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Exercise 1. Generate two 2D GRVs with a mean of (1, 1) and (−1,−1). Plot the theoretical
probability of error for an ML classifier as a function of the prior probabilities and the covariance
matrices. Since there are a number of degrees of freedom, determine the best way to visualize
the results.

Solution: To calculate the probability of error for this classifier we first investigate the classifier
decision surface as a function of the prior probabilities and covariance matrix. For the first case,
we consider two GRVs with each with identity covariance matrices. With identity covariance
matrices, each RV’s distribution will be symmetric about its mean. Thus, we can expect the
decision surface to be a straight line. With one RV centered at (1, 1) and another centered at
(−1,−1), we expect the decision line to be of the form y = −x + b with b depending on the
prior probabilities. If the prior probabilities are equal, then we expect this straight line to be
equi-distant from the means of the two distributions, i.e, b = 0. As the priors of one distribution
grows, we expect the line to move towards the opposite distribution, since it is more likely that
the data observed originates from the former distribution, rather than the later. Note that we
have the following constraint for the prior probabilities: P1 +P2 = 1. We plot the support region
for both RVs and the decision line for P1 ∈ {0.1, · · · , 0.9}. Figure ?? shows the results of our
simulation. As we can see, the results match our intuitive guesses above.
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Figure 1: Support Region and Decision Surface for Σ1 = Σ2 = I2×2

These results could also be deduced from the following equations, found in [?]

gi = x′Wix+ w′ix+ wi0, (1)

where

Wi = −Σ−1i

2
, wi = µiΣ

−1
i , (2)

wi0 = −µ
′
iΣ
−1
i µi

2
− log(det Σi)

2
+ log(Pi) (3)



for i = 1, 2 and x = [x1, x2]
′. For g = g1 − g2 and setting g = 0, we have

g = g1 − g2 = 2x1 + 2x2 + log
(P1

P2

)
= 0⇒ x2 = −x1 −

1

2
log
(P1

P2

)
.

Thus, we see that the quadratic terms will cancel out, leaving a linear equation, whose intercept
depends on the prior probabilities. Not only does this show us that we will have a straight line
in equal covariance case, but it shows us that if we do not have equal covariances, our decision
surface will be some sort of parabola.

To find the theoretical error for this classifier, we integrate the pdf of each RV on the incorrect
side of the decision surface. With the constraint that the total probability must add up to 1, we
multiply each integral by its prior probability. First, we consider the case when Σ1 = Σ2 = I2×2

and P1 ∈ {0.1, · · · , 0.9}. Since we are consider distributions equi-distant from the origin, with
equal covariance, and the constraint that P1 + P2 = 1, we expect the theoretical error to exhibit
some symmetry as we vary the priors. The theoretical errors are listed in Table ?? and plotted
in Fig. ??.

Table 1: Theoretical Error for Σ1 = Σ2 = I2×2 and Varying Priors

P1 P2 Theoretical Error
0.1 0.9 0.0390
0.2 0.8 0.0583
0.3 0.7 0.0700
0.4 0.6 0.0766
0.5 0.5 0.0786
0.6 0.4 0.0766
0.7 0.3 0.0700
0.8 0.2 0.0583
0.9 0.1 0.0390
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Figure 2: Probability of Error for GRVs with Σ = I and Varying Priors

As stated above, to calculate the theoretical probability of error, one must integrate each pdf
which lies on the incorrect side of the decision surface. For equal covariance matrices, our
decision surface is a line, so our integration is over a rectangular area. For parabolic decision
surfaces our integration area becomes much more complicated. I was not able to implement
this integration in my software. While we cannot show the theoretical error, we are able to
show how the decision surface changes when the two distributions have unequal covariance



matrices. For simplicity, we will change only the covariance of the first distribution and keep the
second distribution as N ((−1,−1), I2×2). We consider three cases with the following covariance
matrices

Σ21 =

[
10 0

0 1

]
, Σ22 =

[
1 0

0 10

]
, Σ23 =

[
1 0.6

0.6 1

]
.

In each of the above cases we consider P1 ∈ {0.1, · · · , 0.9}. We make the following observations:
1) We saw in the previous homework assignment that changing the upper left term of the

covariance matrix in turn makes the support grow horizontally, changing the lower right
term in the covariance matrix makes the support grow vertically, and changing the diagonal
terms makes the support grow along its diagonal axis.

2) In the case of equal covariances, changing the prior translated the decision surface.
3) In Σ21,Σ22 we now have a value of 10, which is larger than in the case when we considered

Σ2 = I2×2. Also, for Σ23 we now have a value of 0.6 in the off diagonal terms, which is
smaller than when we considered Σ2 = I2×2.

From these observations, we expect the following, respectively,
1) The axis of symmetry of the decision surface (parabola) will be perpendicular to the axis

of the support region which is changing.
2) Any change in the priors will translate the parabola along the axis of symmetry.
3) With the support region of the random variable corresponding to Σ21 and Σ22 growing,

the decision surface will bend away from this distribution. With the support region of the
random variable corresponding to Σ23 shrinking, the decision surface should bend towards
this distribution.

Figures ??, ??, and ?? show the decision surfaces plotted with the support regions of the RVs
for Σ21, Σ22, and Σ23, respectively.
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Figure 3: Support Region and Decision Surface for Σ21
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Figure 4: Support Region and Decision Surface for Σ22
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Figure 5: Support Region and Decision Surface for Σ23

Exercise 2. Compare the theoretical results in Exercise ?? to those obtained when you construct
an ML classifier by generating [100, 1000, 10000, 100000] random variables for each cass.
Estimate the means and variances from the data. Only consider the equal priors case for this
example, and focus on a small representative set of covariances.

Solution: For the first part, we set Σ1 = Σ2 = I2×2 and vary both the number of data points
N and the prior P1. To find the experimental error we count the number of data points on the
wrong side of the decision surface, divide by the total number of points, and multiply this by
the prior probabilities. We expect the experimental errors to converge to the theoretical errors as
N → ∞. The results of our experiments can be seen in Figure ?? and Table ??. As expected,
as N increases, we see that the experimental errors converge to the theoretical errors.

Table 2: Experimental Error for Varying Priors and Number of Data Points

P1 = 0.1 P1 = 0.2 P1 = 0.3 P1 = 0.4 P1 = 0.5 P1 = 0.6 P1 = 0.7 P1 = 0.8 P1 = 0.9
N = 10 0.0300 0.0600 0.1600 0.1800 0.1500 0.1600 0.0300 0.0200 0.0200
N = 100 0.0470 0.0800 0.0900 0.1000 0.1050 0.0900 0.0960 0.0769 0.0540
N = 1000 0.0401 0.608 0.0685 0.0728 0.0725 0.0736 0.0749 0.0620 0.0429
N = 10000 0.0443 0.0612 0.0737 0.0799 0.0811 0.0764 0.0702 0.0591 0.0426
N = 100000 0.0428 0.0613 0.0713 0.0761 0.0781 0.0765 0.0713 0.0612 0.0431
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Figure 6: Theoretical and Experimental Error Rates

We now consider the case when we have the following covariance matrices

Σ1 =

[
1 0

0 1

]
, Σ2 =

[
10 0

0 1

]
.

The support regions and decision surface are seen in Figure ?? from Exercise 1. Again, we vary
both the number of data points N and the prior P1. While we don’t have a theoretical error
to compare these to, we do expect the error curve to smooth and for the distance between the
curves to shrink as N increases. Figure ?? shows the results of this simulation.
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Figure 7: Experimental Error Rates for Unequal Covariance Matrices



Exercise 3. Generate two 2D GRVs with means [−2,−5] and [3, 6] an covariance matrices[
2 1.5

1.5 2

] [
3 −2

−2 3

]
(4)

respectively.
(a) Construct an ML esitmator and measure the error rate.
(b) Convert each GRV to another GRV with identity covarance matrix by performing Principal

Component Analysis (PCA).
(c) Classify each data point y transforming it to the PCA space using a whitening transformation

and computing the distance from the mean. Select the class assignment by choosing the
class that has the smallest distance. This is essentualy an ML classifier, but implemented in
a slightly different way. Do your results match part (a)?

(d) Examine the eigenvectors of each covariance matrix and relate those to the support region
for each GRV. It is prefereable to visualize this with a graph of the vectors overlaid on the
support region.

Solution of (a):
As discussed above, a non-diagonal covariance matrix will give us a curved decision region.

Hence, to find the probability of error, we must integrate the GRV over regions defined by a
polynomial, which is not easy to do analytically. So we generate N data points and count how
many data points are on the incorrect side of the decision surface. As N → ∞ we expect the
experimental probability of error to converge to the theoretical probability of error. Table ??
shows the result of this experiment.

Table 3: Experimental Error for Varying Priors and Number of Data Points

P1 = 0.1 P1 = 0.2 P1 = 0.3 P1 = 0.4 P1 = 0.5 P1 = 0.6 P1 = 0.7 P1 = 0.8 P1 = 0.9
N = 100 0.0470 0.0800 0.0900 0.1000 0.1050 0.0900 0.0960 0.0769 0.0540
N = 1000 0.0401 0.608 0.0685 0.0728 0.0725 0.0736 0.0749 0.0620 0.0429
N = 10000 0.0443 0.0612 0.0737 0.0799 0.0811 0.0764 0.0702 0.0591 0.0426

Solution of (b): Let

Σ1 =

[
2 1.5

1.5 2

]
Σ2 =

[
3 −2

−2 3

]
and define Di to be a diagonal matrix whose diagonal elements correspond to the eigenvalues
of Σi. Also, define Vi to be a matrix whose columns are right eigenvectors of Σi with the added
constraint that the eigenvectors are orthonormal. This gives us

ΣiVi = ViDi.

From this, we get the following:

ΣiVi = ViDi ⇔ V −1i ΣiVi = Di = D
1
2
i D

1
2
i ⇔ D

− 1
2

i V −1i ΣiViD
− 1

2
i = I.

With the values of Σ1,Σ2 above, we have

V1 =

[−0.7071 0.7071

0.7071 0.7071

]
D1 =

[
0.5 0

0 3.5

]



V2 =

[−0.7071 −0.7071

−0.7071 0.7071

]
D2 =

[
1 0

0 5

]
.

Solution of (c):
Denote our original data sets by X1, X2. From our solution to Part (b), we get the following

transformed data sets

Y1 = V −11 D
− 1

2
1 V T

1 X1 and Y2 = V −11 D
− 1

2
2 V T

2 X2.

We see that the transfomation Yi = V T
i Xi decorelates the data, Yi = D

− 1
2

i V T
i Xi decorelates and

whitens the data, and Yi = V −1i D
− 1

2
i V T

i Xi decorelates, whitens, and then rotates the data back
into the original space, as seen in Fig. ??. Note that the transformation Yi = V T

i Xi orients the
data such that the principal axes of the data are aligned with the axes along which the data has
the largest (orthogonal) variance.

Table 4: Theoretical Error for PCA Space and Varying Priors

P1 P2 Theoretical Error
0.1 0.9 0.0038
0.2 0.8 0.0054
0.3 0.7 0.0063
0.4 0.6 0.0068
0.5 0.5 0.0069
0.6 0.4 0.0068
0.7 0.3 0.0063
0.8 0.2 0.0054
0.9 0.1 0.0038

Solution of (d):
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Exercise 4. Following the example presented in the notes, assume you have a 1D GRV with
mean and variance. Demonstrate estimation of the mean and variance using theoretical results
derived in class for a Bayesian estimation. Compare this to an ML estimation. Show convergence
as the number of data points increased from 100 to 100000.

Solution: We consider a random variable X ∼ N (µ, σ2), with unknown mean µ and known
variance σ2, and generate N data points from this distribution. From the data points, we use
both a Bayesian and Maximum Likelihood estimation to estimate the mean µ of the distribution
of X .
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Figure 8: Probability of Error in PCA Space and Varying Priors

For the Maximum Likelihood case, we consider all
For the Bayesian case, we assume µ has a known prior distribution p(µ) ∼ N (µ0, σ

2
0). Here

µ0 is our best prior guess for µ and σ2
0 measures our uncertainty about this guess. Our problem

then reduces to estimating the true value of µ from the data D, or in other words, determining
the distribution of p(µ|D). Since we are conditioning on the data D, one would expect the
distribution p(µ|D) to depend on the number of samples N , which is indeed the case. It can be
shown [?] that, if we assume p(µ|D) ∼ N (µN , σ

2
N), for the univariate Gaussian X , we have

µN =
Nσ2

0

Nσ2
0 + σ2

µ̂N +
σ2

Nσ2
0 + σ2

µ0 (5)

σ2
N =

σ2
0σ

2

Nσ2
0 + σ2

(6)

where µ̂N is the sample mean, computed as

µ̂N =
1

N

N∑
i=1

xi. (7)

These equations show us that to find µN we use both our prior information and the information
derived from the samples. Also, we see that as N →∞, our measure of uncertainty about µN ,
i.e., σ2

N approaches 0.
For this example we consider X ∼ N (−10, 5) and assume our prior p(µ) ∼ N (1, 1). In the

notation above we have µ = −10, σ2 = 5, µ0 = 1, and σ2
0 = 1. Note, that our ”best guess” for

µ is not too far from the correct value (µ0 = 1 and µ = −10) and our uncertainty is relatively
small (σ2

0 = 1). We consider N ∈ {10, 20, 30, · · · , 100000}. Figure ?? shows the values of the
Bayesian and Maximum Likelihood estimates of the means. Figure ?? shows our uncertainty
about our estimate of the mean σ2

N . Figure ?? shows p(µ|D).
As another example, we consider X ∼ N (−10, 5) and our prior p(µ) ∼ N (10000, 50). Here

we note that both our initial guess for µ and our uncertainty about this guess are much greater
than above. Again, N ∈ {10, 20, 30, · · · , 100000}. Figure ?? shows the values of the Bayesian
and Maximum Likelihood estimates of the means. Figure ?? shows our uncertainty about our
estimate of the mean σ2

N . Figure ?? shows p(µ|D).
Finally, we consider X ∼ N (−10, 5) and our prior p(µ) ∼ N (−10, 1), which is saying we

have a good initial guess for our value of µ. Again, N ∈ {10, 20, 30, · · · , 100000}. Figure ??
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Figure 9: Values of µN and µ̂N for varying N
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Figure 10: Values of σ2
N for varying N
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Figure 11: Probability distribution p(µ|D)
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Figure 12: Values of µN and µ̂N for varying N
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Figure 13: Values of σ2
N for varying N
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Figure 14: Probability distribution p(µ|D)

shows the values of the Bayesian and Maximum Likelihood estimates of the means. Figure ??
shows our uncertainty about our estimate of the mean σ2

N . Figure ?? shows p(µ|D).
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Figure 15: Values of µN and µ̂N for varying N

In the first two cases, we see that since our inital guess for µ was not correct, it took additional
data points to get the correct estimate. Also, in both cases, we see that after 1000 data points both
techniques approximately give the same estimate. In the last example, since our inital guess was
correct, we see that with fewer sample points, we have a better estimate of the true value of the
mean. In all three cases, we see our uncertainty σ2

N decrease to 0 as N increases. Additionally,
as N increases, our distribution p(µ|D) is centered closer to the true mean and the variance of
each distribution decreases.
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Figure 16: Values of σ2
N for varying N
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Figure 17: Probability distribution p(µ|D)

Exercise 5. Consider the Bayesian estimation of the mean of a 1D GRV. Suppose you are given
the prior for the mean as p(µ) N (µ0, σ0). Generate 1000 data points for N (1, 1). Assume µ0 = 0
and σ0 = 1 (assume the variance is known). Plot the Bayesian estimate of p(x|D) and µ as
a function of the number of data points, n. Do this for 100, 1000, 10000, and 100000 points.
Explain your results.

Solution: We consider a random variable X ∼ N (µ, σ2), with given prior p(µ) ∼ N (µ0, σ
2
0).

Let µ = 1, σ2 = 1, µ0 = 0, and σ2
0 = 1. We note that the conditional distribution p(x|D), with

data D and N data points, follows a normal distribution N (µN , σ
2 +σ2

N), where the parameters
are defined as follows:

µN =
Nσ2

0

Nσ2
0 + σ2

µ̂N +
σ2

Nσ2
0 + σ2

µ0 (8)

σ2
N =

σ2
0σ

2

Nσ2
0 + σ2

(9)

where µ̂N is the sample mean, computed as

µ̂N =
1

N

N∑
i=1

xi. (10)

The parameter µN is our estimate of the true mean given the data and our prior knowledge, and
σ2
N is our incertainty of this estimate. From the equations, we can see that as N → ∞ both
µN → µ̂N and σ2

N → 0. Also, we have that µ̂N → µ as N approaches infinity. One expects that



as we aquire more and more data, i.e. N increases, our estimate of the mean should approach
the true value of the mean. Hence, at the same time our uncertainty of our estimate should
decrease at the same time. We see both of these intuitive ideas reflected in the above equations.
Therefore, we expect that as N →∞ we will have p(x|D)→ p(x).

To see this, we let N ∈ {10, 20, 30, · · · , 100000} and plot both p(x|D) and µN . Figure ??
shows the plots of p(x|D) for N ∈ {10, 20, 100, 10000, 100000}, as well as a plot of N (1, 1).
We see from this figure that as N grows, the distributions approach N (1, 1). For N greater than
or equal to 100 it is difficult to distinguish the plots from N (1, 1).
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Figure 18: Probability distribution p(x|D)

Figures ?? and ?? show plots of our estimate of the mean µN and our uncertainty of this
estimate σ2

N . As expected, we see the value of our estimated mean converging to the value of
our true mean. Additionally, we see our uncertainty of this estimates tends to 0 as N increases.
After 1000 data points, we do not see much difference in our estimated value and our uncertainty
is approximately 0.
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Figure 19: Estimate of mean µN with increasing N
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Figure 20: Uncertainty of estimate σ2
N with increasing N


