
ECE 8527 Homework Number 2: Maximum Likelihood versus
Bayesian Estimation

Andrew Powell

February 13, 2014

1 Introduction

The primary goals of Homework 2 are to apply and understand Maximum Likelihood Estimation,
Bayesian Estimation, and Principal Component Analysis. Another goal of Homework 2 is to
continue to fully understand Bayesian Decision Theory (also known as Maximum Likelihood
Classification) by determining the theoretical probability of error and then comparing the
theoretical result with an estimation generated from MATLAB simulation.

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
(1)

The ultimate goal of Maximum Likelihood Classification is to choose a particular class ωi for
a given feature vector x. The underlining rule behind the Maximum Likelihood Classification
is Bayes’ Rule as shown in Equation 1. x is a d dimensional feature vector that is treated
as a vector of d random variables and as the basic element of a data set D. The ωi are the
states or categories. The priors P (ωi) are probabilities that represent prior knowledge about
the data. p(x|ωi) is the likelihood (or class-conditional density) a certain feature, given the
respective state. In the context of Maximum Likelihood and Bayesian Estimation, the p(x|ωi)
have known distributions (e.g. the normal distribution) that approximate the likelihoods. The
distributions’ parameters (e.g. mean and variance) are unknown and each method of estimation
has a different approach in determining those parameters from given data, although yielding
similar parameters. The posteriors P (ωi|x) allows for the classification of each feature vector
from the data. The p(x) merely acts as a scalar to ensure

∑N
i=1 P (ωi|x) = 1. The evidence is

discarded for its lack of contribution in the classifier.

gi(x) = ln(P (ωi|x)) = ln(p(x|ωi)) + ln(P (ωi))− α (2)

If g1(x) > g2(x) then choose ω1, otherwise choose ω2 (3)

gi(x) = −1

2

[
(x− µi)t

∑−1

i
(x− µi) + d ln(2π) + ln(|

∑
i
|)
]

+ ln(P (ωi)) (4)

In Maximum Likelihood Classification, the classification is done through two or more discriminant
functions gi(x), which are functions of the posteriors p(ωi|x) as seen in Equation 2. The constant
α is a function of the evidence from Equation 1 and is discarded. For the case in which only two
possible states exist, the “Two-Category Case”, the discriminant function shown in Equation 3
can be constructed. Since the distribution the most common in Homework 2 is the normal
distribution, the likelihood seen in Equation 2 is substituted with the normal distribution
N(µ,

∑
) as shown in Equation 4. The MATLAB code developed in order to generate the

1

ECE 8527: Introduction to Machine Learning Homework 2 2

results for Homework 2 implements the “normal” discriminant function in Equation 4 directly
as an anonymous function and then utilizes the Maximum Likelihood classifier in Equation 3 to
determine error rate.

Maximum Likelihood and Bayesian Estimation both consider the case in which the likelihood’s
distribution is not precisely known, however there is given data and a distribution that can
potentially approximate the likelihood. In other words, what is a “reasonable” distribution that
approximates p(x|ωi, D)? D is the given data. The problem of concern is determining the
parameter vector θ of the distribution that approximates the likelihood p(x|ωi, D). Maximum
Likelihood Estimation tries to find the parameter vector θ̂ that maximizes the likelihood of a set
of given data D, whereas Batesian estimation treats the parameter vector θas a random variable
whose distribution ideally, with more and more data, is supposed to converge to a parameter
vector θ̂.

x́ = At(x− µ) (5)

Principal Components Analysis basically “whitens” a set of data through a preprocess (i.e. prior
to classification) that involves computing the covariance matrix

∑
and the mean vector µ for

a set of data, building a matrix A from the covariance matrix’s eigen values λi and vectors ei,
and then finally applying an operation on each feature vector of the data in order to complete
the whitening process. “Whitened” indicates the data has been preprocessed in such a way
that the preprocessed data set is now decorrelated and thus its covariance matrix

∑
is zero

for the off-diagonal elements. The operation that transforms each feature vector x from the
original data set to a preprocessed feature vector x́ , whose data set is decorrelated, is shown in
Equation 5. x́ is the preprocessed or transformed feature vector and the matrix A is a matrix
whose columns are the eigen vectors [e1, ..., ed]. Each eigen vector ei is determined from the
corresponding eigen value λi, where the eigen values are sorted starting with the highest eigen
value and then decreasing.

Please note all MATLAB source code developed to generate the following results is found in
Section 7.1 in this Homework’s Appendix.

2 Problem 1

µ1 =

[
1
1

]
µ2 =

[
−1
−1

] (6)

Figures 1 to Figure 5 show the results to Problem 1, for which two 2D gaussian probability density
functions whose respective mean vectors µi are shown in Equation 6 are repeatedly generated
so as to produce theoretical probability of errors as a function of the prior probability of class
ω1 and the covariance matrices

∑
i. Each figure individually plots the theoretical probability of

error P (error) against the prior P (ω1). The difference in each figure is simply which covariance
matrices were utilized in the generation of the probabilities and in the discriminant functions.
Each figure contains 1 or 2 plots. Each plot includes a caption that reveals the covariance
matrices applied to generate the respective plots.

The data tips shown in each plot indicate where the maximum probability of error P (error)
is. Unsurprisingly, the highest point of error is always when the priors are equivalent, that
is, P (ω1) = P (ω2). Priors set equal indicate no useful information is gained from the priors

ECE 8527: Introduction to Machine Learning Homework 2 3

and don’t contribute to the overall posterior. The likelihoods thus are left to contribute to
the classification. A closer examination of the each plot’s extremities, when P (ω1) = 0 and
P (ω1) = 1, reveals another unsurprising observation; P (error) goes to zero at each plot’s
extremities, suggesting there is simply no way an error can be made if prior knowledge indicates
only features from a single class will occur.

The theoretical probabilities of error are likely to have a certain degree of error, considering the
theoretical calculations are done numerically with MATLAB. MATLAB, due to the nature of
computers, are going to accumulate some degree of error because of a lack of precision. Another
major issue are the two axis defined to generate “all” possible feature vectors for the probability
density functions. The period between each point is set as 0.2 in the MATLAB source, but
ideally the period should be small as possible to minimize quantization error (this may or may
not be the right word to use here, but I think you know what I mean, Dr. Picone).

P (error) = p(ω1|x, x ∈ ω2) + p(ω2|x, x ∈ ω1); (7)

Equation 7 demonstrates how the theoretical probability of error is calculated. What Equation
7 implies (or is supposed to imply, rather) is the probability of error is the sum of the probability
of ω1 being chosen when the feature vector x really came from ω2 and the probability of ω2 being
chosen when the feature vector x really came from ω1.

Figure 1

ECE 8527: Introduction to Machine Learning Homework 2 4

Figure 2

Figure 3

Figure 4

ECE 8527: Introduction to Machine Learning Homework 2 5

Figure 5

Figure 6

ECE 8527: Introduction to Machine Learning Homework 2 6

3 Problem 2 ∑
1

=

[
1 0
0 1

]
∑

2
=

[
1 0
0 1

] (8)

∑
1

=

[
1 0
0 1

]
∑

2
=

[
1 .5
.5 1

] (9)

In according to the instructions for Problem 2, a Maximum Likelihood Classifier is created and
applied to randomly generated data from the classes described in Problem 1. The priors are set
to equal each other, that is, P (ω1) = P (ω2) = .5. Due to the length of time to run simulations
on MATLAB, the two cases show in Equations 8 and 9 are considered. The number of feature
vectors generated for each class, n, are 1×102, 1×103, 1×104, and 1×105. The estimated
probability of errors are calculate for each length n, utilizing the Maximum Likelihood Classifier
constructed from Equations 3 and 4. The simulated results for Problem 2 are shown as Listing
1. The theoretical results are shown in the plots under Figure 1.

1 Problem 2

3 Data size: 100
Error rate: 0.2

5 Covariance1: [1 0;0 1]
Covariance2: [1 0;0 1]

7

Data size: 1000
9 Error rate: 0.146
Covariance1: [1 0;0 1]

11 Covariance2: [1 0;0 1]

13 Data size: 10000
Error rate: 0.1557

15 Covariance1: [1 0;0 1]
Covariance2: [1 0;0 1]

17

Data size: 100000
19 Error rate: 0.15916

Covariance1: [1 0;0 1]
21 Covariance2: [1 0;0 1]

23 Data size: 1000000
Error rate: 0.15702

25 Covariance1: [1 0;0 1]
Covariance2: [1 0;0 1]

27

Data size: 100
29 Error rate: 0.2

Covariance1: [1 0;0 1]
31 Covariance2: [1 0.5;0.5 1]

33 Data size: 1000
Error rate: 0.171

35 Covariance1: [1 0;0 1]
Covariance2: [1 0.5;0.5 1]

37

ECE 8527: Introduction to Machine Learning Homework 2 7

Data size: 10000
39 Error rate: 0.1874

Covariance1: [1 0;0 1]
41 Covariance2: [1 0.5;0.5 1]

43 Data size: 100000
Error rate: 0.1945

45 Covariance1: [1 0;0 1]
Covariance2: [1 0.5;0.5 1]

47

Data size: 1000000
49 Error rate: 0.19565

Covariance1: [1 0;0 1]
51 Covariance2: [1 0.5;0.5 1]

Listing 1: Maximum Likelihood Classification results generated in MATLAB

Unsurprisingly, as the number of the feature vectors are included, the simulated error rates tend
to converge to the theoretical probability of errors as shown in Figure 1.

4 Problem 3

µ1 =

[
−2
−5

]
∑

1
=

[
2 1.5

1.5 2.0

] (10)

µ2 =

[
3
6

]
∑

2
=

[
3 −2
−2 3

] (11)

Two data sets are generated from two 2D gaussian distributions. The first data set for class ω1

corresponds to the 2D gaussian distribution whose parameters are shown in Equation 10, whereas
the second data set for class ω2 corresponds to the 2D gaussian distribution whose parameters
are shown in Equation 11. It is assumed the length n for each data set is 1×104 feature vectors
x and both priors for Maximum Likelihood Classification are P (ω1) = P (ω2) = .5. The density
function of the data generated is shown in Figure 8.

4.1 A

The error rate determined with a Maximum Likelihood Classifier implemented in MATLAB is
shown in Listing 2.

1 Problem 3

3 ML Classification:
Data size: 100000

5 Error rate: 2e-05 % basically zero
Mean1: [-2;-5]

7 Covariance1: [2 1.5;1.5 2]
Mean2: [3;6]

9 Covariance2: [3 -2;-2 3]

Listing 2: Maximum Likelihood Classification results generated in MATLAB

ECE 8527: Introduction to Machine Learning Homework 2 8

4.2 B and C

For each data set, Principal Component Analysis is performed by first computing the covariance
matrix, determining the eigen vectors, concatenating the eigen vectors as column vectors in
matrix A with each column corresponding to the next lowest eigen value, and then applying the
operation as shown in Equation 5. The resulting preprocessed data set is then normalized such
that its variances are equal to 1. Finally, the mean vectors µ are added back to each preprocessed
feature vector x́ in the preprocessed data set. The density plot for both preprocessed data sets
are shown in Figure 7.

Figure 7: The density function of both data sets after whitening

The classes are chosen based on the Euclidean distances between each preprocessed feature
vector x́ and the mean vectors of each data set; the class whose mean vector µ is the shortest
Euclidean distance away from the preprocessed feature vector x́ is decided. The error rate is the
ratio between the number of incorrect decisions and the total number of preprocessed feature
vectors, i.e. n = 1 × 104. The results are displayed in Listing 3. The error rate determined
after Principal Component Analysis is nearly the same as the error rate determined from the
Maximum Likelihood Classifier created for Part A.

1 Problem 3

3 PCA Classification?:
Data size: 100000

5 Error rate: 0
Mean1: [-1.9964557135527;-4.99506275580752]

7 Covariance1: [0.999999999999997 2.10411466895766e-14;2.10411466895766e-14 1]
Mean2: [2.99828728695589;6.00268204090308]

9 Covariance2: [0.999999999999986 -7.12889747234158e-16;-7.12889747234158e-16 1.00000]

Listing 3: Principal Component Analysis results generated in MATLAB

4.3 D

Figure 8 contains a plot of raw data’s density function. The black lines are the eigen vectors, the
Principal Components, computed from performing the Principal Component Analysis on each
data set. The mean vectors estimated from each raw data set are added to the eigen vector in
order to shift them over their respective data sets. The actual eigen vectors are shown in Listing

ECE 8527: Introduction to Machine Learning Homework 2 9

4. Unfortunately, due to limited time to properly finish Homework 2, the support regions are not
shown in the figures. Even without the support regions, the shape of each data set’s distribution
is still easily observable. For each data set, the eigen vectors, or the Principal Components, are
aligned in the direction with the most variance.

Figure 8: The density function of both data sets prior (the black lines are the eigen vectors
scaled by an arbitrary amount and then summed with the means)

1 Eigen Matrices (columns are the Principal Components):
A1: [-0.70763 0.70659;-0.70659 -0.70763]

3 A2: [-0.70911 -0.70509;0.70509 -0.70911]

Listing 4: Eigen Matrices A

5 Problem 4

For Problem 4, Bayesian Estimation is compared with Maximum Likelihood Estimation by
generating a series of 1D normally distributed data sets whose sizes are n features (or data
points) and then finding an estimated mean (i.e. µ̂ for Maximum Likelihood Estimation and
µn for Bayesian Estimation) that converges towards the true mean µ. It is given the number of
data points n should range from 100 to 100×103 and, for Bayesian Estimation, the probability
density of the mean µ for each data set, p(µ|D) where D represents each data set, is normally
distributed. Considering the example from the slides and the book do not consider the case in
which the variance σ2 is unknown for Bayesian Estimation, the variance σ2 is assumed known
and thus chosen such that the simulation produces the most “interesting” results. What is
considered “interesting” is later made clear.

µ = 0

σ2 = 10× 109

n =
[
100 : 5× 103 : (100× 103 + 100)

] (12)

Equation 12 displays the parameters for the generation of the data. The mean µ is selected
as 0 in order to make interpretation of the results easier. The variance σ2 is chosen as a large
value in order to see the difference between the Bayesian and Maximum Likelihood Estimation;

ECE 8527: Introduction to Machine Learning Homework 2 10

the larger the true variance σ2 and the “uncertainty” σ20 is, the larger difference is between the
two forms of estimation. n simpl shows how the length of each data set increases a little bit
above the value 100×103. Please note n from Equation 12 is in MATLAB’s notation for an
incrementing vector.

µ0 = 0

σ20 = 10× 109
(13)

Equation 13 shows the parameters for p(µ|D) approximated as N(µ0, σ
2
0), which is the shorthand

notation for the normal distribution. Since µ is considered a random variable in Bayesian
Estimation, p(µ|D) is the mean’s probability density function with respect to each data set D.
µ0 is prior knowledge of the true mean µ and is assumed to equal 0. It is also assumed the
degree of “uncertainty”, represented as the variance σ20 for p(µ|D), is also known. Again, the
reason why the “uncertainty” σ20 is chosen as such a large value is to force a larger difference
between the Maximum Likelihood and Bayesian estimated means.

µn = (
nσ20

nσ20 + σ2
)x̄n +

σ2

nσ20 + σ2
µ0

x̄n =
1

n

n∑
k=1

xk

(14)

σ2n =
σ20σ

2

nσ20 + σ
(15)

x̂ =
1

n

n∑
k=1

xk (16)

Implemented directly in the MATLAB source are the Equations 14, 15, and 16. Equation
14 shows how the Bayesian estimated mean µn is determined. Equation 15 determines the
“uncertainty” of the Bayesian estimate. The derivation of 14 results from the relation p(µ|D) =
p(D|u)p(u)

p(D) ∼ N(µn, σ
2
n), where p(D|µ) is approximately

∏n
k=1 p(xk|µ) ∼

∏n
k=1N(µ, σ2) and the

prior p(µ) is approximately N(µ0, σ
2
0). Equation 16 determines the estimated mean µ̂, which

is the mean µ that maximizes the probability density function p(µ|D) as part of Maximum
Likelihood Estimation.

ECE 8527: Introduction to Machine Learning Homework 2 11

Figure 9

The plot in Figure 9 is generated from the MATLAB simulation and visually illustrates how
much the estimated means vary with respect to the amount of data produced. The plot appears
to imply the estimated means are always the same and converge to the true mean µ.

Figure 10

The plot in Figure 10 is also of importance, as it visually shows how the “uncertainty” diminishes
as the data set’s size is increased.

ECE 8527: Introduction to Machine Learning Homework 2 12



Data Sizes n MLE Means BE Means |MLE Means − BE Means|
100.0 1052.5 1042.1 10.421
5100.0 −1663.6 −1663.3 0.32614
10100.0 −583.98 −583.92 0.057814
15100.0 544.58 544.55 0.036063
20100.0 1118.2 1118.2 0.05563
25100.0 502.55 502.53 0.020021
30100.0 −667.74 −667.72 0.022183
35100.0 −275.1 −275.09 0.0078373
40100.0 2.5359 2.5358 0.000063237
45100.0 792.05 792.03 0.017562
50100.0 768.91 768.89 0.015347
55100.0 208.16 208.15 0.0037778
60100.0 149.37 149.37 0.0024853
65100.0 153.47 153.47 0.0023574
70100.0 459.47 459.46 0.0065543
75100.0 751.06 751.05 0.010001
80100.0 −188.77 −188.77 0.0023567
85100.0 −220.67 −220.67 0.002593
90100.0 −41.132 −41.132 0.00045651
95100.0 85.552 85.551 0.00089959
100100.0 62.317 62.317 0.00062254



(17)

The table shown in Figure 17 (I think) reveals the most “interesting” information regarding how
the estimated means change as the data sets increase in size, and how the “uncertainty” in the
data’s expected value (i.e. the variance σ2) and in the mean (i.e. the σ20) impact the Bayesian
estimated mean. If σ2 and σ20 are both increased to incredibly large values, the difference
between the two estimates grow larger and larger. But, only increasing one of the two forms of
“uncertainty” did not appear to impact the Bayesian estimates at all.

6 Problem 5
µ = 1

σ2 = 1

n =
[
1× 102 1× 103 1× 104 1× 105

] (18)

µ0 = 0

σ20 = 1
(19)

Finally, for Problem 5, a series of 1D data sets are created with the parameters shown in
Equation 18. The true mean µ is unknown and is instead considered a random variable normally
distributed with the parameters shown in Equation 19.

p(x|D) ∼ N(µn, σ
2 + σ2n) (20)

An objective of Problem 5 is to generate a series of plots that reveal how the probability of
getting a particular data point x, given a particular data set D, changes with respect to a series
of data sets. This probability is determine from the probability density function p(x|D). As
mentioned, the series of data points each have a different lengths n (i.e. the number of data
points contained within each data set). Another objective is to show how the Bayesian estimated

ECE 8527: Introduction to Machine Learning Homework 2 13

mean µn changes with respect to each data set D whose length is n. Equation 20 shows how
the probability density of p(x|D) is generated in the MATLAB source.

The plots included in Figures 11 to 13 summarize the results generated from the MATlAB source.

Figure 11: p(x|Dn), where n = 1× 102 for the left plot and n = 1× 103 for the right plot

Figure 12: p(x|Dn), where n = 1× 104 for the left plot and n = 1× 105 for the right plot

An initial glance at the plots in Figure 11 and 12 reveal wrongly choosing the mean based on
prior knowledge µ0 impacts the Bayesian estimated mean µn, especially when n is very low. Not
shown for this problem are the simulations for which the prior mean µ0 is changed to a value
whose distance from the true mean µ is very large, that is, |µ0 − µ| > 1 × 104. The Bayesian
estimated mean µn never really got close to the incorrect prior mean µ0; however, the distance
between the Bayesian estimated mean µn and the true mean µ is relatively a lot larger than
compared to when µ0 = 0.

The plot in Figure 13 simply demonstrates the obvious: as the data sets D increase in size n,
the more the Bayesian estimated mean µn converges to the true mean µ. Though, it is given the
mean based on the data is approximately normally distributed with known “uncertainty” σ20, i.e.
p(µ|Dn) ∼ N(µn, σ

2
n).

ECE 8527: Introduction to Machine Learning Homework 2 14

Figure 13

7 Appendix

7.1 MATLAB source

1 function Homework2Script
close all;

3

Problem1;
5 Problem2;
Problem3;

7 Problem4;
Problem5;

9

end
11

function Problem1
13

% get discriminant function
15 g = getDiscriminantFunction;

17 % create anonymous function
%generateGrvPdf = @(X, mean, covariance)mvnpdf(X', mean', covariance)';

19

% generate a large combination of data vectors
21 dx = .2;

x1 = -10:dx:10;
23 x2 = -10:dx:10;

[X1, X2] = meshgrid(x1, x2);
25 X = [X1(:) X2(:)]';

27 % generate shared data between problem 1 and 2
[mean1, mean2, covariances] = Problem1And2Data;

29

% determine theoretical results
31 priors = 0:1/8:1;

for covariance1 = covariances
33 for covariance2 = covariances

35 % get probabilities
grv1 = generateGrvPdf(X, mean1, covariance1{1});

37 grv2 = generateGrvPdf(X, mean2, covariance2{1});

ECE 8527: Introduction to Machine Learning Homework 2 15

39 % create error rate vector
error = zeros(1, numel(priors));

41

for prior = priors
43

% determine error individual error rates for the given prior
45 error1 = 0;

error2 = 0;
47 for n=1:numel(X(1,:))

49 % features from state 1
g1 = g(X(:,n), mean1, covariance1{1}, prior);

51 g2 = g(X(:,n), mean2, covariance2{1}, 1-prior);
error1 = error1 + (g1 <= g2)*grv1(n);

53

% features from state 2
55 g1 = g(X(:,n), mean1, covariance1{1}, prior);

g2 = g(X(:,n), mean2, covariance2{1}, 1-prior);
57 error2 = error2 + (g1 > g2)*grv2(n);

end
59

% add the errors to determne error rates
61 % please note the priors themselves are multiplied to the

% errors to effectively "reduce" the respective data, in
63 % accordance to the priors

error(priors == prior) = (error1*prior + error2*(1-prior))*2*dx^2;
65 end

67 % plot results
figure;

69 plot(priors, error);
title(['Error rate versus priors(covariance1=' mat2str(covariance1{1}) ...

71 ', covariance2=' mat2str(covariance2{1}) ')']);
xlabel('P(omega1)');

73 ylabel('P(error)');
end

75 end

77 end

79 function Problem2

81 % generate shared data between problem 1 and 2
[mean1, mean2, covariances] = Problem1And2Data;

83

% set the other parameters of the problem
85 prior = .5;

lengths = [1e2, 1e3, 1e4, 1e5, 1e6];
87

% state the problem
89 disp(char('Problem 2', ' '));

91 for covariance1 = covariances(1)
for covariance2 = covariances(1:2)

93 for length = lengths

95 % determine error rate
errorrate = twoMLClassifier(...

97 mean1, covariance1{1}, ...
mean2, covariance2{1}, ...

99 prior, length);

ECE 8527: Introduction to Machine Learning Homework 2 16

101 % generate and display the error rate
disp(char(['Data size: ' num2str(length)], ...

103 ['Error rate: ' num2str(errorrate)], ...
['Covariance1: ' mat2str(covariance1{1})], ...

105 ['Covariance2: ' mat2str(covariance2{1})], ...
' '));

107 end
end

109 end

111 end

113 function Problem3

115 % generate the data
mean1 = [-2 -5]';

117 mean2 = [3 6]';
covariance1 = [2 1.5; 1.5 2];

119 covariance2 = [3 -2; -2 3];
prior1 = .5; % assumption

121 length = 10e4;

123 % generate error rate and data
[errorrateMLC, grv1X, grv2X] = twoMLClassifier(...

125 mean1, covariance1, ...
mean2, covariance2, ...

127 prior1, length);

129 % display the problem number
disp(char('Problem 3', ' '));

131

% create anonymous function for displaying results
133 precision = 5;

displayResult = @(header, length, errorrate, ...
135 mean1, covariance1, mean2, covariance2) ...

disp(char(header, ...
137 ['Data size: ' num2str(length)], ...

['Error rate: ' num2str(errorrate)], ...
139 ['Mean1: ' mat2str(mean1, precision)], ...

['Covariance1: ' mat2str(covariance1, precision)], ...
141 ['Mean2: ' mat2str(mean2, precision)], ...

['Covariance2: ' mat2str(covariance2, precision)], ...
143 ' '));

145 % display the error rate
displayResult('ML Classification: ', length, errorrateMLC, ...

147 mean1, covariance1, mean2, covariance2);

149 % perform principal components analysis on the data sets
[grv1Xpp, A1] = performPrincipalComponentsAnalysis(grv1X);

151 [grv2Xpp, A2] = performPrincipalComponentsAnalysis(grv2X);

153 % get estimated meanas with MLE
[mean1e, covariance1e] = getMaximumLikelihoodEstimations(grv1Xpp);

155 [mean2e, covariance2e] = getMaximumLikelihoodEstimations(grv2Xpp);

157 % determine new error rate with the preprocessed data
getDistanceFromMean = @(X, mean)pdist([X' ; mean'],'euclidean');

159 errorratePCA = 0;
for n = 1:numel(grv1X(1,:))

161 errorratePCA = errorratePCA + ...
(getDistanceFromMean(grv1Xpp(:,n), mean1e) >= ...

163 getDistanceFromMean(grv1Xpp(:,n), mean2e));

ECE 8527: Introduction to Machine Learning Homework 2 17

errorratePCA = errorratePCA + ...
165 (getDistanceFromMean(grv2Xpp(:,n), mean1e) < ...

getDistanceFromMean(grv2Xpp(:,n), mean2e));
167 end

errorratePCA = errorratePCA/(length*2);
169

% display eigen vector matrices
171 disp(char('Eigen Vectors (i.e. Principal Components): ', ...

['eigen matrix1: ' mat2str(A1, precision)], ...
173 ['eigen matrix1: ' mat2str(A2, precision)], ...

' '));
175

% display the error rate
177 displayResult('PCA Classification?: ', length, errorratePCA, ...

mean1e, covariance1e, mean2e, covariance2e);
179

% set up eigen vectors
181 A1plot = {6*[[-A1(1,1) A1(1,1)]; [-A1(2,1) A1(2,1)]] + repmat(mean1e, 1, 2), ...

3*[[-A1(1,2) A1(1,2)]; [-A1(2,2) A1(2,2)]] + repmat(mean1e, 1, 2)};
183 A2plot = {6*[[-A2(1,1) A2(1,1)]; [-A2(2,1) A2(2,1)]] + repmat(mean2e, 1, 2), ...

3*[[-A2(1,2) A2(1,2)]; [-A2(2,2) A2(2,2)]] + repmat(mean2e, 1, 2)};
185

% plot density function
187 figure;

hold on
189 plot(grv1X(1,:), grv1X(2,:), '.b');

plot(grv2X(1,:), grv2X(2,:), '.g');
191 plot(A1plot{1}(1,:), A1plot{1}(2,:), '-k', 'LineWidth',3);

plot(A1plot{2}(1,:), A1plot{2}(2,:), '-k', 'LineWidth',3);
193 plot(A2plot{1}(1,:), A2plot{1}(2,:), '-k', 'LineWidth',3);

plot(A2plot{2}(1,:), A2plot{2}(2,:), '-k', 'LineWidth',3);
195 title(['Density plot for the raw data (class1 is in blue, whereas ' ...

'class2 is in green)']);
197 xlabel('X(1,:)');

ylabel('X(2,:)');
199 axis equal

hold off
201

% plot density function
203 figure;

hold on
205 plot(grv1Xpp(1,:), grv1Xpp(2,:), '.b');

plot(grv2Xpp(1,:), grv2Xpp(2,:), '.g');
207 title(['Density plot for the preprocessed data (class1 is in blue, whereas ' ...

'class2 is in green)']);
209 xlabel('X(1,:)');

ylabel('X(2,:)');
211 axis equal

hold off
213

end
215

function Problem4
217

% let's just work with a standard normal distribution for simplicity's sake
219

% theses anonymous functions generate the best guess mean with Bayesian
221 % Estimation and the uncertainty of the guess

[getBayesianEstimationMean, getBayesianEstimationUncertainty] = ...
223 getBayesianEstimationFunctions;

225 % this anonymous function generates the uncertainty of the BE-determined
% mean

ECE 8527: Introduction to Machine Learning Homework 2 18

227

229 % the data here is for generating the data for the 1D gaussian distribution
% represented by the random variable X

231 mean = 0;
variance = 10e9;

233 lengths = 100:5000:(100e3+100);

235 % For Bayesian Estimation, there is a degree of uncertainty about the
% parameter(s) that govern the distribution of the likelihood p(x|omega_i,D).

237 % The parameter(s) are thus viewed as random variables whose distribution
% (hopefully) converges to the true parameter(s) with more data.

239 %
% In the case of Problem 4, the mean of X's normal distribution is

241 % uncertain. It is given the mean is normally distributed,
% i,e. N(mean0, variance0). mean0 is the prior knowledge about the mean,

243 % whereas variance0 is the degree of uncertainty.
mean0 = 0;

245 variance0 = 10e9;

247 MLEmeans = zeros(1, numel(lengths));
BEmeans = zeros(1, numel(lengths));

249 BEuncertainty = zeros(1, numel(lengths));

251 for length = lengths

253 % generate the data
X = generateGrv(mean, variance, length);

255

% determine the Maximum Likelihood of the mean and the "best guess" of
257 % the mean with Bayesian Estimation

MLEmeans(length == lengths) = getMaximumLikelihoodEstimations(X);
259 BEmeans(length == lengths) = getBayesianEstimationMean(...

length, ...
261 mean0, variance0, ...

variance,X);
263

% determine the Bayesian Estimation uncertainty with respect thhe size
265 % of the data

BEuncertainty(length == lengths) = getBayesianEstimationUncertainty(...
267 length, variance0, variance);

end
269

% generate plots
271 figure;

hold on
273 plot(lengths, MLEmeans, 'b','LineWidth',5);

plot(lengths, BEmeans, 'r','LineWidth',2);
275 plot(lengths, repmat(mean, numel(lengths)), 'k');

title('Mean versus data size');
277 legend('MLE means','BE means','true mean');

ylabel('Mean');
279 xlabel('size of data');

hold off
281

figure;
283 hold on

plot(lengths, BEuncertainty, 'r','LineWidth',2);
285 plot(lengths, repmat(mean, numel(lengths)), 'k');

title('BE uncertainty versus data size');
287 ylabel('BE uncertainty');

xlabel('size of data');
289 hold off

ECE 8527: Introduction to Machine Learning Homework 2 19

291 % save data
% generate differences

293 convertMatrixToLatexWithPrecision([lengths' MLEmeans' BEmeans' abs(MLEmeans'-BEmeans')], 5)
end

295

function Problem5
297

[getBayesianEstimationMean, getBayesianEstimationUncertainty] = ...
299 getBayesianEstimationFunctions;

301

mean = 1;
303 variance = 1;

mean0 = -1000;
305 variance0 = 1;

lengths = [1e2, 1e3, 1e4, 1e5];
307

pdfX = mean-5:.1:mean+5;
309 BEmeans = zeros(1, numel(lengths));

311 for length = lengths
X = generateGrv(mean, variance, length);

313

BEmean = getBayesianEstimationMean(...
315 length, ...

mean0, ...
317 variance0, ...

variance, ...
319 X);

BEmeans(length == lengths) = BEmean;
321 BEuncertainty = getBayesianEstimationUncertainty(...

length, ...
323 variance0, ...

variance);
325

pdfXGivenD = generateGrvPdf(pdfX, BEmean, variance+BEuncertainty);
327

figure;
329 hold on

[maxPdfXGivenD, maxIndex] = max(pdfXGivenD);
331 maxPdfX = pdfX(maxIndex);

plot(pdfX, pdfXGivenD, 'b-');
333 stem(maxPdfX, maxPdfXGivenD, 'k','LineWidth',3);

stem(mean, maxPdfXGivenD, 'g','LineWidth',2);
335 legend('p(x|D)','BEmean','true mean');

grid on
337 title(char(...

'p(x|D)', ...
339 ['length: ' num2str(length, 4)], ...

['BEmean: ' num2str(BEmean, 4)], ...
341 ['"uncertainty": ' num2str(BEuncertainty, 4)]));

ylabel('p(x|D)');
343 xlabel('x');

hold off
345 end

347 figure;
hold on

349 plot(lengths, BEmeans,'b');
plot(lengths, repmat(mean,1,numel(lengths)), 'k');

351 legend('BEmeans','true mean');
title('BEmeans versus length (or size) of the data sets');

ECE 8527: Introduction to Machine Learning Homework 2 20

353 ylabel('mean');
xlabel('lengths');

355 hold off

357 end

359 function latexMatrix = convertMatrixToLatexWithPrecision(M,p)

361 d = digits(p);
latexMatrix = latex(sym(vpa(M)));

363 digits(d);

365 end

367 function X = generateGrv(mean, covariance, length)

369 X = mvnrnd(mean', covariance, length)';

371 end

373 function pdf = generateGrvPdf(X, mean, covariance)

375 pdf = mvnpdf(X', mean', covariance)';

377 end

379 function [errorrate, grv1X, grv2X] = twoMLClassifier(...
mean1, covariance1, ...

381 mean2, covariance2, ...
prior1, length)

383

% get discriminant function
385 g = getDiscriminantFunction;

387 % generate the data
%generateGrv = @(mean, covariance, length)mvnrnd(mean', covariance, length)';

389 grv1X = generateGrv(mean1, covariance1, length);
grv2X = generateGrv(mean2, covariance2, length);

391

% estimate mean and variance of the data
393 [mean1e, covariance1e] = getMaximumLikelihoodEstimations(grv1X);

[mean2e, covariance2e] = getMaximumLikelihoodEstimations(grv2X);
395

% determine error rate for equal priors
397 error1 = 0;

error2 = 0;
399 for n=1:length

error1 = error1 ...
401 + (g(grv1X(:,n), mean1e, covariance1e, prior1) ...

<= g(grv1X(:,n), mean2e, covariance2e, 1-prior1));
403 error2 = error2 ...

+ (g(grv2X(:,n), mean1e, covariance1e, prior1) ...
405 > g(grv2X(:,n), mean2e, covariance2e, 1-prior1));

end
407

% generate and display the error rate
409 errorrate = (error1+error2)/length;

411 end

413 function [Xpp, A] = performPrincipalComponentsAnalysis(X)

415 % determine the mean and covariance from MLE

ECE 8527: Introduction to Machine Learning Homework 2 21

[mean, covariance] = getMaximumLikelihoodEstimations(X);
417

% obtain eigen vectors
419 [V, ~] = eig(covariance);

421 % flip eigen vector matrix such that the columns of the eigen vector matrix
% correspond to a descending eigen values

423 A = fliplr(V);

425 % apply transformaion
Xpp = zeros(size(X));

427 for n = 1:numel(X(1,:))
Xpp(:,n) = A'*(X(:,n)-mean);

429 end

431 % normalize variances
[~, covariancepp] = getMaximumLikelihoodEstimations(Xpp);

433 for n = 1:numel(mean)
Xpp(n,:)=Xpp(n,:)/(covariancepp(n,n)^(1/2));

435 end

437 % add back the mean
Xpp = Xpp + repmat(mean, 1, numel(Xpp(1,:)));

439

end
441

function g = getDiscriminantFunction
443

% discriminant function for normal distributions
445 % g_i(x)=ln(p(x|omega_i)P(omega_i))

g = @(X, mean, covariance, prior) ...
447 -1/2*(X-mean)'*covariance^(-1)*(X-mean) ...

-numel(mean)/2*log(2*pi) ...
449 -1/2*log(det(covariance)) ...

+log(prior);
451

end
453

function [getBayesianEstimationMean, getBayesianEstimationUncertainty] = ...
455 getBayesianEstimationFunctions

457 getBayesianEstimationMean = @(length,mean0,variance0,variance,X) ...
(length*variance0/(length*variance0+variance)) ...

459 *getMaximumLikelihoodEstimations(X) ...
+ (variance/(length*variance0+variance))*mean0;

461 getBayesianEstimationUncertainty = @(length,variance0,variance) ...
(variance0*variance)/(length*variance0+variance);

463

end
465

function [mean1, mean2, covariances] = Problem1And2Data
467

% mean vectors
469 mean1 = [1 1]';

mean2 = [-1 -1]';
471

% covariances
473 covariances = {eye(2),[1 .5; .5 1],[1 .75; .75 1]};

475 end

477 function [mean, covariance] = getMaximumLikelihoodEstimations(X)
mean = 1/numel(X(1,:))*sum(X,2);

ECE 8527: Introduction to Machine Learning Homework 2 22

479 covariance = 0;
for n =1:numel(X(1,:))

481 covariance = covariance + (X(:,n)-mean)*(X(:,n)-mean)';
end

483 covariance = covariance/numel(X(1,:));
end

Listing 5: MATLAB source

	Introduction
	Problem 1
	Problem 2
	Problem 3
	A
	B and C
	D

	Problem 4
	Problem 5
	Appendix
	MATLAB source

