
ECE 8527 Homework Number 3: Random Processed Revisited

Andrew Powell

March 10, 2014

1 Problem 1

For Problem 1, a series of random data sets are generated with a normal distribution whose
mean is µ = 0 and variance is σ2 = 1. The length N of each data set in the series changes as
the MATLAB vector N = 1 × 102 : 1 × 102 : 1 × 104. The results are shown in Figure 1 as
two plots, where the leftward plot shows how the Maximum Likelihood estimate of the mean µ̂
changes with respect to the data set’s length N and the rightward plot shows how the Maximum
Likelihood estimate of the variance σ̂2 changes with respect to the length.

Figure 1: Gaussian parameters versus data length N

The results shown in Figure 1 easily demonstrates more data increases the probability the
estimated parameters will be closer to the true parameters of the data set’s underlining distribution.

2 Problem 2

2.1 Theoretical Results
Rxx[k] = E[xnxn−k]

=
1

N

N−1∑
n=0

x[n]x[n− k]
(1)

Ci,j = E[xn−ixn−j]

=
1

N

N−1∑
n=0

x[n− i]x[n− j]
(2)

1

ECE 8527: Introduction to Machine Learning Homework 3 2

There are a number of assumptions and small “modifications” that need to be mentioned before
presenting the answers to Problem 2. The autocorrelation and covariance operations utilized for
this problem are shown in Equations 2 and 3, respectively. The reason why the fraction 1

N is
included to “normalize” the two operations is to simply make the results appear more familiar.
It is acknowledged in the field of Digital Signal Processing the fraction is typically dropped since
the scaling doesn’t change the outcome of the results; however, from my point of view, it makes
more sense to include the scaling since the expectation operator E[•] informally is defined as
the value one would expected as the result of averaging an infinite amount of variates from the
random variable for which the expectation is determined (I hope what I said made sense). In
regards to the definition of covariance in Problem 2, it is assumed the reason why the mean is
not subtracted from each data point is because, for both the gaussian and sine wave examples,
the mean is assumed zero.

Rxx[k] =

{
σ2 where k = 0

0 where k 6= 0
(3)

Cij =

{
σ2 where i = j

0 where i 6= j
(4)

Equations 3 and 4 are the expressions for a Gaussian distribution’s autocorrelation Rxx[k] and
covariance Cij , respectively.

Power Spectral Density (PSD(k)) = Fourier Transform{Rxx[l]}

Rxx(k) = |X(ej2πk)|2 =
N−1∑
n=0

Rxx[n]e
− j2πkn

N

(5)

The relationship between the autocorrelation of the signal x[n] and the Fourier Transform is
known as the Wiener-Khinchin theorem and is shown in Equation 5.

R[0] ≥ |R[k]| (6)

The relationship between R[0] and |R[k]| is shown in Equation 6. Because autocorrelation is
essentially multiplying the signal x[n] with a replicate whose phase varies, the point at which
the phase is zero, k = 0, indicates the signal is being multiplied with itself. Thus, unless
the signal is constant, it is impossible for the absolute value of the autocorrelation function
|R[k]|, where k 6= 0, to even be equal to the autocorrelation for which the phase is zero, R[0].
As far as the shape of the autocorrelation, the relationship simply implies the center of the
autocorrelation—that is, R(0)—will either have the largest magnitude or a magnitude equivalent
to largest magnitude.

x[n] = A sin

(
2πf

fs
n

)
(7)

ECE 8527: Introduction to Machine Learning Homework 3 3

R(k) =
A2

N

N−1∑
n=0

[
sin

(
2πf

fs
n

)][
sin

(
2πf

fs
(n− k)

)]

=
A2

2N

[
N cos

(
2πf

fs
k

)
−
N−1∑
n=0

cos

(
2πf

fs
(2n− k)

)]

=
A2

2N

[
N cos

(
2πf

fs
k

)
−
N−1∑
n=0

[
cos

(
2πf

fs
2n

)
cos

(
2πf

fs
k

)
+ sin

(
2πf

fs
2n

)
sin

(
2πf

fs
k

)]]

=
A2

2N

[
N cos

(
2πf

fs
k

)
−

[
N−1∑
n=0

cos

(
2πf

fs
2n

)
cos

(
2πf

fs
k

)
+

N−1∑
n=0

sin

(
2πf

fs
2n

)
sin

(
2πf

fs
k

)]]

=
A2

2N

[
N cos

(
2πf

fs
k

)
−

[
cos

(
2πf

fs
k

)N−1∑
n=0

cos

(
2πf

fs
2n

)
+ sin

(
2πf

fs
k

)N−1∑
n=0

sin

(
2πf

fs
2n

)]]

=
A2

2N

[
N cos

(
2πf

fs
k

)
−
[
cos

(
2πf

fs
k

)
0 + sin

(
2πf

fs
k

)
0

]]
=
A2

2
cos

(
2πf

fs
k

)
= σ2 cos

(
2πf

fs
k

)
(8)

Ci,j =
A2

N

N−1∑
n=0

sin

(
2πf

fs
(n− i)

)
sin

(
2πf

fs
(n− j)

)

Ci,j =
A2

2N

N−1∑
n=0

[
cos

(
2πf

fs
(j − i)

)
− cos

(
2πf

fs
(2n− (i+ j))

)]

Ci,j =
A2

2N

[
N−1∑
n=0

cos

(
2πf

fs
(j − i)

)
−
N−1∑
n=0

cos

(
2πf

fs
(2n− (i+ j))

)]

Ci,j =
A2

2N

[
N cos

(
2πf

fs
(j − i)

)
− 0

]
Ci,j =

A2

2
cos

(
2πf

fs
(j − i)

)
= σ2 cos

(
2πf

fs
(j − i)

)

(9)

Equations 8 and 9 respectively demonstrate how the autocorrelation Rxx[k] and covariance
matrix Ci,j for a “generic” sine wave are derived. The generic sine wave is assumed x(t) =
A sin(2πft), for which A is the amplitude, f is the frequency, and t is the time. t is defined
as n

fs
in order to determine x(t) in samples; that is, x[n] = A sin(2πffs n). It is imperative the

sample frequency fs, which is measured in samples per second, is larger than the Nyquist rate
fs ≥ 2 × f so as to avoid aliasing. N is the “window size” in samples. As shown in the
expressions for autocorrelation and covariance (that is, Equations 8 and 9), the window size N
causes a number of the summations to sum to zero if the window size N is a multiple of the
generic sine wave’s period T = 1

f . In other words, the window size N = f
fs
× r, where r is a

positive integer. The sine wave’s phase is ignored so as to avoid complications in the simulations,
or experimental results generated from MATLAB. The final expression for the generic sine wave

ECE 8527: Introduction to Machine Learning Homework 3 4

is shown in Equation 7.

According to MATLAB, if the window size N is greater than 1, the rank is always 2; otherwise,
the rank is 1. Why? Clearly, only two columns of the covariance matrix can be independent,
whereas the other columns are linear combinations of the two independent columns. Please note,
the window size N (obviously) pare integers defined for values greater than 0.

On a serious note, the reason for the rank could have a relation to the sine wave’s frequency
decomposition, wherein there are two impulse functions that define any sinusoidal wave. White
noise—the data set of the Gaussian distribution—includes an infinite amount of different frequencies
and its covariance matrix is the identity whose rank is then also infinity since white noise would
imply the data set’s size N is going to infinity.

2.2 Experimental Results

Figure 2: The window of white noise x[n] utilized for generating the autocorrelation Rxx[k]

The white noise utilized for the experimental results for the autocorrelation is shown in Figure 2.

Figure 3: White noise’s autocorrelation Rxx[k]

ECE 8527: Introduction to Machine Learning Homework 3 5

For the given parameters, the white noises’ experimental and theoretical autocorrelations are
shown in Figure 3. As described in the plot’s legend, the experimental results are generated
with an user-defined correlation function. The reason for self defining an correlation function
is because the correlation function MATLAB provides only appends zeros to the data when
performing the shift and dot product-product between the data—or, in this case, the data and
another copy of the data at a different phase.

The correlation function defined for Homework 3 instead performs a circular shift operation on
the second copy of the data. The circular shift operation simply causes the data to shift back
a single index and the last data point becomes the first data point in the data. The reason for
the circular shift operation instead of appending zeros is to, in a sense, trick the autocorrelation
function into thinking the data is periodic for the window size N . This idea of performing a
circular shift operation on the second copy of the data when determining the autocorrelation
actually makes more sense with the sine wave (whose experimental results are described after
the white noise’s experimental results). For white noise, new normally distributed data points
should have been generated instead of appending zeros. Autocorrelation utilizing the circular
shift operation, however, is simpler to implement.

The phase shifts performed for the generation of the experimental covariance matrices also apply
the circular shift operations for changes in phase.

It is also worth noticing the impulse function located at lag equal to 0. The height of the impulse
function, as expected, is equal to the variance σ2(or is it more accurate to refer to this variance
as the average variance, considering N represents the size of a window, rather than an infinitely
sized data set?).

MSE = Ei,j [(Cthi,j − Cexi,j)
2] (10)

Figure 4: Mean Square Error of white noise’s covariance matrix Ci,j

Instead of displaying a few instances of the theoretical and experimental covariance matrices
Ci,j , both covariance matrices are generated for values of N , ranging from 1 to 250. After the
theoretical covariance matrix, based on Equation 4, and the experimental covariance matrix,
based solely on the data, are generated for each N , the Mean Square Error (MSE) is computed
according to Equation 10. All the MSEs are collected into a single vector and are potted against

ECE 8527: Introduction to Machine Learning Homework 3 6

all the window size N in order to create Figure 4.

As demonstrated from Figure 4, the MSE jumps around relatively high values for values of N
approximately less than 100; afterward, the MSE seemingly converges to 0.

Figure 5: Sine wave window x[n] utilized for generating the autocorrelation Rxx[k]

For the MATLAB experimental results for determining the autocorrelation Rxx[k], the sine
wave x[n] shown in Figure 5 is utilized. Please note most of the methods utilized to compute
the experimental results for the sine wave are identical to the methods utilized for the white noise.

Figure 6: Sine waves’s autocorrelation Rxx[k]

Figure 6 shows three plots of the sine wave’s autocorrelation. The red plot is simply the
autocorrelation computed from the derived expression for the generic sine wave’s autocorrelation,
as shown in Equation 8. The blue and green plots are two different versions of the autocorrelation
generated from data. The difference is in how the second copy of the data is shifted prior the dot
product operation between the data and its shifted copy. The blue plot is the autocorrelation
computed from MATLAB’s xcorr, in which zeros are simply appended to tails of both the data
and its copy when there is a phase difference between the data and its copy. The green plot is the

ECE 8527: Introduction to Machine Learning Homework 3 7

autocorrelation generated from the user-defined function as described in the second paragraph
below Figure 3.

As Figure 6 demonstrates, the circular shift operation causes the autocorrelation operation to
result in an experimental autocorrelation very similar to the theoretical autocorrelation. The
circular shift operation is essentially replicating the chosen window of the sine wave. In other
words, the circular shift operation would not have worked so well if the window size N was
chosen as a value other than a multiple of the generic sine wave’s period, or f

fs
. As expected,

the autocorrelation generated from xcorr linearly diminishes to zero the farther the lag is from
0. If an infinite data set is possible the autocorrelation from xcorr would, however, resemble
the red and green plots.

Figure 7: Mean Square Error of sine wave’s covariance matrix Ci,j

The last two plots shown in Figure 7 show how the covariance matrices’ MSE, calculated in
the same manner as the MSE calculated for the white noise, changes with respect to a growing
window size N . The window size N , in the case of the generic sine wave, changes with respect
to the positive integer f , as N = f

fs
×r and the theoretical expression for the generic sine wave’s

covariance matrix (Equation 9) is only valid for positive integers of r.

3 Problem 3

3.1 Derived Results

3.1.1 Discrete Filter: H(z) = 1 + cz−1

H(z) = 1 + cz−1 (11)

An expression is determined for calculating the constant c for a filter whose transfer function is
Equation 11, input x[n] is normally distributed with a mean of 0, and output data ỹ[n] is known.

y[n] = x[n] + cx[n− 1] (12)

The transfer function shown in Equation 11 is first transformed from the z-domain back to the
time domain with the inverse z-transform. The result of the inverse transformation is shown in

ECE 8527: Introduction to Machine Learning Homework 3 8

Equation 12.

Mean Square Error (MSE) = E[(y[n]− ỹ[n])2]

E[•] = 1

N

N−1∑
n=0

•n
(13)

In order to determine from the data a potential value for the constant c, an expression that
contains both the output data ỹ[n] and the input data x[n] is required. A simple expression
that relates the data and the filter’s constant c is the Mean Square Error (MSE) (which was
previously used in Problem 2 to determine the error between theoretically and experimentally
determined covariance matrices). In the context of Problem 3, the expression for determining
the MSE is shown in Equation 13. y[n] represents the theoretical results determined from the
difference equation shown in Equation 12, whereas ỹ[n] represents the actual output data.

MSE = E[(y[n]− ỹ[n])2]
= E[((x[n] + cx[n− 1])− ỹ[n])2]
= E

[
x2[n] + 2cx[n]x[n− 1] + cx2[n− 1]− 2x[n]ỹ[n]− 2cx[n− 1]ỹ[n] + ỹ2[n]

] (14)

Once Equation 12 is substituted in Equation 13 and then expanded, the MSE results in Equation
14.

d (MSE)
dc

=
d
(
E
[
x2[n] + 2cx[n]x[n− 1] + cx2[n− 1]− 2x[n]ỹ[n]− 2cx[n− 1]ỹ[n] + ỹ2[n]

])
dc

= E[2x[n]x[n− 1] + 2x2[n− 1]c− 2x[n− 1]ỹ[n]]

(15)

Equation 14 is then differentiated with respect to the constant c so as to minimize the MSE.
Similar to Maximum Likelihood Estimation (MLE) where an unknown parameter of an assumed
distribution is chosen if its maximizes the likelihood a particular data set was produced from
the distribution, the constant or parameter c is chosen if it minimizes the MSE; MLE and the
minimization of the error (MSE) are similar in methodology, but fundamentally different.

0 = E[2x[n]x[n− 1] + 2x2[n− 1]c− 2x[n− 1]ỹ[n]]

0 = E[x[n]x[n− 1]] + E[x2[n− 1]]c− E[x[n− 1]ỹ[n]]

0 = Rxx[1] +Rxx[0]c−Ryx[1]
The following is possible since it is known the input is a normal distribution whose mean µ is 0

0 = σ2xc−Ryx[1]

c =
Ryx[1]

σ2x
(16)

After Equation 15 is set equal to 0, the expression for determining c is finally derived in Equation
16.

ECE 8527: Introduction to Machine Learning Homework 3 9

3.1.2 Discrete Filter: H(z) = 1 + c1z
−1 + c2z

−2

H(z) = 1 + c1z
−1 + c2z

−2 (17)

The steps to determine the constants c1 and c2 of the new digital filter shown in Equation 17
through the minimization of the Mean Square Error (MSE) are nearly the same as the steps
described in Section 3.1.1.

y[n] = x[n] + c1x[n− 1] + c2x[n− 2] (18)

First, the difference equation that calculates the theoretical output data y[n] based on the input
x[n] and the constants c1 and 2 is acquired after performing the inverse z-transform on the filter’s
transfer function. The new difference equation is shown in Equation 18.

MSE = E[[α+ 2c1x[n− 1]x[n] + c21x
2[n− 1]+

2c2x[n− 2]x[n] + 2c1c2x[n− 2]x[n− 1] + c22x
2[n− 2]

− 2c1x[n− 1]ỹ[n]− 2c2x[n− 2]ỹ[n]]

(19)

The difference equation in Equation 18 is then substituted in Equation 13 to result in Equation
19.

c1 =
Ryx[1]

σ2x
(20)

c2 =
Ryx[2]

σ2x
(21)

Because there are now two constants for which need to be solved, partial differentiation is applied
with respect to the two constants. After simplification, the equations nicely reduce to Equations
20 and 21.

In order to determine the constant c with Bayesian Estimation, a parameterized distribution is
required to represent c, which is now considered a random variable.

3.2 Experimental Results

ec = |cactual − cestimated| (22)

Equation 22 shows how the error between the actual and the estimated constants are calculated
for the experimental results. The estimated constants are calculated from Equations 16, 20, and
21. For each window size N ranging from 3 to 5×103, N data points are generated from a normal
distribution whose mean µx is 0 and variance σ2x is 4 (variance selected arbitrarily). The input
data points are passed through each of the two discrete filters to result in two sets of output
data. The transfer functions of the two discrete filters respectively correspond to Equations 11
and 17.

ECE 8527: Introduction to Machine Learning Homework 3 10

Figure 8: Absolute error ecversus window size N

The results are finally presented in Figure 8. The variance of the data produced for the absolute
errors ec is also included to further show how each data set differs from each other. It’s difficult
to accurately tell how much different the errors ec for the constants c are from one another—even
after running a few trials of the MATLAB simulation. The MATLAB simulation begins to take
way too long to run if the window size N is raised too high. However, based on the number
of trials and observing primarily the variance of the error ec, the error ec of the constant c,
referring to the left plot of Figure 8, varies less than the error ec of constant c1, referring to the
right plot of Figure 8. The estimated constant c2 consistently appears to vary less than both
the constants c and c1.

4 Problem 4

H(z) = 1− anz−1 (23)

For Problem 4, the first discrete filter of Problem 3 is presented again, however with a constant
a that varies as a function of time. Equation 23 shows the discrete filter of importance for
Problem 4.

y[n] = x[n]− anx[n− 1]

an = aactual + 0.24 sin
(
2π

n

100

)
aactual = 0.75

(24)

Once again, the goal of this problem is to estimate the constant a and then compare the estimated
constant aestimated with the actual constant aactual. Equation 24 shows the discrete filter after
which the inverse z-transform is applied and how the constant a changes with respect to time
measured in samples n. an represents what the constant is at a particular instance of time,
whereas aactual is the actual constant.

x̃[n] = x[n] ∈ N(µx, σ
2
x) where µx = 0 (25)

The input x[n] is once again randomly generated as a Gaussian distribution, as shown in
Equation 25.

ECE 8527: Introduction to Machine Learning Homework 3 11

m ∈ {1N, 2N, 3N, ...} (26)

As in Problem 3, the comparison between the constants aactual and aestimated is done by calculating,
and then plotting, the error ecbetween the actual and estimated constants as a function of the
window size N . However, in the case of Problem 4, ec is also calculated with respect to a series
of N -sized, adjacent windows as shown in Equation 26.

x̃[n+m] ∼ x̃[n] (27)

y[n+m] = x[(n+m)]− an+mx[(n+m)− 1]

= x̃[(n+m)]− an+mx̃[(n+m)− 1]

∼ x̃[n]− an+mx̃[n− 1]

an+m = aactual + 0.24 sin

(
2π

(n+m)

100

)
aactual = 0.75

(28)

In order to simplify the MATLAB source code developed for Problem 4, approximations are
determined for the input x[n] and the discrete filter system y[n]. Because m from Equation 26
only shifts the input by equally sized, adjacent windows and the input is normally distributed,
a close approximation of x̃[n+m] is x[n] (Equation 27). A close approximation for the discrete
filter’s difference equation with respect to m is shown in Equation 28. The close approximations
made in Equations 27 and 28 are really windows of the input repeated every window size N .
Thus, the larger the window size N is, the closer the approximations are to the true y[n +m]
and x̃[n+m].

Since the same assumptions made about the input x[n] cannot be drawn for the sinusoidal term
of the time-varying constant an, n+m is substituted into an as shown in Equation 28.

Rx̃x̃[k] =
1

N

N−1∑
n=0

x̃[m+ n]x̃[m+ n− k]

∼ 1

N

N−1∑
n=0

x̃[n]x̃[n− k]

The shift m does not cause the gaussian distribution to change!

(29)

The equation for determining the constant aestimated is Equation 16 from Problem 3. Figure 29
shows the results generated from a MATLAB source. Judging from the plot, the change in m
does not appear to cause much variation in the error ec. As expected, an increase in the window
size N causes the error ec to drop, though the rate at which the error drops abruptly appears
to nearly reach zero as the window size N goes to infinity. Depending on the constraints of
the application, it might be more practical to select a relatively lower window size N—let’s say
approximately within the range of 3×103 and 6×103—than a larger window size, seeing as a
larger N results in little benefit.

ECE 8527: Introduction to Machine Learning Homework 3 12

Figure 9

5 Problem 5

x[n] = anu[n] (30)

Ci,j = E[(xn−i − µxn−i)(xn−j − µxn−j)]

=
1

N

N−1∑
n=nstart

(x[n− i]− µxn−i)(x[n− j]− µxn−j)

µxn−m = E[xn−m]

=
1

N

N−1∑
n=nstart

x[n−m]

(31)

The goal of Problem 5 is to generate a set of covariance matrices Cj,i for x[n] shown in Equation
30. The covariance matrix Ci,j is once again normalized. Since the mean µx of the data is
not zero, the expression defining the covariance matrix in Equation 4 is instead replaced with
the expression shown in Equation 31. The constants a from Equation 30 and the nstart from
Equation 31 are varied for each covariance matrix Ci,j . Specifically, a and nstart are constants
from the sets {0.99, 1.01} and {0, 100, 1000}, respectively.

Equations 32 to 37 are the results generated for Problem 5.

nstart = 0

N = 1000

a = 0.99

Cdimension=2 =

[
0.040292 0.039789
0.039789 0.040292

] (32)

ECE 8527: Introduction to Machine Learning Homework 3 13

nstart = 100

N = 1000

a = 0.99

Cdimension=2 =

[
0.0053984 0.0054529
0.0054529 0.005508

] (33)

nstart = 1000

N = 1000

a = 0.99

Cdimension=2 =

[
7.5095 · 10−11 7.5854 · 10−11

7.5854 · 10−11 7.662 · 10−11

] (34)

The covariance matrices Ci,j shown in Equations 32 to 34 are generated with the constant
a = .99, a value less than 1. This observation is of importance because the product of a set
of values, all of which are less than 1, will invariably result in a value less than all the values
of the original set. Seeing as the operation computed to determine the covariance matrix Ci,j ,
can be considered a dot product for which each term is a product of two values less than 1, the
covariance matrix Ci,j of x[n], where a < 1, will consist of values going to 0 as nstart goes to
infinity. A larger window size N only lessens the rate at which the covariance matrix’s values
go to 0. An increase in the covariance matrix’s dimension

The fact the elements of the covariance matrix Ci,j appear to converge to zero as nstart goes to
infinity implies the signal x[n] is stable.

nstart = 0

N = 1000

a = 1.01

Cdimension=2 =

[
1.748 · 107 1.7307 · 107
1.7307 · 107 1.7136 · 107

] (35)

nstart = 100

N = 1000

a = 1.01

Cdimension=2 =

[
1.2788 · 108 1.2662 · 108
1.2662 · 108 1.2536 · 108

] (36)

nstart = 1000

N = 1000

a = 1.01

Cdimension=2 =

[
7.6788 · 1015 7.6027 · 1015
7.6027 · 1015 7.5275 · 1015

] (37)

The covariance matrices shown in Equations 35 to 37 reflect the case for which the constant a of
x[n] is greater than 1. Because the operation calculated to obtain each value of the covariance

ECE 8527: Introduction to Machine Learning Homework 3 14

matrix Ci,j is essentially a sum of a terms, each of which are products of two values greater than
1, the values of the covariance matrix Ci,j will undoubtedly increase to infinity.

Another interesting observation is the rank of all the covariance matrices Ci,j appears to equal
1, judging from the data presented in Equations 32 to 37. The reason for the rank of 1 could be
x[n] has only 1 parameter a.

ECE 8527: Introduction to Machine Learning Homework 3 15

6 Appendix: MATLAB source code

function Homework3Script
2 close all;

4 % Problem1;
% Problem2;

6 % Problem3;
% Problem4;

8 % Problem5;

10 end

12 function Problem1

14 mean = 0;
variance = 1;

16 lengths = 1e2:1e2:1e4;

18 MLEmeans = zeros(1, numel(lengths));
MLEvariances = zeros(1, numel(lengths));

20

for length = lengths
22 X = generateGrv(mean, variance, length);

[MLEmean, MLEvariance] = getMaximumLikelihoodEstimations(X);
24 MLEmeans(length == lengths) = MLEmean;

MLEvariances(length == lengths) = MLEvariance;
26 end

28 figure;
hold on

30 plot(lengths, MLEmeans, 'b');
plot(lengths, repmat(mean, numel(lengths)), 'k');

32 legend('MLE mean', 'True mean');
title('Mean versus data length');

34 xlabel('Lengths');
ylabel('Means');

36 hold off

38

figure;
40 hold on

plot(lengths, MLEvariances, 'b');
42 plot(lengths, repmat(variance, numel(lengths)), 'k');

legend('MLE variance', 'True variance');
44 title('Variance versus data length');

xlabel('lengths');
46 ylabel('Variances');

hold off
48

end
50

function Problem2
52 %% gaussian stuff

% set base parameters for grv
54 variance = 3;

N = 1e3;
56 n = 0:N-1;

y = generateGrv(0, variance, N);
58

% plot the gaussian noise
60 figure;

plot(n, y);

ECE 8527: Introduction to Machine Learning Homework 3 16

62 title(char('Gaussian', ...
['Variance (sigma^2) = ' num2str(variance)], ...

64 ['N = ' num2str(N)]));
ylabel('x[n]');

66 xlabel('n');
grid on

68

% determine the theoretical and experimental autocorrelations for a
70 % specific value of N

[Rex, k] = getAutocorrelationCircularShift(y);
72 Rth = [zeros(1, numel(y)-1) variance zeros(1, numel(y)-1)];

74 % plot stem plt
figure;

76 hold on
stem(k, Rex, 'b', 'LineWidth', 3);

78 stem(k, Rth, 'g', 'LineWidth', 2);
title(char('Autocorrelation', ...

80 ['Variance (sigma^2) = ' num2str(variance)], ...
['N = ' num2str(N)]));

82 ylabel('Magnitude');
xlabel('lags');

84 legend(char('Experimental Results', 'with user-defined autocorrelation'), ...
'Theoretical Results');

86 grid on
hold off

88

% Mean Square Error variables
90 Ns = 1:250;

errors = zeros(1, numel(Ns));
92

% get the Mean Square Errors for noise
94 for N=Ns

96 % set parameters
y = generateGrv(0, variance, N);

98

% get theoretical result
100 CmTh = variance*eye(N);

102 % get result from simulation
X = zeros(numel(y),N);

104 for index=1:N, X(:,index)=circshift(y',index-1);end;
CmEx = cov(X);

106

% get error
108 errors(N==Ns) = getError(CmEx, CmTh);

110 end

112 % plot how the Mean Square Error (MSE) changes with respect to N
figure;

114 plot(Ns, errors);
title(char('Mean Square Error (MSE) versus N', ...

116 ['Variance (sigma^2) = ' num2str(variance)], ...
['N = ' num2str(N)]));

118 ylabel('MSE');
xlabel('N');

120 grid on

122 %% sine stuff
% set base parameters of sine wave

124 f = 4;

ECE 8527: Introduction to Machine Learning Homework 3 17

fs = 2*f+492;
126 r = 4;

N = fs/f*r;
128 A = 2;

n = 0:N-1;
130

getSineWave = @(A,f,fs,n)A*sin(2*pi*f/fs*n);
132 y = getSineWave(A,f,fs,n);

134 % generate different versions of the autocorrelation
[Rex, k] = xcorr(y, 'biased'); % baised means R is scaled by 1/numel(y)

136 Rex2 = getAutocorrelationCircularShift(y);
Rth = A^2/2*cos(2*pi*f/fs*k);

138

% plot original sine wave
140 figure;

plot(n, y);
142 title(char('Sine Wave', ...

['Amplitude (A) = ' num2str(A)], ...
144 ['Frequency (f) = ' num2str(f)], ...

['Sample Freq (fs) = ' num2str(fs)], ...
146 'N = fs/f*r', ...

['r = ' num2str(r)]));
148 ylabel('x[n]');

xlabel('n');
150 grid on

152 % plot autocorrelations
figure

154 hold on
plot(k, Rex, 'b', 'LineWidth', 7);

156 plot(k, Rex2, 'g', 'LineWidth', 5);
plot(k, Rth, 'r', 'LineWidth', 2);

158 grid on
title(char('Autocorrelation plots', ...

160 ['Amplitude (A) = ' num2str(A)], ...
['Frequency (f) = ' num2str(f)], ...

162 ['Sample Freq (fs) = ' num2str(fs)], ...
'N = fs/f*r', ...

164 ['r = ' num2str(r)]));
ylabel('Magnitude');

166 xlabel('lag');
legend('Experimental Results with ''xcorr''', ...

168 char('Experimental Results', 'with user-defined autocorrelation'), ...
'Theoretical Results');

170 hold off

172 % defined base parameters for generating the error between the
% theory-determined covariance matrices and the experimental convariance

174 % matrices
C=@(i,j)A^2/2*cos(2*pi*f/fs*(j-i));

176 %Ns = 1:500;
rs = 1:10;

178 errors = zeros(1, numel(rs));

180 % get the average percent errors for the sine waves
for r=rs

182

% generate N
184 N = fs/f*r;

n = 0:N-1;
186

% set parameters

ECE 8527: Introduction to Machine Learning Homework 3 18

188 y = getSineWave(A,f,fs,n);

190 % get theoretical result
CmTh = zeros(N, N);

192 for i=0:N-1, CmTh(i+1,:)=C(i,0:N-1); end;

194 % get result from simulation
X = zeros(numel(y),N);

196 for index=1:N, X(:,index)=circshift(y',index-1);end;
CmEx = cov(X);

198

% get error
200 errors(r==rs) = getError(CmEx, CmTh);

202 end

204 % plot how the Mean Square Error (MSE) changes with respect to N
figure

206 plot(rs, errors);
title(char('Mean Square Error (MSE) versus N', ...

208 ['Amplitude (A) = ' num2str(A)], ...
['Frequency (f) = ' num2str(f)], ...

210 ['Sample Freq (fs) = ' num2str(fs)], ...
['r = 1:' num2str(rs(end))]));

212 ylabel('MSE');
xlabel('N');

214 grid on

216 end

218 function Problem3

220 % set up the constants
c11 = -.75;

222 c21 = .25; c22 = -.75;

224 % set up filter polynomials (transfer function H(z))
filterTransferFunction1 = {[1 c11], 1};

226 filterTransferFunction2 = {[1 c21 c22], 1};

228 % set base parameters for grv
variance = 4;

230 mean = 0;
Ns = 3:5e3;

232 error1 = zeros(1, numel(Ns));
error2 = zeros(2, numel(Ns));

234

for N=Ns
236 x = generateGrv(mean, variance, N);

y1 = filter(filterTransferFunction1{1}, filterTransferFunction1{2}, x);
238 y2 = filter(filterTransferFunction2{1}, filterTransferFunction2{2}, x);

estimatedC11 = getEstimatedC(1, x, y1);
240 estimatedC21 = getEstimatedC(1, x, y2);

estimatedC22 = getEstimatedC(2, x, y2);
242 error1(N==Ns) = abs(estimatedC11-c11);

error2(1, N==Ns) = abs(estimatedC21-c21);
244 error2(2, N==Ns) = abs(estimatedC22-c22);

end
246

figure;
248 plot(Ns, error1);

grid on
250 title(char('|c_{actual} - c_{estimated}| versus N for H(z)=1 + cz^{-1}', ...

ECE 8527: Introduction to Machine Learning Homework 3 19

['c = ' num2str(c11)], ...
252 ['variance of error = ' num2str(var(error1))]))

ylabel('|c_{actual} - c_{estimated}|')
254 xlabel('N')

256 figure;
hold on

258 plot(Ns, error2(2,:), 'b');
plot(Ns, error2(1,:), 'g');

260 grid on
legend(char(['estimated c_2 (c_2 = ' num2str(c22) ')'], ...

262 ['variance of error = ' num2str(var(error2(2,:)))]), ...
char(['estimated c_1 (c_1 = ' num2str(c21) ')'], ...

264 ['variance of error = ' num2str(var(error2(1,:)))]));
title('|c_{actual} - c_{estimated}| versus N for H(z)=1 + c_1z^{-1} c_2z^{-2}')

266 ylabel('|c_{actual} - c_{estimated}|')
xlabel('N')

268 hold off

270 end

272 function Problem4

274 % a = 0.75 + 0.24sin(2pi(1)n/100)
aActual = .75;

276 getA = @(nOffset, N)aActual + 0.24*sin(2*pi*(1)*(nOffset+[0:(N-1)])/100);

278 % H(z) = 1-az^{-1}
getFilteredOutput = @(x, a)x-a.*[0 x(1:end-1)];

280

% determine estimated a
282 getEstimatedA = @(x, y)-getEstimatedC(1, x, y);

284 ms = 1:4;
Ns = 3:1e3;

286 meanw = 0;
variance = 4;

288 errors = zeros(numel(ms), numel(Ns));

290 for m = ms
for N = Ns

292 x = generateGrv(meanw, variance, N);
y = getFilteredOutput(x, getA(m*N, N));

294 aEstimated = getEstimatedA(x, y);
errors(m==ms, N==Ns) = abs(aActual-aEstimated);

296 end
end

298

figure;
300 hold on

colorSet = varycolor(numel(ms));
302 legendSet = {};

for m = ms
304 plot(Ns, errors(m==ms, :), '.', 'Color', colorSet(m==ms,:));

legendSet{end+1} = ['m = ' num2str(m) 'N , variance = ' num2str(var(errors(m==ms, :)))];
306 end

legend(legendSet);
308 title(char('|a_{actual} - a_{estimated}| versus N', ...

'y[n] = x[n] - a_nx[n-1]', ...,
310 ['a_{actual} = ' num2str(aActual)], ...

'a_n = a_{actual} + 0.24sin(2\pi(m+n)/100)'));
312 ylabel('|a_{actual} - a_{estimated}|')

xlabel('N')

ECE 8527: Introduction to Machine Learning Homework 3 20

314 grid on
hold off

316

end
318

function Problem5
320

getX = @(a, n)a.^n.*(n >= 0);
322 N = 10e3;

nstarts = [0, 100, 1000];
324 as = [0.99, 1.01];

dimension = 100;
326

for a=as
328 for nstart=nstarts

C = getCovarianceMatrix(@(n)getX(a, n+nstart), dimension, N);
330 disp(char(['nstart = ' num2str(nstart)], ...

['a = ' num2str(a)], ...
332 convertMatrixToLatexWithPrecision(C, 5), ...

' '));
334 end

end
336

338 end

340 function error = getError(ex, th)

342 error = mean(mean((ex-th).^2));

344 end

346 function X = generateGrv(mean, covariance, length)

348 X = mvnrnd(mean', covariance, length)';

350 end

352 function [mean, covariance] = getMaximumLikelihoodEstimations(X)

354 mean = 1/numel(X(1,:))*sum(X,2);
covariance = 0;

356 for n =1:numel(X(1,:))
covariance = covariance + (X(:,n)-mean)*(X(:,n)-mean)';

358 end
covariance = covariance/numel(X(1,:));

360

end
362

function [R, l] = getAutocorrelationCircularShift(y)
364

l = -(numel(y)-1):numel(y)-1;
366 R = numel(l);

for n=1:numel(l), R(n) = 1/numel(y)*sum(y'.*circshift(y', n)); end
368

end
370

function [R, l] = getCrosscorrelationCircularShift(x,y)
372

if numel(x) ~= numel(y), error('x and y must have the same amount of elements'); end
374 l = -(numel(y)-1):numel(y)-1;

R = numel(l);
376 for n=1:numel(l), R(n) = 1/numel(y)*sum(x'.*circshift(y', n)); end

ECE 8527: Introduction to Machine Learning Homework 3 21

378 end

380 function c = getEstimatedC(l, x, y)

382 [Ryx, lag] = xcorr(y, x, 'unbiased');
c = Ryx(lag == l)/var(x);

384

end
386

function C = getCovarianceMatrix(xFunctionHandle, dimension, N)
388

[~, d] = rat(dimension);
390 if d ~= 1, error('dimension cannot have a decimal'); end

if dimension < 1, error('dimension should be greater than 0'), end
392

X = zeros(N, dimension);
394 for i=1:dimension;

X(:, i)=xFunctionHandle([0:N-1]-(i-1));
396 end

C = cov(X);
398

end
400

function latexMatrix = convertMatrixToLatexWithPrecision(M,p)
402

d = digits(p);
404 latexMatrix = latex(sym(vpa(M)));

digits(d);
406

end

Listing 1: MATLAB source

	Problem 1
	Problem 2
	Theoretical Results
	Experimental Results

	Problem 3
	Derived Results
	Discrete Filter: H(z) = 1+cz-1
	Discrete Filter: H(z) = 1+c1z-1+c2z-2

	Experimental Results

	Problem 4
	Problem 5
	Appendix: MATLAB source code

