disp(['Finished training Class ' n2s(i)]);

489 likelihoodVersusIter(:,iter == iters) = [iter; mmgs(i).pDGM(end)];
end

491

[~, maxIndex] = max(likelihoodVersusIter(2,:));
493 mmgs(i).iterations = likelihoodVersusIter(1, maxIndex);

disp(['Ideal number of iterations has been determine as ' ...
495 n2s(mmgs(i).iterations)]);

497 figure
hold on

499 plot(likelihoodVersusIter(1,:), likelihoodVersusIter(2,:));
plot(likelihoodVersusIter(1,maxIndex),...

501 likelihoodVersusIter(2,maxIndex), ...
'.','MarkerSize',30);

503 xlabel('Iterations');
ylabel(['log(P(D_' num2str(i) '|\theta' num2str(i) '))']);

505 grid on
hold off

507 end

509 break;
end

511

% Script for Problem 3b
513 while false

515 % Parameters and data
Ns = 1:10;

517 Ms = 1:M;
errors = zeros(mmsSize, numel(Ns));

519

disp(['Now onto determining probability of error as a function of the ' ...
521 'number of training data sequences used for training.']);

523 for i = 1:mmgsSize
for n = Ns

525 disp([n2s(n) ' sets of training data are being used for training']);
pMGDs = zeros(mmgsSize, numel(Ms));

527 for k = 1:mmgsSize
disp(['Class ' n2s(k) ' is being trained.']);

529 mmgs(k) = trainMMdata(mmgs(k),'Data', mmgs(k).trainingData(:,:,1:n));
disp(['Class ' n2s(k) ' is done being trained.']);

531 for m=Ms
pMGDs(k, m==Ms) = getPMGD(mmgs(k), ...

533 'Data', mmgs(i).testData(:,:,m==Ms));
end

535 end
[~, MAPClassSelections] = max(pMGDs);

537 errors(i, n==Ns) = sum(MAPClassSelections ~= i);
disp(['There are ' n2s(errors(i, n==Ns)) ...

539 ' error(s) with class ' n2s(i)]);
end

541 end

ECE 8527: Introduction to Machine Learning Homework 4 18

errorRates = errors/numel(Ms);
543

% Plot the results
545 figure

hold on
547 colors = ['b', 'g'];

legendValues = cell(mmgsSize, 1);
549 for i = 1:mmgsSize

plot(Ns, errorRates(i,:), colors(i));
551 legendValues{i} = ['P(e) for D_' n2s(i)];

end
553 xlabel('n (i.e. number of training data sets used for training)');

ylabel('P(e)');
555 legend(legendValues);

grid on
557 hold off

559 break;
end

561

% Script for Problem 3c (varying the number of gaussians in mixture)
563 while false

565

Ms = 1:M;
567 nstate = 3;

nMixturess = 3:6;
569 nFeatures = 2;

571 disp(['Starting to determine the error rate as a function of the ' ...
'number of randomly generated 2D Gaussian distributions per ' ...

573 'hidden state of each trained model']);

575 profile on

577 for i = 1:mmgsSize
for nMixtures = nMixturess

579

disp([n2s(nMixtures) ' gaussians per hidden state for training.']);
581 pMGDs = zeros(mmgsSize, numel(Ms));

583 for k = 1:mmsSize
disp(['Class ' n2s(k) ' is being trained.']);

585 mmgs(k) = trainMMdata(mmgs(k), ...
'Initial', normalise(rand(nstate,1)), ...

587 'A', mk_stochastic(rand(nstate,nstate)), ...
'B', generateGaussianParameters(nstate,nMixtures,nFeatures));

589 disp(['Class ' n2s(k) ' is done being trained.']);
for m=Ms

591 pMGDs(k, m==Ms) = getPMGD(mmgs(k), ...
'Data', mmgs(i).testData(:,:,m==Ms));

593 end
end

595 [~, MAPClassSelections] = max(pMGDs);
errors(i, nMixtures==nMixturess) = sum(MAPClassSelections ~= i);

597 disp(['There are ' n2s(errors(i, nMixtures==nMixturess)) ...
' error(s) with class ' n2s(i)]);

599 end
end

601

profile off
603 profile viewer

ECE 8527: Introduction to Machine Learning Homework 4 19

605 errorRates = errors/numel(Ms);

607 figure
hold on

609 colors = ['b', 'g'];
legendValues = cell(mmsSize, 1);

611 for i = 1:mmsSize
plot(nMixturess, errorRates(i,:), colors(i));

613 legendValues{i} = ['P(e) for D_' n2s(i)];
end

615 title(char(['N: ' n2s(N)], ['M: ' n2s(M)]));
xlabel('Number of gaussian distributions');

617 ylabel('P(e)');
legend(legendValues);

619 grid on
hold off

621

break;
623 end

625 % Script for Problem 4
while true

627

nstate = 3;
629 Ns = 1:1:30;

Ms = 1:1:30;
631 iters = 1:3;

timeComplexity = nstate^2*lTr;
633 theoreticalLineColor = 'k';

data = zeros(mmgsSize, numel(Ns), numel(Ms), numel(iters), mmgsSize, 2);
635

while true
637

disp(['Beginning to determine time as a function of number of training ' ...
639 'sequences, number of test data sequences, and number of iterations']);

641 fprintf('i\tn\tm\titer\tk\ttT\tcT\n');
for i = 1:mmgsSize

643 for n = Ns
for m = Ms

645 for iter=iters
for k = 1:mmgsSize

647 fprintf('%d\t%d\t%d\t%d\t%d\n', i, n, m, iter, k);
[mmgs(k), trainTime] = trainMMdata(mmgs(k), ...

649 'Data', mmgs(k).trainingData(:,:,1:n), ...
'Iter', iter, ...

651 'Time', []);
[~, computeTime] = getPMGD(mmgs(k), ...

653 'Data', mmgs(i).testData(:,:,1:m), ...
'Time', []);

655 data(i, n == Ns, m == Ms, iter == iters, k, :) = ...
[trainTime computeTime];

657 fprintf('%d\t%d\t%d\t%d\t%d\t%g\t%g\n', i, n, m, iter, ...
k, trainTime, computeTime);

659 end
end

661 end
end

663 end

665 break;
end

667

ECE 8527: Introduction to Machine Learning Homework 4 20

if true, data = globalData.problem4Data;
669 else globalData.problem4Data = data; end

671 for k = 1:mmgsSize
figure;

673 hold on
colorSet = varycolor(numel(iters));

675 legendSet = cell(1, numel(iters));
for iter = iters

677 computationalTimes = reshape(data(1, :, 1, iter, k, 1), ...
1, numel(Ns));

679 unitComputationalTime = mean(computationalTimes./Ns);
theoreticalCTx = [Ns(1) Ns(end)];

681 theoreticalCTy = theoreticalCTx*unitComputationalTime;
plot(theoreticalCTx, theoreticalCTy, theoreticalLineColor);

683 plot(Ns, computationalTimes, 'Color',colorSet(iter==iters,:));
legendSet{iter==iters} = ['Iter: ' n2s(iter)];

685 end
title(['Class ' n2s(k)]);

687 xlabel('Number of training sequences');
ylabel('Computational time for training in seconds');

689 legend(legendSet);
grid on

691 hold off
end

693

n = find(Ns(end)==Ns);
695 iter = find(iters(end)==iters);

for i = 1:mmgsSize
697 figure;

hold on
699 colorSet = varycolor(mmgsSize);

legendSet = cell(1, mmgsSize);
701 for k = 1:mmgsSize

plot(Ms, reshape(data(i, n, :, iter, k, 2),1,numel(Ms)), 'Color', colorSet(k,:));
703 legendSet{k} = ['Class ' n2s(k)];

end
705 title(sprintf(['Number of training sequences: %d\nIterations: '...

'%d\nModel from which test data was generated: %d\n'], ...
707 n, iter, i));

xlabel('Number of test data sequences');
709 ylabel('Computational time for computing posterior in seconds');

legend(legendSet);
711 grid on

hold off
713 end

715 break;
end

717

end

Listing 1: MATLAB source

