
ECE 8110 – Homework Three

1. Estimated mean and variance of N points of zero-mean unit variance Gaussian signal.

The x-axis indicates the number of samples in the signal ranging from 1 to 1000. The mean quickly drives

down to zero as the estimated mean is on the order of 10^-16 which converges to zero in a hurry. The

variance is a slightly different story as for the first 100 sized samples it does not settle down to one. In

fact, there is quite a bit of noise on the variance until the sample size begins to reach 500. This suggests

that MLE tools can quickly return an accurate mean regardless of data size, but the variance takes a

larger data set to return an accurate result.

2. Autocorrelation and Covariance.

For Gaussian autocorrelation: x[n] = µ +Δe with µ as the mean 0 and Δe as the variance

(µ +Δe)(µ +Δe) = µ2 + 2 µ Δe + Δe2

With µ = 0, the summation becomes the following

R(k) = Σ Δen Δen-k

For Gaussian covariance: Cij = Σ (µn-i +Δen-i)(µn-j +Δen-j)

Again, µx = 0 which results in the following

Cij = Σ (Δen-i)(Δen-j)

The autocorrelation function is returning the error between each signal and the R(0)

signal. The Fourier transform works to break down a signal into basic component parts that can

be added together to reform/approximate the original signal. The autocorrelation of the

Gaussian indicates how to scale the error from the R(0) term to replicate the other intervals of

the signal. They both provide a map of how to rebuild a signal from inspect individual

components of the signal. Thus the absolute value of any given autocorrelation, R(k), will always

be a factor less than one of the of the R(0) signal.

 The covariance matrix results in a mirrored full rank matrix that indexes the variance

between the spacing of each sample subset. The matrix diagonal, where i=j, results as identity

0 100 200 300 400 500 600 700 800 900 1000
-3

-2

-1

0

1

2

3
x 10

-16 Estimated mean

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

 Estimated variance

when normalized against C11. At least, I am rather sure this is how it should work out since the

variance is set at unity so each diagonal should be unity, with the off diagonals indicting drift in

reference to the other spacing options.

For sine autocorrelation: Rx(a) = Σ[x(t)x(t-a)] where x(t) = Asin(ßt+λ)

A2 Σ[sin(ßt+λ)sin(ß(t-a)+λ)] integrate!

½pi ∫ A2 Σ[sin(ßt+λ)sin(ß(t-a)+λ)] dλ from 0 to 2pi

Apply tri identity of sin(a)sin(a+b) = ½[cos(b)-cos(2a+b)]

½pi ∫ A2 Σ ½ [cos(-2a) – cos(4t+2λ-2a)] dλ from 0 to 2pi

Rx(a) = ½ A2cos(-2a)

For sine covariance: Cij = Asin(2t-ai+λ)Asin(2t-aj+λ)

Again, tri identity from above; u = 2t-ai+λ v = 2t-aj+λ

Sin(u)sin(v) = ½[cos(u-v) – cos(u+v)]

A2 /4pi ∫ cos(2at + 2λ-ai+aj)dλ from 0 to 2pi

U = 2at+2λ-ai-aj du = 2dλ

A2/2pi cos(u)du

Cij = A2/2pi cos(a(j-i))

The rank of the sine covariance matrix should be full. The diagonal terms will be A2/2pi as

cos(a(j-i)) is always 1 when j=i. This makes sense as those terms are being correlated with

themselves. Much in the same manner that R(0) returns the magnitude of the signal and is used

to normalize the rest of the terms in autocorrelation.

The autocorrelation turns a sine wave into a cosine wave, as suggested by the above equations.

The covariance matrix comes out as square and only really needs to be a 2x2.

0 5 10
-0.5

0

0.5

0 20 40 60
-0.5

0

0.5

0 50 100
-0.5

0

0.5

0 50 100
-1

0

1

C_ij =

0.0351 0.0466

0.0466 0.0618

3. Correlation.

To find the coefficient of the filter, 0.75, the best approach is to use the autocorrelation of the

output signal. This only works because the equation of the filter is known, so we can

mathematically solve for alpha.

Y’[n] = H[n]*X[n]; Y”[n] = X[n] – αX[n-1] E = (Y’-Y”)2 = 0

E = (Y[n] -αY[n-1])2

dE/dα = 0 = Y2[n] - 2αY[n]Y[n-1] + α2Y2[n-1]

0 = -2Y[n]Y[n-1] + 2αY2[n-1]

α = Y[n]Y[n-1] / Y2[n-1]

α = R(1)/R(0)

Test results indicate a great success with this approach. As the number of iterations increase (x-

axis), alpha (y-axis) beings to approach the correct value. In this case the estimate of α quickly

approaches the true value.

The error of this approach can be seen below, with x-axis representing interations and y-axis the

error from the true value. The initial guess produces the most error, but the function quickly

beings to converge as more data points are added to the algorithm.

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

This can be used for many filters, provided the form of the filter equation is known prior. Here is

a case with α1 = 0.25 and α2 = -0.75. In both cases the true value of alpha is approach quite

quickly, but noise does remain as the estimate is limited by the variations seen in the data.

Adding a smoothing filter on the resultant would probably ensure convergence to a steady state

solution.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600 700 800 900 1000
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

This style of estimation is a maximum likelihood estimate, because it takes the data itself and

builds the model from the function that created the data. Without knowing the form of the

filter, it would impossible to use ML as there is no equation to use as the model of the data.

To estimate these parameters using Bayesian techniques, the output would be fitted against the

known input signal, zero mean Gaussian white noise. As the output conformed or disagreed

with the assumed model, the distribution of the presumed alphas would change until the

probability distribution would center on the correct value. Updating the probability of model

given the data would present a cleaner result than the noise seen in the above ML estimates.

4. Stationarity.

Allowing the coefficient to vary with time, in an equation such as H(z) = 1-az-1 where a = 0.75 +

0.24sin(2pin/100), produces an output as follows. The top plot is the zero-mean Gaussian input

and the bottom plot is the output signal.

0 100 200 300 400 500 600 700 800 900 1000
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

An analysis of the autocorrelation functions output as various window sizes are used to compute

the coefficient of the filter. As the window size is varied, and the function works itself through

the output signal it is clear that increasing the window size is not the panacea. Below is a

window of size 70 points.

The top plot is the result of the autocorrelation function, while the middle plot is the injected

coefficient. The plot on the bottom is the difference between the two signals. The results of the

autocorrelations R(1)/R(0) does not match up well with the input signal at all. Compare this

result to when the number of samples in the window is set for 50.

0 100 200 300 400 500 600 700 800 900 1000
-4

-2

0

2

4

0 100 200 300 400 500 600 700 800 900 1000
-10

-5

0

5

10

50 100 150 200 250 300 350 400 450 500
-1

-0.9

-0.8

-0.7

-0.6

-0.5

50 100 150 200 250 300 350 400 450 500
-1

-0.9

-0.8

-0.7

-0.6

-0.5

0 50 100 150 200 250 300 350 400 450 500
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Here with a window of 50 samples, the autocorrelation calculation returns something that does

resemble a periodic signal. The difference between the two signals gives hope for this entire

process to work out. Far worse is a filter with a window of 10 samples that produces gibberish

for the estimation of the coefficient over time.

This result does not even stay within the window for what the coefficient should be and

produces a lot of errors. Window sizes below 10 produce very wild results, but my initial

assumption was that the window should not exceed the rate it is sampled at, which in this

problem is 100Hz. It is clear that the result should track the coefficient when the proper size of

50 100 150 200 250 300 350 400 450 500
-1

-0.9

-0.8

-0.7

-0.6

-0.5

50 100 150 200 250 300 350 400 450 500
-1

-0.9

-0.8

-0.7

-0.6

-0.5

0 50 100 150 200 250 300 350 400 450 500
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

50 100 150 200 250 300 350 400 450 500
-1

-0.9

-0.8

-0.7

-0.6

-0.5

50 100 150 200 250 300 350 400 450 500
-1

-0.9

-0.8

-0.7

-0.6

-0.5

0 50 100 150 200 250 300 350 400 450 500
-1

-0.5

0

0.5

1

the filter, n, is found. However, the best value of n discovered appears to be that of a 50 sample

window, which does not fully track the input.

5. Stability.

Given x[n] = anu[n] where a=0.99 and 1.01 and is sampled at outputs of n=0, n=100, n=1000 for

a given window, produce 2x2 covariance matrices. The chosen window is 50 samples with the

two plots of the initial functions represented below in double log plots.

10
0

10
1

10
2

10
3

10
4

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 iterations

 v
a
lu

e
 o

f
x

The function with the coefficient that is less than 1 is driven down to zero, while the function

with the coefficient greater than 1 balloons up to what would be infinity if given enough data

points. In these simulations only 2000 data points were used to build the outputs.

covar_0_099 =

1.0000 0.9849

0.9849 0.9701

covar_100_099 =

1.0000 1.0101

1.0101 1.0203

covar_1000_099 =

1.0000 1.0101

1.0101 1.0203

The above results are from the covariance matrix taken over 50 points from 0, 100, and 1000 in

the data set. The values have been normalized, C/C(1,1), to highlight the relationship between

the terms. They are part of the a=0.99 coefficient growth that reaches zero at large values of n.

Not to be outdone, the growing term where a=1.01, results in values where each entry is less

than that of the C(1,1) aside from when the function first starts out.

covar_0_101 =

 1.0e+08 *

10
0

10
1

10
2

10
3

10
4

10
0

10
2

10
4

10
6

10
8

10
10

 iterations

 v
a
lu

e
 o

f
x

 0.0000 0.0003

 0.0003 8.9707

covar_100_101 =

 1.0000 0.9901

 0.9901 0.9803

covar_1000_101 =

 1.0000 0.9901

 0.9901 0.9803

The results of both matrices show that the division of the terms in the first column produces a

factor that scales the row 1 terms from the row 2 terms. However, for the growing term the non

C(1,1) terms decrease and become less than the leading term. The opposite is true for the decay

output as the non C(1,1) terms grow larger than the leading term.

As the term C(1,1) is actually the R(0) autocorrelation term, this shows that one of these

functions keeps gaining in energy as the others lose energy for the exponentially growing

function. However, the decaying function is dominated by the growth of the other correlations

and NOT the C(1,1) term. This indicates that if the leading term grows faster in relation to the

other terms, the function is unstable and does not result in a finite integral.

